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Abstract

We consider a model of a square-wave bursting neuron residing in the regime of tonic spiking. Upon
introduction of small stochastic forcing, the model generates irregular bursting. The statistical properties
of the emergent bursting patterns are studied in the presentwork. In particular, we identify two principal
statistical regimes associated with the noise-induced bursting. In the first case, (type I) bursting oscilla-
tions are created mainly due to the fluctuations in the fast subsystem. In the alternative scenario, type II
bursting, the random perturbations in the slow dynamics play a dominant role. We propose two classes
of randomly perturbed slow-fast systems that realize type Iand type II scenarios. For these models,
we derive the Poincare maps. The analysis of the linearized Poincare maps of the randomly perturbed
systems explains the distributions of the number of spikes within one burst and reveals their dependence
on the small and control parameters present in the models. The mathematical analysis of the model
problems is complemented by the numerical experiments witha generic Hodgkin-Huxley type model of
a bursting neuron.

1 Introduction

Differential equation models of excitable cells often include small random terms to reflect the unresolved or
poorly understood aspects of the problem or to account for intrinsically stochastic factors [1, 8, 9, 10, 15, 16,
32, 41, 39, 43, 46]. In addition, many neuronal models also exhibit multistability [38, 26]. In systems with
multiple stable states, noise may induce transitions between different attractors in the system dynamics, thus,
creating qualitatively new dynamical regimes, that are notpresent in the deterministic system. In the present
paper, we study this situation for a class of square-wave bursting models of excitable cell membranes. This
class includes many conductance-based models of excitablecell membranes. Here we just mention the
model of a pancreaticβ−cell [6, 7], models of neurons in various central pattern generators such as those
involved in insect locomotion [20], control of the heartbeat in a leech [25], and respiration in mammals
[4, 5], to name a few. These models, as well as the underlying biological systems, exhibit characteristic
bursting patterns of the voltage time series: clusters of fast spikes alternating with pronounced periods
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Figure 1: The dynamical patterns generated by a model of of a square-wave bursting neuron (1.1) and (1.2):
(a) periodic bursting and (b) tonic spiking.

of quiescence (Fig. 1a). For introduction to bursting, examples and bibliography, we refer the reader to
[26, 31, 37, 38]. The dynamical patterns generated by the conductance-based models typically depend
sensitively on parameters. For example, models of square-wave bursting neurons often exhibit both bursting
and spiking behaviors for different values of parameters (see Fig. 1a,b). In many relevant experiments,
the transition from spiking to bursting is achieved by changing the injected current. In the present paper,
we consider a model of a square-wave bursting neuron in the regime of tonic spiking (Fig. 1b). We show
that a small noise can transform spiking patterns into irregular (noise-induced) bursting patterns and describe
two distinct mechanisms for generating noise-induced bursting. In the first scenario, bursting oscillations are
triggered by the fluctuations in the fast subsystem. We referto this mechanism as type I bursting. In contrast,
the bursting dynamics in type II scenario are driven by the random motion along the slow manifold. For
each of these cases, we describe the statistical propertiesof the emergent bursting patterns and characterize
them in terms of the small and control parameters present in the model.

Noise-induced phenomena have received considerable attention in the context of neuronal modeling (see,
e.g., [1, 8, 9, 32, 39, 41, 43, 46]). A representative exampleis given by a2D excitable system perturbed
by the white noise of small intensity [1]. In the presence of noise and under certain general conditions,
a typical trajectory occasionally leaves the basin of attraction (BA) of the stable equilibrium and makes a
large excursion in the phase plane of the deterministic system before returning to a small neighborhood
of the stable fixed point (Fig. 2a). This gives rise to irregular spiking (Fig. 2b). The properties of the
noise-induced spiking and stochastic resonance type effects arising in the context of the perturbed FitzHugh-
Nagumo model have been considered in [1, 8, 9, 10] (see also [3, 17, 18, 19] for the mathematical analysis
of more general classes of related phenomena in randomly perturbed slow-fast systems). In the present
paper, we study a related mechanism for irregular bursting.Specifically, we consider a class of models of
square-wave bursting neurons:

