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1. Introduction. Classical absolute stability theory, with origins in [18], is
concerned with the analysis of systems of Lur’e type, that is, feedback intercon-
nections, of the form shown in Figure 1.1, consisting of a linear system L in the
forward path and a static sector-bounded nonlinearity f in the (negative) feedback
path. The methodology seeks to conclude stability of the overall system through
the interplay or reciprocation of inherent frequency-domain properties of the lin-
ear component L and sector data for the nonlinearity f . Accounts of the classical
theory can be found in, e.g., [7, 10, 13, 19, 21, 23].
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Fig. 1.1. Classical feedback interconnection

The present paper adopts a similar standpoint, but differs from the classical frame-
work in three fundamental aspects: (i) in contrast with the literature, wherein the
focus is on global asymptotic stability and L2 or L∞ stability, input-to-state sta-
bility issues are addressed here; (ii) nonlinearities of considerably greater generality
are permitted in the feedback path; (iii) the sector conditions of the classical the-
ory are significantly weakened. With reference to (i), conditions on the linear and
nonlinear components are identified under which input-to-state stability of the in-
terconnection is guaranteed. With reference to (ii), a framework is developed of
sufficient generality to encompass not only static nonlinearities but also causal op-
erators (and hysteresis, in particular) and quantization operators in the feedback
path. With reference to (iii), through the concept of a generalized sector condition,
the investigation is extended to include nonlinearities which satisfy a sector con-
dition only in the complement of a compact set: a theory is developed pertaining
to input-to-state stability with bias of the feedback interconnection. We proceed to
outline these features more precisely.

With reference to Figure 1.2, the focus of the paper is a study of absolute
stability, input-to-state stability, and boundedness properties of a feedback inter-
connection of a finite-dimensional, linear, m-input, m-output system (A,B,C) and
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a set-valued nonlinearity Φ. Throughout, we assume that ∆ is a set-valued map in
which input or disturbance signals are embedded. We seek an analytical framework

∆ (A,B,C)

Φ

y
+

−

Fig. 1.2. Interconnection of a linear system (A, B, C) and a set-valued nonlinearity Φ

of sufficient generality to encompass inter alia feedback systems with causal oper-
ators (and, in particular, hysteresis operators) in the feedback loop. To illustrate
this, let F be a causal operator from dom(F ) ⊂ L1

loc(R+,R
m) to L1

loc(R+,R
m),

where R+ := [0,∞), and consider the feedback system (structurally of Lur’e type),
with input d ∈ L∞

loc(R+,R
m), given by the functional differential equation

ẋ(t) = Ax(t) +B
(

d(t) − (F (Cx))(t)
)

. (1.1)

By causality of F we mean that, for all y, z ∈ dom(F ) and all α > 0,

y|[0,α] = z|[0,α] =⇒ F (y)|[0,α] = F (z)|[0,α].

To associate (1.1) with the structure of Figure 1.2, assume that F can be embedded
in a set-valued map Φ in the sense that

y ∈ dom(F ) =⇒ (F (y))(t) ∈ Φ(y(t)) for a.e. t ∈ R+ .

If the input d is such that d(t) ∈ ∆(t) for almost all t, then any solution of (1.1)
is a fortiori a solution of the feedback interconnection in Figure 1.2. In this sense,
properties of solutions of the feedback interconnection are inherited by solutions
of (1.1). Under particular regularity assumptions on ∆ and Φ, generalized sec-
tor conditions on Φ, and positive-real conditions related to the linear component
(A,B,C), we establish input-to-state stability (in the sense of [20], but extended
to differential inclusions) and boundedness properties of solutions of the system in
Figure 1.2. The approach is partially based on that of Arcak & Teel [1]: in par-
ticular, some of the arguments adopted in the proof of Lemma 5.1 of the present
paper are generalizations, to a differential inclusions setting, of arguments in [1].
The paper is structured as follows. In Section 2, we make precise the nature of
the maps Φ and ∆ and state an existence theorem which underpins the stability
analysis of the differential inclusion formulation implicit in Figure 1.2. The main
results, Theorems 3.4 and 3.5 (and Corollaries 3.6 and 3.7), are assembled in Sec-
tion 3. For clarity of presentation, the proof of Theorem 3.4 (respectively, Theorem
3.5) is presented separately in Section 4 (respectively, Section 5). In Section 6,
the results in Theorem 3.4/Corollary 3.6 are applied in the context of single-input,
single-output feedback interconnections with a hysteresis operator F in the feed-
back loop. New absolute stability and boundedness results are obtained for Lur’e
systems with Preisach hysteresis (see e.g. [3, 9, 12, 16, 17] for earlier stability results
for hysteretic feedback systems). In the final section, quantized feedback systems
are considered: these constitute an area of growing importance (see e.g. [4, 8] in a
linear systems context). Specifically, in Section 7, nonlinear feedback systems with
uniform output quantization (parameterized by γ ≥ 0) are investigated. Through
an application of Theorem 3.5/Corollary 3.7, we establish robustness with respect
to quantization in the following sense: if, in the absence of quantization (γ = 0), the
feedback system is input-to-state stable (ISS), then, in the presence of quantization
(γ > 0), the feedback system is ISS with bias and is such that the unbiased ISS
property of the unquantized system is “approached” as γ ↓ 0.
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Notation and terminology. The open right-half complex plane is denoted by
C+. For non-empty S ⊂ R

m, we define |S| := sup{‖s‖ | s ∈ S}. If H is a proper
real-rational matrix of format m×m, then we say that H is positive real if

H(s) +H∗(s) ≥ 0 , ∀ s ∈ C+, s not a pole of H,

where H∗(s) := (H(s))∗. Moreover, if H ∈ H∞ ≡ H∞(C+,C
m×m) (and so H does

not have any poles in C+), then

‖H‖H∞ := sups∈C+
‖H(s)‖ ,

where ‖H(s)‖ is the matrix norm induced by the 2-norm on C
m. Let K denote the

set of all continuous and strictly increasing functions f : R+ → R+ with f(0) = 0.
We say that a function f is in K∞ if f ∈ K and f(s) → ∞ as s → ∞. Finally,
KL denotes the class of all continuous functions f : R

2
+ → R+ such that, for each

r ∈ R+, the function s 7→ f(r, s) is in K and, for each s ∈ R+, the function
r 7→ f(r, s) is non-increasing with f(r, s) → 0 as r → ∞.

2. Set-valued nonlinearities and differential inclusions. A set-valued
map y 7→ Φ(y) ⊂ R

m, with non-empty values and defined on R
m, is said to be

upper semicontinuous at y ∈ R
m if, for every open set U containing Φ(y), there

exists an open neighbourhood Y of y such that Φ(Y ) := ∪z∈Y Φ(z) ⊂ U ; the map
Φ is said to be upper semicontinuous if it is upper semicontinuous at every y ∈ R

m.
The set of upper semicontinuous compact-convex-valued maps

Φ : R
m → {S ⊂ R

m | S non-empty, compact and convex}

is denoted by U . Let ∆ : R+ → {S ⊂ R
m |S 6= ∅} be a set-valued map. The map

∆ is said to be measurable if the preimage ∆−1(U) := {t ∈ R+ |∆(t) ∩ U 6= ∅} of
every open set U ⊂ R

m is Lebesgue measurable; ∆ is said to be locally essentially

bounded if ∆ is measurable and the function t 7→ |∆(t)| is in L∞
loc(R+). The set of

all locally essentially bounded set-valued maps R+ → {S ⊂ R
m |S 6= ∅} is denoted

by B. For ∆ ∈ B, I ⊂ R+ an interval and 1 ≤ p ≤ ∞, the Lp-norm of the restriction
of the function t 7→ |∆(t)| to the interval I is denoted by ‖∆‖Lp(I). For later use,
we record a technicality.

Lemma 2.1. Assume that Φ ∈ U , Φ(0) = {0} and there exists ϕ ∈ K∞ with

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m .

Then there exists ψ ∈ K∞ such that

‖v‖ ≤ ψ(‖y‖) ∀ v ∈ Φ(y), ∀ y ∈ R
m .

Proof. By upper semicontinuity of Φ and compactness of its values, for every
compact set K ⊂ R

m, the set Φ(K) is compact (see, for example, [2, Proposition
3, p. 42]), and so the function s 7→ ψ0(s) := max{‖v‖ | v ∈ Φ(y), ‖y‖ ≤ s} is well
defined and non-decreasing on R+, with ψ0(0) = 0. Clearly, ϕ(s) ≤ ψ0(s) for all
s ∈ R+ and so ψ0(s) → ∞ as s → ∞. Let ψ ∈ K∞ be such that ψ(s) ≥ ψ0(s) for
all s ∈ R+, for example, the function ψ ∈ K∞ given by

ψ(0) := 0, ψ(s) :=
1

s

∫ 2s

s

ψ0(σ)dσ, ∀ s > 0

suffices.

