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Abstract

We study a linear quadratic problem for a system governed by the heat equation on
a halfline with Dirichlet boundary control and Dirichlet boundary noise. We show that
this problem can be reformulated as a stochastic evolution equation in a certain weighted
L? space. An appropriate choice of weight allows us to prove a stronger regularity for the
boundary terms appearing in the infinite dimensional state equation. The direct solution
of the Riccati equation related to the associated non-stochastic problem is used to find the
solution of the problem in feedback form and to write the value function of the problem.
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1 Introduction

In this paper we are concerned with a linear quadratic control problem for a heat equation on
the halfline [0, 00) with Dirichlet boundary control and boundary noise. More precisely, for
fixed 0 < 7 < T, we deal with the equation

By(t,€) = Zmy(t,€) te[nT), >0,
y(t,0) = u(t) + W(t) tel[r,T], (1)
y(T7 5) = {EO(S) 5 > 0.

where W is a one dimensional Brownian motion and w is a square-integrable control. Let us
recall that a deterministic boundary control problem

52(t,8) = Fm2(t,€) te[rT], £>0,
2(t,0) = u(t) ter,T), (2)
2(1,€) = z0(§) £>0,
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is well understood, see for example [3]|, [13]). Denoting by A the Dirichlet Laplacian in
L?(0,00) and by D the Dirichlet map (defined as D), in () below), we can rewrite () in
the form

t
2(t) = ey + (Mg — Ap) / et=9)40 Dyy(s)ds,
0

and it is easy to show that 2(t) € L?(0,00) for all ¢+ > 0. Therefore, the process

t t
X(t) = 4020 + (Ao — Ao) / =540 Doy(5)ds + (Ao — Ao) / =40 DA (s) ()
0 0
seems to be a good candidate for a solution to (I). However, it was shown in [7] that the
process X is not L2-valued. More precisely, it was shown that the solution to (I)) considered
on a finite interval and for u = 0, when rewritten in the form (3)), is well defined in a negative
Sobolev space H~¢ for o > % only. It is easy to see that the same conclusion holds in the
case of halfline. Then it was shown in [2], see also [4], that the process X can be defined
pointwise on (0,00) and it takes values in a weighted space L? (0, oo;§1+9d§). This fact was
used to study some properties of the process X (in fact in the aforementioned papers more
general nonlinear equations are studied) but the problem is not reformulated as a stochastic
evolution equation in L? (07 o0; & 1Jr(’df) and therefore advantages of using the weighted space
are somewhat limited.
Following the idea of Krylov [12] we introduce the weighted spaces H, = L? ((0, 00); p(€)d¢),
where for 6 € (0,1) we have

pl&) =€ or p(§) =min (1,€'17), ¢>0.

It was proved in [11] and [12] that the Dirichlet Laplacian Ay defined on L?(0, 00) extends to
a generator A of an analytic semigroup (etA) on H,. We will show that the Dirichlet map
takes values in dom ((—A)?®) for a certain o > % and therefore equation (3)), when considered
in H,, can be given a form

t t
X(t) = ez + / et =94 (\g — A) Du(s)ds + / et=94 (\g — Ag) DAW (s)
0 0
that is, we will study a controlled evolution equation

{ dz(t) = (Az(t) + Bu(t)) dt + BAW(t) (4)

(1) =x0 € Hp

for B = (A\g—A)D. This fact is a starting point for our analysis of the linear quadratic control
problem (). We will demonstrate that the control problem (@) when considered in the space
H, can be solved using classical by now techniques presented, for example, in [3]. Let us
emphasize that while focus of this paper is on the most interesting case of boundary control
and boundary noise a more general control problem

{ dz(t) = (Az(t) + Buy(t) +v(t)) dt + BAW (t) + dW1(t)
x(T) =20 € Hp

(5)

with spatially distributed noise Wj and control v might be easily considered using the same
technique.