ẋ = f(x, y), (1.1)

ẏ = ǫg(x, y), x = (x1, x2)T ∈ R
2, y ∈ R

1, (1.2)

wheref andg are smooth functions and0 < ǫ ≪ 1 is a small parameter. We refer to (1.1), wherey is
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Figure 2: (a) A phase-plane trajectory of the randomly perturbed FitzHugh-Nagumo model in excitable
regime (see [1] for the model description and the parameter values). (b) The time series corresponding to
the phase plot in (a).

treated as a parameter, as a fast subsystem. It is formally obtained from (1.1) and (1.2) by settingǫ = 0.
We assume that the fast subsystem has a family of stable limitcycles and that of stable equilibria fory in
a certain intervaly ∈ (ysn, ybp) (see Fig. 3a). The additional assumptions on (1.1) and (1.2), which are
explained in Section 2, imply that for smallǫ > 0, (1.1) and (1.2) has a stable limit cycle as shown in Fig.
3c. In the presence of noise, a typical trajectory of the randomly perturbed system will occasionally leave
the BA of the limit cycle of the deterministic system to make an excursion along the curve of equilibria of
the degenerate system, E (see Fig. 4a). Thus, in analogy to the 2D FitzHugh-Nagumo model (Fig. 2a),
noise transforms spiking dynamics into irregular bursting. We refer to the latter as noise-induced bursting.
In both examples above, irregular spiking (Fig. 2a) or bursting patterns (Fig. 4a,b) are created due to the
escape of a trajectory of the randomly perturbed system fromthe BA of a stable fixed point in the case
of spiking or of that of the stable limit cycle in the case of bursting. The statistics of the first exit times
can then be related to the properties of the emergent firing patterns such as the frequency of spiking or the
distribution of the number of spikes within one burst. Compared to the analysis of the irregular spiking in
the randomly perturbed FitzHugh-Nagumo model (Fig. 2) , theanalysis of the noise-induced bursting faces
several additional challenges due to the fact that in the latter case one has to consider the exit problem for
the trajectories near a stable limit cycle as opposed to those near a stable equilibrium in the former case. The
structure of the BA of the limit cycle combined with the slow-fast character of the vector field determines the
main features of the resultant bursting patterns. The description of the principal statistical regimes associated
with the noise-induced bursting is the focus of the present paper.

There are general mathematical approaches for analyzing exit problems for stochastic processes gener-
ated by randomly perturbed differential equations such as (1.1) and (1.2): the Wentzell-Freidlin theory of
large deviations [19] and the geometric theory for randomlyperturbed slow-fast systems due to Berglund
and Gentz [3]. In this paper we study the vector fields arisingin the context of bursting. The specialized
structure of this class of problems allows us to keep the analysis of the present paper self-contained and
avoid using more technical methods, which are necessary foranalyzing more general situations. Our analyt-
ical approach is based on the reduction of a randomly perturbed differential equation model to the Poincare
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map and studying the exit problems for the trajectories of the discrete system. Using maps is quite natural
in the context of bursting due to the intrinsic discretenessof bursting patterns imposed by the presence of
spikes. Reductions to maps have been very useful for analyzing bursting dynamics in a variety of determin-
istic models [6, 33, 34, 35, 40]. As follows from the results of the present paper, the first return maps also
provide a very convenient and visual representation for themechanism underlying noise-induced bursting.
In particular, we show that the distributions of spikes in one burst in many cases are effectively determined
by 1D linear randomly perturbed maps. We develop a set of probabilistic techniques for analyzing the dy-
namics of randomly perturbed1D and2D linear maps such as those arising in the analysis of bursting. The
special structure of this class of problems, which is motivated by the applications to bursting affords a more
direct and simpler analysis than the treatment of more general classes of random linear maps found in the
literature [29, 21, 28, 45].