The feedback system shown in Figure 1.2 corresponds to the initial-value problem

ẋ(t) −Ax(t) ∈ B (∆(t) − Φ(Cx(t))) , x(0) = x0 ∈ R
n, ∆ ∈ B , (2.1)
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where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and Φ ∈ U . By a solution of (2.1) we

mean an absolutely continuous function x : [0, ω) → R
n, 0 < ω ≤ ∞, such that

x(0) = x0 and the differential inclusion in (2.1) is satisfied almost everywhere on
[0, ω); a solution is maximal if it has no proper right extension that is also a solution;
a solution is global if it exists on [0,∞). Before developing a stability theory for
systems of the form (2.1), we briefly digress to record an existence result.

Lemma 2.2. Let Φ ∈ U . For each x0 ∈ R
n and each ∆ ∈ B, the initial-value

problem (2.1) has a solution. Moreover, every solution can be extended to a maximal

solution x : [0, ω) → R
n and, if x is bounded, then x is global.

Proof. Let x0 ∈ R
n and ∆ ∈ B be arbitrary. By [6, Corollary 5.2], the initial-

value problem (2.1) has a solution and every solution can be extended to a solution
x : [0, ω) → R

n with the property that the graph of x is unbounded. Evidently, x
is maximal and, if x is bounded, then ω = ∞.

3. Input-to-state stability: the main results. In the context of the dif-
ferential inclusion (2.1), the transfer-function matrix of the linear system given by
(A,B,C) is denoted by G, i.e., G(s) = C(sI −A)−1B.

We assemble four hypotheses which will be variously invoked in the theory devel-
oped below.
(H1) There exist numbers a < b and δ > 0 such that

〈ay − v, by − v〉 ≤ 0 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (3.1)

G(I + aG)−1 ∈ H∞ and (I + bG)(I + aG)−1 − δI is positive real.
(H2) Φ(0) = {0} and there exist numbers a > 0, δ ∈ [0, 1) and θ ≥ 0 such that

a‖y‖2 ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (3.2)

‖v − aδy‖ ≤ 〈y, v − aδy〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m with ‖y‖ ≥ θ (3.3)

and G(I + δaG)−1 is positive real.
(H3) There exist ϕ ∈ K∞ and numbers b > 0 and δ ∈ [0, 1) such that

max
{

ϕ(‖y‖)‖y‖, ‖v‖2/b
}

≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m (3.4)

and (δ/b)I +G is positive real.
(H4) Φ(0) = {0} and there exist ϕ ∈ K∞ and a number θ ≥ 0 such that

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (3.5)

‖v‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m with ‖y‖ ≥ θ (3.6)

and G is positive real.
Remark 3.1. (a) (H1) is a set-valued version of the familiar multivariable

sector condition. A routine calculation shows that (3.1) holds if and only if
∥

∥

∥

∥

v − a+ b

2
y

∥

∥

∥

∥

≤ b− a

2
‖y‖ ∀ v ∈ Φ(y), ∀ y ∈ R

m.

(b) If m = 1 (the single-input, single-output case), then the combined frequency-
domain assumptions in (H1), namely the condition G(I + aG)−1 ∈ H∞ together
with the positive realness of (I + bG)(I + aG)−1 − δI, admit a graphical character-
ization in terms of the Nyquist diagram of G (see, e.g., [13, pp. 268]).

(c) Conditions (3.2) and (3.5) can be viewed as the limits of (3.1) and (3.4), respec-
tively, as b→ ∞.

(d) A sufficient condition for (3.4) to hold is the “nonlinear” sector condition
〈

ϕ(y)‖y‖−1y − v , by − v
〉

≤ 0 ∀ v ∈ Φ(y), ∀ y ∈ R
m, (3.7)
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which is (3.1) with the term ay replaced by ϕ(y)‖y‖−1y (which should be interpreted
as taking the value 0 for y = 0). It is easy to construct counterexamples which show
that (3.7) is not necessary for (3.4) to hold.

(e) If m = 1 and (3.2) holds, then (3.3) is trivially satisfied for any θ ≥ 1 and any
δ ∈ [0, 1). Similarly, if m = 1 and (3.5) holds, then (3.6) is satisfied for every θ ≥ 1.

(f) If (3.4) holds for some ϕ ∈ K∞ and for some b > 0, then Φ(0) = {0} and,
furthermore, (3.6) is satisfied for any θ > 0 satisfying ϕ(θ) ≥ b.

Definition 3.2. System (2.1) is said to be input-to-state stable with bias c ≥ 0
if every maximal solution of (2.1) is global, and there exist β1 ∈ KL and β2 ∈ K∞

such that, for all x0 ∈ R
n and all ∆ ∈ B, every global solution x satisfies

‖x(t)‖ ≤ max
{

β1(t, ‖x0‖), β2(‖∆‖L∞[0,t] + c)
}

∀ t ∈ R+ . (3.8)

System (2.1) is input-to-state stable if it is input-to-state stable with bias 0.

System (2.1) has the converging-input-converging-state property if, for all x0 ∈ R
n

and all ∆ ∈ B with ‖∆‖L∞[t,∞) → 0 as t → ∞, every maximal solution x of
(2.1) is global and satisfies x(t) → 0 as t → ∞. The following lemma shows in
particular that if system (2.1) is input-to-state stable, then it has the converging-
input-converging-state property.

Lemma 3.3. Assume that system (2.1) is input-to-state stable with bias c ≥ 0
and let β1 and β2 be as in Definition 3.2. Let x0 ∈ R

n and ∆ ∈ B. If ∆ is essentially

bounded (‖∆‖L∞[0,∞) <∞), then every global solution x of (2.1) satisfies

lim sup
t→∞

‖x(t)‖ ≤ lim sup
t→∞

β2(‖∆‖L∞[t,∞) + c) .

Proof. Let x0 ∈ R
n and let ∆ ∈ B be essentially bounded. Let x be a global

solution of (2.1), let τ ≥ 0 be arbitrary and set xτ (t) := x(t + τ) and ∆τ (t) :=
∆(t+ τ) for all t ≥ 0. Then, ∆τ ∈ B and xτ satisfies the initial-value problem

ẋτ (t) −Axτ (t) ∈ B(∆τ (t) − Φ(Cxτ (t))), xτ (0) = x(τ) .

By input-to-state stability with bias c,

‖x(t+ τ)‖ = ‖xτ (t)‖ ≤ max
{

β1(t, ‖x(τ)‖), β2(‖∆τ‖L∞[0,t] + c)
}

= max
{

β1(t, ‖x(τ)‖), β2(‖∆‖L∞[τ,t+τ ] + c)
}

∀ t ∈ R+ .

Therefore, lim supt→∞ ‖x(t)‖ ≤ β2

(

‖∆‖L∞[τ,∞) + c
)

for all τ ≥ 0, from which the
claim follows.
We now state the two main results on input-to-state stability. The proofs can be
found in Sections 4 and 5.

Theorem 3.4. Let the linear system (A,B,C) be stabilizable and detectable.

Assume that (H1) holds. Then, every maximal solution of (2.1) is global and there

exist positive constants c1, c2 and ε such that, for all x0 ∈ R
n and ∆ ∈ B, every

global solution x satisfies

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2‖∆‖L∞[0,t] ∀ t ∈ R+ .

In particular, system (2.1) is input-to-state stable.

Theorem 3.5. Let the linear system (A,B,C) be minimal. Assume that at

least one of hypotheses (H2), (H3) or (H4) holds. Then system (2.1) is input-to-state

stable.

In [1] it is has been proved, for single-valued Φ and ∆, that, if (H4) holds,
then (2.1) is input-to-state stable. Therefore, Theorem 3.5 can be considered as a
generalization of the main result in [1].
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In the following two corollaries (to Theorem 3.4 and Theorem 3.5, respectively)
we will consider not only nonlinearities satisfying at least one of the conditions (3.1),
(3.2), (3.4) and (3.5) for all arguments y ∈ R

m, but also nonlinearities Φ ∈ U with
the property that there exist a set-valued map Φ̃ ∈ U satisfying at least one of the
conditions (3.1), (3.2), (3.4) and (3.5) and a compact set K ⊂ R

m such that

y ∈ R
m\K =⇒ Φ(y) ⊂ Φ̃(y) . (3.9)

For example, single-input, single-output hysteretic elements can be subsumed by
this set-valued formulation provided that the “characteristic diagram” of the hys-
teresis is contained in the graph of some Φ ∈ U , see Section 6 for details.

Corollary 3.6. Let the linear system (A,B,C) be stabilizable and detectable.

