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Abstract

We improve on random sampling techniques for approximately solving problems that involve cuts
and flows in graphs. We give a near-linear-time construction that transforms any graph on n vertices
into an O(n log n)-edge graph on the same vertices whose cuts have approximately the same value as the
original graph’s. In this new graph, for example, we can run the Õ(m3/2)-time maximum flow algorithm
of Goldberg and Rao to find an s–t minimum cut in Õ(n3/2) time. This corresponds to a (1 + ǫ)-times
minimum s–t cut in the original graph. In a similar way, we can approximate a sparsest cut to within
O(log n) in Õ(n2) time using a previous Õ(mn)-time algorithm. A related approach leads to a randomized
divide and conquer algorithm producing an approximately maximum flow in Õ(m

√

n) time.

1 Introduction

Previous work [Kar94, Kar99, Kar00] has shown that random sampling is an effective tool for problems
involving cuts in graphs. A cut is a partition of a graph’s vertices into two groups; its value is the number,
or in weighted graphs the total weight, of edges with one endpoint in each side of the cut. Many problems
depend only on cut values. The maximum flow that can be routed from s to t is the minimum value of
any cut separating s and t [FF56]. A minimum bisection is the smallest cut that splits the graph into two
equal-sized pieces. The connectivity or minimum cut of the graph, which we denote throught by c, is equal
to the minimum value of any cut.

Random sampling “preserves” the values of cuts in a graph. If we pick each edge of a graph G with
probability p, we get a new graph in which every cut has expected value exactly p times it value in G. A
theorem by Karger [Kar99] shows that if the graph has unit-weight edges and minimum cut c, then sampling
with probability roughly 1/ǫ2c gives cuts that are all, with high probability, within 1 ± ǫ of their expected
values. In particular, the minimum cut of the sampled graph corresponds to a (1 + ǫ)-times minimum cut
of the original graph. Similarly, an s-t minimum cut of the sampled graph is a (1 + ǫ)-times minimum s-t
cut of the original graph. Since the sampled graph has fewer edges (by a factor of 1/c for any fixed ǫ),
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minimum cuts can be found in it faster than in the original graph. Working through the details shows that
an approximately minimum cut can be found roughly c2 times faster than an exact solution.

A variant of this approach finds approximate solutions to flow problems via randomized divide and
conquer. If we randomly partition the edges of a graph into roughly ǫ2c subsets, each looks like the sample
discussed in the previous paragraph, so has approximately accurate cuts. In other words, random division is a
good approximation to evenly dividing up the capacities of all the cuts. By max-flow min-cut duality [FF56],
this means tha the s-t max-flow of G is also approximately evenly divided up. We can find a maximum flow
in each of the subgraphs and add them together to get a flow in G that is at least (1 − ǫ) times optimal.
Again, detailed analysis shows that finding this approximate flow can be done c times faster than finding
the exact maximum flow.

Unfortunately, the requirement that p = Ω(1/c) limits the effectiveness of this scheme. For cut approxi-
mation, it means that in a graph with m edges, we can only reduce the number of edges to m/c. Similarly
for flow approximation, it means we can only divide the edges into c groups. Thus, when c is small, we gain
little. Results can be even worse in weighted graphs, where the ratio of total edge weight to minimum cut
value is unbounded.

1.1 Results

In this paper, we show how nonuniform sampling can be used to remove graph sampling’s dependence on
the minimum cut c. Our main results are twofold: one for cut problems, and one for flow problems. For
cuts, we show that by sampling edges nonuniformly, paying greater attention to edges crossing small cuts,
we can produce accurate samples with far less than m/c edges—rather, the resulting compressed graph has
only Õ(n/ǫ2) edges, regardless of the number of edges in the original graph.1 In consequence, we show that
a (1+ ǫ)-times minimum s-t cut can be found in Õ(n3/2/ǫ3) time in general capacity graphs (as compared to
the Õ(m3/2) exact bound) and Õ(nv/ǫ2) time in unit-capacity graphs with flow value v (as compared with
the O(mv) exact bound). Similarly, a nonuniform divide-and-conquer approach can be used to find a (1− ǫ)
times maximum flow in Õ(m

√
n/ǫ) time. Our approach works for undirected graphs with arbitrary weights

(capacities).
Even ignoring the algorithmic aspects, the fact that any graph can be approximated by a sparse graph

is of independent combinatorial interest.
In addition to proving that such sampling works, we give fast algorithms for determining the importance

of different edges and the correct sampling probabilities for them. This involves an extension of the sparse
certificate technique of Nagamochi and Ibaraki [NI92b].

Using these results, we demonstrate the following:

Theorem 1.1. Given a graph G and an error parameter ǫ, there is a graph G′ such that

• G′ has O(n log n /ǫ2) edges and

• the value of every cut in G′ is (1± ǫ) times the value of the corresponding cut in G.

G′ can be constructed in O(m log2 n) time if G is unweighted and in O(m log3 n) time if G is weighted.

It follows that given any algorithm to (even approximately) solve a cut problem, if we are willing to accept
an approximate answer, we can substitute n logn for any factor of m in the running time. Our applications
of this result are the following:

Corollary 1.2. In an undirected graph, a (1 + ǫ) times minimum s–t cut can be found in Õ(n2/ǫ2) or
Õ(n3/2/ǫ3) time.

Corollary 1.3. In an undirected graph, a (1+ǫ) times minimum s–t cut of value v can be found in Õ(nv/ǫ2)
time.

1The notation Õ(f) denotes O(f polylog I) where I is the input problem size.
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Corollary 1.4. An O(log n)-approximation to the sparsest cut in an undirected graph can be found in
Õ(n2/ǫ2) time.

These corollaries follow by applying our sampling scheme to (respectively) the maximum flow algorithms
of Goldberg and Tarjan [GT88] and Goldberg and Rao [GR97], the classical augmenting-paths algorithm
for maximum flow [FF56, AMO93], and the Klein-Stein-Tardos algorithm for approximating the sparsest
cut [KST90].

A related approach helps solve flow problems: we divide edges crossing small cuts into several parallel
pieces, so that no one edge forms a substantial fraction of any cut it crosses. We can then apply a randomized
divide and conquer scheme. If we compute a maximum flow in each of the subgraphs created by the random
division using the Goldberg-Rao algorithm, and then add the flows into a flow in G, we deduce the following
corollary:

Corollary 1.5. A (1− ǫ) times maximum flow can be found in Õ(m
√
n/ǫ) time.

The work presented here combines work presented earlier by Karger and Benczur [BK96] and by Karger [Kar98].
The presentation is simplified and slight improvements are given.

1.2 Method

The previous work on sampling for cuts is basically an application of the Chernoff bound. Our goal in cut
sampling is to estimate the total weight (or number, in the case of unit-weight graphs) of edges crossing each
cut of the graph. We motivate our approach by considering a simpler problem—that of estimating a single
cut. Consider a set of m weights we, and suppose that we wish to estimate the sum S =

∑

we. A natural
approach is random sampling: we choose a random subset of the weights, add them, and scale the result
appropriately. A somewhat easier to analyze approach is to choose each weight independently with some
probability p, compute their sum S′, and estimate S = S/p. Since we choose only pm weights in expectation,
this sampling approach saves time. But we must analyze its accuracy. The Chernoff bound is a natural tool.

Lemma 1.6 (Chernoff [Che52]). Given any set of random variables Xi with values distributed in the
range [0, 1], let µ = E[

∑

Xi] and let ǫ < 1. Then

Pr[
∑

Xi /∈ (1± ǫ)µ] ≤ 2e−ǫ2µ/3.

The lemma’s requirement that Xi ≤ 1 is in force to prevent any one random variable from “dominating”
the outcome of the sampling experiment. For example, if one variable takes on value S with probability
1/S and 0 otherwise, while all other variables are uniformly 0, then the (relatively rare, but still occasional)
outcome of taking on value S will dramatically skew the sum away from is expectation of 1.

