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Abstract

We present novel wavelet-based inpainting algorithms. Applying ideas from anisotropic
regularization and diffusion our models can better handle degraded pixels at edges. We
interpret our algorithms within the framework of forward-backward splitting methods in
convex analysis and prove that the conditions to ensure their convergence are fulfilled.
Numerical examples illustrate the good performance of our algorithms.

1 Introduction

The problem of inpainting occurs when part of the data in an image is missing. The task of
inpainting is to recover the missing regions from the observed (sometimes noisy) incomplete
data. The mathematical model for the image inpainting problem reads as follows: For con-
venience of notation we consider twodimensional images u defined on {1, . . . , n} × {1, . . . , n}
and reshape them columnwise into a vector u ∈ RN with N = n2. Let the nonempty set
C ⊂ {1, . . . , N} be the given region of the observed pixels. Then the observed incomplete
image f is

f(j) =
{

u(j) + ε(j) if j ∈ C,
arbitrary otherwise,

where ε(j) denotes the noise. In the following, we denote by PC the diagonal matrix with
diagonal entries 1 for indices in C and 0 otherwise.

Initiated by [3], many useful techniques have been proposed to address this problem. In
this paper we are mainly interested in wavelet-based inpainting methods. Such methods
were, e.g., proposed in [6, 12]. However, often these methods let degraded pixels survive at
sharp directed edges. A typical example is shown in Fig. 1. Here both the cubic spline
interpolation and the wavelet-based method from [6] produce visible artefacts, in particular
at the horizontal line. This was our motivation for considering more flexible wavelet-based
methods.

We focus on the following general type of inpainting algorithms:

Algorithm I (Exact Data)
Initialization: u0

For r = 0, . . . iterate until convergence
i) Solve a restoration problem for the current image ur to obtain ûr+1.
ii) Set

ur+1(j) :=
{

f(j) if j ∈ C,
ûr+1(j) otherwise.
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Figure 1: Top left: Original image. Top right: Degraded image. Bottom left: Cubic in-
terpolation by the MATLAB routine ’griddata’ (PSNR=29.39, err2 = 8.64, err1 = 0.79).
Bottom right: Interpolation by the algorithm in [6] with c = 1 and two levels (PSNR=33.27,
err2 = 5.53, err1 = 0.46). The interpolated images have artefacts in particular at the hori-
zontal line.

Output: u∗

Algorithm II (Noisy data)
Same as Algorithm I except that we have to apply step i) to the final iterate u∗ again.
Output: u¦ = û∗

Indeed, depending on the restoration method used in step i), many known inpainting algo-
rithms are of this general type. In [6], the following wavelet-frame based denoising method
was proposed for step i) of Algorithm I: Let A ∈ RM,N , M ≥ N denote a frame analysis oper-
ator of a Parseval frame, i.e., any u ∈ RN can be written as u = ATd and ATA = I. Further,
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let Λ := diag(λ) be a diagonal matrix containing the components of the vector λ := (λj)M
j=1

as diagonal entries. Then the authors suggest to solve

dr+1 = argmin
d∈RM

1
2
‖Aur − d‖2

2 + ‖Λ d‖1.

Since the solution of argmind
1
2‖c − d‖2

2 + ‖Λ d‖1 is given by TΛ(c) with the soft threshold
operator TΛ defined componentwise by

Tλj (cj) =
1
2

((cj − λj) + |cj − λj |+ (cj + λj)− |cj + λj |) , j = 1, . . . , M,

see, e.g., [9], the restoration step i) becomes

ûr+1 = ATTΛ(Aur). (1)

They proved that for noisy input data the iterates of Algorithm II with restoration step (1)
converge to u¦ = ATd̂, where d̂ is the solution of

d̂ = argmin
d∈RM

1
2
‖PCf − PCATd‖2

2 + ‖Λ d‖1 +
1
2
‖(I −AAT)d‖2

2. (2)

Indeed this algorithm is very similar to a method proposed in [12], where the authors solve

d̂ = argmin
d∈RM

1
2
‖PCATd− PCf‖2

2 + ‖Λ d‖1 (3)

by
dr+1 = TΛ (dr + A(PCf − PCATdr))

and set u¦ = ATd̂. Obviously, for an orthogonal matrix A the wavelet-based algorithms
(2) and (3) coincide. However, for various non-orthogonal frame analysis matrices A, the
numerical experiments in [6] indicate that the algorithm (2) performs better.

In [28], the method (3) was generalized in order to recover both the texture and the
cartoon part of an image, see also [4]. To this end, the authors solve

argmin
dt,dn

1
2
‖PC(AT

t dt + AT
ndn − f)‖2

2 + λ(‖dt‖1 + ‖dn‖1) + γTV(AT
ndn),

where An denotes the discrete curvelet transform, At the discrete cosine transform and dt

and dn are the texture and cartoon components, respectively.
Beyond regularization techniques PDE-based approaches can be applied in the restora-

tion step. In [14, 29] it was demonstrated that inpainting methods based on edge enhancing
anisotropic diffusion appear to be superior to linear methods, e.g., spline interpolation meth-
ods, and nonlinear isotropic diffusion methods. Indeed these ideas were together with wavelet
techniques the second ingredient for our algorithms. For other PDE-based methods we only
refer to [7] and the references therein.