Let Φ ∈ U be such that there exist a set-valued map Φ̃ ∈ U and a compact set

K ⊂ R
m such that (3.9) holds. Assume that (H1) holds with Φ replaced by Φ̃.

Then, every maximal solution of (2.1) is global and there exist positive constants

c1, c2 and ε such that, for all x0 ∈ R
n and ∆ ∈ B, every global solution x satisfies

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2(‖∆‖L∞[0,t] + E) ∀ t ∈ R+ ,

where

E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)‖v − ṽ‖ . (3.10)

Proof. First, we remark that, by upper semicontinuity of Φ and Φ̃ ∈ U , together
with compactness of their values and compactness ofK, E is finite. Let x0 ∈ R

n and
∆ ∈ B. By Lemma 2.2, (2.1) has a solution and every solution can be maximally
extended. Let x : [0, ω) → R

n be a maximal solution of (2.1) and write y := Cx.
Define z ∈ L1

loc([0, ω),Rn) by z := ẋ − Ax. Since z(t) ∈ B
(

∆(t) − Φ(Cx(t))
)

for
almost every t ∈ [0, ω), there exist functions d, v : [0, ω) → R

m such that

(d(t), v(t)) ∈ ∆(t) × Φ(y(t)) ∀ t ∈ [0, ω), z(t) = B
(

d(t) − v(t)
)

for a.e. t ∈ [0, ω).

For each t ∈ [0, ω), let ṽ(t) ∈ Φ̃(y(t)) be the unique point of the closed convex set
Φ̃(y(t)) closest to v(t) ∈ Φ(y(t)). Then

y(t) ∈ K =⇒ ‖v(t) − ṽ(t)‖ ≤ E, y(t) ∈ R
m\K =⇒ ‖v(t) − ṽ(t)‖ = 0.

Define ∆̃ ∈ B by ∆̃(t) := ∆(t) + BE (where BE denotes the ball of radius E > 0
centred at 0 in R

m) and d̃ : [0, ω) → R
m by d̃(t) := d(t) − v(t) + ṽ(t). Then

z(t) = B(d̃(t) − ṽ(t)), d̃(t) ∈ ∆̃, ṽ(t) ∈ Φ̃(y(t)) for a.e. t ∈ [0, ω)

and so the solution x of (2.1) is also a solution of

ẋ(t) −Ax(t) ∈ B
(

∆̃(t) − Φ̃(Cx(t))
)

, x(0) = x0. (3.11)

An application of Theorem 3.4 to (3.11) yields the claim.
Corollary 3.7. Let the linear system (A,B,C) be minimal and let Φ ∈ U be

such that there exist a set-valued map Φ̃ ∈ U and a compact set K ⊂ R
m such that

(3.9) holds. Assume that at least one of the hypotheses (H2), (H3) or (H4) holds

with Φ replaced by Φ̃. Then system (2.1) is input-to-state stable with bias E, where

the constant E is given by (3.10).
Proof. The proof is identical to that of Corollary 3.6 with one exception: instead

of invoking Theorem 3.4 at the end of the proof, an application of Theorem 3.5 to
(3.11) completes the argument here.

Remark 3.8. If the hypotheses of Corollary 3.6 (respectively, Corollary 3.7)
hold, then there exist positive constants c1, c2, ε (respectively, functions β1 ∈ KL
and β2 ∈ K∞) such that (3.8) holds with c = E given by (3.10). We emphasize
that c1, c2, ε (respectively, β1 and β2) are determined by data associated with only
(A,B,C) and Φ̃: in particular, they do not depend on Φ. This observation is of
importance in the analysis of quantized feedback systems in Section 7.
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4. Proof of Theorem 3.4. The following lemma will play an essential role
in the proof of Theorem 3.4

Lemma 4.1. Let a < b and set κ := (a + b)/2 and λ := (b − a)/2. If G(I +
aG)−1 ∈ H∞ and there exists δ > 0 such that (I + bG)(I + aG)−1 − δI is positive

real, then G(I + κG)−1 ∈ H∞ and ‖G(I + κG)−1‖H∞ < 1/λ.
Proof. Setting η := ‖G(I + aG)−1‖H∞ , we have that

(I + aG∗(s))−1G∗(s)G(I + aG(s))−1 ≤ η2I ∀ s ∈ C+ .

By hypothesis,

(I + bG(s))(I + aG(s))−1 + (I + aG∗(s))−1(I + bG∗(s)) ≥ 2δI ∀s ∈ C+ .

Setting ε := δ/η2, we obtain that

2ε(I + aG∗(s))−1G∗(s)G(s)(I + aG(s))−1

≤ (I + bG(s))(I + aG(s))−1 + (I + aG∗(s))−1(I + bG∗(s)) ∀s ∈ C+ .

Therefore,

2εG∗(s)G(s) ≤ 2I + (a+ b)G∗(s) + (a+ b)G(s) + 2abG∗(s)G(s) ∀s ∈ Γ ,

where Γ := {s ∈ C+ | s not a pole of G}. Consequently,

−(ab− ε)G∗(s)G(s) ≤ I + κG∗(s) + κG(s) ∀s ∈ Γ .

Setting ρ :=
√

1 + ε/λ2, it follows that

λ2ρ2G∗(s)G(s) ≤ I + κG∗(s) + κG(s) + κ2G∗(s)G(s)

= (I + κG∗(s))(I + κG(s)) ∀s ∈ Γ ,

which in turn implies that

ρ2(I + κG∗(s))−1G∗(s)G(s)(I + κG(s))−1 ≤ λ−2I ∀s ∈ Γ0 ,

where Γ0 := {s ∈ Γ | det(sI + κG(s)) 6= 0}. We may now infer that G(I + κG)−1 ∈
H∞ and, since ρ > 1, ‖G(I + κG)−1‖H∞ < 1/λ.

Proof of Theorem 3.4. Let x be a maximal solution of (2.1) defined on the maximal
interval of existence [0, ω), where 0 < ω ≤ ∞. We first show that ω = ∞. Seeking
a contradiction, suppose that ω < ∞. A routine application of the generalized
Filippov selection theorem (see [22], p. 72) shows that there exists a measurable
function w : [0, ω) → R

m such that w(t) ∈ ∆(t) − Φ(Cx(t)) for a.e. t ∈ [0, ω) and

ẋ(t) = Ax(t) +Bw(t) a.e. t ∈ [0, ω).

Setting κ := (a+ b)/2 and Aκ := A− κBC, we have

x(t) = eAκtx0 +

∫ t

0

eAκ(t−τ)B(w(τ) + κCx(τ)))dτ ∀ t ∈ [0, ω) . (4.1)

Since w(t) ∈ ∆(t) − Φ(Cx(t)) for a.e. t ∈ [0, ω), there exist functions d, v : [0, ω) →
R

m (not necessarily measurable) such that w(t) = d(t) − v(t), d(t) ∈ ∆(t) and
v(t) ∈ Φ(Cx(t)) for a.e. t ∈ [0, ω). Setting λ := (b − a)/2 and invoking the sector
condition (3.1) combined with part (a) of Remark 3.1, we may infer that

‖w(τ) + κCx(τ)‖ = ‖d(τ) − (v(τ) − κCx(τ))‖
≤ ‖d(τ)‖ + ‖(v(τ) − κCx(τ))‖ ≤ |∆(τ)| + λ‖Cx(τ)‖ for a.e. τ ∈ [0, ω) . (4.2)
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Therefore,

‖x(t)‖ ≤ ‖eAκtx0‖ + ‖B‖
∫ t

0

‖eAκ(t−τ)‖|∆(τ)|dτ

+ λ‖B‖‖C‖
∫ t

0

‖eAκ(t−τ)‖‖x(τ)‖dτ ∀ t ∈ [0, ω) .

Since (by supposition) ω is finite, we conclude that, for some constant c > 0,

‖x(t)‖ ≤ c

(

1 +

∫ t

0

‖x(τ)‖dτ
)

∀ t ∈ [0, ω) .

By Gronwall’s lemma, it follows that the maximal solution x is bounded on [0, ω),
contradicting (via Lemma 2.2) the supposition that ω <∞. Consequently, ω = ∞.

Defining Gκ(s) := G(I + κG(s))−1 = C(sI − Aκ)−1B, it follows from (H1), via
Lemma 4.1, that Gκ ∈ H∞ and ‖Gκ‖H∞ < 1/λ. Moreover, by stabilizability and
detectability, Aκ is Hurwitz. Let ε > 0 be sufficiently small so that Aκ + εI is
Hurwitz and

γ := sup
Re s≥−ε

‖Gκ(s)‖ < 1/λ . (4.3)

Set y := Cx and, for all t ∈ R+, define yε(t) := eεty(t) and wε(t) := eεtw(t). It
follows from (4.1) that

yε(t) = Ce(Aκ+εI)tx0 +

∫ t

0

Ce(Aκ+εI)(t−τ)B(wε(τ) + κyε(τ)))dτ ∀ t ∈ R+.

