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MULTISCALE MODELLING OF CHEMICAL DEGRADATION
MECHANISMS IN POROUS MEDIA WITH EVOLVING

MICROSTRUCTURE∗

MALTE A. PETER† AND M. BÖHM‡

Abstract. A prototypical reaction–diffusion system in a porous medium is considered, whose mi-
crostructure undergoes an evolution with respect to time. Employing the recently developed method
of homogenization in domains with evolving microstructure, the limit problems are obtained. Besides
the time-evolution aspect, attention is paid to the scaling of the material parameters with powers
of the homogenization parameter arising from a nondimensionalization. The paper has two main
focuses: One focus is numerical experiments for prototypical simplified problems, which qualita-
tively confirm the appropriateness of the scalings obtained from a nondimensionalization and show
the influence of the evolution of the microstructure on the model output. The second main focus
is the real-world problem concrete carbonation, which is considered as a typical application of the
presented approach. Comparison of experimental data for concrete carbonation with the simulation
results confirms the validity of the modelling approach.
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1. Introduction. Reaction–diffusion processes in media with microstructure oc-
cur in a variety of different applications. Many classical results have been obtained
in the context of porous media (cf. [3, 16, 13], e.g.), but there are also more recent
results in other directions, such as the calcium balance in biological cells [11]. An
important new aspect in reaction–diffusion processes in media with microstructure is
accounting for an evolution of the different parts of the medium. Some approaches in
this direction have been put forward in the context of phase transitions in alloys [1]
or liquid–solid phase transitions of binary mixtures [10, 9], for example. Recently, the
method of homogenization in domains with evolving microstructure [25] was intro-
duced, which allows the transformation of the problem with evolving microstructure
to a form suitable for a periodic-homogenization analysis. The main aspects of this
paper are to show how this method can be used for a prototypical reaction–diffusion
process in a porous medium with evolving microstructure and, as an illustrating (and
in some way prototypical) example, its application to a particular real-world problem,
namely concrete carbonation.

We consider the prototypical problem of reaction, diffusion, and interfacial ex-
change in a porous medium Ω made up of three distinct parts, that is, the pore-air
space, Ωa(t), the pore-water space, Ωw(t), and the space occupied by solid matrix,
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Ωs(t), in the time interval S = (0, T ), where T > 0. The evolution of the parts of Ω is
induced by a reaction. One substance diffuses through the pore air and dissolves into
the pore water where it reacts with a second substance. In the reaction, the second
substance is consumed or produced. Denoting the reacting substances by A and B,
respectively, the reaction may be expressed by

(1.1) nAA + ncon
B B −→ npro

B B + nCC,

where C is a reaction product and the natural numbers ni, i ∈ {A,B,C}, are stoichio-
metric factors where the superscripts con and pro stand for consumed and produced,
respectively. Other products may be formed but are not further considered in this
work since they do not add any conceptually new ideas. The only assumption on the
stoichiometric factors is that they are nonnegative.

An important application of the process under consideration is concrete carbona-
tion, which motivates the consideration of this particular problem. Concrete carbon-
ation is described in more detail in section 1.2. The modelling ideas presented here
are also applicable to reaction–diffusion scenarios in other materials with or without
evolving microstructure, biological cells, for example, where the evolution of the sub-
domains may be due to a movement of the endoplasmic reticulum, or to heat-transfer
and fluid-flow problems.

The reaction–diffusion problem is given in a domain, whose microstructure un-
dergoes an evolution with respect to time. In order to use periodic-homogenization
techniques (cf. [4, 33], e.g.), the method of homogenization in domains with evolving
microstructure [25] is used for coping with the changing microstructure. This method
is based on transforming the problem from the current configuration to an associated
periodic reference configuration and to homogenize the resulting transformed problem.
In particular, the method allows for nonperiodic evolving domains.

It is well known that scaling of the material parameters with powers of the homog-
enization parameter has a strong influence on the type of limit problem (cf. [28, 22, 21],
e.g.). It is therefore of great importance to use the correct scaling in order to obtain
useful macroscopic models. We introduce a nondimensionalization in order to obtain
problem-dependent scalings, which lead to process-adapted models in the homoge-
nization limit. The particular choice of scaling then depends on the characteristic
lengths of the medium as well as the diffusivities. The limit problems are given for
general scalings.

The objective of the simulation results presented in the second part of the paper
is twofold: First, the appropriateness of the limit problems depending on the scalings
and the influence of the evolution of the microstructure is shown by simulations for
prototypical simplified versions of the general problem. In particular, it turns out
that correct scalings (in terms of the proposed nondimensionalization) lead to useful,
process-adapted limit models while wrong scalings give inappropriate limit models.
Second, the general results are applied to the real-world problem concrete carbonation
for which the evolution is coupled to the reaction–diffusion system. The simulation
results show a good match with experimental data.

1.1. The prototypical reaction–diffusion problem. We denote the mass
concentrations of substances A and B by u = u(x, t) and v = v(x, t), respectively,
where x and t are the space and time variables, respectively, and we distinguish
between the concentration in the pore air and the pore water by superscripts a and
w, respectively. Note that v is assumed to occur in the pore water only. Hence, there
is no va.
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There are three different interfaces in the pores: the air–water interface, Γaw(t),
the water–solid interface, Γws(t), and the air–solid interface Γas(t). For ease of nota-
tion, we write Γw(t) = Γaw(t) ∪ Γws(t).

The consumption rates of constituents A and B associated with the reaction (1.1)
are assumed to be of the form

(1.2) ηu = Ru ru(uw) rv(vw) and ηv = Rv ru(uw) rv(vw),

respectively, where Ru, Rv : Ωw × S → R are bounded and ru, rv : R → R are
locally Lipschitz continuous. Moreover, ru is assumed nonnegative while rv is assumed
either nonnegative or nonpositive depending on ncon

B −npro
B being negative or positive.

Typically, the concentration-dependent part of the production rate, f r = rurv, is of
the form

(1.3) f r = (uw)p (vw)q

with p, q ∈ {s ∈ R | s = 0 or s ≥ 1} and the factors Ri, i ∈ {u, v}, incorporate
the molar weights of the respective substances and the (possibly time- and space-
dependent) reaction-rate constant.

The reaction–diffusion problem under consideration is then given as follows. The
mass balances of the species are

∂tu
a(x, t) −∇ · (D1∇ua − waua) = 0, x ∈ Ωa(t), t ∈ S,(1.4a)

∂tu
w(x, t) −∇ · (D2∇uw − wwuw) = −Ruf r, x ∈ Ωw(t), t ∈ S,(1.4b)

∂tv
w(x, t) −∇ · (D3∇vw − wwvw) = +Rvf r, x ∈ Ωw(t), t ∈ S,(1.4c)

where Di = Di(x, t), i ∈ {1, 2, 3}, are the corresponding diffusivities and wi, i ∈
{a,w}, are the velocities of the deformation of the respective domains. The boundary
conditions at the internal boundaries of the porous medium are given by

−(D1∇ua) · νa = (D2∇uw) · νw = Cex(CHua − uw), x ∈ Γaw(t), t ∈ S,(1.4d)

−(D1∇ua) · νa = 0, x ∈ Γas(t), t ∈ S,(1.4e)

−(D2∇uw) · νw = 0, x ∈ Γws(t), t ∈ S,(1.4f)

−(D3∇vw) · νw = 0, x ∈ Γw(t), t ∈ S,(1.4g)

where νi denotes the outer normal on ∂Ωi(t), i ∈ {a,w}, the positive Henry constant
CH describes the ratio of uw and ua in equilibrium, and Cex = Cex(x, t) is related to
the rate of interfacial exchange. For now, we assume no-flux conditions at the external
interface ∂Ω for simplicity. The system is completed by nonnegative initial conditions
ua(x, 0) = ua

0(x), u
w(x, 0) = uw

0 (x), and vw(x, 0) = vw
0 (x).

For ease of notation, we write Γ(t) = Γaw(t) and assume Γas(t) = ∅. This does
not imply any restriction from the mathematical modelling point of view since there
is no production or consumption of any type at this boundary. However, it simplifies
the presentation considerably.

