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Abstrat

We study a linear quadrati problem for a system governed by the heat equation on

a hal�ine with Dirihlet boundary ontrol and Dirihlet boundary noise. We show that

this problem an be reformulated as a stohasti evolution equation in a ertain weighted

L2
spae. An appropriate hoie of weight allows us to prove a stronger regularity for the

boundary terms appearing in the in�nite dimensional state equation. The diret solution

of the Riati equation related to the assoiated non-stohasti problem is used to �nd the

solution of the problem in feedbak form and to write the value funtion of the problem.
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1 Introdution

In this paper we are onerned with a linear quadrati ontrol problem for a heat equation on

the hal�ine [0,∞) with Dirihlet boundary ontrol and boundary noise. More preisely, for

�xed 0 ≤ τ < T , we deal with the equation











∂
∂ty(t, ξ) =

∂2

∂ξ2 y(t, ξ) t ∈ [τ, T ], ξ > 0,

y(t, 0) = u(t) + Ẇ (t) t ∈ [τ, T ],
y(τ, ξ) = x0(ξ) ξ > 0.

(1)

where W is a one dimensional Brownian motion and u is a square-integrable ontrol. Let us

reall that a deterministi boundary ontrol problem











∂
∂tz(t, ξ) =

∂2

∂ξ2
z(t, ξ) t ∈ [τ, T ], ξ > 0,

z(t, 0) = u(t) t ∈ [τ, T ],
z(τ, ξ) = x0(ξ) ξ > 0,

(2)
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is well understood, see for example [3℄, [13℄). Denoting by A0 the Dirihlet Laplaian in

L2(0,∞) and by D the Dirihlet map (de�ned as Dλ0 in (10) below), we an rewrite (2) in

the form

z(t) = etA0x0 + (λ0 −A0)

∫ t

0
e(t−s)A0Du(s)ds ,

and it is easy to show that z(t) ∈ L2(0,∞) for all t ≥ 0. Therefore, the proess

X(t) = etA0x0 + (λ0 −A0)

∫ t

0
e(t−s)A0Du(s)ds+ (λ0 −A0)

∫ t

0
e(t−s)A0DdW (s) (3)

seems to be a good andidate for a solution to (1). However, it was shown in [7℄ that the

proess X is not L2
-valued. More preisely, it was shown that the solution to (1) onsidered

on a �nite interval and for u = 0, when rewritten in the form (3), is well de�ned in a negative

Sobolev spae H−α
for α > 1

2 only. It is easy to see that the same onlusion holds in the

ase of hal�ine. Then it was shown in [2℄, see also [4℄, that the proess X an be de�ned

pointwise on (0,∞) and it takes values in a weighted spae L2
(

0,∞; ξ1+θdξ
)

. This fat was

used to study some properties of the proess X (in fat in the aforementioned papers more

general nonlinear equations are studied) but the problem is not reformulated as a stohasti

evolution equation in L2
(

0,∞; ξ1+θdξ
)

and therefore advantages of using the weighted spae

are somewhat limited.

Following the idea of Krylov [12℄ we introdue the weighted spaes Hρ = L2 ((0,∞); ρ(ξ)dξ),
where for θ ∈ (0, 1) we have

ρ(ξ) = ξ1+θ or ρ(ξ) = min
(

1, ξ1+θ
)

, ξ ≥ 0.

It was proved in [11℄ and [12℄ that the Dirihlet Laplaian A0 de�ned on L2(0,∞) extends to
a generator A of an analyti semigroup

(

etA
)

on Hρ. We will show that the Dirihlet map

takes values in dom ((−A)α) for a ertain α > 1
2 and therefore equation (3), when onsidered

in Hρ, an be given a form

X(t) = etAx0 +

∫ t

0
e(t−s)A (λ0 −A)Du(s)ds +

∫ t

0
e(t−s)A (λ0 −A0)DdW (s)

that is, we will study a ontrolled evolution equation

{

dx(t) = (Ax(t) +Bu(t)) dt+B dW (t)
x(τ) = x0 ∈ Hρ

(4)

for B = (λ0−A)D. This fat is a starting point for our analysis of the linear quadrati ontrol

problem (1). We will demonstrate that the ontrol problem (4) when onsidered in the spae

Hρ an be solved using lassial by now tehniques presented, for example, in [3℄. Let us

emphasize that while fous of this paper is on the most interesting ase of boundary ontrol

and boundary noise a more general ontrol problem

{

dx(t) = (Ax(t) +Bu1(t) + v(t)) dt+B dW (t) + dW1(t)
x(τ) = x0 ∈ Hρ

(5)

with spatially distributed noise W1 and ontrol v might be easily onsidered using the same

tehnique.

2



Let us note that if the boundary onditions are of Neumann type then the analogue of equation

(1) has a solution in L2(0,∞) and has been studied intensely (also for more general paraboli

equations with boundary noise), see for example [7℄, [17℄, [8℄, [9℄.