In this paper, we focus on inpainting by combining anisotropic regularization and diffu-
sion methods with multilevel Haar wavelet filters. Our new methods increase the PSNR of
various restored images significantly, e.g., by 3 dB for the image in Fig. 1 and avoid highly
visible artefacts. Following the lines of [6], we have proved the convergence of our method by
embedding it into the framework of forward-backward splitting algorithms.
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This paper is organized as follows: In Section 2, we briefly review anisotropic regularization
and diffusion methods. Ideas from this section, in particular the application of a diffusion
tensor, carry over to our wavelet setting. In Section 3, we present a new anisotropic Haar-
wavelet method for the inpainting problem. The convergence proof of our algorithm is given
in Section 4. Finally, Section 5 contains numerical examples which demonstrate the excellent
performance of our algorithm.

2 Anisotropic Regularization and Diffusion

In this section, we sketch the basic ideas from anisotropic diffusion and regularization methods
that carry over to our wavelet setting. We prefer the more common continuous point of view
in this section, while the rest of the paper deals with a discrete setting obtained by discretizing
gradients with the help of wavelet filters. Anisotropic diffusion methods like edge enhancing or
coherence enhancing diffusion were used for the directed denoising of images for a long time,
see [26] and the references therein. Recently, anisotropic regularization methods became
popular, e.g., for the restoration of polygonal shapes [2, 11, 24] with sharp edges and corners.

Let us consider a single restoration step r of our inpainting method which computes for
a given continuous image f̃ := ur on a quadratic domain Ω the image ûr+1. By ◦, we denote
the Hadamard product (componentwise product) of matrices. From the variational point of
view, one could restore the image by solving for an appropriate proper, lower semi-continuous
(lsc), convex function Φ and an invertible matrix V ∈ R2,2 the problem

argmin
u

1
2
‖f̃ − u‖2

L2
+ λ

∫

Ω
Φ((V T∇u) ◦ (V T∇u)) dx, (4)

where the function space of u depends on the choice of Φ. For Φ(x2, y2) :=
√

x2 + y2 and
V := I, the functional in (4) is the Rudin-Osher-Fatemi (ROF) functional [21] and we consider
the space BV of functions of bounded variations. For Φ(x2, y2) := |x|+|y| and special rotation
matrices V , the functional (4) was used for corner preserving denoising in [2, 24]. For V = I,
minimization algorithms for this functional were considered, e.g., in [15]. If Φ is differentiable,
then the Euler-Lagrange equation of (4) reads

0 = f̃ − u + λ∇ · (D∇u) (5)

with

D := V

(
2∂1Φ

(
(V T∇u) ◦ (V T∇u)

)
0

0 2∂2Φ
(
(V T∇u) ◦ (V T∇u)

)
)

V T. (6)

Here ∂ν denotes the derivative with respect to the ν-th variable. For example, we have
for Φ(x2, y2) :=

√
x2 + y2 + ε2 that ∂1Φ(x2, y2) = ∂2Φ(x2, y2) = 1/(2

√
x2 + y2 + ε2) and

for Φ(x2, y2) :=
√

x2 + ε2 +
√

y2 + ε2 that ∂1Φ(x2, y2) = 1/(2
√

x2 + ε2) and ∂2Φ(x2, y2) =
1/(2

√
y2 + ε2).

On the other hand, the so-called anisotropic edge enhancing diffusion (EED) acts via

∂tu = ∇ · (D∇u), (7)
u(x, 0) = f̃(x),

with appropriate boundary conditions, mainly Neumann boundary conditions in image pro-
cessing, and with the diffusion tensor

D := V

(
g(|∇uσ|) 0

0 1

)
V T, V := (v v⊥), v :=

∇uσ

|∇uσ| . (8)
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Here uσ = u ∗ Kσ denotes the convolution of u with the Gaussian of standard deviation σ
and g is a decreasing nonnegative function. In applications, the function

g(|s|) =

{
1− e

− 3.31488
(s/α)8 s > 0,

1 s = 0

introduced by Weickert in [26] has shown a good performance.
A relation to regularization methods can be seen as follows: If we use instead of (8)

the matrices (6), then (5) can be considered as a semidiscretization of (7) with an implicit
Euler step of time step size λ. The following wavelet methods are related to explicit time
discretizations so that we can only achieve approximations of the corresponding regularization
method. For further investigations in this direction see [23]. Note that according to [26] we
will call a method anisotropic if the diagonal matrix in the diffusion tensor contains different
nonzero diagonal entries. In this sense, the ROF method is an isotropic one.

3 Anisotropic Haar-Wavelet Shrinkage

In this section, we return to our discrete setting from the beginning of the paper. Let
h0 := 1

2 [1 1] and h1 := 1
2 [1 − 1] be the filters of the Haar wavelet. For convenience of

notation, we use periodic boundary conditions and denote by H0 ∈ Rn,n and H1 ∈ Rn,n the
corresponding circulant matrices. A remark concerning Neumann boundary conditions can
be found at the end of this section. The following remark shows the link between the con-
tinuous considerations in the previous section and our discrete setting. Basically we consider
discretizations of continuous images on a regular grid and approximate the partial derivatives
by special differences related to our Haar wavelet filters.