It is noteworthy that the particular form of the reaction–diffusion system under
consideration is motivated by the real-world problem concrete carbonation, which is
discussed in more detail in the next section. Nevertheless, it is a prototypical reaction–
diffusion system since it captures many subprocesses often encountered in applications,
that is, diffusion, reaction, and interfacial exchange of different substances in different
parts of the porous medium. The methods employed and developed in the subsequent
sections also apply to similar reaction–diffusion systems and are not restricted to the
particular form considered here.
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1.2. A real-world application: Concrete carbonation. The problem un-
der consideration applies to a variety of chemical degradation mechanisms in porous
media, in particular to concrete carbonation. This process takes place in the pores of
concrete, which are partially saturated with water that clings to the pore walls, and
involves reaction, diffusion, precipitation, and dissolution. Atmospheric CO2 enters
the concrete through the air-filled pores and dissolves in the pore water. There, it re-
acts with dissolved constituents of the cement paste, most importantly with Ca(OH)2.
This causes a lowering of the pH, facilitating the corrosion of the steel reinforcements
and, consequently, leads to a severe reduction of the service life of the structure. The
dominant carbonation reaction is usually assumed as

(1.5) CO2(aq) + Ca(OH)2(aq) −→ CaCO3(aq) + H2O.

The produced CaCO3 precipitates very quickly to the solid matrix. In view of the
general reaction (1.1), we have A = CO2 and B = Ca(OH)2 as well as nA = ncon

B = 1
and npro

B = 0. Detailed surveys on the carbonation problem were carried out, for
instance, by [14], [5], and [7] and, from a more mathematical point of view, by [19].

An important feature of concrete carbonation is that the carbonation reaction
causes a change of the microstructure in at least two ways. First, the reactant
Ca(OH)2 takes up considerably less volume than the product CaCO3. This causes
a permanent reduction of the pore-air volume. Second, water is produced in the
carbonation reaction. This induces a (usually) temporary reduction of the pore-air
volume and an increase of the volume of the reaction medium. While it seems that
the latter effect is of considerable importance only in accelerated carbonation tests
(as opposed to carbonation under natural atmospheric conditions) (cf. [20]), the first
effect is always important because it permanently slows down the diffusion of CO2(g)
to the reaction zone and, in turn, reduces the speed of the overall carbonation process;
also cf. [18]. A detailed discussion of these effects and their impact on the progress
of carbonation can be found in [20]. In section 6, the application of the theoretical
results to the particular problem of concrete carbonation is discussed in more detail
and numerical simulations of concrete carbonation are presented.

1.3. Structure of the paper. In section 2, system (1.4) is nondimensionalized
taking into account two relevant characteristic lengths: a microscopic length and a
macroscopic length. The resulting dimensionless system is put into a form suitable for
a homogenization analysis in the context of homogenization in domains with evolving
microstructure in section 3, and the homogenized limit problems are given in section 4.
Qualitative simulation results for prototypical problems are presented in section 5 in
order to illustrate the appropriateness and applicability of the resulting limit models
for a given evolution. In section 6, the theoretical results are applied to the partic-
ular problem of concrete carbonation where the evolution of the microstructure is
coupled to the reaction–diffusion system. Comparison of the simulation results with
experimental data for concrete carbonation confirms the validity of the model.

2. Nondimensionalization. In order to obtain process-adapted models in the
homogenization limit, it is important to identify the characteristic microscopic and
macroscopic lengths and to properly nondimensionalize the system of equations (cf.
[29, 21], e.g.). In this section, a possible nondimensionalization of problem (1.4) is
given, which is similar to that given in [28] for a very much simplified version of the
problem considered here. In order to keep the presentation concise, ua is assumed to
be the fastest diffusing species.
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The following dimensionless concentrations are introduced,

(2.1) ũa := uaCH/ua
ref , ũw := uw/uw

ref , ṽw := vw/vw
ref ,

where uα
ref , α ∈ {a,w}, and vw

ref are some reference concentrations representing upper
bounds on the concentrations. These may be given from physical considerations or
maximum estimates, for example.

Moreover, we introduce a characteristic macroscopic length L (the diameter of the
sample, e.g.) and a characteristic microscopic length � (a typical pore diameter, e.g.).
For each concentration ua, uw, and vw, we define a characteristic length associated
with the diffusion of the species in the pore, �Di , i = 1, 2, 3, respectively, and express
this as a multiple of � in the following way: �Di =

√
Di� (note the difference between the

diffusivity Di and the number Di). Letting Di
ref be the L∞-bounds of Di, i = 1, 2, 3,

the characteristic diffusion times are then defined as

(2.2) T a := (�D1 )kL2−k/D1
ref , Tw := (�D2 )lL2−l/D2

ref , Tw
v := (�D3 )jL2−j/D3

ref ,

where k, l, j ∈ [0, 2] are to be specified later (see section 2.1). These are the scaling
exponents, the discussion of which is one of the focal points of this paper. Also, set
ε = �/L.

Making use of the characteristic lengths introduced earlier, let x̃ := x/L and
tα := t/Tα and twv := t/Tw

v be the dimensionless (macroscopic) space and time vari-
ables and write ũα(x̃, tα) := uα(x̃L, tαTα), α ∈ {a,w}, and, analogously, for vw. Note
that the corresponding time intervals are then given by S̃a := S/T a, S̃w := S/Tw, and
S̃w

v := S/Tw
v . Moreover, we introduce the parameter m ∈ R related to the speed of the

interfacial exchange. From a physical point of view, condition (1.4d) motivates the
assumption that both concentrations tend toward the equilibrium ua

ref ũ
a = uw

ref ũ
w.

Therefore, it is reasonable to take uw
ref = ua

ref =: uref , which makes the problem less
technical. Notice that this simplification is not necessary, however. Introducing the
dimensionless functions (where the change of arguments is shown only for D̃a for
readability)

D̃a(x̃, ta) :=
D

k
2
1

D1
ref

D1(x̃L, t̃aT a), D̃w :=
D

l
2
2

D2
ref

D2, Ẽw :=
D

j
2
3

D3
ref

D3,(2.3)

w̃a :=
T a

L
wa, w̃w :=

Tw

L
ww,(2.4)

C̃a
ex := �−mLm−1T aCHCex, C̃w

ex := �−mLm−1TwCex,(2.5)

R̃u :=
Tw

uref
Ru, R̃v :=

Tw
v

vref
Rv(2.6)

and writing f̃ r := ru(ũwuw
ref)r

v(ṽwvw
ref), the dimensionless version of system (1.4) is

given by

∂ta ũ
a −∇ · (εkD̃a∇ũa − w̃aũa) = 0, x̃ ∈ Ωa(t),

∂tw ũ
w −∇ · (εlD̃w∇ũw − w̃wũw) = −R̃uf̃ r, x̃ ∈ Ωw(t),

∂twv ṽ
w −∇ · (εjẼw∇ṽw − w̃wṽw) = +R̃vf̃ r, x̃ ∈ Ωw(t),

(2.7a)

−εkD̃a∇ũa · νa = εmC̃a
ex(ũ

a − ũw), x̃ ∈ Γ(t),

−εlD̃w∇ũw · νw = −εmC̃w
ex(ũ

a − ũw), x̃ ∈ Γ(t),

−εlD̃w∇ũw · νw = 0, x̃ ∈ Γws(t),

−εjẼw∇ṽw · νw = 0, x̃ ∈ Γw(t),

(2.7b)
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where tα ∈ Sα, α ∈ {a,w}, twv ∈ Sw
v , and tw = taT a/Tw and the derivatives are taken

with respect to the dimensionless variables.

2.1. Choice of k, l, j, and m. System (2.7) contains four parameters intro-
duced by the nondimensionalization: k, l, j, and m. From the nondimensionalization
we get a suggestion for the choice of these parameters: In order to account for all
processes optimally, it is desirable that all processes happen on the same time scale.
Therefore, k, l, and j need to be chosen such that the characteristic times of diffusion
of all species are equal to that of the fastest species, which we choose as close to unity
as possible, T a = max{1, L2/D1

ref}. Therefore, we set Tw = Tw
v = T a. This deter-

mines k, l, and j. The parameter m is to be chosen such that ã ≈ 1. This corresponds
to Cex ≈ εmL/T a; i.e., m needs to be chosen small if Cex is large and needs to be
chosen large if Cex is small. Noting that these choices imply Sa = Sw = Sw

v =: S and
C̃a

ex/C
H = C̃w

ex =: ã, system (2.7) simplifies to

∂tũ
a −∇ · (εkD̃a∇ũa − w̃aũa) = 0, x̃ ∈ Ωa(t), t ∈ S,

∂tũ
w −∇ · (εlD̃w∇ũw − w̃wũw) = −R̃uf̃ r, x̃ ∈ Ωw(t), t ∈ S,

∂tṽ
w −∇ · (εjẼw∇ṽw − w̃wṽw) = +R̃vf̃ r, x̃ ∈ Ωw(t), t ∈ S,

(2.8a)

−εkD̃a∇ũa · νa = εmãCH(ũa − ũw), x̃ ∈ Γ(t), t ∈ S,

−εlD̃w∇ũw · νw = −εmã(ũa − ũw), x̃ ∈ Γ(t), t ∈ S,

−εlD̃w∇ũw · νw = 0, x̃ ∈ Γws(t), t ∈ S,

−εjẼw∇ṽw · νw = 0, x̃ ∈ Γw(t), t ∈ S.

