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Abstra
t

We study a linear quadrati
 problem for a system governed by the heat equation on

a hal�ine with Diri
hlet boundary 
ontrol and Diri
hlet boundary noise. We show that

this problem 
an be reformulated as a sto
hasti
 evolution equation in a 
ertain weighted

L2
spa
e. An appropriate 
hoi
e of weight allows us to prove a stronger regularity for the

boundary terms appearing in the in�nite dimensional state equation. The dire
t solution

of the Ri

ati equation related to the asso
iated non-sto
hasti
 problem is used to �nd the

solution of the problem in feedba
k form and to write the value fun
tion of the problem.
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1 Introdu
tion

In this paper we are 
on
erned with a linear quadrati
 
ontrol problem for a heat equation on

the hal�ine [0,∞) with Diri
hlet boundary 
ontrol and boundary noise. More pre
isely, for

�xed 0 ≤ τ < T , we deal with the equation











∂
∂ty(t, ξ) =

∂2

∂ξ2 y(t, ξ) t ∈ [τ, T ], ξ > 0,

y(t, 0) = u(t) + Ẇ (t) t ∈ [τ, T ],
y(τ, ξ) = x0(ξ) ξ > 0.

(1)

where W is a one dimensional Brownian motion and u is a square-integrable 
ontrol. Let us

re
all that a deterministi
 boundary 
ontrol problem











∂
∂tz(t, ξ) =

∂2

∂ξ2
z(t, ξ) t ∈ [τ, T ], ξ > 0,

z(t, 0) = u(t) t ∈ [τ, T ],
z(τ, ξ) = x0(ξ) ξ > 0,

(2)
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is well understood, see for example [3℄, [13℄). Denoting by A0 the Diri
hlet Lapla
ian in

L2(0,∞) and by D the Diri
hlet map (de�ned as Dλ0 in (10) below), we 
an rewrite (2) in

the form

z(t) = etA0x0 + (λ0 −A0)

∫ t

0
e(t−s)A0Du(s)ds ,

and it is easy to show that z(t) ∈ L2(0,∞) for all t ≥ 0. Therefore, the pro
ess

X(t) = etA0x0 + (λ0 −A0)

∫ t

0
e(t−s)A0Du(s)ds+ (λ0 −A0)

∫ t

0
e(t−s)A0DdW (s) (3)

seems to be a good 
andidate for a solution to (1). However, it was shown in [7℄ that the

pro
ess X is not L2
-valued. More pre
isely, it was shown that the solution to (1) 
onsidered

on a �nite interval and for u = 0, when rewritten in the form (3), is well de�ned in a negative

Sobolev spa
e H−α
for α > 1

2 only. It is easy to see that the same 
on
lusion holds in the


ase of hal�ine. Then it was shown in [2℄, see also [4℄, that the pro
ess X 
an be de�ned

pointwise on (0,∞) and it takes values in a weighted spa
e L2
(

0,∞; ξ1+θdξ
)

. This fa
t was

used to study some properties of the pro
ess X (in fa
t in the aforementioned papers more

general nonlinear equations are studied) but the problem is not reformulated as a sto
hasti


evolution equation in L2
(

0,∞; ξ1+θdξ
)

and therefore advantages of using the weighted spa
e

are somewhat limited.

Following the idea of Krylov [12℄ we introdu
e the weighted spa
es Hρ = L2 ((0,∞); ρ(ξ)dξ),
where for θ ∈ (0, 1) we have

ρ(ξ) = ξ1+θ or ρ(ξ) = min
(

1, ξ1+θ
)

, ξ ≥ 0.

It was proved in [11℄ and [12℄ that the Diri
hlet Lapla
ian A0 de�ned on L2(0,∞) extends to
a generator A of an analyti
 semigroup

(

etA
)

on Hρ. We will show that the Diri
hlet map

takes values in dom ((−A)α) for a 
ertain α > 1
2 and therefore equation (3), when 
onsidered

in Hρ, 
an be given a form

X(t) = etAx0 +

∫ t

0
e(t−s)A (λ0 −A)Du(s)ds +

∫ t

0
e(t−s)A (λ0 −A0)DdW (s)

that is, we will study a 
ontrolled evolution equation

{

dx(t) = (Ax(t) +Bu(t)) dt+B dW (t)
x(τ) = x0 ∈ Hρ

(4)

for B = (λ0−A)D. This fa
t is a starting point for our analysis of the linear quadrati
 
ontrol

problem (1). We will demonstrate that the 
ontrol problem (4) when 
onsidered in the spa
e

Hρ 
an be solved using 
lassi
al by now te
hniques presented, for example, in [3℄. Let us

emphasize that while fo
us of this paper is on the most interesting 
ase of boundary 
ontrol

and boundary noise a more general 
ontrol problem

{

dx(t) = (Ax(t) +Bu1(t) + v(t)) dt+B dW (t) + dW1(t)
x(τ) = x0 ∈ Hρ

(5)

with spatially distributed noise W1 and 
ontrol v might be easily 
onsidered using the same

te
hnique.
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Let us note that if the boundary 
onditions are of Neumann type then the analogue of equation

(1) has a solution in L2(0,∞) and has been studied intensely (also for more general paraboli


equations with boundary noise), see for example [7℄, [17℄, [8℄, [9℄.