Let us note that if the boundary conditions are of Neumann type then the analogue of equation
(@ has a solution in L?(0,00) and has been studied intensely (also for more general parabolic
equations with boundary noise), see for example [7], [17], [8], [9]-.

We study the linear quadratic problem characterized by the cost functional

(6)

and governed by a state equation of the form (). the operator C' that appears in (@) is
in L(H,;Y) for a certain Hilbert space Y and G € L(H,;H,) is symmetric and positive.
The direct solution of the Riccati equation related to a linear quadratic problem driven by
a stochastic equation different from ours was studied in the Neumann case (non-weighted
setting) in [I0] (see also [I] and [5] for the control inside the domain case (v = 1)). Our
approach is different from the one used in the aforementioned works since we directly use the
solution of the Riccati equation for the “associated” deterministic problem.

The deterministic linear quadratic problem associated to ours is that characterized by the
state equation

p

T
J(1,20,u) = E [/ ICz(t) 3 + |u(t)|3 dt + (Gx(T),z(T))y

T

x(t) = Az(t) + Bu(t)

and the functional .
[ (Cof +1u) dt+ (Galm). o)y, @)

It is well known, see [3] and Section 3 below, that the solution to the linear quadratic problem
given above is determined by the operator-valued function P : [0,T] — L (#,,H,) which
solves the so-called Riccati equation

P'(t) = —A*P(t) — P(t)A* — C*C + P(t)ABB*A*P(t) .
{ P(T) = G. (®)

Such a problem has been intensely studied (see [3] and [I4] and the references therein). We will
refer in particular to the direct solution approach and we will use the formalism introduced
in Section 2.2. of [3]. We show that the Riccati equation () has a unique solution P in the
space C ([0, T];3(H)) (see Definition B.2)). Let us note that in the deterministic case the
minimum of the cost functional (@) is given by (P(7)xzo, o)y

In the study of the problem with boundary noise some of the tools and the results of the
deterministic case, as the properties of the elements of Cs, ([0,T]; X (#,)) and the solution
of (), are still useful. It is possible to express the value function and the optimal feedback

in terms of P. A term due to the noise appears in the expression of the minimal cost and we
have that (Theorem B.7):

V(r,z9) = inf J(7,20,u) =

’LLEZ/[T
1

5 (o = A)D(1)), P(s)((Ao — A)D(1)))4, ds. (9)

= (P(7)x0, o) +/ 5

T

2 The heat equation in #,

2.1 Notation

We will work in a weighted space H, = L?([0,00); p(£)d€), where either p(¢) = ¢*9 A1 or
p(&) = €19 for some 0 € (0,1) and £ > 0. All the results proved in the sequel are valid for



both weights and therefore, in order to simplify notations we will use the same notation
H = H, for both weights. Let us recall that f € H if and only if

Amﬂ@m&mg<w

and H is a Hilbert space with the scalar product

(D, 0) 5 = /OOO P(E)P(&)p(§) dg for all ¢, € H.

Given A > 0, the Dirichlet map D) is defined as follows:

_ 52 _
Dy(@) = ¢ < { ;A(O) ixzjs(g) 0 forall&>0 (10)
so Dy(a) = aypy where
Py: RT = R
{wigae“k -

Clearly ¢y € H.
It is well known that for every zo € L?(0,00) the solution y to the heat equation with zero
Dirichlet boundary condition

y(t,0) =0 t >0,
y(0,8) = zo(§) §>0.
is given by the following well known expression
o
vt = [ Kt no(mdy (12)
0
where ) ) )
(&—n) (§+m)
k(t,&,m) = — e & —e 4 , 1,E>0. 13
(e = = ). me 1

This formula defines the corresponding heat semigroup T'(t)xo = y(t) in L?(0,00). It is also
well known that (T'(t)) is a symmetric Cp-semigroup of contractions on L?(0, 00).