(2.8b)

Note that no assumption on the periodicity of the domains has been made so far but
only the existence of macroscopic and microscopic characteristic lengths.

3. Transformation to an ε-periodic reference configuration. In order to
apply (periodic) homogenization techniques, we employ the method of homogeniza-
tion in domains with evolving microstructure [25]. It is classically not possible to
account for an evolution of the microstructure using periodic homogenization, in par-
ticular if the evolution is different in (macroscopically) different places of the me-
dium. The idea of the method employed is to consider the problem in a fixed ref-
erence geometry and use a time- and space-dependent mapping, which accounts for
the evolution of the microstructure. In terms of classical continuum mechanics, this
corresponds to transforming the system from being stated in the current configura-
tion (or Eulerian description; see (2.8), e.g.) to an appropriate reference configuration
(or Lagrangian description). If the reference geometry can be chosen periodic, then
periodic-homogenization ideas can be applied. The method is particularly suitable
for problems where the evolution of the microstructure is induced by the chemical
mechanism itself [26].

At t = 0, the heterogeneous material is assumed to be periodic with respect to a
reference cell Y = (0, 1)n scaled by a (small) scale parameter ε. This assumption can
be relaxed—it suffices if there exists a periodic reference configuration onto which the
initial geometry can be mapped by a diffeomorphism—but it simplifies the presenta-
tion considerably. The reference cell contains a solid particle, Zs, some pore water,
Zw, and void (pore) space Za (each being an open bounded domain with Lipschitz-
continuous boundary); i.e., at t = 0 the domain Ω is the union of a finite amount of
translated versions of εY . Then, Ωα

ε (0) = Ω ∩ int
⋃

k εZ
α
k , α ∈ {a,w, s}, where the

subscript k denotes translation of the set by k ∈ Z
n and ε indicates the ε-periodic
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Fig. 1. Schematic cross-section of the porous medium at t = 0 (left) with enlarged cross-section
of the initial microstructure (middle). At each time t > 0, the current spatial extent of each part of
Ω is given by the image of the corresponding mapping ψi

ε( · , t) : Ωi
ε → Ωi(t), i ∈ {a,w, s}, so that

the microstructure evolves from its initial periodic configuration (middle) to a possibly nonperiodic
one for t > 0 (right).

geometry of the domain. The evolution of the parts of Ω is assumed to be such
that it can be described by orientation-preserving mappings ψi

ε( · , t) : Ωi
ε → Ωi(t),

i ∈ {a,w, s}, for each t ∈ S, whose images are the current spatial extents of pore
air, pore water, and solid matrix, respectively. A schematic sketch of the setting is
depicted in Figure 1. In cases where the evolution of the domain is a deformation,
the corresponding function ψi

ε(x, · ) gives the trajectory of the particle residing at x
at time t = 0. The idea is not restricted to deformations, however, and can be used
to model addition or removal of substance (increase of volume of solid matrix by
precipitation, e.g.); cf. [25].

We define Ψi
ε = ∇ψi

ε and J i
ε = detΨi

ε, which we will require to be bounded above
and away from zero. In particular, these assumptions restrict the evolutions to ones
where no changes of the topology of the subdomains occur and where all subdomains
always have positive volume. The advantage of this construction is that the parts of Ω
may evolve differently in different places. The problem in the reference configuration
is posed on an ε-periodic medium, however, and is hence suitable for an analysis in
the context of periodic homogenization.

It can be noted that Zw and Zs may or may not be completely contained in Y
so that Ωw

ε and Ωs
ε may each either be connected or not. However, Ωa

ε is assumed
connected, and, for n = 2, this implies that Ωw

ε and Ωs
ε may not be connected. If l or

j is zero, we require Ωw
ε to be connected.

The idea of periodic homogenization (cf. [4, 33], e.g.) is then to examine the limit
as ε approaches zero in order to obtain averaged problems defined in all of Ω which
are easier to treat numerically and give useful information about macroscopically
observable processes.

The unknowns in the ε-periodic reference configuration are denoted by ua
ε, u

w
ε , and

vw
ε . In accordance with (2.8), we consider the model equations (plus initial conditions

and homogeneous Neumann conditions at the exterior boundary for all concentrations)
in the reference configuration. This can be obtained straightforwardly using some of
the calculus of mechanics of deformable bodies and is given by (cf. [25])

∂t(Ja
ε u

a
ε) −∇ · (εkJa

ε Ψa
ε
−1Da

εΨ
a
ε
−T∇ua

ε) = 0, x ∈ Ωa
ε, t ∈ S,

∂t(Jw
ε u

w
ε ) −∇ · (εlJw

ε Ψw
ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) = −ruεf r
ε , x ∈ Ωw

ε , t ∈ S,

∂t(Jw
ε v

w
ε ) −∇ · (εjJw

ε Ψw
ε
−1Ew

ε Ψw
ε
−T∇vw

ε ) = +rvεf
r
ε , x ∈ Ωw

ε , t ∈ S,

(3.1a)
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−(εkJa
ε Ψa

ε
−1Da

εΨ
a
ε
−T∇ua

ε) · νa
ε = εaεC

H‖Ψa
ε
−T νa

ε‖Ja
ε (ua

ε − uw
ε ), x ∈ Γε, t ∈ S,

−(εlJw
ε Ψw

ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) · νw
ε = −εaε‖Ψw

ε
−T νw

ε ‖Jw
ε (ua

ε − uw
ε ), x ∈ Γε, t ∈ S,

−(εlJw
ε Ψw

ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) · νw
ε = 0, x ∈ Γws

ε , t ∈ S,

−(εjJw
ε Ψw

ε
−1Ew

ε Ψw
ε
−T∇vw

ε ) · νw
ε = 0, x ∈ Γw

ε , t ∈ S,

(3.1b)

where quantities with a subscript ε in the reference configuration correspond to the
same quantities with the tilde in the current configuration, x̃ = ψa

ε(x, t), Da
ε(x, t) =

D̃a(ψa
ε(x, t), t), e.g.

System (3.1) in the reference configuration appears more complicated than system
(2.8) in the current configuration. The systems have the same structure, however,
and all boundary conditions fit the differential equations (i.e., the fluxes in the left-
hand sides of (3.1b) are exactly the fluxes in the divergence terms in (3.1a)). Most
importantly, system (3.1) is stated on a fixed periodic domain and is hence suitable for
a (periodic) homogenization analysis. While the system may really have become more
complicated (potentially constant parameters in the current configuration, diffusivities
or interfacial-exchange constants, e.g., are replaced by time- and space-dependent
coefficients), the conditions on the mappings ψi

ε ensure that these complications are
of manageable technical nature in the homogenization process. An example for what
the functions ψi

ε might look like for a certain evolution can be found in section 5.2.
A very important observation is that the functions ψi

ε actually do not appear in (3.1)
but only Ψi

ε and J i
ε. We will make use of this fact when coupling the evolution to the

reaction–diffusion process modelling concrete carbonation in section 6.

4. The homogenized macroproblems. The limit functions of ua
ε, u

w
ε , and

vw
ε as ε → 0 are denoted by ua, uw, and vw, respectively. The data of the problem

are assumed to be given as having a slow and a fast component so that Da
ε(x, t) =

Da(x, x/ε, t) → Da(x, y, t) and, analogously, for Dw
ε , Ew

ε , ruε , rvε , ψa
ε , ψw

ε , and aε.
The homogenized macroproblems of (3.1) are stated below. Formally, they can be

obtained straightforwardly using asymptotic expansions in powers of ε. Unfortunately,
this ad hoc approach does not reveal under which conditions the convergence really
holds. Rigorous results for problems similar to (3.1) exist, which give the assumptions
to be imposed on the data as part of the process. Some discussion on this is given in
section 4.2.