We study the linear quadrati problem haraterized by the ost funtional

J(τ, x0, u) = E

[∫ T

τ
|Cx(t)|2Y + |u(t)|2

R
dt+ 〈Gx(T ), x(T )〉Hρ

]

(6)

and governed by a state equation of the form (4). the operator C that appears in (6) is

in L(Hρ;Y ) for a ertain Hilbert spae Y and G ∈ L(Hρ;Hρ) is symmetri and positive.

The diret solution of the Riati equation related to a linear quadrati problem driven by

a stohasti equation di�erent from ours was studied in the Neumann ase (non-weighted

setting) in [10℄ (see also [1℄ and [5℄ for the ontrol inside the domain ase (α = 1)). Our

approah is di�erent from the one used in the aforementioned works sine we diretly use the

solution of the Riati equation for the �assoiated� deterministi problem.

The deterministi linear quadrati problem assoiated to ours is that haraterized by the

state equation

ẋ(t) = Ax(t) +Bu(t)

and the funtional

∫ T

τ

(

|Cx|2Y + |u|2R
)

dt+ 〈Gx(T ), x(T )〉Hρ
. (7)

It is well known, see [3℄ and Setion 3 below, that the solution to the linear quadrati problem

given above is determined by the operator-valued funtion P : [0, T ] → L (Hρ,Hρ) whih

solves the so-alled Riati equation

{

P ′(t) = −A∗P (t)− P (t)A∗ − C∗C + P (t)ABB∗A∗P (t)
P (T ) = G.

(8)

Suh a problem has been intensely studied (see [3℄ and [14℄ and the referenes therein). We will

refer in partiular to the diret solution approah and we will use the formalism introdued

in Setion 2.2. of [3℄. We show that the Riati equation (8) has a unique solution P in the

spae Cs,α([0, T ]; Σ(H)) (see De�nition 3.2). Let us note that in the deterministi ase the

minimum of the ost funtional (7) is given by 〈P (τ)x0, x0〉H.
In the study of the problem with boundary noise some of the tools and the results of the

deterministi ase, as the properties of the elements of Cs,α ([0, T ]; Σ (Hρ)) and the solution

of (8), are still useful. It is possible to express the value funtion and the optimal feedbak

in terms of P . A term due to the noise appears in the expression of the minimal ost and we

have that (Theorem 3.7):

V (τ, x0) = inf
u∈Uτ

J(τ, x0, u) =

= 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)D(1)), P (s)((λ0 −A)D(1))〉H ds. (9)

2 The heat equation in Hρ

2.1 Notation

We will work in a weighted spae Hρ = L2([0,∞); ρ(ξ)dξ), where either ρ(ξ) = ξ1+θ ∧ 1 or

ρ(ξ) = ξ1+θ
for some θ ∈ (0, 1) and ξ ≥ 0. All the results proved in the sequel are valid for
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both weights and therefore, in order to simplify notations we will use the same notation

H = Hρ for both weights. Let us reall that f ∈ H if and only if

∫ ∞

0
f2(ξ)ρ(ξ) dξ <∞

and H is a Hilbert spae with the salar produt

〈φ,ψ〉H =

∫ ∞

0
φ(ξ)ψ(ξ)ρ(ξ) dξ for all φ,ψ ∈ H.

Given λ > 0, the Dirihlet map Dλ is de�ned as follows:

Dλ(a) = φ ⇐⇒
{

(λ− ∂2x)φ(ξ) = 0 for all ξ > 0
φ(0) = a

(10)

so Dλ(a) = aψλ where

{

ψλ : R
+ → R

ψλ : ξ 7→ e−
√
λξ (11)

Clearly ψλ ∈ H.

It is well known that for every x0 ∈ L2(0,∞) the solution y to the heat equation with zero

Dirihlet boundary ondition











∂
∂ty(t, ξ) =

∂2

∂ξ2
y(t, ξ) t > 0, ξ > 0,

y(t, 0) = 0 t ≥ 0,
y(0, ξ) = x0(ξ) ξ > 0.

is given by the following well known expression

y(t, ξ) =

∫ ∞

0
k(t, ξ, η)x0(η) dη (12)

where

k(t, ξ, η) =
1√
4πt

(

e−
(ξ−η)2

4t − e−
(ξ+η)2

4t

)

, η, ξ ≥ 0. (13)

This formula de�nes the orresponding heat semigroup T (t)x0 = y(t) in L2(0,∞). It is also

well known that (T (t)) is a symmetri C0-semigroup of ontrations on L2(0,∞).

2.2 Properties of the heat semigroup on H
Proposition 2.1. For eah of the weights ρ(ξ) onsidered above, the heat semigroup (T (t))
extends to a bounded C0 semigroup

(

etA
)

t≥0
on H with generator A : dom(A) → H. The

semigroup

(

etA
)

t≥0
is analyti.

Proof. The ase ρ(ξ) = ξ1+θ
: H = L2

(

[0,∞), ξ1+θdξ
)

.