2.2 Properties of the heat semigroup on H

Proposition 2.1. For each of the weights p(§) considered above, the heat semigroup (T(t))
extends to a bounded Cy semigroup (etA)t>0 on H with generator A: dom(A) — H. The

Semigroup (etA)t>0 15 analytic.

Proof. The case p(&) = €719 H = L2 ([0,00),£1+9d£).
Let f € L?(0,00). Then by Theorem 2.5 in [I2] there exists C' > 0 independent of f and such
that

e f),, < Clfl, t>0.



Since L?(0,00) is dense in H, e can be extended to H and the strong continuity follows by
standard arguments. Let Ag be the generator of (T(¢)) in L?(0, c0) and let D = dom (Ag)NH C
H. Clearly

DD, t>0

and D is dense in H. Therefore D is a core for the generator A of (etA) in H. If f € D then

82

A
Aet f:a—52

T@)f
and again by Theorem 2.5 in [12] we have

Zorws| <%
0€2 o ot

Since D is a core for the generator A in H, the above estimate can be extended to any f € H
and therefore

A4l < Dirl Ten

The last inequality is equivalent to the analyticity of the semigroup (et“) in H. follows.

The case p(§) =1 AET0: H = L2 ([0,00),1 A EMH0dg).

Let 2 € C§°(0,00) and t <T. Then the functions x; = 21| q; and x are in L*(0,00) and #,
for both weights p. It follows that

(T (#)x|n < 1TE) (Xo,2) [ + 1T ) (X(1,400) ) I
< T 0oz, , + T O (X400 2 22(0400) (14)

< Clzly

for a certain C > 0. The fact that C does not depend on ¢t < T is a consequence of the Cj
property of T; on L§1 +o (showed in the first part of the proof) and on L?(0,00). Therefore

(T'(t)) has an extension to a semigroup (etA) on H and the Cy-property follows by standard
arguments. Similar arguments yield analyticity of (etA). O

Lemma 2.2. Assume that A >0 and r > 0. Then

1
Py € dom((r — A)Y) forall «ac€ [0, 3 + %) :

In particular Dy € L(R;dom((A — A)?)) for all « € [0, % + %)

Proof. We consider the case of p(€) = £ only. The other case may be proved by similar if
somewhat simpler arguments.
Note first that if ¢y € (dom(A),H)2s then ¢y € dom ((r — A)®) for all & € (0,1 — o),
see for example Theorem 11.5.1 in [16]. Hence the claim will follow if we show that ¢y €
(dom(A),H)s,, for

1 0

1
-2 . 15
5 4<a<2 (15)

'(dom(A),H)2,- denotes the real interpolation space



By Theorem 10.1 of [I5]) 1\ € (dom(A),H),, if and only if

/OO 12773 | (e — 1) a3, dt < oo (16)
0

and taking into account (3] it is enough to show that

1
I:= /0 203 |(etA - I)wﬂi < 00. (17)

To show (I7) we will use (I2]) and (I3]) and the definition of ¥5. Denoting by N the cumulative
distribution function of the standard normal distribution, we obtain

1 [e'e]
_ 203 140 | (tA 2
r= [ [T — 1y oo dear

2

1 . o le=m)? oo letm)?
e 4t e 4t
= [ 23 / gito e~ Mdn — / e My — e | dedt
/o 0 0o Vipt 0o Vipt

/ 20 3/ §1+9< BT tN<\/§_—>\\f) — NN <1—N<%+A\/¥)> —eAf)ngdt

<2(I + Ir + Is)

where 17, I» and I3 are respectively

2
| = /0 o /0 : ¢ [eM <e’\2t—1>N <% —A\@)] dé dt
Yooms [T ave| e § NoT :
1 +o0 2
_ 203 140 | e 32t (1 S
I _/0 t /0 ¢ [e e <1 N<\/§+>\\/ﬂ>)] d¢ dt