4.1. The general limit problem. In order to keep the presentation concise, a
generic cell problem is introduced first. The complete limit problem consists of three
differential equations and boundary conditions. We state the problem for ua first and
then formulate a generic problem which applies to uw and vw each. Recall that k ≤ l
since ua is the fastest diffusing species. To keep the presentation concise, we restrict
ourselves to m ≥ 0 and k < 2 (the omitted extreme cases can be found using the
results from [29]). Note that k = 2 would imply that all processes actually happen
on the pore scale.

For this purpose, we first define a generic cell problem: Let ςj , j = 1, . . . , N , be
the Y -periodic solution of the cell problem

−∇y · (JαΨα−1A(x, y, t)Ψα−T (∇yςj(x, y, t) + ej)) = 0, y ∈ Zα,(4.1a)

−JαΨα−1A(x, y, t)Ψα−T (∇y(ςj(x, y, t) + ej)) · να = 0, y ∈ ∂Zα\∂Y,(4.1b)

x ∈ Ω, t ∈ S. This allows the definition of the tensors Pα = [pα
ij ]ij via
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(4.2) pα
ij(x, t) =

∫
Zα

JαΨα−1A(x, y, t)Ψα−T (δij + ∂yiςj(x, y, t)) dy.

This tensor is the macroscopic diffusion tensor, which describes the macroscopically
observed diffusion properties. It encodes the microscopic diffusion properties as well
as the microscopic structure and its evolution. We will specify A and α as is required
below.

Setting θ(0) = 1 and 0 elsewhere, the problem for ua is given by
(4.3)

∂t

(∫
Za
Ja dy ua(x, t)

)
−θ(k)∇· (P a∇ua) = −

∫
Γ

Ja‖Ψa−T νa‖f ex dy, x ∈ Ω, t ∈ S,

where f ex is given by f ex = a(ua−uw) if m = 1 and f ex = DwΨw−T∇yu
w ·νw if m < 1

and P a is defined by (4.1), (4.2) with A = Da and α = a. A homogeneous Neumann
condition applies at the exterior boundary, and the initial condition is ua(0) = ua

0.
For uw and vw, we define a generic limit problem for a function w. The complete

problem for uw and vw consists of the problem for w = uw and w = vw. Let λ = l if
w = uw and λ = j if w = vw. Moreover, f ex = a(ua − uw) if w = uw and m = 1 and
zero in all other cases. The function r is given by ru for w = u and rv for w = v. If
λ < 2, the limit problem is given by

∂t

(∫
Zw

Jw dy w(x, t)
)
− θ(λ)∇ · (Pw∇w)(4.4)

=
∫

Zw
Jwrf r dy +

∫
Γ

Jw‖Ψw−T νw‖f ex dy, x ∈ Ω, t ∈ S,

together with a homogeneous Neumann condition at the exterior boundary and initial
condition w(0) = w0. The effective diffusion tensor Pw is defined by (4.1), (4.2) with
α = w and A = Dw if w = uw and A = Ew if w = vw. If λ = 2, the limit equation is
given by
(4.5)
∂t(Jww(x, y, t)) −∇y · (JwΨw−1AΨw−T∇yw) = Jwrf r, y ∈ Zw, x ∈ Ω, t ∈ S.

For w = uw, the boundary condition on Γ is

−JwΨw−1DwΨw−T∇yu
w · νw = −a(ua − uw) if m = 1,(4.6)

uw = ua if m < 1.(4.7)

Homogeneous Neumann conditions apply for w = uw on Γws and for w = vw on Γw.
Note that for l < 2 and m < 1, boundary condition (4.7) implies that it makes sense
to define a combined concentration u = |Za|ua + |Zw|uw, which satisfies an equation
obtained by adding the limit equations for ua and uw.

4.2. Some remarks on rigorous results. The limit problems can be obtained
formally using asymptotic expansions, e.g. For the rigorous proof of convergence
of the sequences of solutions of (3.1) to the solutions of the above limit problems,
periodic-homogenization techniques [4, 33] can be used. Some difficulties arise from
the nonlinear concentration-dependent reaction term. For concentration-independent
reaction terms, the convergence is proven for the problem with Jα ≡ 1 (i.e., no volume
changes) in [29] and for a similar problem with evolving volume factors in [27]; also
see [26]. Combining the techniques used there, existence of solutions of the ε-periodic
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microproblems and the convergence to the solutions of the above limit problems follow
for concentration-independent reaction terms without any additional ideas.

A similar problem to (3.1) with nonlinear concentration-dependent reaction rates
is considered in [24]. Compared to the concentration-independent reaction-rate case,
difficulties arise in the proof of existence of solutions of the ε-problems and in obtain-
ing sufficiently strong a priori estimates allowing the limit passage in the nonlinear
reaction terms. Using the methods described in [24], existence of solutions of the
ε-problems can be shown if rv is a linearly bounded function. In order to obtain suf-
ficiently strong a priori estimates allowing the limit passage, several further sufficient
conditions can be given. For example, l = 0 or ru being independent of uw

ε in the
equation for vw

ε and being a linear function in the equation for uw
ε suffices. In all cases

considered in [24], the limit of the concentration-dependent part of the reaction term
in the equations for uw and vw is given by f r = ru(uw)rv(vw). In what follows, we
assume that this is the limit in all cases considered here.

Some further remarks on the prerequisites on the other data required in the
convergence proofs are appropriate. The coefficient functions JαΨα−1DαΨα−T , α ∈
{a,w}, need to be admissible test functions in the sense of two-scale convergence [2].
This is the case if these functions are continuous with respect to the slow or the fast
variable, e.g.

4.3. Macroscopic diffusion tensors. It is convenient to define the effective
diffusion tensors without an evolution of the microstructure and with unit diffusivity.
In order to avoid confusion with the notation of the previous sections, we denote
these tensors by Q. Then, only the solutions of two cell problems are required: Let
ςαj , j = 1, . . . , n, be the Y -periodic solution of the cell problem

−∇y · (∇yς
α
j (y) + ej) = 0, y ∈ Zα,(4.8a)

−(∇yς
α
j (y) + ej) · να = 0, y ∈ ∂Zα\∂Y,(4.8b)

the weak form of which is given by

(4.9) (∇ςαj + ej | ∇φ)Zα = 0

for all Y -periodic test functions φ, α ∈ {a,w}. The macroscopic diffusion tensors are
then given by Qα = [qα

jk]jk via

(4.10) qα
jk =

1
|Zα|

∫
Zα

(δjk + ∂yj ς
α
k (y)) dy,

where δjk is the Kronecker delta. These tensors are symmetric and positive definite
(cf. [8], e.g.). Note that for JαΨα−1DαΨα−T dependent only on the macrovariable,
we recover the notation from the previous section via Pα = |Zα|JαΨα−1Dα Ψα−TQα

and Pw
v = |Zw|Ψw−1EwΨw−TQw.

4.4. Numerical implementation. We briefly discuss how the system of partial
differential equations is solved numerically. We use the finite element method and
assume the macroscopic sample to extend uniformly in one direction far enough for
a two-dimensional approximation to be valid; i.e., we consider two-dimensional cross-
sections.

Two types of reference cells are considered in the next section. In the simulations
illustrating the influence of scaling (section 5.1), the microstructure is assumed to
be of ball type as depicted in Figure 2. This allows the simplification to one space
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Fig. 2. Schematic cross-sections of the cells used in the simulations.

dimension using spherical coordinates.
For the illustration of the influence of the evolving microstructure (section 5.2), a

two-dimensional cuboid microstructure is used in order to show this for a more general
case; also cf. Figures 10 and 11.

For the discretization of the macroscopic variable, we triangulate the domain Ω
and use linear splines as test and trial functions. The resulting system of ordinary
differential equations in time is solved using the MATLAB solver ode15s, an implicit
variable-order solver based on numerical differentiation formulas.

If l or j is equal to two, we also need to solve partial differential equations in the
reference cell, which are coupled to the equations with respect to the macrovariable.
For the problems with the ball-type microstructure depicted in Figure 2, the problem
is first converted to spherical coordinates. In any case, we also use linear test and
trial functions for these equations and solve the resulting system of ordinary differ-
ential equations in time using the MATLAB solver ode15s. This is done for each
macroscopic time step.

5. Numerical comparison of some limit models. In order to show the ap-
propriateness of the nondimensionalization as well as of the obtained limit problems,
we conduct some numerical experiments. We begin with investigating the influence
of the scaling exponents neglecting the influence of the evolution of the microstruc-
ture, i.e., ψi

ε = Id, i ∈ {a,w, s}, and then consider results for a prototypical model
accounting for an evolving microstructure.