Let f ∈ L2(0,∞). Then by Theorem 2.5 in [12℄ there exists C > 0 independent of f and suh

that

∣

∣etAf
∣

∣

H ≤ C|f |H, t ≥ 0.
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Sine L2(0,∞) is dense in H, etA an be extended to H and the strong ontinuity follows by

standard arguments. Let A0 be the generator of (T (t)) in L
2(0,∞) and letD = dom (A0)∩H ⊂

H. Clearly

etAD ⊂ D, t ≥ 0

and D is dense in H. Therefore D is a ore for the generator A of

(

etA
)

in H. If f ∈ D then

AetAf =
∂2

∂ξ2
T (t)f

and again by Theorem 2.5 in [12℄ we have

∣

∣

∣

∣

∂2

∂ξ2
T (t)f

∣

∣

∣

∣

H
≤ C

t
|f |H.

Sine D is a ore for the generator A in H, the above estimate an be extended to any f ∈ H
and therefore

∣

∣AetAf
∣

∣

H ≤ C

t
|f |H f ∈ H.

The last inequality is equivalent to the analytiity of the semigroup

(

eta
)

in H. follows.

The ase ρ(ξ) = 1 ∧ ξ1+θ
: H = L2

(

[0,∞), 1 ∧ ξ1+θdξ
)

.

Let x ∈ C∞
0 (0,∞) and t ≤ T . Then the funtions x1 = xI[0,1] and x2 are in L

2(0,∞) and Hρ

for both weights ρ. It follows that

|(T (t)x|H ≤ |T (t)(χ[0,1]x)|H + |T (t)(χ(1,+∞)x)|H
≤ |T (t)(χ[0,1]x)|L2

ξ1+θ
+ |T (t)(χ(1,+∞)x)|L2(0,+∞)

≤ C|x|H

(14)

for a ertain C > 0. The fat that C does not depend on t ≤ T is a onsequene of the C0

property of Tt on L
2
ξ1+θ (showed in the �rst part of the proof) and on L2(0,∞). Therefore

(T (t)) has an extension to a semigroup

(

etA
)

on H and the C0-property follows by standard

arguments. Similar arguments yield analytiity of

(

etA
)

.

Lemma 2.2. Assume that λ > 0 and r > 0. Then

ψλ ∈ dom((r −A)α) for all α ∈
[

0,
1

2
+
θ

4

)

.

In partiular Dλ ∈ L(R; dom((λ−A)α)) for all α ∈
[

0, 12 + θ
4

)

.

Proof. We onsider the ase of ρ(ξ) = ξ1+θ
only. The other ase may be proved by similar if

somewhat simpler arguments.

Note �rst that if ψλ ∈ (dom(A),H)2,σ then ψλ ∈ dom ((r −A)α) for all α ∈ (0, 1 − σ)1,
see for example Theorem 11.5.1 in [16℄. Hene the laim will follow if we show that ψλ ∈
(dom(A),H)2,σ for

1

2
− θ

4
< σ <

1

2
. (15)

1(dom(A),H)2,σ denotes the real interpolation spae
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By Theorem 10.1 of [15℄) ψλ ∈ (dom(A),H)2,σ if and only if

∫ ∞

0
t2σ−3

∣

∣

(

etA − I
)

ψλ

∣

∣

2

H dt <∞ (16)

and taking into aount (15) it is enough to show that

I :=

∫ 1

0
t2σ−3

∣

∣(etA − I)ψλ

∣

∣

2

H <∞. (17)

To show (17) we will use (12) and (13) and the de�nition of ψλ. Denoting by N the umulative

distribution funtion of the standard normal distribution, we obtain

I =

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ

∣

∣

(

etA − I
)

ψλ(ξ)
∣

∣

2
dξdt

=

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ





∫ ∞

0

e−
(ξ−η)2

4t√
4pt

e−ληdη −
∫ ∞

0

e−
(ξ+η)2

4t√
4pt

e−ληdη − eλξ





2

dξdt

=

∫ 1

0
t2σ−3

∫ ∞

0
ξ1+θ

(

e−λξeλ
2t
N

(

ξ√
2t

− λ
√
t

)

− eλξeλ
2t

(

1−N

(

ξ√
2t

+ λ
√
t

))

− eλξ
)2

dξdt

≤ 2 (I1 + I2 + I3)

where I1, I2 and I3 are respetively

I1 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

e−λξ
(

eλ
2t − 1

)

N

(

ξ√
2t

− λ
√
2t

)

]2

dξ dt

I2 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

e−λξ

(

N

(

ξ√
2t

− λ
√
2t

)

− 1

)

]2

dξ dt

I3 :=

∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θ

[

eλξeλ
2t

(

1−N

(

ξ√
2t

+ λ
√
2t

))

]2

dξ dt

Sine for t ∈ [0, 1] we have
∣

∣

∣
eλ

2t − 1
∣

∣

∣
≤
(

eλ
2 − 1

)

t we �nd that I1 onverges for every σ > 0.