We study the linear quadrati
 problem 
hara
terized by the 
ost fun
tional

J(τ, x0, u) = E

[∫ T

τ
|Cx(t)|2Y + |u(t)|2

R
dt+ 〈Gx(T ), x(T )〉Hρ

]

(6)

and governed by a state equation of the form (4). the operator C that appears in (6) is

in L(Hρ;Y ) for a 
ertain Hilbert spa
e Y and G ∈ L(Hρ;Hρ) is symmetri
 and positive.

The dire
t solution of the Ri

ati equation related to a linear quadrati
 problem driven by

a sto
hasti
 equation di�erent from ours was studied in the Neumann 
ase (non-weighted

setting) in [10℄ (see also [1℄ and [5℄ for the 
ontrol inside the domain 
ase (α = 1)). Our

approa
h is di�erent from the one used in the aforementioned works sin
e we dire
tly use the

solution of the Ri

ati equation for the �asso
iated� deterministi
 problem.

The deterministi
 linear quadrati
 problem asso
iated to ours is that 
hara
terized by the

state equation

ẋ(t) = Ax(t) +Bu(t)

and the fun
tional

∫ T

τ

(

|Cx|2Y + |u|2R
)

dt+ 〈Gx(T ), x(T )〉Hρ
. (7)

It is well known, see [3℄ and Se
tion 3 below, that the solution to the linear quadrati
 problem

given above is determined by the operator-valued fun
tion P : [0, T ] → L (Hρ,Hρ) whi
h

solves the so-
alled Ri

ati equation

{

P ′(t) = −A∗P (t)− P (t)A∗ − C∗C + P (t)ABB∗A∗P (t)
P (T ) = G.

(8)

Su
h a problem has been intensely studied (see [3℄ and [14℄ and the referen
es therein). We will

refer in parti
ular to the dire
t solution approa
h and we will use the formalism introdu
ed

in Se
tion 2.2. of [3℄. We show that the Ri

ati equation (8) has a unique solution P in the

spa
e Cs,α([0, T ]; Σ(H)) (see De�nition 3.2). Let us note that in the deterministi
 
ase the

minimum of the 
ost fun
tional (7) is given by 〈P (τ)x0, x0〉H.
In the study of the problem with boundary noise some of the tools and the results of the

deterministi
 
ase, as the properties of the elements of Cs,α ([0, T ]; Σ (Hρ)) and the solution

of (8), are still useful. It is possible to express the value fun
tion and the optimal feedba
k

in terms of P . A term due to the noise appears in the expression of the minimal 
ost and we

have that (Theorem 3.7):

V (τ, x0) = inf
u∈Uτ

J(τ, x0, u) =

= 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)D(1)), P (s)((λ0 −A)D(1))〉H ds. (9)

2 The heat equation in Hρ

2.1 Notation

We will work in a weighted spa
e Hρ = L2([0,∞); ρ(ξ)dξ), where either ρ(ξ) = ξ1+θ ∧ 1 or

ρ(ξ) = ξ1+θ
for some θ ∈ (0, 1) and ξ ≥ 0. All the results proved in the sequel are valid for

3



both weights and therefore, in order to simplify notations we will use the same notation

H = Hρ for both weights. Let us re
all that f ∈ H if and only if

∫ ∞

0
f2(ξ)ρ(ξ) dξ <∞

and H is a Hilbert spa
e with the s
alar produ
t

〈φ,ψ〉H =

∫ ∞

0
φ(ξ)ψ(ξ)ρ(ξ) dξ for all φ,ψ ∈ H.

Given λ > 0, the Diri
hlet map Dλ is de�ned as follows:

Dλ(a) = φ ⇐⇒
{

(λ− ∂2x)φ(ξ) = 0 for all ξ > 0
φ(0) = a

(10)

so Dλ(a) = aψλ where

{

ψλ : R
+ → R

ψλ : ξ 7→ e−
√
λξ (11)

Clearly ψλ ∈ H.

It is well known that for every x0 ∈ L2(0,∞) the solution y to the heat equation with zero

Diri
hlet boundary 
ondition











∂
∂ty(t, ξ) =

∂2

∂ξ2
y(t, ξ) t > 0, ξ > 0,

y(t, 0) = 0 t ≥ 0,
y(0, ξ) = x0(ξ) ξ > 0.

is given by the following well known expression

y(t, ξ) =

∫ ∞

0
k(t, ξ, η)x0(η) dη (12)

where

k(t, ξ, η) =
1√
4πt

(

e−
(ξ−η)2

4t − e−
(ξ+η)2

4t

)

, η, ξ ≥ 0. (13)

This formula de�nes the 
orresponding heat semigroup T (t)x0 = y(t) in L2(0,∞). It is also

well known that (T (t)) is a symmetri
 C0-semigroup of 
ontra
tions on L2(0,∞).