5.1. Influence of scaling. It was theoretically argued in section 2 that the
characteristic lengths and times of the problem should be accounted for in the ho-
mogenization process by scaling the material parameters with powers of the homoge-
nization parameter ε. The appropriate scaling powers were found from a nondimen-
sionalization. In what follows, we conduct some numerical experiments for simple
test problems. It is shown that the limit problems corresponding to correct scalings
resolve the important processes well while bad choices of scaling lead to poor limit
models.

Diffusion. We discuss the influence of the choice of scaling exponents on diffusion
for a very much simplified problem for only one substance which is only diffusing; i.e.,
we consider the equation for uw

ε with a = 0. Assume Ω to be a square with side
length 1, i.e., Ω = (0, 1)2, S = (0, 1), and uw

ε (x, 0) = e−10‖x−(1/2,1/2)T ‖2
. Clearly, we

choose uw
ref = 1 and write u = uw for simplicity.

We take L = 1 and assume the medium has a ball-type microstructure as depicted
in Figure 2 such that � = 10−4 and �D2 = �/

√
10 are reasonable choices for the

characteristic microscopic lengths. Thus, the tensor Qw is diagonal with all diagonal
elements equal. Since the exact value is not important here, we assume Qw = 0.05.
We consider the two cases
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Fig. 3. Solution to problem (5.1) for t = 0 (left), t = 0.5 (middle), and t = 1 (right).

1. D2 = 1,
2. D2 = 10−9.

It is clear that we expect the important mechanism to be macroscopic diffusion in
case 1 and microscopic diffusion in case 2. According to the nondimensionalization
(cf. section 2), we need to choose

1a. l = 0 for case 1,
2a. l = 2 for case 2,

since then Tw = 1 in both cases. To show the appropriateness of these choices we
also consider the opposite cases, i.e.,

1b. l = 2 (implying Tw = 10−9) for case 1,
2b. l = 0 (implying Tw = 109) for case 2.

Since these choices are bad in terms of what the nondimensionalization suggests, we
expect the corresponding limit models to resolve the important mechanism poorly.

Reading off the limit problem of section 4.1, in case 1a, we have to solve

∂tu(x, t) − 0.05Δu = 0, x ∈ Ω, t ∈ (0, 1),(5.1a)
−0.05∇u · ν = 0, x ∈ ∂Ω, t ∈ (0, 1),(5.1b)

u(x, 0) = e−10‖x−(1/2,1/2)T ‖2
, x ∈ (0, 1)2.(5.1c)

The solution to this problem is shown in Figure 3. It can be seen that the macroscopic
diffusion is captured well.

On the other hand, in case 1b, the limit model captures only diffusion in the cell,
i.e., in Y . Since the initial value is a function of x only and does not depend on the
microvariable, i.e., on x/ε, and there are no mechanisms disrupting this initial state,
we do not have diffusion and, hence, u(x, t) = u(x, 0). Clearly, this limit model is
inappropriate. Even if we had chosen an initial value which is not constant in each
cell, no macroscopic diffusion would have taken place since the limit model does not
include this mechanism.

Similar to case 1b, the limit model for case 2a gives u(x, t) = u(x, 0), which is a
reasonable model since no observable diffusion is expected in this case. On the other
hand, for case 2b, we have to solve

∂tu(x, t) − 0.05Δu = 0, x ∈ Ω, t ∈ (0, 10−9),(5.2a)

−0.05∇u · ν = 0, x ∈ ∂Ω, t ∈ (0, 10−9),(5.2b)

u(x, 0) = e−10‖x−(1/2,1/2)T ‖2
, x ∈ (0, 1)2.(5.2c)

Owing to the different time scales, t = 10−9 in problem (5.2) corresponds to the
same (dimensional) instant in time as t = 1 in problem (5.1). In Figure 4, the
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Fig. 4. Solution to problem (5.2) for t = 0 (left) and t = 10−9 (right).

solution to problem (5.2) is plotted. It can be seen that there is virtually no change
of concentration in the time interval of consideration. This agrees with what was
obtained for case 2a, but it was immediately clear there.

Things are even more extreme if the initial value depends on the microscopic
scale, i.e., ū0 = ū0(x, y). Then, in case 1a, we have to solve the same problem since
the initial value is then given by u0 =

∫
Y
ū0(x, y) dy. This is a reasonable model

since diffusion on the microscopic scale is so fast in this case that the local diffusion
equilibrium in the cell is reached almost instantaneously (consider a diffusivity of
1cm2/d on a length of 10−4.5cm and a time interval of (0, 1) d, where d stands for
day). Model 1b would have resolved the diffusion in the cell; it does not resolve the
macroscopic diffusion, however, and is therefore inappropriate.

In case 2, microscopic diffusion is important. Model 2a resolves this diffusion
and, hence, is the appropriate model. Model 2b would have given the same output as
before which does not resolve the diffusion on the microscopic scale. It does resolve
the macroscopic output correctly in this case. However, if other mechanisms are also
important, interfacial exchange for example, this is not the case, as can be seen in the
next example.

Interfacial exchange. For this example, we assume we have two diffusing con-
centrations, each given in a different part of the porous medium. We assume the
general setting to be as in the previous example and choose the unit cell to be as de-
picted in Figure 2, i.e., a ball-type microstructure. In the simulations, we choose
(Ra)3 = 3/(8π) and Rs = 0 and assume that |Zs| = 0. Note that this yields
|Za| = |Zw| = 1/2.

We assume the setting for the first concentration, ua, as in case 1 of the previous
example. For the second concentration, uw, we assume a diffusivity of 10−9cm2/d
and �D2 = �/

√
10 (note that this corresponds to case 2 of the previous example) and

we assume CH = 1 and Cex = 10−4cm/d for now. Therefore, the scaling exponents
suggested by the nondimensionalization are k = 0, l = 2, and m = 1. The limit
problem is given by

∂tu
a(x, t) − 0.05Δua = − 1

|Za|
∫

Γ

(ua − uw) dy, x ∈ Ω, t ∈ (0, 1),(5.3a)

∂tu
w(x, y, t) − 0.1Δyu

w = 0, x ∈ Ω, y ∈ Zw, t ∈ (0, 1),
(5.3b)

−0.1∇yu
w · νw = −(ua − uw), y ∈ Γ, t ∈ (0, 1),(5.3c)

−0.1∇yu
w · νw = 0, y ∈ Γws, t ∈ (0, 1),(5.3d)

−∇ua · ν = 0, x ∈ ∂Ω, t ∈ (0, 1),(5.3e)
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Fig. 5. Profiles of ua in problem (5.3) for t = 0 (left), t = 0.1 (middle), and t = 1 (right).
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Fig. 6. Profiles of uw in problem (5.3) for t = 0 (left), t = 0.1 (middle), and t = 1 (right).

0 0.2 0.4
0

1

2

3

4
Cell at the point (0.0,0.0)

r

u
w

 

 

t=0
t=0.1
t=1

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
Cell at the point (0.5,0.5)

r

u
w

 

 

t=0
t=0.1
t=1

Fig. 7. Cell solutions to (5.3) in two different cells. Cell at (0, 0) (left) and at (0.5, 0.5) (right).

which is a classic distributed-microstructure model; cf. [12], e.g. For the initial
conditions, we choose ua(x, 0) = e−10‖x−(1/2,1/2)T ‖2

as before and uw(x, y, 0) =
K(1 − e−10‖x−(1/2,1/2)T ‖2

)(Ra − r)/(Ra −Rs) with

(5.4) K =
(

1 − 4
3
π(Ra)3

) (
π

(Rs)4 − (Ra)4

Ra −Rs
+

4πRa

3
(Ra)3 − (Rs)3

Ra −Rs

)−1

.

Note that we have
∫

Zw u
w(x, y, 0) = |Za|(1−ua(x, 0)). The solution to (5.3) is plotted

in Figures 5–7. As can be seen, all important processes, i.e., macroscopic diffusion
of ua, microscopic diffusion of uw, and the exchange at the internal interface, are
resolved well. In particular, it can be seen in Figure 7(left) that it takes time for
uw to diffuse from the center of Zw (where most of uw is located at t = 0) to the
boundary Γ where the equalization takes place.