I3 an be estimated, using that the standard estimate

(1−N(s)) ≤ 1

s

e−s2/2

√
2π

as follows:

I3 ≤
∫ 1

0
t2σ−3

∫ +∞

0
ξ1+θe2λξe2λ

2t 2t

ξ2
e−ξ2/(2t) dξ dt

≤ C1

∫ 1

0
t2σ−2

∫ +∞

0
ξ−1+θ e2λξ−ξ2/(2t) dξ dt

= C1

∫ 1

0
t2σ−2

∫ +∞

0
y−1+θ t

θ−1
2 e2λy

√
t−y2/2 t1/2 dξ dt

≤ C1

(∫ 1

0
t2σ−2+ θ

2 dt

)(∫ +∞

0
y−1+θ e2λy−y2/2 dξ

)

<∞

where the �niteness of the �rst term follows from (15). The estimate for I2 an be obtained

in a similar way.
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2.3 Properties of the solution of the state equation

Let W be a real Brownian motion on a probability spae (Ω,F ,P) and let (Ft) denote the

natural �ltration of W . We need to give a rigorous meaning to equation (1). To this end we

will assume in the sequel that

λ0 > 0 and α ∈
(

1

2
,
1

2
+
θ

4

)

,

are �xed. We will denote by D the operator Dλ0 ∈ L(R;D((λ0 − A)α)) and ψλ0 = Dλ0(1).
By Proposition 2.1 the semigroup

(

etA
)

is analyti and therefore for any γ ≥ 0

‖(λ0 −A)γetA‖H ≤Mγt
−γ

for all t ∈ (0, T ], (18)

see for example [18℄ (Theorem 6.13 page 75). By Lemma 2.2 the operator B = (λ0 − A)D :
R → Hα−1

is bounded

2

. Moreover, for t > 0 the operator

AetADλ0 = (λ0 −A)1−α etA (λ0 −A)αDλ0 : R → H

is bounded as well. We will write etAB = AetADλ0 Now, we reformulate equation equation

(1), still formally, as a stohasti evolution equation in H:

{

dx(t) = (Ax(t) +Bu(t)) dt+B dW (t)
x(τ) = x0 ∈ H (19)

where the ontrol u is hosen in the set M2
W (τ, T ;R) of progressively measurable proesses

endowed with the norm

‖u‖2M2
W

= E

∫ T

τ
|u(t)|2 dt <∞.

The next two results show that we an give a meaning to (19).

Theorem 2.3. For all γ < 2α − 1 the following holds.

(i) The operator t→ etAB : R → H is bounded for eah t > 0 and the funtion

t→ etABa

is ontinuous for every a ∈ R.

(ii)

∫ T

0
s−γ

∥

∥(λ0 −A) esAψλ0

∥

∥

2

H ds <∞. (20)

(iii) For every T > τ ≥ 0 the proess

WA(t) =

∫ t

τ
e(t−s)AB dW (s), t ∈ [τ, T ]

is well de�ned, belongs to C([τ, T ];L2(Ω;H)) and has ontinuous trajetories in H.

2

For β > 0 the spae H−β
is de�ned as a ompletion of H with respet to the norm |x|−β =

˛

˛

˛
(λ0 − A)−β

x

˛

˛

˛

7



Proof. (i) It follows immediately from the de�nition of B and Lemma 2.2 sine

etABa = a(λ0 −A)1−αetA(λ0 −A)αψλ0 , a ∈ R (21)

(ii) (By 21) and (18) we have for α ∈
(

1
2 ,

1
2 +

θ
4

)

∥

∥(λ0 −A) esAψλ0

∥

∥

2

HS
=
∣

∣

∣(λ0 −A)1−α esA (λ0 −A)α ψλ0

∣

∣

∣

2
≤ C

s2(1−α)
|(λ0 −A)α ψλ0 |2

and the estimate (20) follows immediately for a ertain γ < 2α− 1.
(iii) Using (20) with γ = 0 we �nd immediately that, for every t ≥ 0, WA(t) is well de�ned
and (see for example [6℄ Proposition 4.5 page 91)

E |WA(t)|2H =

∫ t

τ
|esA((λ−A)D)|2HS ds <∞. (22)

Suh an estimate gives also, through standard arguments, the mean square ontinuity. The

ontinuity follows from (20) for γ > 0 using a fatorization argument as in [7℄ Theorem 2.3

page 174.

Lemma 2.4. Let T > 0 be �xed, λ > 0 and u ∈M2
W (τ, T ;R). Then the proess

I(t) =

∫ t

τ
e(t−s)ABu(s) ds, t ≤ T,

is well de�ned, I ∈M2
W (τ, T ;H), and there exists C > 0 suh that

E‖I‖2M2
W

≤ C‖u‖2M2
W
.

Moreover, I is in C(τ, T ;L2(Ω,H)) and has ontinuous trajetories.