Remark 3.1 i) Discretizing a periodic smooth function u on [0, 1)2 at the grid {(j, k)/h :

j, k = 0, . . . , n − 1} and setting u := (uj,k)
n−1
j,k=0 =

(
u( j

h , k
h)

)n−1

j,k=0
, we see by using the two-

dimensional Taylor expansion that

uj+1,k+1 − uj,k+1 + uj+1,k − uj,k

2h
= ∂xu

(
j +

h

2
, k +

h

2

)
+O(h2),

i.e., the left-hand side is a consistent discretization of ∂xu. In matrix-vector notation this
yields the following approximation of ∇u:

2
(

H1uHT
0

H0uHT
1

)
= −h

( (
∂xu

(
j + h

2 , k + h
2

))n−1

j,k=0(
∂yu

(
j + h

2 , k + h
2

))n−1

j,k=0

)
+O(h2). (9)

Reshaping u columnwise into a vector u and using that RuST = (S ⊗R)u, the left-hand side

of (9) becomes 2
(

H0 ⊗H1

H1 ⊗H0

)
u. For digital images one sets h := 1.

ii) In [27], an `2–stable, conditionally consistent, so-called ’locally semi-analytic scheme’
(LSAS) for the numerical solution of the EED equation (7) was developed. It involves a
sophisticated spatial discretization and an explicit Euler scheme as temporal discretization.
With respect to our notation the iterative LSAS scheme computes at every time step with
time step size τ based on the old iterate uold the new one unew by the following steps:
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1.




c00

c01

c10

c11


 :=




H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1




︸ ︷︷ ︸
A

uold,

2.
(

d01

d10

)
:= V

(
e−4τ g(|∇uold,σ|) 0

0 e−4τ

)
V T

(
c01

c10

)
,

d00 := c00,

d11 := e−4τ (g(|∇uold,σ|)+1)c11,

3. unew := AT (dT
00, d

T
01, d

T
10, d

T
11)

T ,

where

∇uold,σ := 2
(

H0 ⊗H1

H1 ⊗H0

)
(uold ∗Kσ)

and V is chosen in accordance to (8) as V :=
(

c −s
s c

)
with c := diag

(
((H0⊗H1)uold,σ)/w

)
,

s := diag
(
((H1 ⊗ H0)uold,σ)/w

)
, w :=

√(
(H0 ⊗H1)uold,σ

)2 +
(
(H1 ⊗H0)uold,σ

)2 and com-

ponentwise quotients ((H0 ⊗H1)uold,σ)/w and squares
(
(H0 ⊗H1)uold,σ

)2 of vectors.

We consider the undecimated discrete Haar wavelet transform up to level m. For k =
1, . . . , m, let H

(k)
ν ∈ Rn,n, ν ∈ {0, 1} be the circulant matrix corresponding to the filter

h
(k)
ν = 1

2(1, 0, . . . , 0︸ ︷︷ ︸
2k−1−1

, (−1)ν) with 2k−1−1 inserted zeros between the filter coefficients. Further,

we set



H
(k)
00

H(k)

H
(k)
11


 :=




H
(k)
00

H
(k)
10

H
(k)
01

H
(k)
11


 =




H
(k)
0 ⊗H

(k)
0

H
(k)
0 ⊗H

(k)
1

H
(k)
1 ⊗H

(k)
0

H
(k)
1 ⊗H

(k)
1




k−1∏

l=1

(H(l)
0 ⊗H

(l)
0 ).

Then the matrix

A =




H
(m)
00

H(1)

...
H(m)

H
(1)
11
...

H
(m)
11




∈ R(3m+1)N,N (10)

satisfies ATA = I while AAT 6= I. Let V (k) be orthogonal matrices and let Λ(k) :=

diag
(
λ

(k)
j

)2N

j=1
, Λ(k)

11 := diag
(
λ

(k)
11,j

)N

j=1
, k = 1, . . . , m be diagonal matrices with nonnega-

tive entries. For p ∈ [1, 2], we consider the minimization problem

argmin
u∈RN

1
2
‖f − u‖2

2 +
1
p

m∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖p

p +
1
p

m∑

k=1

‖Λ(k)
11 H

(k)
11 u‖p

p.
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In our numerical examples, we will only use p = 1 and p = 2. Since ATA = I, this is equivalent
to

argmin
u∈RN

1
2
‖Af −Au‖2

2 +
1
p

m∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖p

p, +
1
p

m∑

k=1

‖Λ(k)
11 H

(k)
11 u‖p

p.

Using the notation

c := Af =
(
c
(m)
00 , c(1), . . . , c(m), c

(1)
11 , . . . , c

(m)
11

)T

, d := Au

this can be rewritten as

argmin
d∈R(3m+1)N

1
2
‖c− d‖2

2 +
1
p

m∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖p

p +
1
p

m∑

k=1

‖Λ(k)
11 d

(k)
11 ‖p

p s.t. d ∈ R(A).