For comparison, we also plot the solution to the limit problem corresponding to
the inappropriate choice l = 0 (cf. Figures 8 and 9), which leads to a model of parallel-
flow type. From a comparison of the middle plots of Figures 5 and 8 as well as of
Figures 6 and 8, it can be seen that the important process in the cell, that is, the
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Fig. 8. Profiles of ua for t = 0 (left), t = 0.1 (middle), and t = 1 (right) for the problem
corresponding to the choice l = 0.
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Fig. 9. Profiles of uw for t = 0 (left), t = 0.1 (middle), and t = 1 (right) for the problem
corresponding to the choice l = 0.

diffusion from the center of Zw to Γ, is not captured accurately. The delay caused
by this transport is not captured in the model with l = 0! Of course, the equilibrium
state, which the system tends to, is the same. In other words, the general macroscopic
processes are captured, but the processes on the microscopic scale, which have a strong
influence on the macroscopic processes in this example, are not resolved. Note that,
since Ωw

ε is disconnected for the microstructure chosen, we do not obtain macroscopic
diffusion in the limit even though l = 0. For comparison, we still investigate the limit
problem with macroscopic diffusion and disconnected microstructure.

It can be seen that if Cex was considerably larger, Cex = 1cm/d for example, the
interfacial exchange would have been so fast that the equilibrium at the interface, i.e.,
ua = uw, would have been reached almost instantaneously and remained that way
(not plotted). For this value of Cex, the nondimensionalization suggests the scaling
exponent to be m = 0, which, in turn, corresponds to the Dirichlet condition ua = uw

at the interface in the homogenization limit. On the other hand, if Cex is considerably
smaller than 10−4cm/d in the above example, 10−8cm/d say, the interfacial exchange
is almost negligible on the time scale under consideration (not plotted). In this case,
the nondimensionalization suggests a scaling exponent ofm = 2, which, in the homog-
enization limit, corresponds to a homogeneous Neumann condition at the interface;
i.e., there is no flux across the interface. Hence, in both cases, the homogenized mod-
els arising from the micromodels scaled as suggested by the nondimensionalization
capture the relevant processes best.

5.2. Influence of evolving microstructure. Using a simple test problem, we
want to illustrate how the evolution of the microstructure influences the model out-
put. For this investigation, we use a two-dimensional rectangular microstructure of a
shrinking square. In order to focus on the aspect of the evolution of the microstruc-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1658 MALTE A. PETER AND M. BÖHM

ture, the reference cell again consists of only two phases. In the implementation, the
rectangles are discretized in the same way as the macroscopic domain.

In particular, the particle in the reference cell is modelled by a cuboid centered
at the cell midpoint, which shrinks over time. The parts of the unit cell Y can then
be modelled as

Zw(t) = (a(t), 1 − a(t)) × (b(t), 1 − b(t)),(5.5)

Za(t) = (0, 1)2\Zw(t),(5.6)

with functions 0 < a, b < 1/2. Setting Ω = (0, 1)2 and defining the domains Ωa
ε(t) and

Ωw
ε (t) in the usual way (note that Ωs

ε(t) ≡ ∅), we obtain a time-dependent domain
with evolving microstructure, which has the same evolution of the microstructure in
each cell. The evolution can be made different in each cell by allowing the functions
a and b to depend on the cell. The question is now to find transformations ψa

ε and
ψw

ε which map the reference domains to the current configuration. Of course, there
are a variety of reasonable options since we do not require the functions ψi

ε to satisfy
any equation or other restrictions. Here, we use affine-linear transformations.

We want to consider one possible choice for ψa
ε and ψw

ε for the situation introduced
above. For this purpose, we begin with defining the mapping ψw

x : Zw(0) → Zw(t) for
one unit cell. The subscript x is introduced for future use. Its function is to determine
the cell for which the transformation is intended. We further denote by [x]Y the unique
integer combination

∑n
i=1 kiei of the periods such that {x}Y = x − [x]Y belongs to

[0, 1)n (where ei is the ith unit vector).
Again, we use standard letters for the coordinates in the reference configuration

and letters with a tilde for the coordinates in the current configuration. A possible
choice for ψw

x is

(x1, x2) �→ (x̃1, x̃2) = (ψw
x,1(x1, x2), ψw

x,2(x1, x2))

=
(
x1 +

(
ax(t) − 1/2
ax(0) − 1/2

− 1
)

(x1 − 1/2) , x2 +
(
bx(t) − 1/2
bx(0) − 1/2

− 1
)

(x2 − 1/2)
)
.

(5.7)

Note that the parameter x of ψw
x appears only in ax and bx and that the jth com-

ponent ψw
x,j is actually dependent only on xj , i.e., ψw

x,j = ψw
x,j(xj). Moreover, the

scale splitting as required in section 4 is directly given here: The parameter x and
ε[x/ε]Y belong to the slow component while {x/ε}Y is the fast component. The
transformation for the unit cell can be easily modified to obtain the transformation
ψw

ε : Ωw
ε (0) → Ωw

ε (t) for the ε-periodic domain,

(x̃1, x̃2) =
(
ε[x1/ε]Y , ε[x2/ε]Y

)

+ ε

(
{x1/ε}Y +

(
ax(t) − 1/2
ax(0) − 1/2

− 1
)

({x1/ε}Y − 1/2) ,

{x2/ε}Y +
(
bx(t) − 1/2
bx(0) − 1/2

− 1
)

({x2/ε}Y − 1/2)
)
,(5.8)

or, in a simpler way,

(5.9) ψw
ε (x1, x2) = ε

(
[x1/ε]Y + ψw

x,1({x1/ε}Y ), [x2/ε]Y + ψs
x,2({x2/ε}Y )

)
.

The functioning of the mapping is illustrated in Figure 10 for the choice of
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Fig. 10. The images of ψw
x (left) and ψw

ε (right, ε = 2−2) for different times together with the
contour plots of the inner boundary of the cell centered at ε(1/2, 1/2).

(5.10) ax(t) = bx(t) = 0.1(t+ 1).

The transformation ψa
x can be defined analogously. Since it is actually the “hole”

which shrinks in this case, the transformation is slightly more complicated. For ease
of notation, we define

αx(x1, t) = |1/2 − x1|(1/2 − x1)
ax(t) − ax(0)

(1/2 − ax(0))2ax(0)
,(5.11)

βx(x2, t) = |1/2 − x2|(1/2 − x2)
bx(t) − bx(0)

(1/2 − bx(0))2bx(0)
.(5.12)

Then, the analogous transformation is given by

(x̃1, x̃2) = (ψa
x,1(x1, x2), ψa

x,2(x1, x2))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1 + αx(x1, t)x2, x2 + βx(x2, t)x2), x1 ≥ x2, x1 ≤ 1 − x2,

(x1 + αx(x1, t)(1 − x1), x2 + βx(x2, t)(1 − x1)), x1 ≥ x2, x1 ≥ 1 − x2,

(x1 + αx(x1, t)(1 − x2), x2 + βx(x2, t)(1 − x2)), x1 ≤ x2, x1 ≥ 1 − x2,

(x1 + αx(x1, t)x1, x2 + βx(x2, t)x1), x1 ≤ x2, x1 ≤ 1 − x2.

(5.13)

Again, this can be easily adapted to work out the corresponding transformation ψa
ε ,

(5.14) ψa
ε(x1, x2) = ε

(
[x1/ε]Y + ψa

x,1({x/ε}Y ), [x2/ε]Y + ψa
x,2({x/ε}Y )

)
.

The functioning of this mapping is illustrated in Figure 11 for the same choice of ax

and bx as in Figure 10 (also cf. (5.10)).
For the illustration of the influence of the evolution of the microstructure on the

model output, we take a similar setting as in the previous example (interfacial ex-
change in section 5.1) but allow for an evolution of the domains Ωa

ε and Ωw
ε . Moreover,

we choose an intermediate diffusivity for ua, namely D1 = 10−2cm2/d. This implies
the choice k = 4/9, and the diffusion term associated with ua vanishes in the limit.
This allows us to focus on the diffusion in the cells and on the interfacial exchange. The
initial values are chosen as ua(x, 0) = 0 and uw(x, y, 0) = |Zw|−1e−10‖x−(1/2,1/2)T ‖2

(also cf. Figures 12(left) and 13(left)).
From section 4.1, we find that the limit problem is of similar structure as (5.3)

and reads as
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Fig. 11. The images of ψa
x (left) and ψa

ε (right, ε = 2−2) for different times together with the
contour plots of the inner boundary of the cell centered at ε(1/2, 1/2).