Proof. The �rst part of the Lemma follow from (21) by standard arguments. The mean-square

ontinuity and ontinuity of I follows from (18) and Hölder inequality (sine α > 1/2) in the

expression

I(t) =

∫ t

τ

[

(λ0 −A)1−αe(t−s)A
]

[(λ0 −A)αDu(s)] ds.

and the laim follows.

De�nition 2.5. Let u ∈M2
W . An H-valued preditable proess x, de�ned on [0, T ] is alled a

mild solution of (19) if

P

[
∫ T

τ
|x(s)|2 ds <∞

]

= 1

and

x(t) = e(t−τ)Ax0 +

∫ t

τ
e(t−s)ABu(s) ds+

∫ t

τ
e(t−s)AB dW (s)

Theorem 2.6. Equation (19) has a unique mild solution x ∈ C(τ, T ;L2(Ω,H)). Moreover, x
has ontinuous trajetories P-a.s. If u = 0 then equation (19) de�nes a Markov proess in H.

Proof. The properties of the stohasti onvolution term ome from Lemma 2.3, those of

∫ t
τ e

(t−s)ABu(s) from Lemma 2.4. The Markov property an be proved with standard argu-

ments (see for example [6℄ Theorem 9.8 page 249).
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2.4 The approximating equation

Let In def
= (n(n−A)−1)2. We will approximate x using

xn
def
= Inx. (23)

We have that

xn
C([τ,T ];L2(Ω,H))−−−−−−−−−−−→ x. (24)

We use it to obtain more regularity and to guarantee the existene of a strong solution and

then to be able to apply the Ito's rule (Proposition 3.6). From Proposition 2.6 we know

that xn ∈ C([τ, T ];L2(Ω,dom(A2))). We have Bn := InB ∈ L(R; dom(A)) and then Bnu ∈
M2

W (τ, T ; dom(A)). Furthermore, xn satis�es the following stohasti di�erential equation:

{

dxn(t) = (Axn(t) +Bnu(t)) dt+Bn dW (t)
xn(τ) = Inx0

(25)

in strong (an then mild) sense (see [6℄ Setion 6.1). So we have

xn(t) = Inx0 +
∫ t

τ
Axn(s) ds+

∫ t

τ
Bnu(s) ds+

∫ t

τ
Bn dW (s) (26)

3 The linear quadrati problem

Let us reall that we work under the assumption

1

2
< α <

1

2
+
θ

4
.

We onsider another Hilbert spae Y , an operator C ∈ L(H;Y ) and a symmetri and positive

G ∈ L(H;H). For a �xed T > 0 we de�ne the set of the admissible ontrols as Uτ =
M2

W (τ, T ;R). We onsider the linear quadrati optimal ontrol problem governed by equation

(19) and quadrati ost funtional (to be minimized)

J(τ, x0, u) := E

[∫ T

τ

(

|Cx(t)|2Y + |u(t)|2
R

)

dt+ 〈Gx(T ), x(T )〉
]

. (27)

The value funtion of the problem is

V (τ, x0) := inf
u∈Uτ

J(τ, x0, u)

We onsider now the �assoiated� deterministi linear quadrati problem. It is haraterized

by the state equation

{

ẋ(t) = Ax(t) +Bu(t)
x(τ) = x0,

(28)

by the set of admissible ontrols UDET := L2(τ, T ;R) and by the funtional

JDET (τ, x0, u) :=

∫ T

τ

(

|Cx(t)|2Y + |u(t)|2
R

)

dt+ 〈Gx(T ), x(T )〉 .

In what follows we we will use the following notations.
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Notation 3.1. Σ(H) = {T ∈ L(H;H) : T hermitian}

Σ+(H) = {T ∈ Σ(H) : 〈Tx, x〉 ≥ 0 for all x ∈ H}

Cs([0, T ]; Σ(H)) = {F : [0, T ] → Σ(H) : F strongly ontinuous}
Note that ([3℄ page 137) for every P ∈ Cs([0, T ]; Σ(H))

sup
t∈[0,T ]

‖P (t)‖ <∞. (29)

The Riati equation formally assoiated with the deterministi ontrol problem (28) has the

form

{

P ′(t) = −A∗P (t)− P (t)A∗ − C∗C + P (t)ABB∗A∗P (t)
P (T ) = G,

(30)

but the onept of solution to this equation requires a rigorous de�nition. We start with some

notations.

De�nition 3.2. We denote by Cs,α([0, T ]; Σ(H)) the set of all P ∈ Cs([0, T ]; Σ(H)) suh that

(i) P (t)x ∈ D((λ0 −A∗)1−α) ∀x ∈ H,∀t ∈ [0, T )

(ii) VP (t)
def
= (λ0 −A∗)1−αP (t) ∈ C([0, T );L(H))

(iii) limt→T−

(

(T − t)1−αVP (t)x
)

= 0 ∀x ∈ H
Given P ∈ Cs,α([0, T ]; Σ(H)), the norm |P |α is de�ned as

|P |α def
= sup

t∈[0,T )
‖P (t)‖ + sup

t∈[0,T )
(T − t)(1−α)‖(λ0 −A∗)1−αP (t)‖

It an be proved (see [3℄ page 205) that Cs,α([0, T ]; Σ(H)), endowed with the norm | · |α,
is a Banah spae. We will use the notation E

def
= (λ0 −A)αD ∈ L(R;H).