Since for t € [0, 1] we have ‘e>‘2t - 1‘ < (6)‘2 - 1) t we find that I; converges for every o > 0.
I3 can be estimated, using that the standard estimate

(1N < 1"
s V21

as follows:
1 +oo 2t 2
I </ t20—3/ £1+062A562A2t_26—5 /(2t) de dt
~—Jo 0 §

1 +o00
< C1/ t20’—2/ 5—1+0 p2NE—€%/(21) de dt
0 0

1 +oo 5
- 4202 y—1+9t 7 e2PVE—y?/2 41/2 d¢ dt

1 +o0o
< Cl (/ t20—2+g dt> (/ y—1+9 62)\31—3/2/2 df) < 00
0 0

where the finiteness of the first term follows from (I35]). The estimate for I3 can be obtained
in a similar way. O



2.3 Properties of the solution of the state equation

Let W be a real Brownian motion on a probability space (2, F,P) and let (F;) denote the
natural filtration of . We need to give a rigorous meaning to equation ({Il). To this end we
will assume in the sequel that

11 0
Ao >0 and a€<§,§+1>,

are fixed. We will denote by D the operator Dy, € L(R; D((Ao — A)%)) and 1y, = Dy, (1).
By Proposition 2] the semigroup (etA) is analytic and therefore for any v > 0

(Ao — A)Ye g < Mt~ for all t € (0, T, (18)

see for example [I§] (Theorem 6.13 page 75). By Lemma the operator B = (A\g — A)D :
R — H* s bounde. Moreover, for ¢ > 0 the operator

AetAD)\O = ()\0 - A)l_a etA (}\0 - A)a D)\O ‘R — 7‘[

is bounded as well. We will write e!AB = AetAD)\O Now, we reformulate equation equation
(@), still formally, as a stochastic evolution equation in #:

{ da(t) = (Az(t) + Bu(t)) dt + BAW (t) (19)

(1) =z € H

where the control u is chosen in the set M‘%V(T,T;R) of progressively measurable processes
endowed with the norm

T
2 _ 2
Hu||M‘2V —IE/T lu(t)|” dt < oo.
The next two results show that we can give a meaning to (I9).

Theorem 2.3. For all v < 2a — 1 the following holds.
(i) The operator t — €A B : R — H is bounded for each t > 0 and the function

t — e Ba

18 continuous for every a € R.
(1)
T 2
/ s H()\o —A) 68A¢>\0HH ds < o0. (20)
0
(13i) For every T > 7 > 0 the process

t
Wa(t) = / IABAW (s), te |, T]

is well defined, belongs to C([7,T); L*(;H)) and has continuous trajectories in H.

2For 8 > 0 the space H~” is defined as a completion of 4 with respect to the norm |z|_z = [(Ao — A) "



Proof. (i) It follows immediately from the definition of B and Lemma since
e Ba =a(\g — A) %M (N — A)¥py,, a€R (21)

(ii) (By 2I) and (I8) we have for o € (%7 % + %)

2

c a
< ey [0 —4) Yol

(Ao — A) e*Aihyg Hi{s = ‘()\0 — A e (Ao — A) Py =

and the estimate (20)) follows immediately for a certain v < 2« — 1.
(iii) Using [20) with v = 0 we find immediately that, for every ¢t > 0, W4(t) is well defined
and (see for example [6] Proposition 4.5 page 91)

EWa@)f = [ (O~ D)l ds < o (22)

Such an estimate gives also, through standard arguments, the mean square continuity. The
continuity follows from (20)) for v > 0 using a factorization argument as in [7] Theorem 2.3
page 174. O

Lemma 2.4. Let T > 0 be fixed, A > 0 and u € M‘%V(T, T;R). Then the process
t
I(t) = / = ABuy(s)ds, t<T,

15 well defined, I € MI%V(T,T; H), and there exists C > 0 such that
B2, < Clluls
Moreover, I is in C(1,T; L*>(2,H)) and has continuous trajectories.