We can model our sampling experiment so as to apply the Chernoff bound. For now, let us assume that
each we ≤ 1. Let Xe be a random variable defined by setting Xe = we with probability p and Xe = 0
otherwise. Note that

∑

Xe is the value of our sampling experiment of adding the weights we have chosen
to examine. Also, E[

∑

Xe] =
∑

pwe = pS. The variables Xe satisfy the conditions of the Chernoff bound,

letting us deduce that the probability that
∑

Xe deviates by more than ǫ from its expectation is e−ǫ2pS/3.
Note that this deviation is exponentially unlikely as a function of the expected sample value pS.

We now note some slack in this sampling scheme. If some we ≪ 1, then its random sample variable Xe,
which takes on values 0 or we, is far away from violating the requirement that each Xe ∈ [0, 1]. We can afford
to apply a more aggressive sampling strategy without violating the Chernoff bound assumptions. Namely,
we we can set Xe = 1 with probability pwe and 0 otherwise. We have chosen this probability because it keeps
the expected value of each Xe, and thus E[

∑

Xe], unchanged while making each variable “tight” against the
Xe ≤ 1 limit of the Chernoff bound. Since this fits the preconditions of the lemma, we preserve the (1± ǫ)
concentration around the mean shown by the Chernoff bound. However, under this scheme, the expected
number of sampled values drops from pm to

∑

pwe (which is less since we assume each we < 1). This is
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a noteworthy quantity: it is equal to the expected value µ = E[
∑

Xe]. Since the probability of error in
the Chernoff bound is itself a function only of µ, it follows that under this scheme the expected number of
samples µ needed to guarantee a certain error probability δ is a function only of the desired bound (namely,
µ = 3(ln 1/δ)/ǫ2), and not of the number of variables m or their values we. Note further that since the we

do not affect the analysis, if our we violate the assumption that we ≤ 1, we can scale them all by dividing
by maxwe and apply the same result. So the restriction we ≤ 1 was actually irrelevant.

The key feature of this scheme is that an item’s greater weight is translated into an increased probability
of being sampled: this lets it contribute more to the expectation of the sample without contributing too
much to its variance.

One might object that in order to apply the above scheme, we need to know the weights we in order to
decide on the correct sampling probabilities. This would appear to imply a knowledge of the very quantity
we wish to compute. It is at this point that we invoke the specifics of our approach to avoid the difficulty.

We modify a uniform sampling scheme developed previously [Kar99]. That scheme sampled all graph
edges with the same probability and showed the following.

Lemma 1.7 ([Kar99]). Let G be a graph in which ths edges have mutually independent random weights,
each distributed in the interval [0, 1]. If the expected weight of every cut in G exceeds ρǫ = 3(d+ 2)(lnn)/ǫ2

for some ǫ and d, then with probability 1− 1/nd every cut in G′ has value within (1± ǫ) of its expectation.

The intuition behind this theorem is the same as for the Chernoff bound. In the sampled graph, the
expected value of each cut is Ω((log n)/ǫ2), while each edge contributes value at most 1 to the sampled cuts
it is in. Thus, the contribution of any one edge to the possibile deviation of a cut from its mean is negligible.2

As in our above discussion, we now observe that an edge that only crosses large-valued cuts can have its
sampled weight scaled up (and its probability of being sampled correspondingly scaled down) without making
that edge dominate any of the samples it is in. Consider a k-connected induced subgraph of G with k > c.
Lemma 1.7 says that we can sample the edges of this subgraph with probability Õ(1/k) (and scale their
weights up by Õ(k) to preserve expectations) without introducing significant error in the cut values. More
generally, we can sample edges in any subgraph with probability inversely proportional to the connectivity
of that subgraph. We will generalize this observation to argue that we can simultaneously sample each edge
with probability inversely proportional to the maximum connectivity of any subgraph containing that edge.

To take advantage of this fact, we will show that almost all the edges are in components with large
connectivities and can therefore be sampled with low probability—the more edges, the less likely they are
to be sampled. We can therefore construct an O(n log n)-edge graph that, regardless of the minimum cut
value, accurately approximates all cut values.

1.3 Definitions

We use the term “unweighted graph” to refer to a graph in which all edges have weight 1. In the bulk of this
paper, G denotes an unweighted undirected graph with n vertices and m edges; parallel edges are allowed.
We also consider weighted graphs. By scaling weights, we can assume the minimum edge weight is at least
one. For the purpose of correctness analysis when running times are not relevant, it is often convenient to
treat an edge of weight w as a set of w parallel edges with the same endpoints.

A cut C is a partition of the vertices into two subsets. The value VAL(C, G) of the cut in unweighted
(resp. weighted) graph G is the total number (resp. weight) of edges with endpoints in different subsets.

We simplify our presentation with a vector notation. The term xE denotes a vector assigning some value
xe to each e ∈ E. All operations on vectors in this paper are coordinatewise. The interpretation of xE + yE
is standard, as is the product γxE for any constant γ. However, we let xE × yE denote the product zE with
ze = xeye. Similarly, let 1/xE denote the vector zE such that ze = 1/xe (pointwise inverse). More generally,
let yE/xE be the vector zE with ze = ye/xe.

2This theorem is nontrivial, as the exponential number of cuts means that events which are very unlikely on one cut still
seem potentially probable over all cuts. But it can be shown that most cuts are so large in expectation that their deviation is
exponentially unlikely.
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A weighted graph G can be thought of as the vector (indexed by edge set E) of its edge weights. (An
unweighted graph has value 1 in all coordinates.) Applying our vector notation, when rE is a vector over
the edge set, we let rE × F denote a graph with edge weight vector rEF . Similarly, if G and H are graphs,
then G+H denotes the graph whose edge weight vector is the sum of those graphs’.

We also introduce a sampling notation. As is traditional, we let G(p) denote a graph in which each
edge of G is incorporated with probability p. Generalizing, we let G(pE) denote a random subgraph of G
generated by included each edge e of G (with its original weight) independently with probability pe. We
define the expected value graph E[G(pE)] = pE ×G, since the expected value of any edge in G(pE) is equal
to the value of that edge in pE ×G. This means that expected cut values are also captured by the expected
value graph.

We say that an event occurs with high probability if its probability is 1−O(n−d) for some constant d. The
constant can generally be modified arbitrarily by changing certain other constants hidden in the asymptotic
notation.

1.4 Outline

In Section 2 we define the strong connectivity measure that is used to determine the relative impact of
different edges on cut samples, and show that samples based on this strong connectivity measure have good
concentration near their mean. Our application to s-tmin-cuts is immediate. In Section 3 we introduce graph
smoothing, a variation on compression that can be used for flow approximation. Finally, in Section 4, we
show how the strong connectivities needed for our sampling experiments can actually be estimated quickly.

2 Approximating Cuts via Compression

As was stated above, we aim to sample edges with varying probabilities. To preserve cut values, we com-
pensate for these varying sampling probabilities using compression. To define the appropriate sampling
probability for each edge, we introduce the notion of strong connectivity. For the bulk of this section, we
will focus on unweighted graphs, though we will occasionally make reference to edge weights for future use.

2.1 Compression

Sampling edges with different probabilities means that cut values no longer scale linearly. To make the
expected cut value meaningful, we counterbalance the varying sampling probabilities by introducing edge
weights on the sampled edges.

Definition 2.1. Given an unweighted graph G and compression probabilities pe for each edge e, we build a
compressed graph G[pE ] by including edge e in G[pE ] with probability pe, and giving it weight 1/pe if it is
included.

In our notation above, the compressed graph G[pE ] = 1/pE × G(pE). Since the expected weight of any
edge in the graph is 1, every cut’s expected value is equal to its original value, regardless of the pe. That is,
E[1/pE × G(pE)] = G. However, the expected number of edges in the graph is

∑

pe. We would therefore
like to make all the pe as small as possible. We are constrained from doing so, however, by our need to
have all the cut values tightly concentrated around their expectations. An edge compressed with probability
pe has variance (1 − pe)/pe, and the large variances produced by small pe work against our wish for tight
concentration. The key question, then, is how small we can make our pe values (and thus our expected
number of sampled edges) while preserving tight concentration of cut values.