Setting k0 :=
(∫ ∞

0
‖Ce(Aκ+εI)τ‖2dτ

)1/2
<∞ , we obtain that

‖yε‖L2[0,t] ≤ k0‖x0‖ + γ‖wε + κyε‖L2[0,t] ∀ t ∈ R+. (4.4)

By (4.2),

‖wε(τ) + κyε(τ))‖ ≤ |∆ε(τ)| + λ‖yε(τ))‖ for a.e. τ ∈ R+ , (4.5)

where ∆ε(τ) := eετ∆(τ) for all τ ∈ R+. From (4.3), we see that γλ < 1: setting
k1 := 1/(1 − γλ) and invoking (4.4) and (4.5), we have

‖yε‖L2[0,t] ≤ k1

(

k0‖x0‖ + γ‖∆ε‖L2[0,t]

)

∀ t ∈ R+. (4.6)

By (4.1),

eεtx(t) = e(Aκ+εI)tx0 +

∫ t

0

e(Aκ+εI)(t−τ)B(wε(τ) + κyε(τ)))dτ ∀ t ∈ R+,

which, together with (4.5), yields

‖x(t)‖eεt ≤ k2‖x0‖ + ‖B‖
∫ t

0

‖e(Aκ+εI)(t−τ)‖(|∆ε(τ)| + λ‖yε(τ)‖)dτ ∀ t ∈ R+,

where k2 := supt≥0 ‖e(Aκ+εI)t‖. Invoking Hölder’s inequality to estimate the inte-
gral on the right-hand side of the above inequality, we conclude that there exists a
constant k3 > 0 such that

‖x(t)‖eεt ≤ k2‖x0‖ + k3(‖∆ε‖L2[0,t] + λ‖yε‖L2[0,t]) ∀ t ∈ R+.
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Combining this with (4.6), we conclude that,

‖x(t)‖eεt ≤ (k2 + λk0k1k3)‖x0‖ + k3(1 + λγk1)‖∆ε‖L2[0,t] ∀ t ∈ R+ .

Noting that ‖∆ε‖L2[0,t] ≤ (eεt/
√

2ε)‖∆‖L∞[0,t] for all t ∈ R+, setting c1 := k2 +

λk0k1k3 and c2 := k3(1 + λγk1)/
√

2ε, we conclude that

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2‖∆‖L∞[0,t] ∀ t ∈ R+,

This completes the proof.
Remark 4.2. Theorem 3.4 can be considered as a refinement of the classical

circle criterion (see, for example, [7, 13, 21]): in particular, it shows that, under the
standard assumptions of the circle criterion, input-to-state stability is guaranteed.
The exponential weighting technique used in the proof of Theorem 3.4 is well-known
and has been used to prove stability results of input-output type (see [7, Section
V.3] and the references therein). The application of this technique in an input-to-
state stability context seems to be new. In particular, whilst the standard text-
book version of the circle criterion for state-space systems is usually proved using
Lyapunov techniques combined with the Positive-Real Lemma (see, for example, [13,
Theorem 7.1] or [21, p. 227]), the above proof of Theorem 3.4 provides an alternative,
more elementary, approach. Moreover, the methodology can be extended to an
infinite-dimensional setting: see [11].

5. Proof of Theorem 3.5. In this section, we provide a proof of Theorem
3.5. In contrast to the proof of Theorem 3.4, we adopt a Lyapunov argument.
In particular, we prove Theorem 3.5 by establishing the existence of a Lyapunov
function with special properties (a so-called ISS Lyapunov function) if any one of
hypotheses (H2), (H3) or (H4) hold. This we do in two preliminary lemmas.

Lemma 5.1. Let the linear system (A,B,C) be minimal. Assume that either

(H3) or (H4) holds. Then there exist α1, α2, α3, α4 ∈ K∞ and a continuously dif-

ferentiable function V : R
n → R+ such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀ x ∈ R
n ,

max
v∈Φ(Cx)

〈∇V (x), Ax+B(d− v)〉 ≤ −α3(‖x‖) + α4(‖d‖)
∀ (x, d) ∈ R

n × R
m.











(5.1)

Proof. By Lemma 2.1, there exists ψ ∈ K∞ such that

‖v‖ ≤ ψ(‖y‖) ∀ y ∈ R
m, ∀ v ∈ Φ(y). (5.2)

(If (H3) holds, then we may take ψ : s 7→ bs in (5.2).) Combining (5.2) with either
(H3) or (H4) yields

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ≤ ψ(‖y‖)‖y‖ ∀ y ∈ R
m, ∀ v ∈ Φ(y). (5.3)

If (H3) holds, then (δ/b)I +G is positive real for some δ ∈ [0, 1); if (H4) holds then
G is positive real. Introducing the following notational convenience

λ :=

{

1/b if (H3) holds
0 otherwise,

both possibilities are captured by the statement that δλI + G is positive real for
some δ ∈ [0, 1). This implies, via by the Positive-Real Lemma, the existence of a
real matrix L and a symmetric, positive-definite real matrix P such that

PA+ATP = −LTL, PB = CT −√
κLT , κ := 2δλ . (5.4)
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We also record that

λ‖v‖2 ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m. (5.5)

Now, define V0 : R
n → R+, x 7→ 〈x, Px〉. Then, invoking (5.4),

〈∇V0(x), Ax+B(d− v)〉 = 2〈Px,Ax〉 + 2〈BTPx, (d− v)〉
≤ −‖Lx‖2 + 2〈Cx, (d− v)〉 − 2

√
κ〈Lx, (d− v)〉

= −‖Lx+
√
κ(d− v)‖2 + κ‖d− v‖2 + 2〈Cx, (d− v)〉
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(Cx) ,

from which, together with (5.5), we may infer

〈∇V0(x), Ax+B(d− v)〉 ≤ κ‖d‖2 + 2κ‖v‖‖d‖ + κ‖v‖2 + 2‖y‖‖d‖ − 2〈y, v〉
≤ 2(1 + 2δ)‖y‖‖d‖ + κ‖d‖2 − 2(1 − δ)〈y, v〉

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx . (5.6)

Observe that, for all y ∈ R
m and all (d, v) ∈ R

m × Φ(y),

2(1 + 2δ)‖d‖ ≤ (1 − δ)ϕ(‖y‖) =⇒
2(1 + 2δ)‖d‖‖y‖ ≤ (1 − δ)ϕ(‖y‖)‖y‖ ≤ (1 − δ)〈y, v〉

2(1 + 2δ)‖d‖ > (1 − δ)ϕ(‖y‖) =⇒
2(1 + 2δ)‖d‖‖y‖ < 2(1 + 2δ)‖d‖ϕ−1(2(1 + 2δ)‖d‖/(1 − δ))

and so, defining γ ∈ K∞ by γ(s) := 2(1 + 2δ)sϕ−1 (2(1 + 2δ)s/(1 − δ)), we have

2(1 + 2δ)‖d‖‖y‖ ≤ (1− δ)〈y, v〉+ γ(‖d‖) ∀ y ∈ R
m, ∀ (d, v) ∈ R

m ×Φ(y). (5.7)

The conjunction of (5.6) and (5.7) gives

〈∇V0(x), Ax+B(d− v)〉 ≤ −(1 − δ)〈y, v〉 + γ(‖d‖) + κ‖d‖2

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx. (5.8)

Let H ∈ R
n×m be such that A−HC is Hurwitz. Let Q = QT > 0 be such that

Q(A−HC) + (A−HC)TQ = −3I,

and define W : R
n → R+ by W (x) := 〈x,Qx〉.

Writing k0 := max
{

2‖QB‖ , 2‖QH‖ , ‖QB‖2
}

, we have

〈∇W (x), Ax+B(d− v)〉 = 2〈Qx, (A−HC)x+Hy +B(d− v)〉
= −3‖x‖2 + 2〈HTQx, y〉 + 2〈BTQx, d− v〉
≤ −2‖x‖2 + k0‖x‖

(

‖y‖ + ‖v‖
)

+ k0‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ(y), y = Cx . (5.9)

Since either (H3) or (H4) holds, and invoking part (f) of Remark 3.1 in the former
case, we may infer the existence of θ ≥ 1/2 such that

y ∈ R
m, ‖y‖ ≥ θ =⇒ 〈y, v〉 ≥ ‖v‖ ∀ v ∈ Φ(y). (5.10)

Define f0 ∈ K∞ by f0(s) := s+ ψ(s), and the continuous, non-decreasing function
f1 : (0, θ] → (0,∞) by

f1(s) := min
t∈[s,θ]

tϕ(t)

(f0(t))2
,
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and f2 : R+ → R+ by

f2(s) :=







0, s = 0
min{s, f1(s)}, s ∈ (0, θ]
f1(θ) + (s− θ), s > θ.