Note that d ∈ R(A) is equivalent to (I −AAT)d = 0, i.e., the orthogonal projection of d onto
the kernel of AT has to be 0. In other words, if d̂ is a solution of this problem, then AATd̂ is
just the orthogonal projection of d̂ onto R(A). We will not solve this minimization problem
in step i) of our inpainting algorithm, but the following one which is obtained by neglecting
the constraint:

argmin
d∈R(3m+1)N

1
2
‖c− d‖2

2 + JΛ,p(d),

where

JΛ,p(d) :=
1
p

m∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖p

p +
1
p

m∑

k=1

‖Λ(k)
11 d

(k)
11 ‖p

p. (11)

This functional can be decoupled as

1
2
‖c(m)

00 − d
(m)
00 ‖2

2 +
m∑

k=1

(
1
2
‖c(k) − d(k)‖2

2 +
1
p
‖Λ(k)

(
V (k)

)T
d(k)‖p

p

)

+
m∑

k=1

(
1
2
‖c(k)

11 − d
(k)
11 ‖2

2 +
1
p
‖Λ(k)

11 d
(k)
11 ‖p

p

)
. (12)

Now the three parts of the functional can be minimized separately which leads to the following
solution.

Lemma 3.2 The minimizer d̂ of the functional (12) is given by

d̂
(m)
00 = c

(m)
00 ,

d̂(k) = V (k) TΛ(k),p

(
(V (k))Tc(k)

)
, k = 1, . . . ,m (13)

d̂
(k)
11 = T

Λ
(k)
11 ,p

(c(k)
11 ), k = 1, . . . , m

with the following shrinkage procedures T·,· :

i) the soft shrinkage TΛ,1 for p = 1,

ii) TΛ,p(y) = F−1
Λ,p(y), where FΛ,p is the injective mapping

FΛ,p(x) = x + Λp(sgn(x) ◦ |x|p−1)

for p ∈ (1, 2),
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iii) TΛ,2(y) := (I + Λ2)−1y for p = 2.

Moreover, we have for p ∈ (1, 2] that

|TΛ,p(y)|p ≥ (I + Λp)−p|y|p − 1. (14)

Proof: Since the matrices V (k) are orthogonal, we obtain immediately assertion i).

In the following, we restrict our attention to the central functional, i.e., to d̂(k). For p ∈ (1, 2],
the functional is differentiable and the minimizer has to fulfill

0 = d̂(k) − c(k) + V (k)Λ(k)
(
sgn(Λ(k)(V (k))Td̂(k)) ◦

∣∣∣Λ(k)(V (k))Td̂(k)
∣∣∣
p−1 )

(V (k))Tc(k) = (V (k))Td̂(k) +
(
Λ(k)

)p
sgn((V (k))Td̂(k)) ◦ |(V (k))Td̂(k)|p−1

Then x = (V (k))Td̂(k) is the solution of (V (k))Tc(k) = FΛ(k),p(x) and d̂(k) = V (k)x. In particu-
lar, we have for p = 2 that x = (I + Λ2)−1(V (k))Tc(k).

We prove the last assertion (14) componentwise. For x, y ∈ R and λ ∈ R≥0 the equation
y = x + λpsgn(x)|x|p−1 implies that

|y| = |x|+ λp|x|p−1.

Then, we see for |x| ≥ 1 and p ∈ (1, 2] that |y| ≤ |x| + λp|x| and consequently |x| ≥ (1 +
λp)−1|y|. For |x| < 1, we have that |y| ≤ |x|p−1 + λp|x|p−1 so that 1 > |x|p−1 ≥ (1 + λp)−1|y|.
Thus, 1 > (1 + λp)−p|y|p and |x|p ≥ 0 > (1 + λp)−p|y|p − 1.

Let us denote the whole shrinkage procedure by d̂ = TΛ,p c. Finally, we can compute the
denoised image u of f by u = ATd̂. With this denoising procedure our inpainting algorithm
reads as follows:

Algorithm I.1 (Exact Data)
Initilization: u0

For r = 0, . . . iterate until convergence
i) Compute ûr+1 = ATTΛ,p(Aur) with TΛ,p defined by Lemma 3.2.
ii) Set

ur+1(j) :=
{

f(j) if j ∈ C,
ûr+1(j) otherwise.

Output: u∗

Algorithm II.1 (Noisy data)
Same as Algorithm I except that we have to apply step i) to the final iterate u∗ again.
Output: u¦ = û∗

The set
C := {g ∈ RN : g(j) = f(j), ∀j ∈ C}.

is nonempty, closed, convex so that its indicator function ιC is a proper lsc convex function.
Thus, step ii) of the inpainting procedure also reads

ur+1 = argmin
u∈RN

1
2
‖ûr+1 − u‖2

2 + ιC(u).
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Thus, the whole algorithm can be rewritten in the form

dr+1 = argmin
d∈R(3m+1)N

1
2
‖Aur − d‖2

2 + JΛ,p(d), (15)

ur+1 = argmin
u∈RN

1
2
‖ATdr+1 − u‖2

2 + ιC(u), (16)

where JΛ,p(d) is defined in (11).