2.2 Properties of the heat semigroup on H
Proposition 2.1. For ea
h of the weights ρ(ξ) 
onsidered above, the heat semigroup (T (t))
extends to a bounded C0 semigroup

(

etA
)

t≥0
on H with generator A : dom(A) → H. The

semigroup

(

etA
)

t≥0
is analyti
.

Proof. The 
ase ρ(ξ) = ξ1+θ
: H = L2

(

[0,∞), ξ1+θdξ
)

.

Let f ∈ L2(0,∞). Then by Theorem 2.5 in [12℄ there exists C > 0 independent of f and su
h

that

∣

∣etAf
∣

∣

H ≤ C|f |H, t ≥ 0.
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Sin
e L2(0,∞) is dense in H, etA 
an be extended to H and the strong 
ontinuity follows by

standard arguments. Let A0 be the generator of (T (t)) in L
2(0,∞) and letD = dom (A0)∩H ⊂

H. Clearly

etAD ⊂ D, t ≥ 0

and D is dense in H. Therefore D is a 
ore for the generator A of

(

etA
)

in H. If f ∈ D then

AetAf =
∂2

∂ξ2
T (t)f

and again by Theorem 2.5 in [12℄ we have

∣

∣

∣

∣

∂2

∂ξ2
T (t)f

∣

∣

∣

∣

H
≤ C

t
|f |H.

Sin
e D is a 
ore for the generator A in H, the above estimate 
an be extended to any f ∈ H
and therefore

∣

∣AetAf
∣

∣

H ≤ C

t
|f |H f ∈ H.

The last inequality is equivalent to the analyti
ity of the semigroup

(

eta
)

in H. follows.

The 
ase ρ(ξ) = 1 ∧ ξ1+θ
: H = L2

(

[0,∞), 1 ∧ ξ1+θdξ
)

.

Let x ∈ C∞
0 (0,∞) and t ≤ T . Then the fun
tions x1 = xI[0,1] and x2 are in L

2(0,∞) and Hρ

for both weights ρ. It follows that

|(T (t)x|H ≤ |T (t)(χ[0,1]x)|H + |T (t)(χ(1,+∞)x)|H
≤ |T (t)(χ[0,1]x)|L2

ξ1+θ
+ |T (t)(χ(1,+∞)x)|L2(0,+∞)

≤ C|x|H

(14)

for a 
ertain C > 0. The fa
t that C does not depend on t ≤ T is a 
onsequen
e of the C0

property of Tt on L
2
ξ1+θ (showed in the �rst part of the proof) and on L2(0,∞). Therefore

(T (t)) has an extension to a semigroup

(

etA
)

on H and the C0-property follows by standard

arguments. Similar arguments yield analyti
ity of

(

etA
)

.

Lemma 2.2. Assume that λ > 0 and r > 0. Then

ψλ ∈ dom((r −A)α) for all α ∈
[

0,
1

2
+
θ

4

)

.

In parti
ular Dλ ∈ L(R; dom((λ−A)α)) for all α ∈
[

0, 12 + θ
4

)

.

Proof. We 
onsider the 
ase of ρ(ξ) = ξ1+θ
only. The other 
ase may be proved by similar if

somewhat simpler arguments.

Note �rst that if ψλ ∈ (dom(A),H)2,σ then ψλ ∈ dom ((r −A)α) for all α ∈ (0, 1 − σ)1,
see for example Theorem 11.5.1 in [16℄. Hen
e the 
laim will follow if we show that ψλ ∈
(dom(A),H)2,σ for

1

2
− θ

4
< σ <

1

2
. (15)

1(dom(A),H)2,σ denotes the real interpolation spa
e

5



By Theorem 10.1 of [15℄) ψλ ∈ (dom(A),H)2,σ if and only if

∫ ∞

0
t2σ−3

∣

∣

(

etA − I
)

ψλ

∣

∣

2

H dt <∞ (16)

and taking into a

ount (15) it is enough to show that

I :=

∫ 1

0
t2σ−3

∣

∣(etA − I)ψλ

∣

∣

2

H <∞. (17)

To show (17) we will use (12) and (13) and the de�nition of ψλ. Denoting by N the 
umulative

distribution fun
tion of the standard normal distribution, we obtain

I =

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ

∣

∣

(

etA − I
)

ψλ(ξ)
∣

∣

2
dξdt

=

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ





∫ ∞

0

e−
(ξ−η)2

4t√
4pt

e−ληdη −
∫ ∞

0

e−
(ξ+η)2

4t√
4pt

e−ληdη − eλξ





2

dξdt

=

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ

(

e−λξeλ
2t
N

(

ξ√
2t

− λ
√
t

)

− eλξeλ
2t

(

1−N

(

ξ√
2t

+ λ
√
t

))

− eλξ
)2

dξdt

≤ 2 (I1 + I2 + I3)

where I1, I2 and I3 are respe
tively

I1 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

e−λξ
(

eλ
2t − 1

)

N

(

ξ√
2t

− λ
√
2t

)

]2

dξ dt

I2 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

e−λξ

(

N

(

ξ√
2t

− λ
√
2t

)

− 1

)

]2

dξ dt

I3 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

eλξeλ
2t

(

1−N

(

ξ√
2t

+ λ
√
2t

))

]2

dξ dt

Sin
e for t ∈ [0, 1] we have
∣

∣

∣
eλ

2t − 1
∣

∣

∣
≤
(

eλ
2 − 1

)

t we �nd that I1 
onverges for every σ > 0.