∂t

(∫
Za
Ja dy ua(x, t)

)
= −

∫
Γ

‖Ψa−TN‖Ja(ua − uw) dy, x ∈ Ω, t ∈ (0, 1),

(5.15a)

∂t(Jwuw(x, y, t)) − 0.1∇y · (JwΨw−1Ψw−T∇yu
w) = 0, x ∈ Ω, y ∈ Zw, t ∈ (0, 1),

(5.15b)

−0.1JwΨw−1Ψw−T∇yu
w · νw = −‖Ψw−TN‖Jw(ua − uw), y ∈ Γ, t ∈ (0, 1).

(5.15c)

Recall that the transformations ψa
ε and ψw

ε are given by (5.13) and (5.8), respec-
tively. It is easily calculated that we have

Ψa =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 + y2∂y1αx 0

αx 1 + y2∂y2βx + βx

]
, y1 > y2, y1 < 1 − y2,[

1 + (1 − y1)∂y1αx − αx −βx

0 1 + (1 − y1)∂y2βx

]
, y1 > y2, y1 > 1 − y2,[

1 + (1 − y2)∂y1αx 0
−αx 1 + (1 − y2)∂y2βx − βx

]
, y1 < y2, y1 > 1 − y2,[

1 + y1∂y1αx + αx βx

0 1 + y1∂y2βx

]
, y1 < y2, y1 < 1 − y2,

(5.16)

from which Ψa−1, Ψa−T , and Ja can be computed. In particular, we obtain

Ja =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + y2∂y1αx)(1 + y2∂y2βx + βx), y1 > y2, y1 < 1 − y2,

(1 + (1 − y1)∂y1αx − αx)(1 + (1 − y1)∂y2βx), y1 > y2, y1 > 1 − y2,

(1 + (1 − y2)∂y1αx)(1 + (1 − y2)∂y2βx − βx), y1 < y2, y1 > 1 − y2,

(1 + y1∂y1αx + αx)(1 + y1∂y2βx), y1 < y2, y1 < 1 − y2,

(5.17)

Ja
x‖Ψa−TN‖ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(α2
x + (1 + y2∂y1αx)2)1/2, y1 > y2, y1 < 1 − y2,

((1 + (1 − y1)∂y2βx)2 + β2
x)1/2, y1 > y2, y1 > 1 − y2,

(α2
x + (1 + (1 − y2)∂y1αx)2)1/2, y1 < y2, y1 > 1 − y2,

((1 + y1∂y2βx)2 + β2
x)1/2, y1 < y2, y1 < 1 − y2.

(5.18)
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Fig. 12. Profiles of ua in problem (5.15) for t = 0 (left), t = 1 (middle), and t = 3 (right).

For Zw, the calculation is less technical; namely, we have
(5.19)

Ψw =

[
ax(t)−1/2
ax(0)−1/2 0

0 bx(t)−1/2
bx(0)−1/2

]
, Ψw−1 = Ψw−T =

[
ax(0)−1/2
ax(t)−1/2 0

0 bx(0)−1/2
bx(t)−1/2

]

and Jw = ax(t)−1/2
ax(0)−1/2

bx(t)−1/2
bx(0)−1/2 .

For simplicity, we assume bx(t) ≡ ax(t); i.e., we assume a square pore-water
geometry. In particular, this implies JwΨw−1Ψw−T = Id2×2. Note that this is always
the case (in two space dimensions) when the evolution of the pore geometry is given
by a simple scaling, i.e., Zw(t) = c(t)Zw(0) for some positive function c(t).

We choose ax(t) = a(t) = 0.1(t+ 1) as in Figures 10 and 11. This implies

αx(y1, t) = α(y1, t) = |1/2 − y1|(1/2 − y1)
25t
4
, ∂y1α(y1, t) = −|1/2− y1|25t

2
,

(5.20)

βx(y2, t) = β(y2, t) = |1/2 − y2|(1/2 − y2)
25t
4
, ∂y2β(y2, t) = −|1/2 − y2|25t

2
.

(5.21)

Then,
∫

Za J
a can be calculated explicitly: We have

∫
Za J

a = 4(0.09 + 0.08t− 0.01t2).
This value can be calculated even more easily using the current configuration

∫
Za J

a =∫
Za(t)

1 = 1 − (1 − 2a(t))2, the results of which are the same, of course.
Simulation results are presented in Figures 12–14. In Figure 12, concentration

profiles for ua are plotted. Note that this concentration is with respect to current
pore-air volume. It can be seen that ua increases from its initial value zero toward
the initial value of uw scaled by the volume factor |Zw(0)|/|Za(t)|. This is due to the
fact that the domain Zw shrinks while the air-filled pore part increases in volume.
Therefore, without interfacial exchange, the real concentration ua decreases while uw

increases. This accelerates the interfacial exchange, which causes uw to convert to
ua. Metaphorically speaking, the shrinking of pore-water volume causes uw to be
pushed into the pore air. It can be seen in Figures 13 and 14 how the concentration
first decreases due to the loss by interfacial exchange and then increases again as the
pore-water volume shrinks more quickly (the change of volume is quadratic in time).
Thus, the influence of the evolution of the microstructure is well captured by this
limit model.

6. Simulation of concrete carbonation. As was discussed in section 1.2, the
theoretical investigations of the previous sections were particularly inspired by the
real-world problem of concrete carbonation. In this section, we apply the results to
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Fig. 13. Profiles of uw in problem (5.15) for t = 0 (left), t = 1 (middle), and t = 3 (right).
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(right). Top: reference cell; bottom: current cell.

concrete carbonation. There is a vast literature on concrete carbonation; we particu-
larly refer the reader to [14, 5, 6] for details on the general subject.

A great number of researchers have tried to find simple formulas for the advance-
ment of the carbonation in a concrete sample (cf. [34, 20] for discussions of these).
There are also some works with respect to modelling carbonation with reaction–
diffusion systems, most notably [31, 35, 18, 30, 19]. In the homogenization context, it
is also worth noting the article [32], where ion diffusion in concrete is modelled using
spatial averaging, and [17], where a two-scale model for a simple carbonation scenario
is proposed.

In order to be able to compare the simulation results to experimental data, we
restrict our considerations to a particular type of concrete and specific exposure con-
ditions. We assume a piece of concrete based on ordinary Portland cement (OPC)
to be exposed to natural atmospheric conditions and compare the simulations with
experimental data. To fix ideas, we use the experimental data of [36] for PZ1 concrete
with a water-to-cement ratio of 0.6 exposed “out of doors under roof.”

The typical capillary pore diameter in OPC-based concrete can vary between
10−7 cm and 10−4 cm [23]. For the present simulations, we take � = 10−4 cm, �D1 = 1,
and �D2 = �D3 = �/

√
625 as the characteristic microscopic lengths. Note that �D2 and
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�D3 are essentially smaller than � owing to the thinness of the water film in concrete
pores. Moreover, we choose L = 1 cm. This implies ε = 10−4.

The values of the remaining model parameters refer to an L-shaped cross-section of
an OPC concrete sample with a side length of 5 cm under natural exposure conditions.
Our simulations cover a period of 16 years and begin shortly after the curing time.
After curing, we assume no CO2 inside the concrete sample and that 0.693 g/cm3 of
Ca(OH)2 is available to the carbonation reaction. In order to account for the fact that
carbonation has just started, we assume that the boundary of the concrete sample has
already been carbonated. We assume an ambient CO2(g)-concentration resembling
natural atmospheric conditions, uext

1 = 0.54 · 10−6 g/cm3.
The diffusion coefficient of CO2(g) is D1 = 13.8 · 103 cm2/d, and diffusivities

of the ions in water are D2 = D3 = 1 cm2/d [15]. For the interfacial-exchange
coefficients at the internal gas–liquid interface and the external boundary, Cex and
Cext, respectively, we take the empirical values 103/d and the Henry constant is
CH = 0.81. For the reaction rate, we take p = q = 1 and use the empirical values
ri = mi 500 mol · cm3/(g2d), i = u, v, where mi are the molar weights; we have
mu = mA = 44 g/mol and mv = mB = 74 g/mol.

Taking ua = [CO2(g)], uw = [CO2(aq)], and vw = [Ca(OH)2(aq)], the microscopic
problem without exchange with the environment reads exactly as (1.4).

The data given above yield characteristic times of

(6.1) T a = 10−4k12−k/13.8 · 103, Tw = 25l10−4l12−l, Tw
v = 25j10−4j12−j.

According to section 2.1, this implies k = 0, l = j ≈ 1.59, and T a = Tw = Tw
v =

1/13.8 · 103. For the scaling exponent of the interfacial-exchange term, we obtain
m ≈ 0.29.