2.2 Strong Connectivity

In this section, we formalize the notion of subgraphs with large connectivities. As was discussed above,
if we identify a subgraph with connectivity k ≫ c, then we might hope, based on Lemma 1.7, to sample
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edges in this subgraph with probability roughly 1/k, producing a graph much sparser than if we sample with
probability 1/c.

Definition 2.2. A graph G is k-connected if the value of each cut in G is at least k.

Definition 2.3. A k-strong component of G is a maximal k-connected vertex-induced subgraph of G.

It follows that the k-strong components partition the vertices of a graph and each (k+1)-strong component
is contained in a single k-strong component—that is, that the partition into (k+1)-strong components refines
the partition into k-strong components.

Definition 2.4. The strong connectivity or strength of an edge e, denoted ke, is the maximum value of k
such that a k-strong component contains (both endpoints of) e. We say e is k-strong if its strong connectivity
is k or more, and k-weak otherwise.

Note that the definition of strong connectivity of an edge differs from the standard definition of connec-
tivity:

Definition 2.5. The (standard) connectivity of an edge e is the minimum value of a cut separating its
endpoints.

Consider the graph with unit-weight edges (s, vi) and (vi, t) for i = 1, . . . , n. Vertices s and t have
(standard) connectivity n but only have strong connectivity 1. An edge’s strong connectivity is always less
than its connectivity since an edge in a k-strong component cannot be separated by any cut of value less
than k.

2.3 The Compression Theorem

We now use the above definitions to describe our results. We will use a fixed compression factor ρǫ chosen
to satisfy a given error bound ǫ:

ρǫ = 3(d+ 4)(lnn)/ǫ2 .

Theorem 2.6 (Compression). Let G be an unweighted graph with edge strengths ke. Given ǫ and a
corresponding ρǫ, for each edge e, let pe = min{1, ρ/ke}. Then with probability 1− n−d,

1. The graph G[pE ] has O(nρ) edges, and

2. every cut in G[pE ] has value between (1− ǫ) and (1 + ǫ) times its value in G.

In particular, to achieve any constant error in cut values with high probability, one can choose ρ to yield
O(n log n) edges in the compressed graph.

We now embark on a proof of the Compression Theorem.

2.3.1 Bounding the number of edges

To prove the first claim of the Compression Theorem we use the following lemma:

Lemma 2.7. In a weighted graph with edge weights ue and strengths ke,

∑

ue/ke ≤ n− 1.

Proof. Define the cost of edge e to be ue/ke. We show that the total cost of edges is at most n − 1. Let
C be any connected component of G and suppose it has connectivity k. Then there is a cut of value k in
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C. On the other hand, every edge of C is in a k-strong subgraph of G (namely C) and thus has strength at
least k. Therefore,

∑

e crossing C

ue/ke ≤
∑

ue/k

= k/k

= 1

Thus, by removing the cut edges, of total cost at most 1, we can break C in two, increasing the number of
connected components of G by 1.

If we find and remove such a cost-1 cut n − 1 times, we will have a graph with n components. This
implies that all vertices are isolated, meaning no edges remain. So by removing n− 1 cuts of cost at most 1
each, we have removed all edges of G. Thus the total cost of edges in G is at most n− 1.

This lemma implies the first claim of the Compression Theorem. In our graph compression experiment,
all edge weights are one, and we sample each e with probability ρ/ke. It follows that the expected number
of edges is ρ

∑

1/ke ≤ ρ(n − 1) by the previous lemma. The high probability claim follows by a standard
Chernoff bound [Che52, MR95].

2.3.2 Proving cuts are accurate

We now turn to the proof that cuts are accurate in the compressed graph. Once again, we apply a useful
property of edge strengths.

Lemma 2.8. If graph G has edge strengths ke then the graph 1/kE ×G has minimum cut exactly 1.

Proof. Consider any minimum cut in G, of value c. Each edge in the cut has strength c, giving it weight
1/c in 1/kE ×G. Thus, the cut has value 1 in 1/kE ×G. It follows that the minimum cut in 1/kE ×G is at
most 1.

Now consider any cut, of value k in G. Each edge crossing the cut has strength at most k, meaning it
gets weight at least 1/k in 1/kE ×G. Since k edges cross this cut, it follows that the cut has weight at least
k(1/k) ≥ 1. This shows that the minimum cut in 1/kE ×G is at least 1.

Combining these two arguments yields the claimed result.

Recall that for graph compression, we initially assign weight ke to edge e, producing a weighted graph
kE ×G. We then produce a random graph by choosing edge e of kE ×G with probability ρ/ke, generating
the graph kE ×G(ρ/kE) (we assume for the moment that all ke ≥ ρ so the sampling probability is at most
1). Our goal is to show that the resulting graph has cuts near their expected values.

Our basic approach is to express kE ×G as a weighted sum of graphs, each of which, when sampled, is
easily proven to have cut values near their expectations. It will follow that the sampled kE ×G(ρ/kE) also
has cut values near its expectations.

We now define the decomposition of G. There are at most m distinct edge-strength values in G, one per
edge (in fact it can be shown there are only n− 1 distinct values, but this will not matter). Number these
values k1, . . . , kr in increasing order, where r ≤ m. Now define the graph Fi to be the edges of strength at
least ki—in other words, Fi is the set of edges in the ki-strong components of G. Write k0 = 0. We now
observe that

kE ×G =
∑

i

(ki − ki−1)× Fi.

To see this, consider some edge of strength exactly ki. This edge appears in graphs F1, F2, . . . , Fi. The total
weight assigned to that edge in the right hand of the sum above is therefore

(k1 − k0) + (k2 − k1) + · · · (ki − ki−1) = ki − k0 = ki
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as is required to produce the graph kE ×G which has weight ke on edge e.
We can now examine the effect of compressing G by examining its effect on the graphs Fi. Our com-

pression experiment flips an appropriately biased coin for each edge of kE ×G and keeps it if the coin shows
heads. We can think of these coin flips as also being applied to the graphs Fi. We apply the same coin flip
to all the Fi: edge e of strength ki, present in F1, . . . , Fi, is kept in all of the respective samples Fi(ρ/kE)
if the coin shows heads, it is discarded from all if the coin shows tails. Thus, the samples from the graphs
Fi are not independent. However, if we consider a particular Fi, then the sampling outcomes of edges are
mutually independent in that particular Fi.

Let us first consider graph F1 (which is simply the graph G since all ke ≥ 1). As was discussed in
Section 1.3, the expected value E[G(ρ/kE)] = ρ/kE × G has cut values equal to the expectations of the
corresponding cuts of the sampled graph G(ρ/kE). We saw above that the graph 1/kE×G has minimum cut
1. It follows that the expected value graph ρ/kE ×G has minimum cut ρ. This suffices to let us apply the
basic sampling result (Lemma 1.7) and deduce that every cut in F1 has value within (1± ǫ) of it expectation
with high probability. Scaling the graph preserves this: the graph (k1−k0)×F1(1/kE) has cut values within
(1± ǫ) of their expectations with high probability.

Now consider any other Fi. The subgraph Fi consists of all the edges inside the ki-strong components of
G. Consider one particular such component C, and an edge e ∈ C. Since C is ki-connected, we know that
ke ≥ ki. By definition, edge e is contained in some ke-connected subgraph of G. As was argued above in
Section 2.2, the ke-connected subgraph that contains e must be wholly contained in C. Thus, the strength of
edge e with respect to the graph C is also ke.

3 Our argument of the previous paragraph for graph G therefore
applies to the graph C, implying that the sampled version of C in Fi(ρ/kE) has cuts within (1± ǫ) of their
expected values with high probability. Since this is true for each component C, it is also true for the graph
Fi (since each cut of Fi is a cut of components of Fi).