Note that if |P |α <∞ then (sine α > 1/2)

|P |L2(0,T ;L(H)) <∞ (31)

De�nition 3.3. We say that P ∈ Cs,α([0, T ]; Σ(H)) is a weak solution of the Riati equation

(30) if for all x, y ∈ dom(A) and all t ∈ (0, T )
{

d
dt 〈P (t)x, y〉 = −〈P (t)x,Ay〉 − 〈P (t)Ax, y〉 − 〈Cx,Cy〉+ 〈E∗VP (t)x,E

∗VP (t)y〉
P (T ) = G.

(32)

We reall now the existene and uniqueness theorem for the (32):

Theorem 3.4. (i) The Riati equation (32) has a unique weak solution in P in

Cs,α([0, T ]; Σ
+(H))

(ii) P ∈ Cs,α([0, T ]; Σ
+(H)) is a weak solution of (30) if and only if it solves the following

mild equation:

P (t) = e(T−t)A∗

Ge(T−t)A +

∫ T

t
e(s−t)A∗

C∗Ce(s−t)A ds

+

∫ T

t
e(s−t)A∗

V ∗
P (s)EE

∗VP (s)e
(s−t)A ds (33)

Proof. See [3℄ Theorem 2.1 page 207 for the proof of (i) and [3℄ Proposition 2.1 page 206 for

(ii).
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3.1 Dynami Programming

Lemma 3.5. We have that

∫ T

0
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt <∞

Proof. We use the fat that P satis�es the mild equation (33). We have that

∫ T

0
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt

=

∫ T

0
E∗(λ0 −A∗)1−αP (t)(λ0 −A)1−αE(1) dt

= I1 + I2 + I3

def
=

∫ T

0
E∗(λ0 −A∗)1−αe(T−t)A∗

Ge(T−t)A(λ0 −A)1−αE(1) dt

+

∫ T

0
E∗(λ0 −A∗)1−α

(
∫ T

t
e(s−t)A∗

C∗Ce(s−t)A ds

)

(λ0 −A)1−αE(1) dt

+

∫ T

0
E∗(λ0 −A∗)1−α

∫ T

t
e(s−t)A∗

V ∗
P (s)EE

∗VP (s)e
(s−t)A ds(λ0 −A)1−αE(1) dt. (34)

For I1 we have only to hek the integrability for t → T and it follows from the fat that

α > 1/2 and from (18):

∥

∥

(

(λ0 −A∗)1−αe(T−t)A∗)∥
∥ ≤ M1−α(T − t)1−α

. For I2 we proeed in

a similar way: we an write I2 as:

I2 =

∫ T

0

∫ T

t

∣

∣

∣
C
(

(λ0 −A)1−αe(s−t)A
)

E(1)
∣

∣

∣

2
ds dt

and we an onlude as for I1, using (18). For I3 we an observe that:

I3 =

∫ T

0

∫ T

t

∣

∣

∣E∗(λ0 −A∗)1−αe(s−t)A∗

V ∗
P (s)E(1)

∣

∣

∣

2
ds dt

Note that from (ii) of De�nition 3.2 and from the �niteness of the norm |P |α we know that

‖V ∗
P (s)‖ ≤ C1

(T − s)1−α
(35)

and

‖E∗(λ0 −A∗)1−αe(s−t)A∗‖ ≤ C2

(s − t)1−α

The laim follows by straightforward omputations.

Proposition 3.6. If u ∈M2
W (τ, T ;R) is a ontrol and x is the related trajetory, then

E

[

〈Gx(T ), x(T )〉 +
∫ T

τ
|Cx(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)x(τ), x(τ)〉 + E

[
∫ T

τ
|u(t) + E∗VP (t)x(t)|2R

]

+

∫ T

τ

1

2
〈(λ0 −A)ψλ0 , P (t)((λ0 −A)ψλ0)〉H dt. (36)
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Proof. We will perform the following steps: we �rst approximate x using xn de�ned in (23)

then we ompute

∫ T0

τ
d
dt 〈P (t)xn(t), xn(t)〉 dt using Ito's formula and eventually we will on-

sider to the limit n→ ∞ and then T0 → T . Let L(dom(A);H) be the spae of bounded opera-

tors from dom(A) endowed with the graph norm to H. Note that sine P ∈ C([τ, T );L(H;H))
it is a fortiori and element of C([τ, T );L(dom(A);H)). Consider T0 < T and the following

funtion (dom(A) is endowed with the graph norm)

{

Φ: [τ, T0]× dom(A) → R

Φ: (t, x) 7→ 〈P (t)x, x〉H .