I3 
an be estimated, using that the standard estimate

(1−N(s)) ≤ 1

s

e−s2/2

√
2π

as follows:

I3 ≤
∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θe2λξe2λ

2t 2t

ξ2
e−ξ2/(2t) dξ dt

≤ C1

∫ 1

0
t2σ−2

∫ +∞

0
ξ−1+θ e2λξ−ξ2/(2t) dξ dt

= C1

∫ 1

0
t2σ−2

∫ +∞

0
y−1+θ t

θ−1
2 e2λy

√
t−y2/2 t1/2 dξ dt

≤ C1

(∫ 1

0
t2σ−2+ θ

2 dt

)(∫ +∞

0
y−1+θ e2λy−y2/2 dξ

)

<∞

where the �niteness of the �rst term follows from (15). The estimate for I2 
an be obtained

in a similar way.
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2.3 Properties of the solution of the state equation

Let W be a real Brownian motion on a probability spa
e (Ω,F ,P) and let (Ft) denote the

natural �ltration of W . We need to give a rigorous meaning to equation (1). To this end we

will assume in the sequel that

λ0 > 0 and α ∈
(

1

2
,
1

2
+
θ

4

)

,

are �xed. We will denote by D the operator Dλ0 ∈ L(R;D((λ0 − A)α)) and ψλ0 = Dλ0(1).
By Proposition 2.1 the semigroup

(

etA
)

is analyti
 and therefore for any γ ≥ 0

‖(λ0 −A)γetA‖H ≤Mγt
−γ

for all t ∈ (0, T ], (18)

see for example [18℄ (Theorem 6.13 page 75). By Lemma 2.2 the operator B = (λ0 − A)D :
R → Hα−1

is bounded

2

. Moreover, for t > 0 the operator

AetADλ0 = (λ0 −A)1−α etA (λ0 −A)αDλ0 : R → H

is bounded as well. We will write etAB = AetADλ0 Now, we reformulate equation equation

(1), still formally, as a sto
hasti
 evolution equation in H:

{

dx(t) = (Ax(t) +Bu(t)) dt+B dW (t)
x(τ) = x0 ∈ H (19)

where the 
ontrol u is 
hosen in the set M2
W (τ, T ;R) of progressively measurable pro
esses

endowed with the norm

‖u‖2M2
W

= E

∫ T

τ
|u(t)|2 dt <∞.

The next two results show that we 
an give a meaning to (19).

Theorem 2.3. For all γ < 2α − 1 the following holds.

(i) The operator t→ etAB : R → H is bounded for ea
h t > 0 and the fun
tion

t→ etABa

is 
ontinuous for every a ∈ R.

(ii)

∫ T

0
s−γ

∥

∥(λ0 −A) esAψλ0

∥

∥

2

H ds <∞. (20)

(iii) For every T > τ ≥ 0 the pro
ess

WA(t) =

∫ t

τ
e(t−s)AB dW (s), t ∈ [τ, T ]

is well de�ned, belongs to C([τ, T ];L2(Ω;H)) and has 
ontinuous traje
tories in H.

2

For β > 0 the spa
e H−β
is de�ned as a 
ompletion of H with respe
t to the norm |x|−β =

˛

˛

˛
(λ0 − A)−β

x

˛

˛

˛

7



Proof. (i) It follows immediately from the de�nition of B and Lemma 2.2 sin
e

etABa = a(λ0 −A)1−αetA(λ0 −A)αψλ0 , a ∈ R (21)

(ii) (By 21) and (18) we have for α ∈
(

1
2 ,

1
2 +

θ
4

)

∥

∥(λ0 −A) esAψλ0

∥

∥

2

HS
=
∣

∣

∣(λ0 −A)1−α esA (λ0 −A)α ψλ0

∣

∣

∣

2
≤ C

s2(1−α)
|(λ0 −A)α ψλ0 |2

and the estimate (20) follows immediately for a 
ertain γ < 2α− 1.
(iii) Using (20) with γ = 0 we �nd immediately that, for every t ≥ 0, WA(t) is well de�ned
and (see for example [6℄ Proposition 4.5 page 91)

E |WA(t)|2H =

∫ t

τ
|esA((λ−A)D)|2HS ds <∞. (22)

Su
h an estimate gives also, through standard arguments, the mean square 
ontinuity. The


ontinuity follows from (20) for γ > 0 using a fa
torization argument as in [7℄ Theorem 2.3

page 174.

Lemma 2.4. Let T > 0 be �xed, λ > 0 and u ∈M2
W (τ, T ;R). Then the pro
ess

I(t) =

∫ t

τ
e(t−s)ABu(s) ds, t ≤ T,

is well de�ned, I ∈M2
W (τ, T ;H), and there exists C > 0 su
h that

E‖I‖2M2
W

≤ C‖u‖2M2
W
.