Proof. The first part of the Lemma follow from (21]) by standard arguments. The mean-square
continuity and continuity of I follows from (I8) and Hélder inequality (since o > 1/2) in the
expression

t
10) = [ [0 = 012e91] [0 - 4)°Du(s)) s
and the claim follows. O

Definition 2.5. Let u € MI%V An H-valued predictable process x, defined on [0,T] is called a

mild solution of (19) if
T
P [/ lz(s)>ds < oo} =1

t t
() :e(t—T)Ax0+/ DA By (s) ds—i—/ =4 1 (s)

T T

and

Theorem 2.6. Equation (I9) has a unique mild solution x € C(7,T; L*(Q,H)). Moreover, =
has continuous trajectories P-a.s. If u = 0 then equation (I9) defines a Markov process in H.

Proof. The properties of the stochastic convolution term come from Lemma 23] those of
f: e(=9)ABuy(s) from Lemma X4 The Markov property can be proved with standard argu-
ments (see for example [6] Theorem 9.8 page 249). O



2.4 The approximating equation

def

Let Z, = (n(n — A)~1)2. We will approximate = using

Tn def . (23)

We have that O TLE @)

Ty — PO g (24)
We use it to obtain more regularity and to guarantee the existence of a strong solution and
then to be able to apply the Ito’s rule (Proposition B.6]). From Proposition we know
that @, € C([r,T]; L*(2,dom(A?))). We have B, := Z,B € L(R;dom(A)) and then B,u €
M3, (7, T;dom(A)). Furthermore, x,, satisfies the following stochastic differential equation:

dx,(t) = (Azy(t) + Bpu(t)) dt + B, dW (t) (25)
xn (1) = Inao
in strong (an then mild) sense (see [6] Section 6.1). So we have
t t t
xn(t) = Iyxg —i—/ Azp(s) ds—i—/ Bhu(s) ds—i—/ B, dW(s) (26)

3 The linear quadratic problem

Let us recall that we work under the assumption

1< <1+9
—<a< -+ -
2 2 4

We consider another Hilbert space Y, an operator C € L(#;Y') and a symmetric and positive
G € L(H;H). For a fixed T > 0 we define the set of the admissible controls as U, =
M‘%V (1, T;R). We consider the linear quadratic optimal control problem governed by equation
(M) and quadratic cost functional (to be minimized)

T
I =& | [ (0B + lu(O)R) de-+ (GolD).a()] 1)
The value function of the problem is

V(7,z9) := inf J(T,z0,u)

ueur

We consider now the “associated” deterministic linear quadratic problem. It is characterized
by the state equation

{ i(t) = Ax(t) + Bu(t) (28)

x(T) = xo,

by the set of admissible controls Upgr := L%(7,T;R) and by the functional

T
Iogr(rzo) = [ (Cal)f +u(®R) de + (Ga(),2(T)).

In what follows we we will use the following notations.



Notation 3.1. YX(H)={T € L(H;H) : T hermitian}
STH)={T € S(H) : (Tz,x) >0 for all x € H}
Co([0,T]; 2(H)) = {F: [0,T] = %(H) : F strongly continuous}
Note that ([3] page 137) for every P € Cy([0,T];X(H))
tes[lolg“] [ P(@)]] < oo. (29)

The Riccati equation formally associated with the deterministic control problem (28] has the
form

{ P'(t) = —A*P(t) — P(t)A* — C*C + P(t)ABB*A*P(t) (30)

P(T) =G,
but the concept of solution to this equation requires a rigorous definition. We start with some
notations.