Note that in the de�nition of Φ we use the salar produt of H and not of dom(A). Φ is twie

ontinuously di�erentiable with loally bounded derivatives in x on [τ, T0]×dom(A). Moreover

we have that ∂xΦ(t, x) = P (t)x and ∂2xΦ(t, x)(y, z) = 2 〈P (t)y, z〉H. The �rst derivative in t
is also ontinuous and loally bounded on [τ, T0]× dom(A). Invoking (32) we have

d
dt 〈P (t)x, y〉H = −〈P (t)x,Ay〉H − 〈P (t)Ax, y〉 − 〈Cx,Cy〉H +

+ 〈E∗VP (t)x,E
∗VP (t)y〉H .

Suh an expression an be disontinuous for t = T only (this is the reason why we have

onsidered a T0 < T ). We have already observed that xn satisfy the integral equation (26)

also in dom(A) and then we an use the Ito's rule (see [6℄ page 105): we have that

〈P (T0)xn(T0), xn(T0)〉 = 〈P (τ)xn(τ), xn(τ)〉 −
∫ T0

τ
〈Cxn(t), Cxn(t)〉Y dt

− 2

∫ T0

τ
〈P (t)xn(t), Axn(t)〉 dt+

∫ T0

τ
〈E∗VP (t)xn(t), E

∗VP (t)xn(t)〉R dt

+ 2

∫ T0

τ
〈VP (t)xn(t),In(λ0 −A)αDu(t)〉 dt+ 2

∫ T0

τ
〈P (t)xn(t), Axn(t)〉 dt

+ 2

∫ T0

τ
〈VP (t)xn(t),In(λ0 −A)αD dW (t)〉 dt

+

∫ T0

τ

1

2
〈((λ0 −A)Inψλ0), P (t)((λ0 −A)Inψλ0)〉H dt. (37)

By simplifying the terms 〈P (t)xn(t), Axn(t)〉, adding and subtrating |u(t)|2
R

and

2
∫ T0

0 〈u(t), E∗VP (t)xn(t)〉R inside the integral and taking the expetation we �nd:

E

[

〈P (T0)xn(T0), xn(T0)〉+
∫ T0

τ
|Cxn(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)xn(τ), xn(τ)〉 + E

[
∫ T0

τ
|u(t) + E∗VP (t)xn(t)|2R

]

+ 2E

[∫ T0

τ
〈VP (t)xn(t), (In − I)(λ0 −A)αDu(t)〉 dt

]

+

∫ T0

τ

1

2
〈((λ0 −A)Inψλ0), P (t)((λ0 −A)Inψλ0)〉H dt. (38)
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We want now to pass with n → ∞. Sine by (24) we have xn
C([τ,T0];L2(Ω,H))−−−−−−−−−−−→

n→∞
x, it is lear

that

lim
n→∞

E

(

〈P (T0) xn (T0) , xn (T0)〉+
∫ T0

τ
|Cxn(t)|2Y dt

)

= E

(

〈P (T0)x (T0) , x (T0)〉+
∫ T0

τ
|Cx(t)|2Y dt

)

and

lim
n→∞

〈P (τ)xn(τ), xn(τ)〉 = 〈P (τ)x(τ), x(τ)〉 .

Sine VP ∈ C([τ, T0] ;L(H)) and (λ0 − A)αD = E is bounded, the Dominated onvergene

yields

lim
n→∞

E

(
∫ T0

τ
|u(t) + E⋆VP (t)xn(t)|2R dt+ 2

∫ T0

τ
〈VP (t)xn(t), (In − I) (λ0 −A)αDu(t)〉 dt

)

= E

∫ T0

τ
|u(t) + E⋆VP (t)x(t)|2R dt.

Finally, using the arguments similar to those in the proof of Lemma 3.5 we obtain

lim
n→∞

E

∫ T0

τ

1

2
〈(λ0 −A)Inψλ0 , P (t) (λ0 −A) Inψλ0〉H dt = E

∫ T0

τ

1

2
〈(λ0 −A)ψλ0 , P (t) (λ0 −A)ψλ0〉H dt

and therefore, putting together the above results we obtain

E

[

〈P (T0)x(T0), x(T0)〉+
∫ T0

τ
|Cx(t)|2Y + |u(t)|2

R
dt

]

= 〈P (τ)x(τ), x(τ)〉 + E

[∫ T0

τ
|u(t) + E∗VP (t)x(t)|2R

]

+

∫ T0

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt. (39)

Now we pass to the limit in T0 ↑ T in (39). To show the onvergene of the left hand side of

(39) it is enough to invoke monotone onvergene and to show that

lim
T0→T

E 〈P (T0) x (T0) , x (T0)〉 = E 〈P (T ) x (T ) , x (T )〉 . (40)

To this end note that

〈P (T )x(T ), x(T )〉 − 〈P (T0) x (T0) , x (T0)〉
= 〈(P (T )− P (T0))x(T ), x(T )〉

+ 〈P (T0)(x(T ) − x(T0)), x(T )〉 + 〈P (T0)x(T0), x(T )− x(T0)〉 . (41)