Moreover, I is in C(τ, T ;L2(Ω,H)) and has 
ontinuous traje
tories.

Proof. The �rst part of the Lemma follow from (21) by standard arguments. The mean-square


ontinuity and 
ontinuity of I follows from (18) and Hölder inequality (sin
e α > 1/2) in the

expression

I(t) =

∫ t

τ

[

(λ0 −A)1−αe(t−s)A
]

[(λ0 −A)αDu(s)] ds.

and the 
laim follows.

De�nition 2.5. Let u ∈M2
W . An H-valued predi
table pro
ess x, de�ned on [0, T ] is 
alled a

mild solution of (19) if

P

[
∫ T

τ
|x(s)|2 ds <∞

]

= 1

and

x(t) = e(t−τ)Ax0 +

∫ t

τ
e(t−s)ABu(s) ds+

∫ t

τ
e(t−s)AB dW (s)

Theorem 2.6. Equation (19) has a unique mild solution x ∈ C(τ, T ;L2(Ω,H)). Moreover, x
has 
ontinuous traje
tories P-a.s. If u = 0 then equation (19) de�nes a Markov pro
ess in H.

Proof. The properties of the sto
hasti
 
onvolution term 
ome from Lemma 2.3, those of

∫ t
τ e

(t−s)ABu(s) from Lemma 2.4. The Markov property 
an be proved with standard argu-

ments (see for example [6℄ Theorem 9.8 page 249).

8



2.4 The approximating equation

Let In def
= (n(n−A)−1)2. We will approximate x using

xn
def
= Inx. (23)

We have that

xn
C([τ,T ];L2(Ω,H))−−−−−−−−−−−→ x. (24)

We use it to obtain more regularity and to guarantee the existen
e of a strong solution and

then to be able to apply the Ito's rule (Proposition 3.6). From Proposition 2.6 we know

that xn ∈ C([τ, T ];L2(Ω,dom(A2))). We have Bn := InB ∈ L(R; dom(A)) and then Bnu ∈
M2

W (τ, T ; dom(A)). Furthermore, xn satis�es the following sto
hasti
 di�erential equation:

{

dxn(t) = (Axn(t) +Bnu(t)) dt+Bn dW (t)
xn(τ) = Inx0

(25)

in strong (an then mild) sense (see [6℄ Se
tion 6.1). So we have

xn(t) = Inx0 +
∫ t

τ
Axn(s) ds+

∫ t

τ
Bnu(s) ds+

∫ t

τ
Bn dW (s) (26)

3 The linear quadrati
 problem

Let us re
all that we work under the assumption

1

2
< α <

1

2
+
θ

4
.

We 
onsider another Hilbert spa
e Y , an operator C ∈ L(H;Y ) and a symmetri
 and positive

G ∈ L(H;H). For a �xed T > 0 we de�ne the set of the admissible 
ontrols as Uτ =
M2

W (τ, T ;R). We 
onsider the linear quadrati
 optimal 
ontrol problem governed by equation

(19) and quadrati
 
ost fun
tional (to be minimized)

J(τ, x0, u) := E

[∫ T

τ

(

|Cx(t)|2Y + |u(t)|2
R

)

dt+ 〈Gx(T ), x(T )〉
]

. (27)

The value fun
tion of the problem is

V (τ, x0) := inf
u∈Uτ

J(τ, x0, u)

We 
onsider now the �asso
iated� deterministi
 linear quadrati
 problem. It is 
hara
terized

by the state equation

{

ẋ(t) = Ax(t) +Bu(t)
x(τ) = x0,

(28)

by the set of admissible 
ontrols UDET := L2(τ, T ;R) and by the fun
tional

JDET (τ, x0, u) :=

∫ T

τ

(

|Cx(t)|2Y + |u(t)|2
R

)

dt+ 〈Gx(T ), x(T )〉 .

In what follows we we will use the following notations.
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Notation 3.1. Σ(H) = {T ∈ L(H;H) : T hermitian}

Σ+(H) = {T ∈ Σ(H) : 〈Tx, x〉 ≥ 0 for all x ∈ H}

Cs([0, T ]; Σ(H)) = {F : [0, T ] → Σ(H) : F strongly 
ontinuous}
Note that ([3℄ page 137) for every P ∈ Cs([0, T ]; Σ(H))

sup
t∈[0,T ]

‖P (t)‖ <∞. (29)

The Ri

ati equation formally asso
iated with the deterministi
 
ontrol problem (28) has the

form

{

P ′(t) = −A∗P (t)− P (t)A∗ − C∗C + P (t)ABB∗A∗P (t)
P (T ) = G,

(30)

but the 
on
ept of solution to this equation requires a rigorous de�nition. We start with some

notations.