Remark 3.3 (Neumann boundary conditions)
If we assume mirrored boundaries, we have to replace the circulant matrices Hν , ν = 0, 1 by
the Toeplitz matrices Hν ∈ Rn+1,n+2 corresponding to the filters hν . Let H̃ν ∈ Rn+1,n denote
the matrices obtained from HT

ν by canceling their first and last row. Then we have that

HT
0 H0 + HT

1 H1 =




1
2

I
1
2


 , and H̃0H0 + H̃1H1 = I.

Consider one decomposition level m = 1. For higher levels we have to incorporate the corre-
sponding zeros into the filters and to mirror the boundaries according to the filter length. Let
f̃ denote the image obtained from f by mirroring the boundaries and let A, Ã be defined as in
(10) but with the new Toeplitz matrices Hν , H̃ν , ν = 0, 1. Then we solve instead of (12) the
minimization problem

d̂r = argmin
d

{
1
2
‖Aũr − d‖2

2 +
1
p
‖ΛV T d‖p

p +
1
p
‖Λ11 d11‖p

p

}

and set ûr := Ãd̂r.

4 Convergence Considerations

Following [6], we show the convergence of our inpainting algorithm by identifying it as a
forward-backward splitting algorithm to minimize the sum of two operators. There exists a
vast literature on forward-backward splitting algorithms and related fixed point iterations,
see Remark 4.2 below. In this paper, we need only the following setting in the Hilbert space
RN with the Euclidian norm.

For any proper, convex, lower semi-continuous (lsc) function ϕ the proximal operator is
defined by

proxϕ(x) = argmin
y∈RN

{1
2
‖x− y‖2

2 + ϕ(y)}

and its envelope by
1ϕ(x) = min

y∈RN
{1
2
‖x− y‖2

2 + ϕ(y)}.

By [1, Theorem 5.2], the function 1ϕ is convex and differentiable, and its gradient is

∇ (
1ϕ

)
(x) = x− proxϕ(x). (17)
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Lemma 4.1 [6] Let F1 : RN → R ∪ {+∞} be a proper, convex, lsc function and let F2 :
RN → R ∪ {+∞} be a proper, convex, differentiable function with a Lipschitz continuous
gradient with Lipschitz constant < 2. Assume that

argmin
u∈RN

{F1(u) + F2(u)}

has a solution. Then, for any initial guess u0, the so-called proximal forward-backward
splitting

ur+1 = proxF1
(ur − ∇F2(ur)) (18)

converges to a minimizer of the functional F1 + F2 .

The iteration (18) is a special case of a more general class of algorithms which we briefly
outline in the following remark.

Remark 4.2 For subdifferentiable functions F1, F2 : H → R ∪ {+∞} on a Hilbert space H
we have that

û = argmin
u∈H

{F1(u) + F2(u)} ⇔ 0 ∈ ∂(F1 + F2)(û).

Under certain conditions on F1 and F2 this is equivalent to 0 ∈ ∂F1(û) + ∂F2(û). If ∂F1, ∂F2

are maximal monotone operators, Lions and Mercier [17] and independently Passty [20] sug-
gested to solve the inclusion on the right-hand side by the splitting iteration

û = (I + c ∂F1)−1(I − c ∂F2)û. (19)

Under certain conditions on ∂F2 and the step size c it was proved that the Picard iteration
of (19) converges weakly to a minimizer û, see, e.g., [13, 25]. Meanwhile there exist various
generalizations of this algorithm as those in [8].

Since in our special problem F1 is proper, convex , lsc and F2 is differentiable, we have
that (I + ∂F1)

−1 = proxF1
and ∂F2 = ∇F2, so that (19) with c = 1 coincides with (18).

We now return to Algorithm I.1. For our problem, we set F1 := ιC and F2 :=
(
1JΛ,p

)
(A·).

Then we obtain

F2(u) = min
d∈R(3m+1)N

{1
2
‖Au− d‖2

2 + JΛ,p(d)}

so that

F1(u) + F2(u) = ιC(u) + min
d∈R(3m+1)N

{1
2
‖Au− d‖2

2 + JΛ,p(d)} (20)

= ιC(u) +
1
2
‖Au− TΛ,p(Au)‖2

2 + JΛ,p(TΛ,p(Au)).

Further, we obtain by (17) that F2 is differentiable with

∇F2(u) = ∇ (
1JΛ,p ◦A

)
(u) = AT

(
Au− proxJΛ,p

(Au)
)

. (21)
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Now the forward-backward splitting (18) becomes

ur+1 = proxF1
(ur −∇F2(ur))

= argmin
u∈RN

{
1
2
‖ur −∇F2(ur)− u‖2

2 + ιC(u)
}

= argmin
u∈RN

{
1
2
‖ur −AT

(
Aur − proxJΛ,p

(Aur)
)
− u‖2

2 + ιC(u)
}

= argmin
u∈RN

{
1
2
‖ATproxJΛ,p

(Aur)− u‖2
2 + ιC(u)

}
. (22)

By (15) and (16) this coincides with the sequence produced by our Algorithm I.1.