Therefore (cf. section 4.1), the homogenized limit problem is of purely macroscopic
type without diffusion of uw and vw (formally, this corresponds to Pw = 0) and
we have no interfacial-exchange term. Instead, we obtain CHua = uw in the limit.
Altogether, the homogenized limit model in dimensional form is given by

∂t ((Ja|Za| + Jw|Zw|)u(x, t)) −∇ · (P a∇u) = −Jw|Zw|ruuvw, x ∈ Ω, t ∈ S,

(6.2a)

|Zw|∂t(Jwvw(x, t)) = −Jw|Zw|CHrvuvw, x ∈ Ω, t ∈ S,(6.2b)

−P a∇u · ν = Cext(u − uext), x ∈ ∂Ω, t ∈ S,(6.2c)

where we have added a Robin boundary condition for CO2(g) to account for the
exchange with the environment. We take the empirical value Cext = 103/d, and uext

1

is given by the ambient CO2 concentration (see above). Moreover, u now represents
a combined CO2 concentration referring to both pore air and pore water.

It can be noted that (6.2a) and (6.2b) can even be combined to one equation by
solving (6.2b) for vw and substitution of the result into (6.2a). However, we leave the
system as it is since we are also particularly interested in the concentration profiles
of vw. Also note that the concentration u now refers to the complete pore volume.
Moreover, the fast exchange at the exterior boundary could also be well approximated
by a Dirichlet condition, i.e., u = uext on ∂Ω.

Before solving the system of equations (6.2), we must specify the functions related
to the evolution of the subdomains, i.e., Ja, Ψa, and Jw (Ψa is contained in the
definition of P a; cf. (4.2)). For this, recall that Ψi relates the length and orientation
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of a material fibre in the reference configuration to its length and orientation in the
current configuration and J i describes the change of volume, i ∈ {a,w}. Since water
can be assumed incompressible, it is reasonable to set Jw = 1. Diffusion of CO2 in air
is fast; hence, we assume that the influence of the microstructure on the direction of
the flux is negligible; i.e., Ψa ≈ 1 in the definition of (4.2). We are left with deriving
an equation for Ja, which must be coupled to the reaction since the change of volume
of pore air is due to the conversion of Ca(OH)2 to CaCO3.

The dissolution of Ca(OH)2 and precipitation of CaCO3 are fast, which is why we
approximate them as being instantaneous. In the cell Y at the point x, the amount
(i.e., mass) of Ca(OH)2 being used up and of CaCO3 being produced at time t is
given by

(6.3)
∫

Zw
mBJ

wf r dy and
∫

Zw
mCJ

wf r dy,

respectively. Noting that Jw = 1 and that an increase of total volume of constituents
implies a decrease of volume of pore air, we have

(6.4)
d
dt

∫
Za
Ja dy = −|Za|Cm

∫
Zw

f r dy, where Cm =
1

|Za|
(
mC

ρC
− mB

ρB

)

for each instant in time, where ρB and ρC are the densities of Ca(OH)2 and CaCO3,
respectively.

Since we do not expect Ja to vary within one cell (and since we do not have any
more information), we define Ja(x, t) to be the constant value determined by (6.4) in
each cell. Hence, an equation for Ja is obtained: Find Ja : Ω × S → R such that

(6.5) ∂tJ
a(x, t) = −|Zw|CmrJu

wvw, Ja(0) ≡ 1,

where rJ = 500 mol·cm3/(g2d) as before. Using the data from [15], we have |Za|Cm =
(100/2.71−74/2.2) = 3.26. The volume fractions are |Za| = 0.18 and |Zw| = 0.1 [23].
Note that no assumption on the specific pore geometry has been made in the derivation
of (6.5).

We do not calculate the macroscopic diffusion tensor but use empirical value
Qa = 2.2 · 10−3 instead [23, 35].

Making use of the equality CHua = uw, (6.5) can be written as

(6.6a) ∂tJ
a(x, t) = −|Zw|CmrJC

Huvw.

The rest of the limit problem simplifies to

∂t ((Ja|Za| + |Zw|)u(x, t)) −∇ · (JaQa∇u) = −|Zw|ruuvw, x ∈ Ω, t ∈ S,

(6.6b)

|Zw|∂tv
w(x, t) = −|Zw|CHrvuvw, x ∈ Ω, t ∈ S,(6.6c)

−JaP a∇u · ν = Cext(u − uext), x ∈ ∂Ω, t ∈ S.(6.6d)

This system is considerably simpler than the original microscopic system. Neverthe-
less, the correct scaling ensures that all processes are captured accurately in this limit
model. The evolution of the microstructure is accounted for by the coupled nature of
the equation for the pore-volume factor Ja (6.6) with the reaction–diffusion system
(6.6b)–(6.6d). The computational effort to solve this limit model is rather small (of
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the order of minutes on a modern computer), while for the simulation of the micro-
scopic model 3/4 · (5 · 104)2 evolving pores of side length 10−4 cm would have been
needed to be discretized.

Before presenting simulation results, we want to estimate the effect on the pore-air
volume. Initially, we have |Zw|vw

0 /mB = 9.36 ·10−4 mol Ca(OH)2 per cm3 of concrete.
Therefore, of each cm3 of uncarbonated concrete, |Zw|vw

0 /ρB = 0.0315 cm3 are taken
up by Ca(OH)2. After carbonation, each mole of Ca(OH)2 has been converted to
a mole of CaCO3; i.e., we have 9.36 · 10−4 mol CaCO3 per cm3 of concrete. This
takes up a volume of mC/ρC 9.36 · 10−4 mol/cm3 = 0.0346 per cm3 of carbonated
concrete. Therefore, 0.0031 cm3 more volume is taken up by the solids per cm3 of
concrete after carbonation. This corresponds to a reduction of pore-air volume of
approximately 1.7%.

From the literature (cf. [5, 23]), we find that the reduction of pore volume by
carbonation is between approximately 10% and 30% depending on various parameters,
particularly on the type of cement used. The discrepancy between the measured values
and the one calculated above is discussed in [5], and several possible reasons are given.
They are mostly associated with the fact that the precipitation and formation of solid
CaCO3 are more complicated than the very simple assumptions made here so that the
density of precipitated CaCO3 in carbonated concrete is actually considerably smaller
than it normally is.

We want to take into account this larger change of volume. For the simulations,
we take a value of 14.5%. Under the assumption that the pore-water volume remains
constant, this corresponds to a reduction of pore-air volume by 21%.

The solution to (6.6) is plotted in Figure 15. Dimensional quantities are shown
except for the concentrations which we plot in a normalized way, that is, u/uext and
vw/vw

0 . It can be observed that the bulk of the carbonation reaction is concentrated
on a narrow zone which advances into the concrete with time, and the Ca(OH)2-
concentration exhibits steep gradients near the reaction zone. This coincides with
other simulation results; cf. [23, 18].

An important quantity for durability issues is the carbonation depth, i.e., the
depth the carbonation zone has penetrated into the concrete sample after a given
amount of time. Similarly to [35], we define the carbonation depth as the level set
vw/vw

0 = 0.1. In Figure 16(right), the predicted carbonation depth is plotted in
comparison to experimental data by [36] (long-term exposure out of doors under roof).
It can be seen that good approximation of experimental data is achieved. In particular,
an overestimation of the carbonation depth toward the end of the considerations,
which usually results when neglecting the evolution of the microstructure [20, 18],
does not occur here.

7. Summary. A prototypical reaction–diffusion system was considered mod-
elling the evolution of concentrations in a porous medium with evolving microstruc-
ture. A nondimensionalization was performed taking into account the different char-
acteristic lengths and times. Macroscopic limit models were then obtained from these
scaled micromodels making use of the method of homogenization in domains with
evolving microstructure. Numerical experiments validated the appropriateness of the
scaling depending on the material parameters as well as accounting for the evolution
of the microstructure. The general considerations were then applied to the specific
real-world problem concrete carbonation. It turned out that a comparably simple
macroscopic model arises in the homogenization limit, which compares well to exper-
imental data.
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Fig. 15. Solution to problem (6.6). CO2 (top) and Ca(OH)2 (middle) concentrations as well
as Ja (bottom) after 1 year (left), 4 years (middle), and 16 years (right). In the top left plot, the
cut is depicted for which the solutions are presented in Figure 16.
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Fig. 16. Results for the carbonation model with evolving microstructure. Left: concentration
profiles at the cut at x2 = 3 (depicted in Figure 15). Right: carbonation depth versus time compared
to experimental data by [36].
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