Observe that

f1(θ) =
θϕ(θ)

(θ + ψ(θ))2
<

θϕ(θ)

2θψ(θ)
≤ θϕ(θ)

ψ(θ)
≤ θ ,

where we have used that θ ≥ 1/2. It follows that f2(θ) = f1(θ), and therefore, f2 is
continuous. Clearly, f2 is unbounded and, moreover, it is readily verified that f2 is
non-decreasing. Write f3 := f2 ◦ f−1

0 (continuous, non-decreasing and unbounded,
with f3(0) = 0) and observe (for later use) that

‖y‖ < θ =⇒ f3(‖y‖ + ψ(‖y‖))(‖y‖ + ψ(‖y‖))2 = (f3 ◦ f0)(‖y‖)(f0(‖y‖))2

= f2(‖y‖)(f0(‖y‖))2 ≤ f1(‖y‖)(f0(‖y‖))2 ≤ ‖y‖ϕ(‖y‖). (5.11)

Next, we introduce functions η ∈ K∞ and σ (continuous, non-decreasing and un-
bounded, with σ(0) = 0) given by

η : s 7→ 1

k0

√

s

‖Q‖ , σ := f3 ◦ η .

Let s∗ > 0 be the unique point with the property η(s∗)σ(s∗) = 1 and define the
continuous function ρ : R+ → R+ by

ρ(s) :=

{

σ(s), 0 ≤ s ≤ s∗

1/η(s), s > s∗ .

Finally, define R ∈ K∞ by

R(s) :=

∫ s

0

ρ(τ) dτ ,

and V1 : R
n → R+, x 7→ R(W (x)). Note that

(a) ρ(s) ≤ σ(s) ≤ σ(s∗) =: k1 ∀ s ∈ R+ ,

(b) ρ(W (x))‖x‖ ≤ k0

√

‖Q‖‖Q−1‖ =: k2 ∀ x ∈ R
n ,

(c) ρ(W (x))‖x‖2 ≥ ‖x‖min
{

‖x‖f3
(

‖x‖/k2)
)

, k0

}

∀ x ∈ R
n .











(5.12)

Invoking (5.9) and (5.12)(a), we have

〈∇V1(x), Ax+B(d−v)〉 ≤ −2ρ(W (x))‖x‖2+ρ(W (x))k0‖x‖
(

‖y‖+‖v‖
)

+k0k1‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ(Cx) . (5.13)

We proceed to obtain a convenient estimate of the term ρ(W (x))k0‖x‖
(

‖y‖+ ‖v‖
)

.

Write k3 := 1
2 min{1, ϕ(θ)}. By (5.3) and (5.10), we have

‖y‖ ≥ θ =⇒ 2〈y, v〉 ≥ ‖v‖ + ‖y‖ϕ(‖y‖) ≥ ‖v‖ + ‖y‖ϕ(θ) ≥ 2k3(‖v‖ + ‖y‖)
∀ v ∈ Φ(y)

which, in conjunction with (5.12)(b), gives

x ∈ R
n, y = Cx, ‖y‖ ≥ θ =⇒

ρ(W (x))k0‖x‖
(

‖y‖ + ‖v‖
)

≤ k0k2

k3
〈y, v〉 ∀ v ∈ Φ(y). (5.14)
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Invoking (5.2), (5.3) and (5.11), we have

‖y‖ < θ =⇒ f3(‖y‖ + ‖v‖)(‖y‖ + ‖v‖)2

≤ f3(‖y‖ + ψ(‖y‖))(‖y‖ + ψ(‖y‖))2 ≤ ‖y‖ϕ(‖y‖) ≤ 〈y, v〉 ∀ v ∈ Φ(y)

from which, together with the observation that

x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖ + ‖v‖) ≥ ‖x‖ =⇒

ρ(W (x)) ≤ σ(‖Q‖‖x‖2)) ≤ σ(k2
0‖Q‖(‖y‖ + ‖v‖)2) = f3(‖y‖ + ‖v‖),

we may infer

x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖ + ‖v‖) ≥ ‖x‖, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(

‖y‖ + ‖v‖
)

≤ ρ(W (x))‖x‖2 +
k2
0

4
ρ(W (x))(‖y‖ + ‖v‖)2

≤ ρ(W (x))‖x‖2 +
k2
0

4
〈y, v〉 . (5.15)

Clearly,

x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖ + ‖v‖) ≤ ‖x‖, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(

‖y‖ + ‖v‖
)

≤ ρ(W (x))‖x‖2. (5.16)

Combining (5.15) and (5.16), we have

x ∈ R
n, y = Cx, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(

‖y‖ + ‖v‖
)

≤ ρ(W (x))‖x‖2 +
k2
0

4
〈y, v〉 ∀ v ∈ Φ(y). (5.17)

Writing k4 := max
{

k0k2/k3 , k
2
0/4

}

, we conclude, from (5.13), (5.14), (5.17), that

〈∇V1(x), Ax+B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + k4〈y, v〉 + k0k1‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ(Cx) . (5.18)

Now define V := k4V0 + (1 − δ)V1. Then, combining (5.8) and (5.18), we arrive at

〈∇V (x), Ax+B(d− v)〉
≤ −(1 − δ)ρ(W (x))‖x‖2 +

(

(1 − δ)k0k1 + κk4

)

‖d‖2 + k4γ(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(y), y = Cx . (5.19)

Finally, defining α1, α2, α3, α4 ∈ K∞ by

α1(s) := k4‖P−1‖−1s2, α2 := k4‖P‖s2 + (1 − δ)R(‖Q‖s2),

α3(s) := (1 − δ)smin{sf3(s/k2) , k0}, α4(s) :=
(

(1 − δ)k0k1 + κk4

)

s2 + k4γ(s),

and invoking (5.12)(c), we conclude that (5.1) holds. This completes the proof.
Lemma 5.2. Let the linear system (A,B,C) be minimal. Assume that (H2)

holds. Then the assertions of Lemma 5.1 are valid.

Proof. Let a > 0, δ ∈ [0, 1) and θ ≥ 0 be as in hypothesis (H2). Without loss of
generality, we may assume θ ≥ 1/2. Note that the linear system (A1, B, C), with
A1 := A− δaBC, is a minimal realization of G(I + δaG)−1. Therefore, hypothesis
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(H2) implies, via the Positive-Real Lemma, the existence of a real matrix L and a
symmetric, positive-definite real matrix P such that

PA1 +AT
1 P = −LTL, PB = CT . (5.20)

Invoking Lemma 2.1, there exists ψ ∈ K∞ such that (5.3) holds with ϕ(s) = as.
Now define ϕ1, ψ1 ∈ K∞ and y 7→ Φ1(y) ⊂ R

m by

ϕ1(s) := ϕ(s) − δas = (1 − δ)as, ψ1(s) := ψ(s) − δas ∀ s ∈ R+.

Φ1(y) := {v − δay | v ∈ Φ(y)} ∀ y ∈ R
m.

In view of (5.3), we have

(1−δ)a‖y‖2 = ϕ1(‖y‖)‖y‖ ≤ 〈y, v〉 ≤ ψ1(‖y‖)‖y‖ ∀ y ∈ R
m, ∀ v ∈ Φ1(y). (5.21)

Moreover, by hypothesis (H2),

y ∈ R
m, ‖y‖ ≥ θ =⇒ 〈y, v〉 ≥ ‖v‖ ∀ v ∈ Φ1(y). (5.22)

Recalling that A1 := A− δaBC, we have

{

Ax−Bv | v ∈ Φ(Cx)
}

=
{

A1x−Bv | v ∈ Φ1(Cx)
}

∀ x ∈ R
n . (5.23)

Now, define V0 : R
n → R+, x 7→ 〈x, Px〉. Then, invoking (5.20),

〈∇V0(x), A1x+B(d− v)〉 = 2〈Px,A1x〉 + 2〈BTPx, (d− v)〉
≤ −‖Lx‖2 + 2〈Cx, (d− v)〉 ≤ 2‖y‖‖d‖ − 2〈y, v〉

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ1(y), y = Cx , (5.24)

Observe that, for all y ∈ R
m and all (d, v) ∈ R

m × Φ1(y),

2‖d‖ ≤ ϕ1(‖y‖) =⇒ 2‖d‖‖y‖ ≤ ϕ1(‖y‖)‖y‖ ≤ 〈y, v〉

2‖d‖ > ϕ1(‖y‖) =⇒ 2‖d‖‖y‖ < 2‖d‖ϕ−1
1 (2‖d‖)

and so, defining γ ∈ K∞ by γ(s) := 2sϕ−1
1 (2s), it follows from (5.24) that

〈∇V0(x), A1x+B(d− v)〉 ≤ −〈y, v〉 + γ(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ1(y), y = Cx . (5.25)