Next, we show that F1 + F2 in (20) is coercive.

Lemma 4.3 The functional F1 + F2 in (20) is coercive.

Proof: By (20) we obtain

F1(u) + F2(u) = ιC(u) +
1
2
‖Au− TΛ,p(Au)‖2

2 + JΛ,p(TΛ,p(Au)) ≥ JΛ,p(TΛ,p(Au)).

Let Au :=
(
(Au)(m)

00 , (Au)(1), . . . , (Au)(m), (Au)(1)
11 , . . . , (Au)(m)

11

)T

. Then we see by (12) and
(13) that

JΛ,p(TΛ,p(Au)) =
1
p

m∑

k=1

‖Λ(k)TΛ(k),p

(
(V (k))T(Au)(k)

)‖p
p +

1
p

m∑

k=1

‖Λ(k)
11 TΛ

(k)
11 ,p

((Au)(k)
11 )‖p

p. (23)

Now we have by (14) and by definition of the soft shrinkage function that

1
p

(
λ

(k)
j

)p ∣∣T
λ
(k)
j ,p

(y)
∣∣p ≥





λ
(k)
j |y| −

(
λ

(k)
j

)2
for p = 1,

1
p

(
λ
(k)
j

1+
(
λ
(k)
j

)p

)p
|y|p − 1

p

(
λ

(k)
j

)p
for p ∈ (1, 2].

Thus, setting

κ1 :=
1
p

min
{( λ

(k)
j

1 +
(
λ

(k)
j

)p

)p
,
( λ

(k)
11,i

1 +
(
λ

(k)
11,i

)p

)p
: j = 1, . . . , 2N ; i = 1, . . . , N ; k = 1, . . . ,m

}

and

κ2 :=





∑m
k=1

(∑2N
j=1

(
λ

(k)
j

)2 +
∑N

i=1

(
λ

(k)
11,j

)2
)

for p = 1,

1
p

∑m
k=1

(∑2N
j=1

(
λ

(k)
j

)p +
∑N

i=1

(
λ

(k)
11,j

)p
)

for p ∈ (1, 2]

and applying that ‖x‖p ≥ ‖x‖2 for p ∈ [1, 2] we get

JΛ,p(TΛ,p(Au)) ≥ κ1

( m∑

k=1

‖(V (k))T(Au)(k)‖p
p +

m∑

k=1

‖(Au)(k)
11 ‖p

p

)
− κ2

≥ κ1

( m∑

k=1

‖(Au)(k)‖p
2 +

m∑

k=1

‖(Au)(k)
11 ‖p

2

)
− κ2.
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Using the notation A0 := H
(m)
00 , A1 :=

(
(H(1))T, . . . , (H(m))T, (H(1))T

11, . . . , (H(m))T
11

)T
, this

can be rewritten as
JΛ,p(TΛ,p(Au)) ≥ κ1‖A1u‖p

2 − κ2. (24)

By Lemma 4.4 below, the matrix AT
0A0 has the simple eigenvalue 1 with a corresponding

normed eigenvector ũ = 1√
N

1N . Since ATA = I, it follows that AT
1A1 has the simple eigen-

value 0 and that the kernel of AT
1A1 is spanned by ũ. Now we obtain for the orthogonal

decomposition u = v + aũ that |a| ≥ ‖u‖2 − ‖v‖2 and

‖A1u‖2
2 = ‖A1v‖2

2 ≥ η2‖v‖2
2, (25)

where η2 > 0 is the second smallest eigenvalue of AT
1A1. Now we fix a constant c ∈ ( 1√

N+1
, 1)

and consider two cases:
1. For ‖v‖2 ≥ c ‖u‖2, we conclude by (24) and (25) that

F1(u) + F2(u) ≥ κ1‖A1u‖p
2 − κ2 ≥ κ1

√
η2

p ‖v‖p
2 − κ2 ≥ κ1

√
η2

p cp ‖u‖p
2 − κ2.

2. For ‖v‖2 < c‖u‖2 it holds that |a| > (1− c)‖u‖2. Hence, we have for any i0 ∈ C that

|ui0 | = |vi0 + aũi0 | ≥ |a||ũi0 | − |vi0 | > (1− c)‖u‖2|ũi0 | − c‖u‖2 = ‖u‖2
1− c(1 +

√
N)√

N
.

Thus, we see for ‖u‖2 large enough that |ui0 | > |fi0 | and consequently F1(u)+F2(u) ≥ ιC(u) =
+∞.

Lemma 4.4 The matrix AT
0A0 has 1 as a simple eigenvalue with corresponding eigenvector

ũ = 1√
N

1N .

Proof: Using multiplication rules for tensor products we obtain that

AT
0A0 = BTB ⊗BTB, B :=

m∏

l=1

H
(l)
0 =

1
2m

circ ([1 . . . 1︸ ︷︷ ︸
2m

0 . . . 0]).