De�nition 3.2. We denote by Cs,α([0, T ]; Σ(H)) the set of all P ∈ Cs([0, T ]; Σ(H)) su
h that

(i) P (t)x ∈ D((λ0 −A∗)1−α) ∀x ∈ H,∀t ∈ [0, T )

(ii) VP (t)
def
= (λ0 −A∗)1−αP (t) ∈ C([0, T );L(H))

(iii) limt→T−

(

(T − t)1−αVP (t)x
)

= 0 ∀x ∈ H
Given P ∈ Cs,α([0, T ]; Σ(H)), the norm |P |α is de�ned as

|P |α def
= sup

t∈[0,T )
‖P (t)‖ + sup

t∈[0,T )
(T − t)(1−α)‖(λ0 −A∗)1−αP (t)‖

It 
an be proved (see [3℄ page 205) that Cs,α([0, T ]; Σ(H)), endowed with the norm | · |α,
is a Bana
h spa
e. We will use the notation E

def
= (λ0 −A)αD ∈ L(R;H).

Note that if |P |α <∞ then (sin
e α > 1/2)

|P |L2(0,T ;L(H)) <∞ (31)

De�nition 3.3. We say that P ∈ Cs,α([0, T ]; Σ(H)) is a weak solution of the Ri

ati equation

(30) if for all x, y ∈ dom(A) and all t ∈ (0, T )
{

d
dt 〈P (t)x, y〉 = −〈P (t)x,Ay〉 − 〈P (t)Ax, y〉 − 〈Cx,Cy〉+ 〈E∗VP (t)x,E

∗VP (t)y〉
P (T ) = G.

(32)

We re
all now the existen
e and uniqueness theorem for the (32):

Theorem 3.4. (i) The Ri

ati equation (32) has a unique weak solution in P in

Cs,α([0, T ]; Σ
+(H))

(ii) P ∈ Cs,α([0, T ]; Σ
+(H)) is a weak solution of (30) if and only if it solves the following

mild equation:

P (t) = e(T−t)A∗

Ge(T−t)A +

∫ T

t
e(s−t)A∗

C∗Ce(s−t)A ds

+

∫ T

t
e(s−t)A∗

V ∗
P (s)EE

∗VP (s)e
(s−t)A ds (33)

Proof. See [3℄ Theorem 2.1 page 207 for the proof of (i) and [3℄ Proposition 2.1 page 206 for

(ii).
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3.1 Dynami
 Programming

Lemma 3.5. We have that

∫ T

0
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt <∞

Proof. We use the fa
t that P satis�es the mild equation (33). We have that

∫ T

0
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt

=

∫ T

0
E∗(λ0 −A∗)1−αP (t)(λ0 −A)1−αE(1) dt

= I1 + I2 + I3

def
=

∫ T

0
E∗(λ0 −A∗)1−αe(T−t)A∗

Ge(T−t)A(λ0 −A)1−αE(1) dt

+

∫ T

0
E∗(λ0 −A∗)1−α

(
∫ T

t
e(s−t)A∗

C∗Ce(s−t)A ds

)

(λ0 −A)1−αE(1) dt

+

∫ T

0
E∗(λ0 −A∗)1−α

∫ T

t
e(s−t)A∗

V ∗
P (s)EE

∗VP (s)e
(s−t)A ds(λ0 −A)1−αE(1) dt. (34)

For I1 we have only to 
he
k the integrability for t → T and it follows from the fa
t that

α > 1/2 and from (18):

∥

∥

(

(λ0 −A∗)1−αe(T−t)A∗)∥
∥ ≤ M1−α(T − t)1−α

. For I2 we pro
eed in

a similar way: we 
an write I2 as:

I2 =

∫ T

0

∫ T

t

∣

∣

∣
C
(

(λ0 −A)1−αe(s−t)A
)

E(1)
∣

∣

∣

2
ds dt

and we 
an 
on
lude as for I1, using (18). For I3 we 
an observe that:

I3 =

∫ T

0

∫ T

t

∣

∣

∣E∗(λ0 −A∗)1−αe(s−t)A∗

V ∗
P (s)E(1)

∣

∣

∣

2
ds dt

Note that from (ii) of De�nition 3.2 and from the �niteness of the norm |P |α we know that

‖V ∗
P (s)‖ ≤ C1

(T − s)1−α
(35)

and

‖E∗(λ0 −A∗)1−αe(s−t)A∗‖ ≤ C2

(s − t)1−α

The 
laim follows by straightforward 
omputations.

Proposition 3.6. If u ∈M2
W (τ, T ;R) is a 
ontrol and x is the related traje
tory, then

E

[

〈Gx(T ), x(T )〉 +
∫ T

τ
|Cx(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)x(τ), x(τ)〉 + E

[
∫ T

τ
|u(t) + E∗VP (t)x(t)|2R

]

+

∫ T

τ

1

2
〈(λ0 −A)ψλ0 , P (t)((λ0 −A)ψλ0)〉H dt. (36)
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Proof. We will perform the following steps: we �rst approximate x using xn de�ned in (23)

then we 
ompute

∫ T0

τ
d
dt 〈P (t)xn(t), xn(t)〉 dt using Ito's formula and eventually we will 
on-

sider to the limit n→ ∞ and then T0 → T . Let L(dom(A);H) be the spa
e of bounded opera-

tors from dom(A) endowed with the graph norm to H. Note that sin
e P ∈ C([τ, T );L(H;H))
it is a fortiori and element of C([τ, T );L(dom(A);H)). Consider T0 < T and the following

fun
tion (dom(A) is endowed with the graph norm)

{

Φ: [τ, T0]× dom(A) → R

Φ: (t, x) 7→ 〈P (t)x, x〉H .