Definition 3.2. We denote by C; ([0, T];3(H)) the set of all P € C([0,T];3X(H)) such that

(i) P(t)x € D((Ag — A7) Vo e H,Vt e [0,T)
(i) Vp(t) & (Ao — A*)'=P(t) € C([0,T): L(H))

(ii1) limg - (T =)' *Vp(t)z) =0 Vo eH
Given P € C, o([0,T); £(H)), the norm |P|, is defined as
def —« x\1—a
Pla = sup [P@)] + sup (T =)= [(xo — A7) " *P(1)]
tel0,T) tel0,T)
It can be proved (see [3] page 205) that Cs ([0, T];3(H)), endowed with the norm |- |4,

is a Banach space. We will use the notation E < (Ao —A)*D € LR, H).
Note that if |P|, < oo then (since a > 1/2)

[Pl L2(0,m52(3)) < 00 (31)

Definition 3.3. We say that P € C;([0,T];X(H)) is a weak solution of the Riccati equation
(30) if for all z,y € dom(A) and all t € (0,T)

{ i (P2, y) = — (P(t)z, Ay) — (P()Az,y) — (Cz,Cy) + (E*Vp(t)z, E*Vp(t)y)

P(T) = G. (32)

We recall now the existence and uniqueness theorem for the (32):

Theorem 3.4. (i) The Riccati equation (33) has a unique weak solution in P in
Cs.a([0,T]; 27 (H))

(ii) P € Cso([0,T; 2T (H)) is a weak solution of (30) if and only if it solves the following
mild equation:

T
Pt) = oT—D4" Ge(T-0A +/ DA™ o (DA g
t

T
- / DAV () EE* Vp(s)e* D4 ds  (33)
t

Proof. See [3] Theorem 2.1 page 207 for the proof of (i) and [3] Proposition 2.1 page 206 for
(ii). O

10



3.1 Dynamic Programming

Lemma 3.5. We have that
T
[ 00 = 020). PO = Ay dt < o0
Proof. We use the fact that P satisfies the mild equation (33)). We have that
T
| 100 = 020). PO = Ay

/ E* (o — A P()(\o — A)E(1) dt
=L+1+ I3

def/ E*(\o — A*)1o0eT=D4"GeT-04 ()| _ A)l=ap(1) dt

- / E*(A\g — A" ( / AT Cx el A ds) (Ao — A B dt
0 t

T T
+ / E*(Ag — A" / TNV EE* Vp(s)e D ds(Ag — A)' T E(1) dt.  (34)
0 t

For I; we have only to check the integrability for ¢ — T and it follows from the fact that
o > 1/2 and from [@8): ||((Xo — Ar)lmaeT=0A7) | < My_o(T —t)'=2. For Iy we proceed in
a similar way: we can write Iy as:

I = /OT /tT ‘c <(>\0 - A)1*%<S*t>f‘) E(1)(2 dsdt

and we can conclude as for I1, using (I8). For I3 we can observe that:

. 2
13_/ / ‘E ) eV (s)E (1)‘ dsdt
Note that from (i) of Definition B2 and from the finiteness of the norm |P|, we know that
Ch
5 < 35
Ve (s)ll < s (35)

and o

E*(\ — A* l1—a (s—t)A* < 2

|| ( 0 ) € ||— (S—t)lfa
The claim follows by straightforward computations. O

Proposition 3.6. If u € M‘%V(T,T;R) s a control and x is the related trajectory, then
T
E (Gz(T),z(T)) +/ [Ca(t)F + [u(®)| dt]
’ T
= (P(1)z(1),z(1)) + E [/ lu(t) + E*Vp(t)z(t) %

T
4 [ 5100 = Aoy, PO = Ay . (30

11



Proof. We will perform the following steps: we first approximate z using z,, defined in (23])
then we compute TTO L (P(t)zn(t), 2,(t)) dt using Ito’s formula and eventually we will con-
sider to the limit n — oo and then Ty — 7. Let £(dom(A); H) be the space of bounded opera-
tors from dom(A) endowed with the graph norm to H. Note that since P € C([r,T); L(H;H))
it is a fortiori and element of C([7,T); L(dom(A);H)). Consider Ty < T and the following

function (dom(A) is endowed with the graph norm)

{ ®: [r,Tp] x dom(A4) - R
Q: (t,x) = (P(t)r,x), .