The conjunction of (5.23) and (5.25) yields

〈∇V0(x), Ax+B(d− v)〉 ≤ −〈y, v〉 + δa‖y‖2 + γ(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(y), y = Cx. (5.26)

Let H ∈ R
n×m be such that A1 −HC is Hurwitz. Let Q = QT > 0 be such that

Q(A1 −HC) + (A1 −HC)TQ = −3I,

and define W : R
n → R+ by W (x) := 〈x,Qx〉. The same construction as in the

proof of Lemma 5.1 (with A1 replacing A and Φ1 replacing Φ therein) yields a func-
tion f3 (continuous, non-decreasing and unbounded, with f3(0) = 0), a continuous
function ρ : R+ → R+, with primitive R ∈ K∞, and positive constants c0, c1, c2, c3
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such that, on writing V1 : R
n → R+, x 7→ R(W (x)), the following counterparts of

(5.12)(c) and (5.18) hold

ρ(W (x))‖x‖2 ≥ ‖x‖min
{

c0, ‖x‖f3(c1‖x‖)
}

∀ x ∈ R
n , (5.27)

〈∇V1(x), A1x+B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + c2〈y, v〉 + c3‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ1(y), y = Cx .

In view of (5.23), the latter yields

〈∇V1(x), Ax+B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + c2〈y, v〉 − c2δa‖y‖2 + c3‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ(y), y = Cx , (5.28)

Now define V := c2V0 + V1. Then, combining (5.26) and (5.28), we have

〈∇V (x), Ax+B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + c2γ(‖d‖) + c3‖d‖2

∀ x ∈ R
n,∀ (d, v) ∈ R

m × Φ(Cx) , (5.29)

Finally, defining α1, α2, α3, α4 ∈ K∞ by

α1(s) := c2‖P−1‖−1s2, α2 := c2‖P‖s2 +R(‖Q‖s2),

α3(s) := smin{c0, sf3(c1s)}, α4(s) := c2γ(s) + c3s
2,

and invoking (5.27), we may conclude that (5.1) holds. This completes the proof.
We are now in a position to prove Theorem 3.5. The argument developed below

is not new and can be found (usually in form of sketch proofs) in the literature (see
[20] and the references therein). For completeness we provide a detailed proof.

Proof of Theorem 3.5. If either (H3) or (H4) holds (respectively, if (H2) holds,)
then Lemma 5.1 (respectively, Lemma 5.2) ensures the existence of α1, α2, α3, α4 ∈
K∞ and continuously differentiable V such that α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) for all
x ∈ R

n and

〈∇V (x), Ax+B(d− v)〉 ≤ −α3(‖x‖) + α4(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(Cx). (5.30)

Let x0 ∈ R
n and ∆ ∈ B. By Lemma 2.2, (2.1) has a solution and every solution

can be maximally extended. Let x : [0, ω) → R
n be a maximal solution of (2.1).

By (5.30), we have

(V ◦ x)′(t) ≤ α4(|∆(t)|) for a.e. t ∈ [0, ω). (5.31)

Seeking a contradiction, suppose that ω <∞. Then, by local essential boundedness
of ∆ and continuity of α4, there exists c0 > 0 such that α4(|∆(t)|) ≤ c0 for all t ∈
[0, ω). Now, by the final assertion of Lemma 2.2, x is unbounded which contradicts
the fact that, by (5.31), α1(‖x(t)‖) ≤ V (x(t)) ≤ V (x0) + c0ω for all t ∈ [0, ω).
Therefore, every maximal solution of (2.1) is global.

Write α5 := α3 ◦ α−1
2 ∈ K∞ and define α6 : R+ → R+ by

α6(s) :=
2

s

∫ s

s/2

α5(t)dt ∀ s > 0, α6(0) := lim
s↓0

α6(s) = 0.

Since α5 ∈ K∞, we have α5(s/2) ≤ α6(s) ≤ α5(s) for all s ∈ R+ and, moreover,
α6 is differentiable on (0,∞) with derivative α′

6(s) ≥ 0 for all s ∈ (0,∞). Now
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define α7 : R+ → R+ by α7(s) := min{1, s}α6(s). Clearly, α7 is locally Lipschitz,
α7(0) = 0 and 0 < α7(s) ≤ α5(s) for all s > 0. Define the locally Lipschitz function

Z : R → R, ζ 7→ Z(ζ) :=

{

−α7(ζ)/2, ζ ≥ 0

α7(−ζ)/2, ζ < 0 .

and consider the scalar system

ż(t) = Z(z(t)).

Since Z(0) = 0 and ζZ(ζ) = −|ζ|α7(|ζ|)/2 < 0 for all ζ 6= 0, it follows that 0 is a
globally asymptotically stable equilibrium of this system which, together with the
local Lipschitz property of Z, ensures the existence of a continuous global semiflow
β : R+ × R → R (and so, for each z0 ∈ R, z : R+ → R, t 7→ β(t, z0), is the
unique global solution of the initial-value problem ż = Z(z), z(0) = z0; moreover,
β(t, z0) → 0 as t → ∞). Let β0 := β|R+×R+

be the restriction of β to R+ × R+.
Evidently, β0 ∈ KL. Now define β1 ∈ KL by

β1(t, s) := α−1
1 (β0(t, α2(s))),

and define β2 ∈ K∞ by

β2(s) :=
(

α−1
1 ◦ α2 ◦ α−1

3

)

(2α4(s))).

Let x0 and ∆ ∈ B be arbitrary, and let x be a global solution of (2.1). Let t ∈ R+

be arbitrary. By (5.30), we have

(V ◦ x)′(τ) ≤ −α3(‖x(τ)‖) + α4(|∆(τ)|) ≤ −α3(‖x(τ)‖) + α4(‖∆‖L∞[0,t])

for a.e. τ ∈ [0, t]. (5.32)

Clearly,

V (x(t)) ≤
(

α2 ◦ α−1
3

)

)(2α4(‖∆‖L∞[0,t]) =⇒ ‖x(t)‖ ≤ β2(‖∆‖L∞[0,t]).

Moreover,

V (x(t)) >
(

α2 ◦ α−1
3

)

(2α4(‖∆‖L∞[0,t])) =⇒ α3(‖x(t)‖) > 2α4(‖∆‖L∞[0,t]),

which, together with (5.32), yields

V (x(t)) >
(

α2 ◦ α−1
3

)

(2α4(‖∆‖L∞[0,t]))

=⇒ (V ◦ x)′(τ) < − 1
2α3(‖x(τ)‖) ≤ − 1

2α5(V (x(τ))) ≤ − 1
2α7(V (x(τ)))

= Z(V (x(τ))) for a.e. τ ∈ [0, t]

and so

V (x(t)) >
(

α2 ◦ α−1
3

)

(2α4(‖∆‖L∞[0,t])

=⇒ V (x(t)) ≤ β0(t, V (x0)) =⇒ ‖x(t)‖ ≤ β1(t, ‖x0‖).

Therefore, ‖x(t)‖ ≤ max
{

β1(t, ‖x0‖) , β2(‖∆‖L∞[0,t])
}

for all t ∈ R+.

6. Hysteretic feedback systems. We return to the feedback interconnection
of Figure 1.2, but now in a single-input (t 7→ d(t) ∈ R), single-output (t 7→ y(t) ∈ R)
setting and with a hysteresis operator F in the feedback path, as shown in Figure
6.1. We deem an operator F : C(R+) → C(R+) is a hysteresis operator if it is both
causal and rate independent. By rate independence we mean that F (y◦ζ) = (Fy)◦ζ
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d (A,B,C)

F

y
+

−

Fig. 6.1. Interconnection of a linear system (A, B, C) and a hysteresis operator F

for every y ∈ C(R+) and every time transformation ζ : R+ → R+ (that is, a
continuous, non-decreasing and surjective map). Conditions on F which ensure well-
posedness of the feedback interconnection (existence and uniqueness of solutions
of the associated initial-value problem) are expounded in, for example, [16] and
[17]. Whilst, in principle, the ensuing analysis is applicable in the context of any
causal operator F that can be embedded in a set-valued map Φ ∈ U , for clarity of
presentation we focus on the class of Preisach operators.

Preisach and Prandtl hysteresis. The Preisach operator described in this
section encompasses both backlash and Prandtl operators. It can model complex
hysteresis effects: for example, nested loops in input-output characteristics. A
basic building block for these operators is the backlash operator. A discussion
of the backlash operator (also called play operator) can be found in a number of
references, see for example [5], [14] and [15]. Let σ ∈ R+ and introduce the function
bσ : R

2 → R given by

bσ(v1, v2) := max
{

v1 − σ , min{v1 + σ, v2}
}

=











v1 − σ, if v2 < v1 − σ

v2, if v2 ∈ [v1 − σ, v1 + σ]

v1 + σ, if v2 > v1 + σ .