This completes our argument. We have shown that each Fi(ρ/kE) has all cuts within (1 ± ǫ) of their
expected values with probability 1−1/nd+2 (the quantity d+2 follows from our choice of ρ and the application
of Lemma 1.7). Even though the Fi(1/kE) are not independent, it follows from the union bound that all
(possibly n2) distinct Fi samples are near their expectation with probability 1− 1/nd. If this happens, then
the sample kE ×G(1/kE) =

∑

(ki − ki−1)× Fi(1/kE) has all cuts within 1± ǫ of their expected values (this
follows because all multipliers ki − ki−1 are positive). Of course, the expected graph E[kE ×G(1/kE)] = G.

Our analysis has assumed all edges are sampled with probability ρ/ke, which is false for edges with
ke < ρ (their sampling probability is set to 1 in the Compression Theorem). To complete the analysis,
consider the ρ-strong components of G. Edges outside these components are not sampled. Edges inside
the components are sampled with probabilities at most 1. We apply the argument above to each ρ-strong
component separately, and deduce that it holds for the entire compressed graph.

2.4 Weighted Graphs

For simplicity, our compression analysis was done in terms of unweighted graphs. However, we can apply
the same analysis to a weighted graph. If the weights are integers, we can think of a weight u edge as a set
of u parallel unit-weight edges and apply the analysis above. Given the strengths ke, we would take each of
the u edges with probability 1/ke and give it weight ke if taken. Of course, if u is large it would take too
much time to perform a separate coin flip for each of the u edges. However, we can see that the number of
edges actually taken has a binomial distribution with parameters ue and ρ/ke; we can sample directly from
that binomial distribution. Note that the number of edges produced is O(n log n) regardless of the ue.

3This proof step is the sole motivation for the introduction of strong connectivity. The nesting of strong components lets
us draw conclusions about the graphs Fi that cannot be drawn about standard connectivity. The set of edges with standard
connectivity exceeding k does not form a k-connected graph, which prevents our proof from going through when we use standard
connectivity.

Nonetheless, it is conceivable that standard connectivity is a sufficient metric for our sampling algorithm. We have found no
counterexample to this possibility.
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To handle noninteger edge weights, imagine that we multiply all the edge weights by some large integer z.
This uniformly scales all the cut values by z. It also scales all edge strengths by z. If we now round each edge
down to the nearest integer, we introduce an additive error of at most m to each cut value (and strength);
in the limit of large z, this is a negligible relative error. To compress the resulting graph, the approach of
the previous paragraph now says that for a particular edge e with original weight ue, we must choose from
a binomial distribution with parameters ⌊zue⌋ (for the number of edges, which has been multiplied by z
and rounded) and ρ/zke (since all edges strengths have also been multiplied by z). In the limit of large z,
it is well known [Fel68] that this binomial distribution converges to a Poisson Distribution with parameter
λ = ρue/ke. That is, we produce s sample edges with probability e−λλs/s!. Under the compression formula,
their weights would each be zke/ρ. Recall, however that we initially scaled the graph up by z; thus, we need
to scale back down by z to recover G; this produces edge weights of ke/ρ.

From an algorithmic performance perspective, we really only care whether the number of sampled edges
is 0 or nonzero since, after sampling, all the sampled edges can be aggregated into a single edge by adding
their weights. Under the Poisson distribution, the probability that the number of sampled edges exceeds 0
is 1− e−ρue/ke ≈ ρue/ke. It is tempting to apply this simplified compression rule to the graph (take edge e
with probability ρue/ke, giving it weight ke/ρ if taken). A generalized Compression theorem in the appendix
shows that this approach will indeed work.

2.5 Using Approximate Strengths

Our analysis above assumed edge strengths were known. While edge strengths can be computed exactly, the
time needed to do so would make them useless for cut and flow approximation algorithms. Examining the
proofs above, however, shows that we do not need to work with exact edge strengths.

Definition 2.9. Given a graph G with n vertices, edge weights ue, and edge strengths ke, a set of edge
value k̃e are tight strength bounds if

1. k̃e ≤ ke and

2.
∑

ue/k̃e = O(n)

Theorem 2.10. The Compression Theorem remains true even if tight strength bounds are used in place of
exact strength values.

Proof. The proof of cut accuracy relied on the fact that each sampled edge had small weight compared to
its cuts. The fact that k̃e ≤ ke means that the weights of included edges are smaller than they would be if
true strengths were used, which can only help.

The bound on the number of edges in the compressed graph followed directly from the fact that
∑

ue/ke ≤
n; for tight strength bounds this summation remains asymptotically correct.

Tight strength bounds are much easier to compute than exact strengths.

Theorem 2.11. Given any m-edge, n-vertex graph, tight strength bounds can be computed in O(m log2 n)
time for unweighted graphs and O(m log3 n) time for weighted graphs.

Proof. See Section 4.

2.6 Applications

We have shown that graphs can be compressed based on edge strengths while preserving cut values. This
suggests that cut problems can be approximately solved by working with the compressed graph as a surrogate
for the original graph. We now prove the application corollaries from the introduction.
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2.6.1 Minimum s–t cuts.

As discussed above, we can compute tight strengths bounds in Õ(m) time and generate the resulting com-
pressed graph G[pE ] as described in the Compression Theorem. The graph will have O(ρn) = O(n(log n)/ǫ2)
edges.

Let us fix a pair of vertices s and t. Let v̂ be the value of a minimum cut separating s from t in the
compressed graph G[pE ]. We show that the minimum s–t cut value v in G is within (1 ± 3ǫ)v̂. By the
Compression Theorem, with high probability the s–t minimum cut C in G has value at most (1 + ǫ)v in
G[pE ]. Thus v̂ ≤ (1 + ǫ)v. Furthermore, with high probability every cut of G with value exceeding (1+ 3ǫ)v
in G will have value at least (1 − ǫ)(1 + 3ǫ) ≥ (1 + ǫ)v in G[pE ] and therefore will not be the minimum cut
of G[pE ].

We can find an approximate value v̂ of the minimum s–t cut (and an s–t cut with this value) by computing
a maximum flow in the O(n log n /ǫ2)-edge graph G[pE ]. The maximum flow algorithm of Goldberg and
Tarjan [GT88] has a running time of O(nm log(n2/m)) which leads to a running time of O(n2 log2 n /ǫ2)
after compression. Similarly, the Goldberg-Rao algorithm [GR97], which runs in Õ(m3/2) time, leads to a
running time of Õ(n3/2/ǫ3) after compression.

In an integer-weighted graph with small flow value, we may wish to apply the classical augmenting
path algorithm [FF56, AMO93] that finds a flow of value v in v augmentations. As described, the graph-
compression process can produce noninteger edge weights ρ/ke, precluding the use of augmenting paths
in the smoothed graph. However, if we decrease each compression weight to the next lower integer (and
increase the sampling probability by an infinitesimal amount to compensate) then compression will produce
an integer-weighted graph in which the augmenting paths algorithm can be applied to find an s–t cut of
value at most (1 + ǫ)v in time O(nv logn /ǫ2).

2.6.2 Sparsest cuts

A sparsest cut of a graph G minimizes the ratio between the cut value and the product of number of vertices
on the two sides. It is NP-hard to find the value of a sparsest cut. To find an α-approximate value of a
sparsest cut, we use the approach of the previous subsection: we compute a β-approximate sparsest cut in
the compressed graph G[pE ]. This cut is then an α = (1 + ǫ)β-approximate sparsest cut of G.

An algorithm of Klein, Stein and Tardos [KST90] finds an O(log n)-approximation to a sparsest cut in
O(m2 logm) time. By running their algorithm on G[pE ], we will find an O(log n)-approximate sparsest
cut in O(n2 log3 n /ǫ4) time. Our small cut-sampling error is lost asymptotically in the larger error of the
approximation algorithm.

Our approach been applied in a similar way to improve the running time of a spectral partitioning
algorithm [KVV00].