Note that in the definition of ® we use the scalar product of # and not of dom(A). @ is twice
continuously differentiable with locally bounded derivatives in  on |7, Tp] x dom(A). Moreover
we have that 9,®(t,z) = P(t)z and 02®(t,z)(y, 2) = 2(P(t)y, z),,. The first derivative in ¢
is also continuous and locally bounded on [r, Ty] X dom(A). Invoking (32)) we have

% <P(t)x7y>7-[ - - <P(t)x7Ay>H - <P(t)A(L‘,y> - <C.%', Cy>?-£ +
+ (E*Vp(t)x, E*Vp(t)y)y, -

Such an expression can be discontinuous for ¢ = T only (this is the reason why we have
considered a Ty < T'). We have already observed that x,, satisfy the integral equation (28]
also in dom(A) and then we can use the Ito’s rule (see [6] page 105): we have that

To

(P(To)xn(To), 2a(To)) = (P(1)2n(T), 2n(7)) —/ (Cn(t), Con(t))y dt

-
To

To
=2 [ PO 0) Ava(t) dt [ E Ve O (0) BV (t)o (1)

+9 / V()2 (t). T (Mo — A Dut)) i 12 / Pt (1), Az (1) d

To
2 / (Vo (£)2n (), Ta(Xo — A)*D AW (1)) dt

To
[ 5 100 = AZag ) PO~ ATty . (3)

By simplifying the terms (P(t)z,(t), Az,(t)), adding and subtracting |u(t)|3 and
2 fOTO (u(t), E*Vp(t)xy,(t))g inside the integral and taking the expectation we find:

To
B | (P(To)on (To),an(T) + [

T

= (P(T)xn(T), 20 (7)) + E [/T

Con®)} + ru<t>rédt]

To
() +E*vp<t>wn<t>\i]

To
28 | [ Ve(0a(0). (2 ~ D)0 — 41 Dutt)

To
/
T

(Ao = A)Znthag ), P(£) (Ao — A)Znthxy )y dE. (38)

DN | =

12



C([TvTO};LQ(QvH))

n—oo

We want now to pass with n — oo. Since by (24) we have x,
that

x, it is clear

To To

lim E ((P (To) zn (To) , zn (1)) +/

n—o0 T

w%@@w>=E0Pamu%mu%»+/ mww@ﬁ)

and
lim (P(7)xn (1), 20 (7)) = (P(T)x(7),2(7)) .

n—o0

Since Vp € C([r,To]; L(H)) and (A9 — A)*D = E is bounded, the Dominated convergence
yields

To To
lim E (/ lalt) + BV (£)an ()2 dt+2/

T

(Vp(t)zn (t), (T, — I) (Ao — A)* Du(t)) dt)

To
=E / lu(t) + E*Vp(t)z(t)|3 dt.

Finally, using the arguments similar to those in the proof of Lemma we obtain

To 1 To 1
fim B [ (00 = 4) Zutngs PO o = A Zutbag )yt =B [ 5 (%0 = 4) g PO (0 — 4) gy e

n—o0

and therefore, putting together the above results we obtain
To
EBPUMMﬂmxuw>+/’rcaw@+¢ww@dﬂ
To
=wmmmmwﬂﬂ/hm+ﬁwww%]

To
4[5 100 = A PO — A )y . (39

Now we pass to the limit in Ty 1 7 in ([B9). To show the convergence of the left hand side of
([39)) it is enough to invoke monotone convergence and to show that

lim B (P (To)z (To),x (To)) = E(P(T)z(T),x(T)). (40)

To—T

To this end note that

+(P(To
Then the strong continuity of P at T yields

lim ((P(T) — P (To) a(T).(T)) = 0

hence by (29) and the fact that z € C([r,T]; L?(€;H)) and the Dominated Convergence we
obtain

i E(P(T) ~ P (Ty) a(T), a(T)) = 0.