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined
on R+. For all σ ∈ R+ and ζ ∈ R, define the operator Bσ, ζ : Cpm(R+) → C(R+)
by

Bσ, ζ(y)(t) =

{

bσ(y(0), ζ) for t = 0 ,
bσ(y(t), (Bσ, ζ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . ., limn→∞ tn = ∞ and u is monotone on each interval
[ti, ti+1]. We remark that ζ plays the role of an “initial state”. It is not difficult to
show that the definition is independent of the choice of the partition (ti). Figure
6.2 illustrates how Bσ, ζ acts. It is well-known that Bσ, ζ extends to a Lipschitz

y

Bσ,ζ(y)

−σ
σ

Fig. 6.2. Backlash hysteresis

continuous hysteresis operator on C(R+) (with Lipschitz constant L = 1), the so-
called backlash operator, which we shall denote by the same symbol Bσ, ζ .

Let ξ : R+ → R be a compactly supported and globally Lipschitz function with
Lipschitz constant 1. Let µ be a regular signed Borel measure on R+. Denoting



INPUT-TO-STATE STABILITY OF DIFFERENTIAL INCLUSIONS 17

Lebesgue measure on R by µL, let w : R×R+ → R be a locally (µL ⊗µ)-integrable
function and let w0 ∈ R. The operator Pξ : C(R+) → C(R+) defined by

(Pξ(y))(t) =

∫ ∞

0

∫ (Bσ, ξ(σ)(y))(t)

0

w(s, σ)µL(ds)µ(dσ) + w0

∀u ∈ C(R+) , ∀ t ∈ R+ , (6.1)

is called a Preisach operator: this definition is equivalent to that adopted in [5,
Section 2.4]. It is well-known that Pξ is a hysteresis operator (this follows from the
fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥ 0). Under the assumption
that the measure µ is finite and w is essentially bounded, the operator Pξ is Lipschitz
continuous with Lipschitz constant L = |µ|(R+)‖w‖∞ (see [15]) in the sense that

sup
t∈R+

|Pξ(y1)(t) − Pξ(y2)(t)| ≤ L sup
t∈R+

|y1(t) − y2(t)| ∀ y1, y2 ∈ C(R+).

This property ensures the well-posedness of the feedback interconnection.

Setting w(·, ·) = 1 and w0 = 0 in (6.1), we obtain the Prandtl operator Pξ :
C(R+) → C(R+) defined by

Pξ(y)(t) =

∫ ∞

0

(Bσ, ξ(σ)(y))(t)µ(dσ) ∀u ∈ C(R+) , ∀ t ∈ R+ . (6.2)

For ξ ≡ 0 and µ given by µ(E) =
∫

E
χ[0,5](σ)dσ (where χ[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 6.3.

10
−20

0

0

40

t

P0(w)
w

−5 10
−20

0

40

P 0
(w

)

w

Fig. 6.3. Example of Prandtl hysteresis

The next proposition identifies conditions under which the Preisach operator
(6.1) satisfies a generalized sector bound. For simplicity, we assume that the mea-
sure µ and the function w are non-negative (an important case in applications),
although the proposition can be extended to signed measures µ and sign-indefinite
functions w.

Proposition 6.1. Let Pξ be the Preisach operator defined in (6.1). Assume

that the measure µ is non-negative, a1 := µ(R+) < ∞, a2 :=
∫ ∞

0
σµ(dσ) < ∞,

b1 := ess inf(s,σ)∈R×R+
w(s, σ) ≥ 0, b2 := ess sup(s,σ)∈R×R+

w(s, σ) <∞ and set

aP := a1b1, bP := a1b2 , cP := a2b2 + |w0| . (6.3)

Then, for all y ∈ C(R+) and all t ∈ R+

y(t) ≥ 0 =⇒ aPy(t) − cP ≤ (Pξ(y))(t) ≤ bPy(t) + cP , (6.4)

y(t) ≤ 0 =⇒ bPy(t) − cP ≤ (Pξ(y))(t) ≤ aPy(t) + cP , (6.5)
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and, furthermore, for every η > 0,

|y(t)| ≥ cP/η =⇒ (aP − η)y2(t) ≤ (Pξ(y))(t)y(t) ≤ (bP + η)y2(t) . (6.6)

Proof. Let y ∈ C(R+) and t ∈ R+ be arbitrary. Note initially that, by the
definition of the backlash operator,

(

Bσ,ξ(σ)(y)
)

(t) ∈ [y(t) − σ, y(t) + σ] ∀ σ ∈ R+.

Case 1. Assume y(t) ≥ 0. Writing E1 := [0, y(t)] and E2 := (y(t),∞), we have

(

Pξy
)

(t) ≥
(

∫

E1

+

∫

E2

)
∫ y(t)−σ

0

w(s, σ)µL(ds)µ(dσ) − |w0|

≥ b1

∫

E1

(y(t) − σ)µ(dσ) + b2

∫

E2

(y(t) − σ)µ(dσ) − |w0|

=
(

b1µ(E1) + b2µ(E2)
)

y(t) − b1

∫

E1

σ µ(dσ) − b2

∫

E2

σ µ(dσ) − |w0|

≥ a1b1y(t) − a2b2 − |w0| = aPy(t) − cP .

Moreover,

(

Pξy
)

(t) ≤
∫ ∞

0

∫ y(t)+σ

0

w(s, σ)µL(ds)µ(dσ) + |w0|

≤ b2

∫ ∞

0

(y(t) + σ)µ(dσ) + |w0| ≤ a1b2y(t) + a2b2 + |w0| = bPy(t) + cP .

This establishes (6.4).
Case 2. Now assume y(t) ≤ 0. The argument used in Case 1 applies mutatis mu-

tandis to conclude (6.5).
Finally, the inequality (6.6) is a straightforward consequence of (6.4) and (6.5).

For example, the Prandtl operator in Figure 6.3 satisfies the hypotheses of Propo-
sition 6.1.

Let Pξ be a Preisach operator satisfying the hypotheses of Proposition 6.1. Let aP ,

bP and cP be given by (6.3) and define Φ, Φ̃ ∈ U by

Φ(y) :=

{

{v ∈ R | aPy − cP ≤ v ≤ bPy + cP}, y ≥ 0

{v ∈ R | bPy − cP ≤ v ≤ aPy + cP}, y < 0.

Φ̃(y) := {v ∈ R | (aP − η)y2 ≤ vy ≤ (bP + η)y2},

where η > 0. In view of (6.4) and (6.5),

y ∈ C(R+) =⇒ (Pξ(y))(t) ∈ Φ(y(t)) ∀ t ∈ R+.

Moreover, writing K := [−cP/η , cP/η], we have

Φ(y) ⊂ Φ̃(y) ∀ y ∈ R\K and E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)|v − ṽ| = cP .

Let the linear system (A,B,C) (with transfer function G) be stabilizable and de-
tectable. Write a := aP − η, b := bP + η and assume that G/(1 + aG) ∈ H∞ and,
for some δ ∈ (0, 1), (1 + bG)/(1 + aG) − δ is positive real. Then hypothesis (H1)
holds with m = 1 and Φ̃ replacing Φ.
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Example. As a concrete example, consider a mechanical system with damping co-
efficient γ > 0 and hysteretic restoring force in the form of backlash, with real
parameters σ > 0 and ζ:

ÿ(t) + γẏ(t) + Bσ,ζ(y)(t) = d(t). (6.7)

Setting w(·, ·) := 1, w0 = 0, µ := δσ (the Dirac measure with support {σ}) and
ξ(·) := ζ in (6.1), we see that Bσ,ζ = Pξ. In this case, and in the notation of
Proposition 6.1, we have a1 = b1 = b2 = aP = bP = 1 and a2 = cP = σ. Choosing
η ∈ (0, 1), we have 0 < a < b, where, as before, a = aP − η and b = bP + η and, by
Proposition 6.1,

|y(t)| ≥ σ/η =⇒ ay2(t) ≤
(

Bσ,ξ(y)
)

(t)y(t) ≤ by2(t).

The transfer function G is given by G(s) = 1/(s2 + γs), G/(1 + aG) is given by
1/(s2 + γs + a) and (1 + bG)/(1 + aG) − δ is given by (1 − δ) + 2η/(s2 + γs + a):
clearly G/(1 + aG) ∈ H∞ and a straightforward calculation reveals that, for all
η > 0 sufficiently small, (1 + bG)/(1 + aG) − δ is positive real.