Then the strong ontinuity of P at T yields

lim
T0→T

〈(P (T )− P (T0)) x(T ), x(T )〉 = 0

hene by (29) and the fat that x ∈ C([τ, T ];L2(Ω;H)) and the Dominated Convergene we

obtain

lim
T0→T

E 〈(P (T )− P (T0)) x(T ), x(T )〉 = 0.
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Again, sine x ∈ C([τ, T ];L2(Ω;H)), we �nd that

|E 〈P (T0)(x(T ) − x(T0)), x(T )〉| ≤ sup
t≤T

‖P (t)‖
(

sup
t≤T

E|x(t)|2
)1/2

(

E |x(T )− x (T0)|2
)1/2

and therefore

lim
T0→T

E 〈P (T0)(x(T ) − x(T0)), x(T )〉 = 0.

By the same arguments we obtain

lim
T0→T

E 〈P (T0)x(T0), x(T )− x(T0)〉 = 0

and therefore we obtain the onvergene of the left hand side of (39). To prove onvergene

of the seond term in the right side of (39) it is enough to show that VPx ∈ M2
W (τ, T ;H).

Indeed, invoking (35) we have

E

∫ T

0
|VP (s)x(s)|2 ds ≤ C3

∫ T

0
‖VP (s)‖2E|x(s)|2 ds

≤ C4|x|2C([τ,T ];L2(Ω;H))

∫ T

0
‖VP (s)‖2 ds <∞.

(42)

The onvergene for the third term of the right side of (39) for T0 → T follows from Lemma

3.5.

Theorem 3.7. Let τ ∈ [0, T ] and x0 be in H. Then there exists a unique optimal pair (u∗, x∗)
at (τ, x0). The optimal ontrol u∗ is given by the feedbak formula

u∗(t) = −E∗VP (t)x
∗(t) (43)

and the value funtion of the problem is

V (τ, x0) = 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (s)((λ0 −A)ψλ0)〉H ds

Proof. We begin proving that the equation

x∗(t) = e(t−τ)Ax0 −
∫ t

τ
(λ0 −A)1−αe(t−s)AEE∗VP (s)x

∗(s) ds+

∫ t

τ
e(t−s)AB dW (s) (44)

has a unique solution and it is in C([τ, T ];L2(Ω;H)). Consider the mapping























φ 7→ Ψ(φ)

Ψ(φ) = e(t−τ)Ax0−
∫ t

τ
(λ0 −A)1−αe(t−s)AEE∗VP (s)φ(s) ds

+

∫ t

τ
e(t−s)AB dW (s).
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We want to prove that Ψ(φ) de�nes a ontration on C([τ, t];L2(Ω;H)) if we hoose t small

enough. Consider ψ and φ in C([τ, T ];L2(Ω;H)):

E
[

|(Ψ(ψ)−Ψ(φ))(t)|2
]

= E

[

∣

∣

∣

∣

∫ t

τ

(

(λ0 −A)1−αe(t−s)A
)

EE∗VP (s)(ψ − φ)(s) ds

∣

∣

∣

∣

2
]

≤ C1E

[

|VP |2L2(0,T ;L(H))

∫ t

τ

1

(t− s)2(1−α)
|(ψ − φ)(s)|2 ds

]

≤ C2|(ψ − φ)(s)|2C([τ,t];L2(Ω;H))

∫ t

τ

1

(t− s)2(1−α)
ds (45)

where the onstants C1 and C2 do not depend on t. So if t is small enough Ψ is a ontration

on C([τ, t];L2(Ω;H)). Similar estimates (together with the fat that WA ∈ C(τ, T ;L2(Ω;H))
prove that the image of Ψ is in C([τ, t];L2(Ω;H)). Proeeding by iterations (we an hoose

an uniform step) we have the existene and uniqueness of the solution of the (44) on

C([τ, T ];L2(Ω;H)).
We will prove now that u⋆ de�ned by (43) is the optimal ontrol. Its admissibility (that

is u∗ ∈M2
W (τ, T ;R)) an be proved using the same argument we used in (42).

Now we observe that Proposition 3.6 implies, for every u ∈M2
W (τ, T ;R),

J(τ, x0, u) ≥ 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt (46)

and the ouple (u∗, x∗) satis�es

J(τ, x0, u
∗) = 〈P (τ)x0, x0〉+

∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt (47)

so it is optimal. If (û, x̂) is another optimal ouple then by (46) and (47) we have

J(τ, x0, û) = 〈P (τ)x0, x0〉+
∫ T

τ

1

2
〈((λ0 −A)ψλ0), P (t)((λ0 −A)ψλ0)〉H dt

and then (39) yields

|û(t) + E∗VP (t)x̂(t)| = 0 dt⊗ P− a.e.

and then x̂ satis�es (44) but the solution to (44) is unique by Theorem 2.6 solution and �nally

we an hoose ontinuous versions of x̂ and û suh that x∗ = x̂ and u∗ = û.
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