Note that in the de�nition of Φ we use the s
alar produ
t of H and not of dom(A). Φ is twi
e


ontinuously di�erentiable with lo
ally bounded derivatives in x on [τ, T0]×dom(A). Moreover

we have that ∂xΦ(t, x) = P (t)x and ∂2xΦ(t, x)(y, z) = 2 〈P (t)y, z〉H. The �rst derivative in t
is also 
ontinuous and lo
ally bounded on [τ, T0]× dom(A). Invoking (32) we have

d
dt 〈P (t)x, y〉H = −〈P (t)x,Ay〉H − 〈P (t)Ax, y〉 − 〈Cx,Cy〉H +

+ 〈E∗VP (t)x,E
∗VP (t)y〉H .

Su
h an expression 
an be dis
ontinuous for t = T only (this is the reason why we have


onsidered a T0 < T ). We have already observed that xn satisfy the integral equation (26)

also in dom(A) and then we 
an use the Ito's rule (see [6℄ page 105): we have that

〈P (T0)xn(T0), xn(T0)〉 = 〈P (τ)xn(τ), xn(τ)〉 −
∫ T0

τ
〈Cxn(t), Cxn(t)〉Y dt

− 2

∫ T0

τ
〈P (t)xn(t), Axn(t)〉 dt+

∫ T0

τ
〈E∗VP (t)xn(t), E

∗VP (t)xn(t)〉R dt

+ 2

∫ T0

τ
〈VP (t)xn(t),In(λ0 −A)αDu(t)〉 dt+ 2

∫ T0

τ
〈P (t)xn(t), Axn(t)〉 dt

+ 2

∫ T0

τ
〈VP (t)xn(t),In(λ0 −A)αD dW (t)〉 dt

+

∫ T0

τ

1

2
〈((λ0 −A)Inψλ0), P (t)((λ0 −A)Inψλ0)〉H dt. (37)

By simplifying the terms 〈P (t)xn(t), Axn(t)〉, adding and subtra
ting |u(t)|2
R

and

2
∫ T0

0 〈u(t), E∗VP (t)xn(t)〉R inside the integral and taking the expe
tation we �nd:

E

[

〈P (T0)xn(T0), xn(T0)〉+
∫ T0

τ
|Cxn(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)xn(τ), xn(τ)〉 + E

[
∫ T0

τ
|u(t) + E∗VP (t)xn(t)|2R

]

+ 2E

[∫ T0

τ
〈VP (t)xn(t), (In − I)(λ0 −A)αDu(t)〉 dt

]

+

∫ T0

τ

1

2
〈((λ0 −A)Inψλ0), P (t)((λ0 −A)Inψλ0)〉H dt. (38)
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We want now to pass with n → ∞. Sin
e by (24) we have xn
C([τ,T0];L2(Ω,H))−−−−−−−−−−−→

n→∞
x, it is 
lear

that

lim
n→∞

E

(

〈P (T0) xn (T0) , xn (T0)〉+
∫ T0

τ
|Cxn(t)|2Y dt

)

= E

(

〈P (T0)x (T0) , x (T0)〉+
∫ T0

τ
|Cx(t)|2Y dt

)

and

lim
n→∞

〈P (τ)xn(τ), xn(τ)〉 = 〈P (τ)x(τ), x(τ)〉 .

Sin
e VP ∈ C([τ, T0] ;L(H)) and (λ0 − A)αD = E is bounded, the Dominated 
onvergen
e

yields

lim
n→∞

E

(
∫ T0

τ
|u(t) + E⋆VP (t)xn(t)|2R dt+ 2

∫ T0

τ
〈VP (t)xn(t), (In − I) (λ0 −A)αDu(t)〉 dt

)

= E

∫ T0

τ
|u(t) + E⋆VP (t)x(t)|2R dt.

Finally, using the arguments similar to those in the proof of Lemma 3.5 we obtain

lim
n→∞

E

∫ T0

τ

1

2
〈(λ0 −A)Inψλ0 , P (t) (λ0 −A) Inψλ0〉H dt = E

∫ T0

τ

1

2
〈(λ0 −A)ψλ0 , P (t) (λ0 −A)ψλ0〉H dt

and therefore, putting together the above results we obtain

E

[

〈P (T0)x(T0), x(T0)〉+
∫ T0

τ
|Cx(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)x(τ), x(τ)〉 + E

[∫ T0

τ
|u(t) + E∗VP (t)x(t)|2R

]

+

∫ T0

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt. (39)

Now we pass to the limit in T0 ↑ T in (39). To show the 
onvergen
e of the left hand side of

(39) it is enough to invoke monotone 
onvergen
e and to show that

lim
T0→T

E 〈P (T0) x (T0) , x (T0)〉 = E 〈P (T ) x (T ) , x (T )〉 . (40)

To this end note that

〈P (T )x(T ), x(T )〉 − 〈P (T0) x (T0) , x (T0)〉
= 〈(P (T )− P (T0))x(T ), x(T )〉

+ 〈P (T0)(x(T ) − x(T0)), x(T )〉 + 〈P (T0)x(T0), x(T )− x(T0)〉 . (41)