By [10], the circulant matrix B has eigenvectors 1√
n
(e−

2πijk
n )n

j=0 and eigenvalues β0 = 1 and

|βk| = | 1
2m

2m−1∑

j=0

e−
2πijk

n | =
1

2m

|1− e−
2πij2m

n |
|1− e−

2πij
n |

=
1

2m

m∏

p=1

|1 + e−
2πij2m−p

n | < 1,

k = 1, . . . , n− 1. The last inequality holds true because |1 + e−
2πij2m−p

n | ≤ 2 for p = 1, . . . ,m
with strict inequality for p = m.

In summary, we obtain the following convergence result.

Theorem 4.5 The sequence {ur}∞r=0 produced by Algorithm I.1 converges for any start image
u0 and p ∈ [1, 2] to a minimizer of the functional F1 + F2 in (20).

12



Proof: By (22), the sequence produced by our Algorithm I.1 coincides with the sequence gen-
erated by the forward-backward splitting algorithm (18). Now the assertion follows since the
functional F1 + F2 in (20) fulfills the convergence assumptions of Lemma 4.1: The functions
F1 and F2 are proper, convex and lsc. By Lemma 4.3 the functional F1+F2 is coercive so that
there exists at least one minimizer of the functional. Finally, since ‖A‖2 = 1 and I −proxJΛ,p

is nonexpansive, it is easy to check as in [6] that F2 has a gradient with Lipschitz constant 1.

With respect to Remark 4.2 we notice that for our setting (I + ∂F1)−1(I − ∂F2) is an
averaged operator, i.e., the strictly convex combination of the identity operator and a non-
expansive mapping. Alternatively to Lemma 4.1 one could also use convergence results for
Picard iterations of averaged operators, see [5, 16, 18, 19, 22].

Remark 4.6 Numerical experiments indicate that Algorithm I.1 converges linearly. How-
ever, we have not proved this so far. In [25, Proposition 1 (d)], Tseng gives a sufficient
condition for linear convergence. Unfortunately, it cannot be applied here since neither ∂F1

nor ∇F2 are strongly monotone.

5 Numerical Examples

Finally, we present some numerical examples, in particular, we compare our algorithm with
the algorithm in [6] without thresholding of the smoothest coefficients. Since the results for
noisy data with a small amount of noise are similar as those for exact data, we restrict our
attention to exact input data.

All programs were written in MATLAB. We have always assumed Neumann boundary
conditions. We have used the stopping criterion for the iterations ‖ur+1 − ur‖2/‖ur+1‖2 ≤
5 · 10−5. We compare the weighted `1-error err1 := ‖u− f‖1/N , the weighted `2-error err2 :=
‖u−f‖2/

√
N , and the PSNR := 20·log10(255/err2). The parameters were chosen with respect

to the “best” PSNR.
We compare the following algorithms:

(A) the wavelet-based algorithm in [6] with the filters h0 := 1
4 [1 2 1], h1 :=

√
2

4 [1 0 − 1] and
h2 := 1

4 [−1 2 − 1] and soft shrinkage of the high-pass coefficients at level k with the
thresholds c/

√
2k.

(B) the Algorithm I.1 with our Haar wavelet filters, p = 1, V (k) = I and soft shrinkage with
threshold λ

(k)
j := λ/

√
2k and λ

(k)
11,j := λ11/

√
2k at level k.

(C) same algorithm as in (B) except that we use matrices V (k) inspired by the LSAS scheme
explained in Remark 3.1ii): we convolve an appropriate guess f̃ of the original function
with the Gaussian of standard derivation σ to obtain f̃σ. Then, at level k, we set

V (k) :=
(

c(k) −s(k)

s(k) c(k)

)
with c(k) := diag

(
H

(k)
01 f̃σ/w

)
, s(k) := diag

(
H

(k)
10 f̃σ/w

)
, w(k) :=

√
(H(k)

01 f̃σ)2 + (H(k)
10 f̃σ)2, i.e., we use the same matrices V (k) in each iteration step r.

(D) the Algorithm I.1 with p = 2 and the following setting inspired by the LSAS scheme for

13



EED in Remark 3.1 ii): we define V (k) as in (C). In the shrinkage step we use

(
I + (Λ(k))2

)−1 :=
(

diag
(
e−4τ g(w(k))

)
0

0 diag
(
e−4τ 1N

)
)

,

(
I + (Λ(k)

11 )2
)−1 := diag

(
e−4τ (g(w(k))+1)

)

with the vector 1N of N ones. We still use the same matrices V (k),Λ(k) and Λ(k)
11 in each

iteration step r.

(E) same algorithm as in (D) except that we do not freeze V (k) and the shrinkage matrices
at the beginning of the algorithm with respect to f̃σ but compute them in each iter-
ation step r with respect to the actual iterate ur. Note that we have not proved the
convergence for this algorithm. If we would work only with one level of Haar wavelet
decomposition m = 1, then the restoration step can be considered as one time step of
an iterative EED scheme discretized by LSAS.