13



Again, since z € O([r, T]; L*(Q; H)), we find that

1/2 12
|E(P(To)(2(T) — =(1p)), z(T))| < ilgHP(t)ll (fggEll’(t)IZ) (Elfﬂ(T) - w(To)IZ)

and therefore

Jlim B (P(Ty)(@(T) = a(Ty)), =(T) = 0.

By the same arguments we obtain

lim E (P(Ty)z(Tp),z(T) — z(Tp)) =0

TO*}T

and therefore we obtain the convergence of the left hand side of ([B9). To prove convergence
of the second term in the right side of (BJ) it is enough to show that Vpz € M3 (7, T;H).
Indeed, invoking (35]) we have

T T
2 2 2
E /O Vi (s)(s)? ds < C /0 Vo ()| PEf(s)? ds »

T
< C4‘x’%([T,T];L2(Q;’H))/O [Ve(s)|? ds < oc.

The convergence for the third term of the right side of (B9) for Ty — T follows from Lemma
3.3l O

Theorem 3.7. Let 7 € [0,T] and zo be in H. Then there exists a unique optimal pair (u*, x*)
at (1,20). The optimal control u* is given by the feedback formula

wt(t) = —E*Vp(t)z* (t) (43)

and the value function of the problem is

T

V(ran) = (P, 0) + [ 5 (o = A1), P(s) (o = A)ing )y ds

Proof. We begin proving that the equation
t t
¥ (t) = et Az — / (Ao — A 2 ARE Vp(s)2* (s) ds + / IABAW (s)  (44)

has a unique solution and it is in C([r,T]; L?(£2;H)). Consider the mapping

¢ — V() t
U(¢p) = e(tT)Awo—/ (Ao — A 2 AEE Vp(5)p(s) ds

t
+/ eU=DAB AW ().

14



We want to prove that W(¢) defines a contraction on C([r,t]; L?(Q;H)) if we choose ¢ small
enough. Consider ¢ and ¢ in C([r,T); L2(Q;H)):
2]

E [|(¥(y) — ¥(¢))(t)[]
=E
(t_s)%\(l/f - ¢)(3)\2d3]

/Tt <()\0 - A)l—ae(t—s)A> EEVp(s)(4 — 6)(s)ds

t
< CE [’VP‘%Q(O,T;E(’H))/

t
1
< Callw =My | e s 49

where the constants 'y and Cy do not depend on t. So if ¢ is small enough ¥ is a contraction
on C([,t]; L*(Q;H)). Similar estimates (together with the fact that Wa € C(r,T; L?(;H))
prove that the image of W is in C([r,t]; L?(£;H)). Proceeding by iterations (we can choose
an uniform step) we have the existence and uniqueness of the solution of the (@4) on
C((r, T} 1 H)).

We will prove now that u* defined by (43)) is the optimal control. Its admissibility (that
isu* € M‘%V(T, T;R)) can be proved using the same argument we used in (42)).

Now we observe that Proposition implies, for every u € M‘%V(T, T;R),

1
J(7,20,u) > (P(7)x0, T0) +/ 5 (Ao = A, ), P()((Ao — A)ong))y At (46)

and the couple (u*, x*) satisfies

T
I(ra0.0) = (PE)a0)+ [ 3 (O = Abag). PO — Ay dt (47)
so it is optimal. If (@, ) is another optimal couple then by (46]) and ([@7) we have
T
J (7,20, 0) = (P(7)x0, 20) +/ % (Ao = A)thng), P(E)(Ao = A)ihag))g dt
and then ([39) yields
la(t) + E*Vp(t)z(t)| =0 dt@P —a.e.

and then  satisfies ([d4]) but the solution to ([#4]) is unique by Theorem [2.6] solution and finally
we can choose continuous versions of & and @ such that * = Z and v* = 4. O
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