Then the strong 
ontinuity of P at T yields

lim
T0→T

〈(P (T )− P (T0)) x(T ), x(T )〉 = 0

hen
e by (29) and the fa
t that x ∈ C([τ, T ];L2(Ω;H)) and the Dominated Convergen
e we

obtain

lim
T0→T

E 〈(P (T )− P (T0)) x(T ), x(T )〉 = 0.
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Again, sin
e x ∈ C([τ, T ];L2(Ω;H)), we �nd that

|E 〈P (T0)(x(T ) − x(T0)), x(T )〉| ≤ sup
t≤T

‖P (t)‖
(

sup
t≤T

E|x(t)|2
)1/2

(

E |x(T )− x (T0)|2
)1/2

and therefore

lim
T0→T

E 〈P (T0)(x(T ) − x(T0)), x(T )〉 = 0.

By the same arguments we obtain

lim
T0→T

E 〈P (T0)x(T0), x(T )− x(T0)〉 = 0

and therefore we obtain the 
onvergen
e of the left hand side of (39). To prove 
onvergen
e

of the se
ond term in the right side of (39) it is enough to show that VPx ∈ M2
W (τ, T ;H).

Indeed, invoking (35) we have

E

∫ T

0
|VP (s)x(s)|2 ds ≤ C3

∫ T

0
‖VP (s)‖2E|x(s)|2 ds

≤ C4|x|2C([τ,T ];L2(Ω;H))

∫ T

0
‖VP (s)‖2 ds <∞.

(42)

The 
onvergen
e for the third term of the right side of (39) for T0 → T follows from Lemma

3.5.

Theorem 3.7. Let τ ∈ [0, T ] and x0 be in H. Then there exists a unique optimal pair (u∗, x∗)
at (τ, x0). The optimal 
ontrol u∗ is given by the feedba
k formula

u∗(t) = −E∗VP (t)x
∗(t) (43)

and the value fun
tion of the problem is

V (τ, x0) = 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (s)((λ0 −A)ψλ0)〉H ds

Proof. We begin proving that the equation

x∗(t) = e(t−τ)Ax0 −
∫ t

τ
(λ0 −A)1−αe(t−s)AEE∗VP (s)x

∗(s) ds+

∫ t

τ
e(t−s)AB dW (s) (44)

has a unique solution and it is in C([τ, T ];L2(Ω;H)). Consider the mapping























φ 7→ Ψ(φ)

Ψ(φ) = e(t−τ)Ax0−
∫ t

τ
(λ0 −A)1−αe(t−s)AEE∗VP (s)φ(s) ds

+

∫ t

τ
e(t−s)AB dW (s).
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We want to prove that Ψ(φ) de�nes a 
ontra
tion on C([τ, t];L2(Ω;H)) if we 
hoose t small

enough. Consider ψ and φ in C([τ, T ];L2(Ω;H)):

E
[

|(Ψ(ψ)−Ψ(φ))(t)|2
]

= E

[

∣

∣

∣

∣

∫ t

τ

(

(λ0 −A)1−αe(t−s)A
)

EE∗VP (s)(ψ − φ)(s) ds

∣

∣

∣

∣

2
]

≤ C1E

[

|VP |2L2(0,T ;L(H))

∫ t

τ

1

(t− s)2(1−α)
|(ψ − φ)(s)|2 ds

]

≤ C2|(ψ − φ)(s)|2C([τ,t];L2(Ω;H))

∫ t

τ

1

(t− s)2(1−α)
ds (45)

where the 
onstants C1 and C2 do not depend on t. So if t is small enough Ψ is a 
ontra
tion

on C([τ, t];L2(Ω;H)). Similar estimates (together with the fa
t that WA ∈ C(τ, T ;L2(Ω;H))
prove that the image of Ψ is in C([τ, t];L2(Ω;H)). Pro
eeding by iterations (we 
an 
hoose

an uniform step) we have the existen
e and uniqueness of the solution of the (44) on

C([τ, T ];L2(Ω;H)).
We will prove now that u⋆ de�ned by (43) is the optimal 
ontrol. Its admissibility (that

is u∗ ∈M2
W (τ, T ;R)) 
an be proved using the same argument we used in (42).

Now we observe that Proposition 3.6 implies, for every u ∈M2
W (τ, T ;R),

J(τ, x0, u) ≥ 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt (46)

and the 
ouple (u∗, x∗) satis�es

J(τ, x0, u
∗) = 〈P (τ)x0, x0〉+

∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt (47)

so it is optimal. If (û, x̂) is another optimal 
ouple then by (46) and (47) we have

J(τ, x0, û) = 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt

and then (39) yields

|û(t) + E∗VP (t)x̂(t)| = 0 dt⊗ P− a.e.

and then x̂ satis�es (44) but the solution to (44) is unique by Theorem 2.6 solution and �nally

we 
an 
hoose 
ontinuous versions of x̂ and û su
h that x∗ = x̂ and u∗ = û.
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