In our first example we start with the image at the top right of Fig. 1 which we also
use as initial guess u0. Alternatively, one could use the image in Fig. 1 bottom left generated
by the MATLAB cubic interpolation procedure ’griddata’ as initial guess. This leads to
qualitatively similar results but with a fewer number of iterations. However, we have used
this cubic interpolation in the algorithms C and D for f̃ . Detailed results are given in the
tables below. Here ’iter’ denotes the number of iterations. The corresponding images for the
decomposition level 2 are depicted in Fig. 2 and at the bottom right of Fig. 1. The algoritms
described in B–E perform much better than the algorithm in A. The PSNR improves by
approximately 3 dB if we use algorithms B–D and by approximately 5 dB for algorithm E.
The algorithms B–E considerably reduce the artefacts at the horizontal line. However, the
algorithms B and C introduce some errors at the boundary of the circle. These artefacts do
not appear if we apply the algorithms D and E. In general, the PSNR cannot be substantially
improved by choosing a higher decomposition level than m = 2.

level c PSNR err2 err1 iter
4 1.0 32.93 5.49 0.54 307
3 1.0 33.29 5.51 0.48 307
2 1.0 33.27 5.53 0.46 358
1 1.6 32.50 6.04 0.50 461

level λ λ11 PSNR err2 err1 iter
4 1 8 34.84 4.61 0.36 272
3 1 10 35.52 4.27 0.29 235
2 1 100 36.42 3.84 0.27 278
1 1 100 35.89 4.09 0.28 814

Results of the inpainting algorithms A (left) and B (right).

level σ λ λ11 PSNR err2 err1 iter
4 4 1 8 35.43 4.31 0.36 244
3 4 1 10 35.97 4.05 0.30 223
2 4 1 100 36.60 3.76 0.26 269
1 4 1 100 36.03 4.02 0.26 811

Results of the inpainting algorithms C.

level σ τ α PSNR err2 err1 iter
4 4 1 2 35.19 4.43 0.47 73
3 4 1 2 36.08 4.00 0.36 79
2 4 1 2 36.79 3.68 0.29 106
1 4 1 2 36.83 3.83 0.28 208

level σ τ α PSNR err2 err1 iter
4 4 1 2 35.91 4.07 0.44 78
3 4 1 2 37.47 3.40 0.29 88
2 4 1 2 38.58 2.99 0.23 123
1 4 1 2 37.99 3.21 0.24 215

Results of the inpainting algorithms D (left) and E (right).
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Figure 2: Applications of the algorithms in B–E with decomposition level 2. Top left: algo-
rithm B, (PSNR=36.42, err2 = 3.84, err1 = 0.27). Top right: algorithm C, (PSNR=36.60,
err2 = 3.36, err1 = 0.26). Bottom left: algorithm D, (PSNR=36.79, err2 = 3.68, err1 = 0.29).
Bottom right: algorithm E, (PSNR=38.58, err2 = 2.99, err1 = 0.23). All algorithms reduce
the artefacts at the straight lines. However, the images at the top contain similar errors at
the boundary of the circle. The images at the bottom have the best quality.

In our second example we interpolate the image on the right-hand side of Fig. 3. Again,
we use this image as initial guess and its cubic interpolation as f̃ in the algorithms C and
D. This cubic interpolation is depicted at the top left of Fig. 4 and contains hard artefacts
at the windows on the left-hand side. The results for our algorithms with two decomposition
levels look as follows:

• Algorithm A with c = 1.0: PSNR=31.61, err2 = 6.69 ,err1 = 1.36.

• Algorithm B with λ = 0.5 and λ11 = 8: PSNR=34.08, err2 = 5.03 ,err1 = 0.93.

15



• Algorithm C with σ = 0.5, λ = 0.5 and λ11 = 8: PSNR=33.98, err2 = 5.09 ,err1 = 0.97.

• Algorithm D with σ = 1, τ = 1 and α = 2: PSNR=31.56, err2 = 6.73 ,err1 = 1.27.

• Algorithm E with σ = 1, τ = 1 and α = 2: PSNR=31.36, err2 = 6.89 ,err1 = 1.26.

The algorithms B and C perform best. The PSNR is approximately 2 dB higher than in the
other three algorithms. While the algorithms A, D and E produce similar artefacts especially
at the windows, these errors do not appear if we apply the algorithms B and C. This is
illustrated in Fig. 4 and in the zoomed images in Fig. 5.

Figure 3: Original image of the second example and its degraded version.

In our third example, we consider the image at the top left of Fig. 6. For this image
cubic interpolation yields very good results (PSNR = 33.62), see top right of Fig. 6. Starting
with this image as an initial guess and using small parameters (c = λ = λ11 = 0.05), we can
achieve a PSNRs of around 33.8 by applying algorithms A–C. Visual differences to the image
obtained by cubic interpolation are hard to find. For the algorithms D and E with the original
image as initial guess, two decomposition levels and parameters σ = 1, τ = 1 and α = 10 we
obtain the PSNR = 34.25, err2 = 4.93, err1 = 0.98 after 86 iterations and the PSNR = 34.21,
err2 = 4.96, err1 = 1.00 after 249 iterations, respectively. As shown at the bottom of Fig. 6
there are visual differences at long edges.
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