Returning to the general setting, we are now in a position to invoke Corollary
3.6 to conclude properties of solutions of the single-input, single-output, functional
differential equation

ẋ(t) = Ax(t) +B
[

d(t) − (Pξ(Cx))(t)
]

, x(0) = x0. (6.8)

We reiterate that, for each x0 ∈ R
n and d ∈ L∞

loc(R+), (6.8) has unique global
solution. An application of Corollary 3.6 (with ∆(t) = {d(t)} for all t ∈ R+) yields
the existence of constants ε, c1, c2 > 0 such that, for every global solution x,

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2

(

‖d‖L∞[0,t] + cP
)

∀ t ∈ R+, (6.9)

showing in particular that (6.8) is input-to-state stable with bias cP . Furthermore,
by Lemma 3.3,

lim
t→∞

d(t) = 0 =⇒ lim sup
t→∞

‖x(t)‖ ≤ c2cP . (6.10)

We emphasize that the convergence d(t) → 0 as t → ∞ does in general not imply
convergence of x(t) as t → ∞. To see this, consider again the mechanical example
(6.7). Then, for every γ > 0, there exist constants ε, c1, c2 > 0 such that (6.9)
and (6.10) hold (with x(t) = (y(t), ẏ(t)) and cP = σ). However, we know from
[17, Example 4.8] that, if d = 0 and γ ∈ (1, 2), then for all initial conditions,
lim supt→∞ y(t) = σ and lim inft→∞ y(t) = −σ (equivalently, y has ω-limit set
[−σ, σ]), showing in particular that x(t) = (y(t), ẏ(t)) does not converge as t→ ∞.

7. Quantized feedback systems. Let (A,B,C) be a minimal realization of
a linear, single-input, single-output system with transfer function G. Let f : R → R

be a continuous static nonlinearity with the following property.

(Q1) There exist ϕ ∈ K∞ and a number b > 0 such that

ϕ(|y|)|y| ≤ f(y)y ≤ by2 ∀ y ∈ R.

Furthermore, we impose the following assumption.

(Q2) There exists κ ∈ [0 , 1/b) such that κ+G is positive real.

From (Q1) and (Q2), it follows that (H3) holds with Φ(y) = {f(y)} and δ = κb ∈
[0, 1). Consequently, by Theorem 3.5, the system

ẋ(t) = Ax(t) +B(d(t) − f(Cx(t))), x(0) = x0 ∈ R
n, d ∈ L∞

loc(R+), (7.1)
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is input-to-state stable. Now consider (7.1) subject to quantization of the output
y = Cx, that is, the system

ẋ(t) = Ax(t) +B
(

d(t) − (f ◦ qγ)(Cx(t))
)

, x(0) = x0 ∈ R
n, d ∈ L∞

loc(R+), (7.2)

where qγ : R → R, parameterized by γ > 0, is a uniform quantizer (see Figure 7.1)
given by

qγ(y) = 2(m+ 1)γ ∀ y ∈
(

(2m+ 1)γ , (2m+ 3)γ
]

∀ m ∈ Z.

We interpret the differential equation (with discontinuous righthand side) in (7.1)

b

b

b

b

b

bc

bc

bc

bc

bc

y

qγ(y)

+ + + +

+

+

+

+

−4γ

−2γ

4γ

2γ

3γ 5γ

−5γ −3γ

Fig. 7.1. Uniform quantizer

in a set-valued sense by embedding the quantizer qγ in the set-valued map Qγ ∈ U
defined by

Qγ(y) :=

{

{qγ(y)}, y ∈
(

(2m+ 1)γ , (2m+ 3)γ
)

, m ∈ Z

[2mγ , 2(m+ 1)γ], y = (2m+ 1)γ, m ∈ Z

and subsuming (7.2) in the differential inclusion

ẋ(t) −Ax(t) ∈ B
(

∆(t) − Φγ(Cx(t))
)

, x(0) = x0 ∈ R
n, ∆ ∈ B, (7.3)

where ∆ : t 7→ {d(t)} and Φγ ∈ U is given by

Φγ(y) := f(Qγ(y)) = {f(ξ) | ξ ∈ Qγ(y)}.

Choose ε ∈ (0, 1) sufficiently small so that (1 + ε)κ < 1/b. Write b̃ := (1 + ε)b and
define ϕ̃ ∈ K∞ by ϕ̃(s) := ϕ((1 − ε)s) for all s ∈ R+.

Lemma 7.1. There exists M ∈ N such that, for every γ > 0,

y ∈ R, |y| ≥ γM, v ∈ Φγ(y) =⇒ ϕ̃(|y|)|y| ≤ yv ≤ b̃y2.

Proof. Observe that, for all m ∈ N,

2m+ 2

2m+ 3
≤ w

y
≤ 2m+ 4

2m+ 1
∀ w ∈ Qγ(y) ∀ y ∈

(

(2m+ 1)γ , (2m+ 3)γ
]

.

Therefore, there exists M ∈ N such that

(1 − ε)y2 ≤ wy ≤ (1 + ε)y2 ∀ w ∈ Qγ(y) ∀ y ≥ γM.

Since Qγ has odd symmetry (Qγ(y) = −Qγ(−y)), it immediately follows that

(1 − ε)y2 ≤ wy ≤ (1 + ε)y2 ∀ w ∈ Qγ(y) ∀ |y| ≥ γM. (7.4)
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Let y be such that |y| ≥ γM and let v ∈ Φγ(y). Then v = f(w) for some w ∈ Qγ(y).
Invoking (Q1) and (7.4), it follows that

ϕ(|w|)|y| = ϕ(|w|)|w| y
w

≤ f(w)w
y

w
= f(w)y = vy ≤ bwy ≤ (1+ε)by2 = b̃y2. (7.5)

Since ϕ(|w|) = ϕ(|w||y|/|y|) = ϕ(wy/|y|) and invoking (7.4) and (7.5), we have

ϕ̃(|y|)|y| = ϕ((1 − ε)|y|)|y| ≤ ϕ(|w|)|y| ≤ vy ≤ b̃y2,

This completes the proof.

Let M ∈ N be as in Lemma 7.1 and define Φ̃ ∈ U by

Φ̃(y) :=

{

[ϕ̃(|y|) , b̃|y|], |y| ≥ 0

[ − b̃|y| , −ϕ̃(|y|)], y < 0 .
(7.6)

Clearly,

y ∈ R, v ∈ Φ̃(y) =⇒ max
{

ϕ̃(|y|)|y| , v2/b̃
}

≤ yv,

and, by Lemma 7.1, we also have Φγ(y) ⊂ Φ̃(y) for all y ∈ R\[−γM, γM ]. Moreover,

by (Q2) (and recalling that κ < b̃)), (δ/b̃) +G is positive real for every δ ∈ [κb̃ , 1).
We are now in a position to invoke Corollary 3.7 (withK = [−γM, γM ]) to conclude
the existence of β1 ∈ KL and β2 ∈ K∞, which do not depend on γ > 0 (recall
Remark 3.8), such that, for all γ > 0, all x0 ∈ R

n and all d ∈ L∞
loc(R+), every global

solution of (7.3), with ∆ : t 7→ {d(t)} satisfies

‖x(t)‖ ≤ max
{

β1(t, ‖x0‖) , β2(‖d‖L∞[0,t] + Eγ)
}

∀ t ∈ R+,

where Eγ := sup|y|≤γM supv∈Φγ(y) inf ṽ∈Φ̃γ(y)|v− ṽ|. Noting that Eγ → 0 as γ ↓ 0 (if

f is locally Lipschitz, then Eγ = O(γ) as γ ↓ 0), we may conclude robustness with
respect to quantization in the sense that the quantized feedback system is such that
the unbiased ISS property of the unquantized system (7.1) is approached as γ ↓ 0.

8. Conclusion. Feedback interconnections consisting of a linear system in the
forward path and a nonlinearity in the feedback path have been considered. Adopt-
ing a differential inclusions framework, nonlinearities of considerable generality are
encompassed, including inter alia both hysteresis operators and quantization oper-
ators. Conditions on the linear and nonlinear components have been identified (in
Theorems 3.4 and 3.5) under which input-to-state stability (and a fortiori global
asymptotic stability of the zero state) of the feedback interconnection is assured.
The results of this paper are in the spirit of absolute stability theory: in particular,
when specialized appropriately, classical absolute stability results pertaining to the
circle criterion are recovered. In Corollaries 3.6 and 3.7, hypotheses are imposed on
the nonlinearities (namely, generalized sector conditions), considerably weaker than
those posited in Theorems 3.4 and 3.5, under which input-to-state stability with
bias (and a fortiori asymptotic stability of a compact neighbourhood of the zero
state) may be concluded. Applications of the results to systems with hysteresis and
to systems with output quantization have been detailed.
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