3 Approximating Flows by Graph Smoothing

Until now we have focused on cut problems. Our compression scheme produces a graph with nearly the
same cut values as the original, so that cut problems can be approximated in the compressed graph. But
consider a maximum flow problem. It would seem natural to try to approximate this maximum flow by
finding a maximum flow in the compressed graph. By providing an approximately minimum s-t cut, this
approach does indeed give an approximation to the value of the maximum flow. But since edges in the
compressed graph have larger capacity than the original graph edges, a feasible flow in the compressed
graph will probably not be feasible for the original graph.

Previous work [Kar99] tackled the flow approximation problem with a divide-and-conquer approach.
The edges of G are randomly divided into a number of groups, producing several random subgraphs of G.
Lemma 1.7 is applied to deduce that each subgraph has cut values near their expectations. By computing a
flow in each subgraph and adding the flows, we find a flow of value (1− ǫ) times the maximum flow in G.
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This approach suffers the same limitation as the uniform sampling approach for cuts: the probability of
each edge occurring in each subgraph must be Ω(1/c) to preserve cut values. This translates into a limit
that we divide into O(c) groups, which limits the power of the scheme on a graph with small minimum cuts.
Graph compression’s nonuniform sampling approach does not seem to provide an immediate answer: clearly
we cannot simultaneously divide each edge with strength ke among ke distinct subgraphs. Instead we need
a consistent rule that divides all edges among a fixed number of subgraphs. Each subgraph must therefore
look like a uniform sample from the original graph.

In this section we introduce graph smoothing—a technique that lets us apply uniform sampling, and
through it analyze randomized divide and conquer algorithms, for graphs with small minimum cuts, yielding
fast approximation algorithms for flows in such graphs. The approach applies equally well to weighted
graphs.

Our approach again starts with Lemma 1.7. The sampling proof used a Chernoff bound, which relied
on individual edges having only a small impact on the outcome of the experiment. In particular, since the
graph had minimum cut c, and every edge was being chosen with probability p, every cut had expected value
at least pc. Thus, the presence or absence of a single (weight 1) edge could affect that value of a cut by at
most a 1/pc-fraction of its expected value.

If we want to be able to sample more sparsely, we run into a problem of certain edges contributing a
substantial fraction of the expected value of the cuts they cross, so that the Chernoff bound breaks down.
A fix is to divide such edges into a number of smaller-weight edges so that they no longer dominate their
cuts. Dividing all the graph edges is quite pointless: splitting all edges in half has the effect of doubling the
minimum cut (allowing us to sample at half the original rate while preserving approximate cut values), but
since we double the number of edges, we end up with the same number of sampled edges as before.

The approach of k-strong components lets us circumvent this problem. We use k-strong components to
show that only a small fraction of the graph’s edges are large compared to their cuts. By dividing only
those edges, smoothing the highest-variability features of the sample, we allow for a sparser sample that still
preserves cut values. Since only a few edges are being divided, the random subgraphs end up with fewer
edges than before, making algorithms based on the samples more efficient.

3.1 Smooth Graphs

For the study of graph compression, we focused on unweighted graphs. For smoothing we focus on weighted
graphs. In keeping with standard terminology for flows, we will refer to weights as capacities. It is easy to
extend the notation G(p) to denote taking each capacitated edge with probability p, but somewhat harder to
prove that sampling does the right thing. As discussed above, the problem is that a single capacitated edge
might account for much of the capacity crossing a cut. The presence or absence of this edge has a major
impact on the value of this cut in the sampled graph. However, the idea of edge strength described above
gives us a useful bound on how much impact a given edge can have.

Definition 3.1. A graph G with edge capacities ue and edge strengths ke is c-smooth if for every edge,
ke ≥ cue.

Note that a graph with integer edge weights and minimum cut c has smoothness at most c but possibly
much less. We now argue that smoothness is the criterion we need to apply uniform sampling to weighted
graphs.

Theorem 3.2. Let G be a c-smooth graph. Let p = ρǫ/c where ρǫ = O((log n)/ǫ2) as in the Compression
Theorem. Then with high probability, every cut in G(p) has value in the range (1 ± ǫ) times its expectation
(which is p times its original value).

Proof. We use a variation on the proof of the Compression Theorem. Given the graph G, with edge capacities
ue, let ki be a list of the at most m strengths of edges in G in increasing order, and let Fi denote the graph
whose edge set is the ki-strong edges of G, but with edge e assigned weight cue/ke. It follows, just as
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was argued above, that G =
∑

(ki − ki−1)Fi. So if we prove that each Fi can be accurately sampled with
probability p = ρ/c, then the same will apply to G.

So consider graph Fi. Since we have assigned weights cue/ke, the minimum cut in Fi is c, as was argued
in Lemma 2.8. At the same time, edge e, if present in this graph, has weight cue/ke ≤ 1 by the smoothness
property. It follows that we can apply Lemma 1.7 to each component of the graph Fi and deduce that all cuts
are within (1 ± ǫ) of their expectation, as desired. The remainder of the proof goes as for the Compression
Theorem.

3.2 Making Graphs Smooth.

We have shown that a smooth graphs can be sampled uniformly, which will lead to good flow algorithms.
We now give algorithms for transforming any graph into a smooth one.

Lemma 3.3. Given an m edge capacitated graph, a smoothness parameter c and the strengths ke of all
edges, we can transform the graph into an m+ cn-edge c-smooth graph in Õ(m) time.

Proof. Divide edge e into ⌈cue/ke⌉ parallel edges, each of capacity ue/ ⌈cue/ke⌉ ≤ ke/r but with total
capacity ue. These edges remain ke strong, but now satisfy the smoothness criterion.

It remains to prove that this division creates at most nr new edges. The number of edges in our smoothed
graph is

∑

e

⌈cue/ke⌉ ≤ m+
∑

cue/ke

= m+ c
∑

ue/ke

≤ m+ cn

where the last line follows from Lemma 2.7.

Corollary 3.4. Given edge strengths, in O(m) time we can transform any m-edge capacitated graph into
an O(m)-edge capacitated (m/n)-smooth graph.

Choosing the smoothness parameter m/n is in some sense optimal. Any smaller smoothness parameter
leads to worse sampling performance without decreasing the asymptotic number of edges (which is always
at least m). A larger smoothness parameter provides better sampling behavior, but linearly increases the
number of edges such that the gains from sparser sampling are lost.

3.3 Approximate Max-Flows

To approximate flows, we use the graph smoothing technique. As was argued in Theorem 2.10, graph smooth-
ing works unchanged even if we use tight strength bounds, rather than exact strengths, in the computation.

After computing tight strength bounds in Õ(m) time (as will be discussed in Section 4), we can apply
Lemma 3.5. This shows that in any c-smooth graph, sampling with probability p produces a graph in which
with high probability all cuts are within (1 ± ǫ) of their expected values. This fact is the only one used in
the uncapacitated graph flow algorithms of [Kar99]. Therefore, those results immediately generalize to the
smooth graphs defined here—we simply replace “minimum cut” with “smoothness” in all of those results.
The generalization is as follows:

Lemma 3.5. Let T (m,n, v, c) be the time to find a maximum flow in a graph with m edges, n vertices,
flow v and smoothness c. Then for any ǫ, the time to find a flow of value (1 − ǫ)v on an m-edge, n-vertex,
smoothness-c graph is

Õ(
1

p
T (pm, n, pv, pc))

where p = Θ((logn)/ǫ2c).
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Proof. Divide the graph edges into 1/p random groups. Each defines a graph with pm edges. Since the
minimum s-t cut of G is v, the minimum expected s-t cut in each group is pv. By the Smoothing Theorem,
each sample has minimum s-t cut, and thus maximum s-t flow, at least (1− ǫ)pv. Find flows in each piece,
and combine the results. This total flow will be (1/p)(1− ǫ)pv = (1− ǫ)v.

Corollary 3.6. In any undirected graph, given edge strengths, a (1− ǫ)-times maximum flow can found in
Õ(m

√
n/ǫ) time.

Proof. Begin by converting the graph to an O(m)-edge (m/n)-smooth graph, as discussed in Lemma 3.3.
The Goldberg-Rao flow algorithm [GR97] gives T (m,n) = Õ(m3/2) for the previous lemma. (Since we
are already giving up a factor of ǫ, we can assume without loss of generality that all edge capacities are
polynomial, thus eliminating the capacity scaling term in their algorithm.) Plugging this in gives a time
bound of Õ(m

√
n/ǫ).

Unlike for minimum cuts, it is not possible to use the standard augmenting paths algorithm to find a
flow in Õ(nv/ǫ2) time. The graph smoothing process would subdivide unit-cost edges, producing variable
cost edges to which unit-capacity augmenting flows cannot be applied.

In previous work [Kar98], Karger used the above techniques to compute exact flows more quickly than
before; however, this work has been superseded by better algorithms (also based on edge strength) [KL02b].

4 Finding strong connectivities

To efficiently compress and smooth graphs we would like to efficiently find the strong connectivities of edges.
Unfortunately, it is not clear that this can be done (n maximum flow computations are one slow solution).
But as discussed in Theorem 2.10, we do not require the exact values ke. We now show that it is possible
to find tight strength bounds k̃e that satisfy the two key requirements of that Theorem: that k̃e ≤ ke and
∑

1/k̃e = O(n). These suffice for the cut and flow algorithms described above.
Our basic plan begins with the following lemma.

Lemma 4.1. The total weight of a graph’s k-weak edges is at most k(n− 1). In particular, any unweighted
graph with more than k(n− 1) edges has a nontrivial k-strong component (which may be the entire graph).

Proof. Let S be the set of k weak edges, and suppose that the total weight of edges in S exceeds k(n− 1).
Then

∑

ue/ke ≥
∑

e∈S

ue/ke

>
∑

e∈S

ue/k

> k(n− 1)/k

= n− 1

which contradicts Lemma 2.7.

We apply this lemma first to unweighted graphs. Lemma 4.1 says that any unweighted graph with k(n−1)
or more edges has a k-strong component. It follows that at most k(n − 1) edges are k-weak (that is, have
strong connectivity less than k). For otherwise the subgraph consisting of the k-weak edges would have a
k-strong component, a contradiction. For each value k = 1, 2, 4, 8, . . . ,m, we will find a set of k(n− 1) edges
containing all the k-weak edges (note that every edge is m-weak). We set ke = k/2 for all edges that are in
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the k-weak set but not the k/2-weak set, thus establishing lower bounds for which the Compression Theorem
works. The expected number of edges sampled under this basic scheme would be

logm
∑

i=0

2i(n− 1)(ρ/2i) = O(ρn logm).

We will eventually describe a more sophisticated scheme that eliminates the factor of logm. It will also let
us handle weighted graphs efficiently.

4.1 Sparse Certificates

A basic tool we use is sparse certificates defined by Nagamochi and Ibaraki [NI92b].

Definition 4.2. A sparse k-connectivity certificate, or simply a k-certificate, for an n-vertex graph G is a
subgraph H of G such that

1. H has k(n− 1) edges, and

2. H contains all edges crossing cuts of value k or less.

The certificate edges are related to k-weak edges, but are not quite equivalent. Any edge crossing a cut
of value less than k is k-weak, but certain k-weak edges will not cross any cut of value less than k. We will
show, however, that by finding k-certificate edges one can identify k-weak edges.

Nagamochi and Ibaraki gave an algorithm [NI92b] that constructs a sparse k-connectivity certificate in
O(m) time on unweighted graphs, independent of k.

4.2 Finding k-weak edges

Although a sparse k-certificate contains all edges with standard connectivity less than k, it need not contain
all edges with strong connectivity less than k, since some such edges might not cross any cut of value less
than k. We must therefore perform some extra work. In Figure 1 we give an algorithm WeakEdges for
identifying edges with ke < k. It uses the Nagamochi-Ibaraki Certificate algorithm as a subroutine.

procedure WeakEdges(G, k)

do log2 n times
E′ ← Certificate(G, 2k)
output E′

G← G− E′

end do

Figure 1: Procedure WeakEdges for identifying ke < k

Theorem 4.3. WeakEdges outputs a set containing all the k-weak edges of G.

Proof. First suppose that G has no nontrivial k-strong components, i.e. that ke < k for all edges. Then by
Lemma 4.1, there are at most k(n−1) edges in G; hence at least half of the vertices have at most 2k incident
edges (which define a cut of value at most 2k with a single vertex on one side). In an iteration of the loop in
WeakEdges, these vertices become isolated after removing the sparse certificate edges. We have thus shown
that in a single loop iteration half of the non-isolated vertices of G become isolated. The remaining graph
still has no k-strong edges, so we can repeat the argument. Hence in log2 n rounds we isolate all vertices of
G, which can only be done by removing all the edges. Thus all the edges of G are output by WeakEdges.

In the general case, let us obtain a new graph H by contracting each k-strong component of G to a
vertex. Any sparse 2k-certificate of G contains the edges of a sparse 2k-certificate of H as well. Thus by the
previous paragraph, all edges of H are output by WeakEdges. But these are all the k-weak edges of G.
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4.3 Sparse partitions

Algorithm WeakEdges can clearly be implemented via O(log n) calls to the Nagamochi-Ibaraki Certificate
algorithm. It follows that it runs in O(m logn) time on unweighted graphs and outputs a set of at most
k(n− 1) logn edges.4 In this section, we eliminate a logn factor in this approach by finding edge sets that
are “sparser” than the Nagamochi–Ibaraki certificate.

The first observation we use is that a given k-certificate E′ may contain edges that are inside a connected
component of G−E′. The edges in G−E′ do not cross any cut of value at most k (by definition of a sparse
certificate), so the same holds for any edge of E′ whose endpoints are connected by a path in G − E′. We
can therefore remove any such edge from E′ and put it back in G without affecting the correctness of the
proof of Theorem 4.3.

We can find the specified reduced edge set by contracting all edges not in E′, yielding a new graph G′.
This effectively contracts all (and only) edges connected by a path in G − E′. But now observe that any
edge crossing a cut of value at most k in G also crosses such a cut in G′ since we contract no edge that
crosses such a small cut. Thus we can find all edges crossing a small cut via a certificate in G′. Since G′ has
fewer vertices, the certificate has fewer edges. We can iterate this procedure until all edges in the certificate
cross some cut of value at most k or until G′ becomes a single vertex. In the latter case, the original graph
is k-connected, while in the former, if the current contracted graph has n′ vertices, it has at most k(n′ − 1)
edges. This motivates the following definition:

Definition 4.4. A sparse k-partition, or k-partition, of G is a set E′ of edges of G such that

1. E′ contains all edges crossing cuts of value k or less in G, and

2. If G− E′ has r connected components, then E′ contains at most 2k(r − 1) edges.

In fact, the construction just described yields a graph with at most k(r − 1) edges, but we have relaxed
the definition to 2k(r − 1) edges to allow for an efficient construction.

Procedure Partition in Figure 2 outputs a sparse partition. It uses the Nagamochi–Ibaraki Certificate
algorithm and obtains a new graphG′ by contracting those edges not in the certificate. It repeats this process
until the graph is sufficiently sparse.

procedure Partition(G, k)

input: An n-vertex m-edge graph G

if m ≤ 2k(n− 1) then
output the edges of G

else
E′ ← Certificate(G, k)
G′ ← contract all edges of G− E′

Partition(G′, k)

Figure 2: Partition finds low-connectivity edges

Lemma 4.5. Partition outputs a sparse k-partition partition in O(m) time on unweighted graphs.

4It also follows that a k logn sparse-certificate will contain all k-weak edges, so they can be found with a single Certificate
invocation. This gives a better running time. Indeed, since the Nagamich Ibaraki algorithm “labels” each edge with the value
k for which it vanishes, we can use those labels (divide by logn) as strength lower-bounds, producing a complete result in
O(m + n logn) time. However, this approach produces an extra logn factor in the edge bound (or worse in weighted graphs)
that we have been unable to remove.
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Proof. Correctness is clear since no edge crossing a cut of value less than k is ever contracted and at
termination m ≤ 2k(n − 1); we need only bound the running time. If initially m < k(n − 1) then the
algorithm immediately terminates. So we can assume m ≥ k(n− 1).

Suppose that in some iterationm > 2k(n−1). We find a sparse connectivity certificate with m′ ≤ k(n−1)
edges and then contract the graph to n′ vertices. If n′− 1 > (n− 1)/2 then in the following iteration we will
have m′ ≤ k(n − 1) < 2k(n′ − 1) and the algorithm will terminate. It follows that the number of vertices
(minus one) halves in every recursive call except the last.

A single iteration involves the O(m)-time sparse-certificate algorithm [NI92b]. At each recursive call, the
edges remaining are all k-certificate edges from the previous iteration. The number of such certificate edges
is at most k times the number of vertices—thus the (upper bound on the) number of edges halves in each
recursive call. It follows that after the first call we have T (n) = O(kn) + T (n/2) = O(kn). This is O(m)
since m ≥ k(n− 1) by assumption.

Lemma 4.6. If Partition is used instead of Certificate in a call to WeakEdges(G, k) (meaning we invoke
Partition(G, 2k) instead of Certificate(G, 2k)), then algorithm WeakEdges runs in O(m logn) time on
unweighted graphs and returns a partition of G into r components for some r. There are at most 4k(r − 1)
cross-partition edges and they include all the k-weak edges of G.

Note that the partition output by WeakEdges is itself almost a sparse k-partition; it simply has twice
as many edges as the definition allows. On the other hand, it contains all k-weak edges; not just the ones
crossing small cuts.

Proof. The running time follows from the previous lemma. To prove the edge bound, consider a particular
connected component H remaining in a particular iteration of WeakEdges. A call to Partition(H, 2k)
returns a set of 4k(s − 1) edges that breaks that component into s subcomponents (the multiplier 4 arises
from the fact that we look for a 2k-partition). That is, it uses at most 4k(s−1) edges to increase the number
of connected components by s − 1. We can therefore charge 4k edges to each of the new components that
gets created. Accumulating these charges over all the calls to Partition shows that if WeakEdges outputs
4k(r − 1) edges then those edges must split the entire graph into at least r components.

4.4 Assigning Estimates

We now give an algorithm Estimation in Figure 3 for estimating strong connectivities. We use subroutine
WeakEdges to find a small edge set containing all edges e with ke < k but replace the Nagamochi-Ibaraki
Certificate implementation with our algorithm Partition to reduce the number of output edges.

We assign values k̃e as follows. In the first step, we run WeakEdges on G with k = 2; we set k̃e = 1 for
the edges in the output edge set E0. Then we delete E0 from G; this breaks G into connected components
G1, . . . , Gℓ. Note that each edge in Gi has ke ≥ 2 in G, though possibly not in Gi. Then we recursively
repeat this procedure in each Gi, by setting k = 4 in WeakEdges and labeling all output edges with k̃e = 2,
then with k = 8, 16, . . . ,m. At the ith step, all as-yet unlabeled edges have ke ≥ 2i; we separate all those
with ke < 2i+1 and give them (valid lower bound) label k̃e = 2i. Thus we find all k̃e-values in at most logm
iterations since m is the maximum strength of an edge in an unweighted graph.

Lemma 4.7. If H is any subgraph of G, then Estimation(H, k) assigns lower bounds k̃e ≤ ke for all edges
e ∈ H with ke ≥ k in G.

Corollary 4.8. After a call to Estimation(G, 1), all the labels k̃e satisfy k̃e ≤ ke.

Proof. We prove the lemma by induction on the size of H . The base case of a graph with no edges is clear.
To prove the inductive step we need only consider edges e with ke ≥ k. We consider two possibilities. If e
is in the set E′ returned by WeakEdges(H, 2k) then it receives label k, which is a valid lower bound for any
edge with ke ≥ k. So the inductive step is proved for e ∈ E′. On the other hand, if e /∈ E′, then e is in some
H ′ upon which the algorithm is invoked recursively. By the correctness of WeakEdges we know ke ≥ 2k (in
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procedure Estimation(H, k)

input: subgraph H of G

E′ ← WeakEdges(H,2k)
for each e ∈ E′

ke ← k
for each nontrivial connected component H ′ ⊂ H − E′

Estimation(H ′,2k)

Figure 3: Procedure Estimation for assigning k̃e-values

H , and thus in G) in this case. Thus, the inductive hypothesis applies to show that e receives a valid lower
bound upon invocation of WeakEdges(H ′, 2k).

Lemma 4.9. Assume that in procedure WeakEdges, procedure Certificate is replaced by Partition. Then
the values k̃e output by Estimation(G, 1) are such that

∑

1/k̃e = O(n).

Proof. The proof is similar to the proof that
∑

ue/ke ≤ n. Define the cost of edge e to be 1/k̃e. We
prove that the total cost assigned to edges is O(n). Consider a call to Estimation(H, k) on some remaining
connected component of G. It invokes WeakEdges(H, k), which returns a set of 4k(r−1) edges whose removal
partitions H into r connected components. (Note that possibly r = 0 if H is k-connected.) The algorithm
assigns values k̃e = k to the removed edges. It follows that the total cost assigned to these edges is 4(r− 1).
In other words, at a cost of 4(r − 1), the algorithm has increased the number of connected components by
r − 1. Ultimately, when all vertices have been isolated by edge removals, there are n components; thus, the
total cost of the component creations is at most 4(n− 1).

In summary, our estimates k̃e satisfy the necessary conditions for our Compression and Smoothing ap-
plications: k̃e ≤ ke and

∑

1/k̃e = O(n).

Lemma 4.10. Estimation runs in O(m log2 n) time on an unweighted graph.

Proof. Each level of recursion of Estimation calls subroutine WeakEdges on graphs of total size m. An
unweighted graph has maximum strong connectivity m and therefore has O(logm) levels of recursion.

4.5 Weighted graphs

Until now, we have focused on the estimation of edge strengths for unweighted graphs. When graphs are
weighted, things are more difficult.

Nagamochi and Ibaraki give an O(m+n logn)-time weighted-graph implementation of their Certificate
algorithm [NI92a]. (In weighted graphs, the k-sparse sparse certificate has an upper bound of k(n − 1) on
the total weight of edges incorporated.) We can use the Nagamochi-Ibaraki weighted-graph algorithm to
implement Partition(G, k) in O(m log n) time for any value of k. Unlike the unweighted case, the repeated
calls to Certificate need not decrease the number of edges substantially (though their total weight will
decrease). However, the claimed halving in vertices still happens. Thus algorithm Partition satisfies a
recurrence T (m,n) = O(m + n logn) + T (m,n/2) = O(m logn). Since Partition runs in O(m log n) time,
we deduce that WeakEdges runs in O(m log2 n) time.

A bigger problem arises in the iterations of Estimation. In a weighted graph with maximum edge weight
W , the ke values may be as large as n2W , meaning that Ω(lognW ) levels of recursion will apparently be
required in Estimation. This can be a problem if W is superpolynomial. To deal with this problem, we
show how to localize our computation of strong connectivities to a small “window” of relevant connectivity
values.
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We begin by computing a rough underestimate for the edge strengths. Construct a maximum spanning
tree (MST) for G using the weights ue. Let de be the minimum weight of an edge on the MST-path between
the endpoints of e. The quantities de can be determined in O(m) time using an MST sensitivity analysis
algorithm [DRT92] (practical algorithms run in O(m log n) time and will not dominate the running time).
Since the MST path between the endpoints of e forms a (nonmaximal) de-connected subgraph containing
e, we know that ke ≥ de. However, if we remove all edges of weight de or greater, then we disconnect the
endpoints of e (this follows from maximum spanning tree properties [Tar83]). There are at most

(

n
2

)

such
edges, so the weight removed is at most n2de. Therefore, ke ≤ n2de. This gives us an initial factor-of-n2

estimate de ≤ ke ≤ n2de.
Our plan is to compute the k̃e in a series of phases, each focusing on a set of edges with narrow range

of de values. In particular, we will contract all edges with de above some upper bound, and delete all edges
with de below some lower bound. Then we will use Estimation to assign k̃e labels to the edges that remain.

Lemma 4.11. If we contract a set of edges, all of which have weights at least W , then the strengths of edges
with original strength less than W are unchanged.

Proof. Consider an edge e with strength ke, and suppose that its strength is k′e in the contracted graph.
It follows that there is some maximal k′e-connected component H ′ containing e in the contracted graph.
Consider the preimage H of this component in G—that is, the set of vertices that get contracted into H ′.
This component is at best ke-connected in G by the definition of ke. It follows that there is some cut of
value ke in this component. The edges of this cut have value at most ke, so contracting edges of value
exceeding ke cannot destroy this cut. Thus, the connectivity of H ′ is at most ke. It follows that k′e ≤ ke.
Since contracting edges cannnot decrease connectivities, we deduce k′e = ke.

We label our edges in a series of phases. In a phase, let D be the maximum de on any unlabelled edge.
Since ke ≤ n2de, the maximum strength of any unlabelled edge is at most n2D. Our goal in one phase is
to (validly) label all edges with de ≥ D/n. We begin by contracting all edges of weight exceeding n2D. By
the previous lemma, the contractions do not affect strengths of edges with ke ≤ n2D (which includes all
unlabelled edges). In the resulting graph, let us delete all edges with de < D/n (since de ≤ ke, no edge we
want to label is deleted). The deletions may decrease certain strengths but not increase them. It follows
that every unlabelled edge (all of which have ke ≤ Dn2) has strength in the modified graph no greater than
in G.

On each connected component H induced by the remaining edges, execute Estimation(H,D/n). By
Lemma 4.7, this assigns valid lower-bound labels to all edges e with strength at least D/n (in the modified
graph). In particular, the labels are valid for all e with de ≥ D/n (since any edge with de ≥ D/n is connected
by a path of edges of value at least D/n, none of which get deleted in the phase). These labels are valid lower
bounds for strengths in the modified graph; however, as discussed in the previous paragraph, all unlabelled
edges have the strengths in the subgraph no greater than their strength in G. Thus, the computed labels
can be used as valid labels for all the unlabelled edges with de ≥ D/n.

The approach just described has computed labels for each unlabelled edge with de ≥ D/n. We have there-
fore reduced the maximum de on any unlabelled edge by a factor of n. We iterate this process, continuously
decreasing the maximum unlabelled d(e), until all edges are labelled.

Summarizing our discussion above gives the algorithm WindowEstimation listed in Figure 4.

Lemma 4.12. Procedure WindowEstimation can be implemented to run in O(m log2 n) time.

Proof. The contractions in WindowEstimation can be implemented using a standard union-find data struc-
ture [CLR90]. Each time an edge is contracted, a union is called on its endpoints. Each time an edge is
added from L, find operations can identify its endpoints. Therefore, the additions and contractions of edges
do not affect the running time. Instead, the running time is determined by the repeated calls to Estimation.

Consider a particular iteration of the loop with some D value. We initially contract all edges with
de > n2D, so that the maximum strength in the resulting graph is at most n4D. We invoke Estimation
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procedure WindowEstimation(G)

Sort the edges in decreasing order of de into a list L
initialize G′ as an empty graph on the vertices of G
repeat

let D ← maximum de among unlabelled edges in L
contract every e ∈ G′ with d(e) > n2D
move every edge e ∈ L with de ≥ D/n to G′

call Estimation(G′, D/n) to get labels k̃e
for the new edges added from L in this phase

until no edges remain

Figure 4: WindowEstimation for weighted graphs

with a starting strength argument of D/n, which means that it terminates in O(log n) iterations (the number
of argument doublings from D/n to n4D). As to the size of the problem, recall that we contracted all edges
with with de ≥ n2D and deleted all edges with de < D/n. It follows that our running time is proportional
to m′ log3 n where m′ is the number of edges with D/n ≤ de ≤ D.

Now we can bound the running time over all phases. An edge d(e) is present (neither contracted nor
deleted) if and only if D/n ≤ D < n2D. Since the threshold D decreases by a factor of n each time, this
means that edge e contributes to the size of the evaluated subgraph in at most 3 iterations. In other words,
the sum of m′ values over all iterations of our algorithm is 3m. It follows that the overall running time of
these iterations is O(

∑

m′ log3 n) = O(m log3 n).

Lemma 4.13. Procedure WindowEstimation assigns labels such that
∑

ue/k̃e = O(n)

Proof. Recall the definition of cost of edge e as ue/k̃e. Our algorithm incorporates some of the labels
computed by Estimation in each phase, contributing their cost (in that phase) to the final total cost. We
show that the total cost of all labels computed over all the phases is O(n).

We invoke the concept of rank. The rank of a graph is equal to the number of edges in a spanning tree
of the graph. Inspection of Partition shows that the total weight of edges returned by Partition(G, k) is
at most 4 times the rank of G. Similarly, inspection of Estimation show that on a rank-r graph, its results
satisfy

∑

ue/k̃e = O(r).
In a phase, we contract all edges of weight exceeding Dn2 and delete all edges with weight less than D.

By the properties of maximum spanning trees, the resulting graph is precisely spanned by the set of MST
edges with weights in this range. That is, the rank of this graph is equal to the number rD of such MST
edges. It follows that the total cost

∑

ue/k̃e of Estimation labels in this phase is O(rD). Now note that
each MST edge contributes to rD only when its weight is between D and Dn2, which happens in at most 3
phases since D decreases by n each phase. Thus, each edge contributes to 3 rD values, so

∑

rD ≤ 3(n− 1).
This bounds the total cost by O(

∑

rD) = O(n), as desired.

5 Conclusion

We have given new, stronger applications of random sampling to problems involving cuts in graphs. The
natural open question is whether these approximation algorithms can be made exact. An initial step towards
the answer was given in [Kar99], but it only gives a useful speedup for graphs with large minimum cuts.
More recently, sampling has led to an exact linear-time algorithm for minimum cuts [Kar00]; however, the
techniques used there appear to be specialized to that particular problem. Karger and Levine [KL02a] have
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recently given very fast algorithms for flows in unweighted graphs; the important remaining question is to
develop fast exact algorithms for weighted graphs.

A more limited open question has to do with the use of strong connectivity. We introduced strong
connectivity in order to make our theorems work. Many of the intuitions about our theorems apply even to
the standard connectivity notion in which the connectivity of edge (u, v) is defined to be the minimum u-v
cut in G. We have no counterexample to the conjecture that using these weak connectivities would suffice
in our algorithms. Such a change would likely simplify our algorithms and presentation (though the time
bounds are unlikely to change).

A The General Weighted Sampling Theorem

For possible future use, we give a general theorem on when a weighted random graph has all cut values
tightly concentrated near their expectation. The compression theorem and smooth graph sampling theorems
are special cases of this theorem.

Theorem A.1. Let G be a random graph in which the weight Ue of edge e has a probability distribution
with expectation ue and maximum value me. Let ke be the strength of edge e in the graph where each edge e
gets weight E[Ue]. If for every edge, ke ≥ 2me(lnn)/ǫ

2, then with high probability, every cut in G has value
within (1 ± ǫ) times its expectation.

Proof. Order the distinct edge strengths k1, . . . , kr in H in increasing order. Let Fi be the graph consisting
of all of ki-strong edges in H , with edge e given weight Ue/ke (so Fi is a random graph). Observe that
G =

∑

(ki − ki−1)Fi. So if every Fi is near its expectation, it follows that G is near its expectation.
So consider (a component of) graph Fi. The expected value of a cut in Fi has the form

∑

ue/ke ≥ 1 by
Lemma 2.7. In other words, the minimum cut in E[Fi] is at least 1. On the other hand, the maximum value
attained by any edge in Fi is Ue/ke ≤ me/ke. By Lemma 1.7, it follows that Fi has all cuts within (1 ± ǫ)
of its expectation with high probability.
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