The outline of the paper is as follows. In section 2, we formulate our assumptions on the deterministic
system. We then present the preliminary numerical results,motivating our formulation of the randomly per-
turbed models at the end of this section. Specifically, we distinguish two types of the noise-induced bursting.
Type Ibursting is generated due to the fluctuations predominantlyin the fast subsystem, whiletype IIburst-
ing is induced by variability mainly in the slow variable. Accordingly, we introduce two types of models that
generate type I and type II bursting patterns. Section 3 develops a set of probabilistic techniques, which will
be needed for the analysis of the first return maps for the randomly perturbed differential equation models.
We first analyze a simple linear map with an attracting slope and small additive Gaussian perturbations in
Section 3.2. Due to the simple structure of the map, we obtainvery explicit characterization of the first exit
times for this problem. The analysis of this first relativelysimple example provides the guidelines for the
more complex cases dealt in Sections 3.3-3.5. Section 4 contains the definition and the construction of the
Poincare map for the type I randomly perturbed model introduced in Section 2. The2D Poincare map is
decomposed into two1D maps for the fast and slow subsystems, which are constructedin Sections 4.2 and
4.3 respectively. In Section 4.4, we apply the results of Section 3 to the linearization of the Poincare map to
derive the distributions of the first exit times. The latter are interpreted as the distributions of the number of
spikes in one burst. In Sections 4.5, we outline the modifications necessary to cover type II models. Since
the analysis for type II models closely follows the lines of that for type I models, we omit most of the details.
Finally, the numerical experiments in Section 5 are designed to illustrate our theory.

2 The model

In the present section, we introduce the model to be studied in the remainder of this paper. We start by
formulating our assumptions on the deterministic model andthen describe the random perturbation.

2.1 The deterministic model

We consider slow-fast system (1.1) and (1.2) inR
3 with oneslow variable. Thefastsubsystem associated

with (1.1) and (1.2) is obtained by sendingǫ→ 0 in (1.2) and treatingy as a parameter:

ẋ = f(x, y). (2.1)
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Figure 3: (a) The bifurcation diagram of the fast subsystem (2.1). L denotes a cylinder foliated by the
stable periodic orbits. The lower branch of the parabolic curveE is composed of stable equilibria of the fast
subsystem (see Fig. 6b for the plot of a representative phaseplane of the fast subsystem fory ∈ (ysn, ybp)).
(b,c) Periodic trajectories of the full system (1.1) and (1.2) are superimposed on the bifurcation diagram of
the fast subsystem. Assumptions (SE) and (SB) (see the text)result in a bursting limit cycle plotted in red
in (b), while (SS) yields spiking (c).

Under the variation ofy, the fast subsystem has the bifurcation structure as shown schematically in Fig.
3a. Specifically, we rely on the following assumptions:

(PO) There existsybp ∈ R such that for eachy < ybp, Equation (2.1) has an exponentially stable limit cycle
of periodT (y):

L(y) = {x = φ(s, y) : 0 ≤ s < T (y)}. (2.2)

The family of the limit cycles,L =
⋃

y<ybp
L(y), forms a cylinder inR3 (Fig. 3a).

(EQ) There is a branch of asymptotically stable equilibria of (2.1), E = {x = ψ(y) : y > ysn}, which
terminates at a saddle-node bifurcation aty = ysn < ybp (Figure 3a).

(LS) For eachy ∈ R, theω−limit set of almost all trajectories of (2.1) belongs toL(y)
⋃{ψ(y)}.

Remark2.1. At y = ybp, L, either terminates orL(ybp + 0) looses stability. We do not specify the type
of the bifurcation aty = ybp. It may be, for instance, a homoclinic bifurcation as shown in Fig. 3a, or a
saddle-node bifurcation of limit cycles [22].

Having specified the assumptions on the bifurcation structure of the fast subsystem, we turn to the slow
dynamics. The geometric theory for singularly perturbed systems implies the existence of the exponentially
stable locally invariant manifoldsEǫ andLǫ, which areO(ǫ) close toE

⋂

{(x, y) : y > ysn + δ} and
L
⋂{(x, y) : y < ybp − δ}, respectively, for arbitrary fixedδ > 0 and sufficiently smallǫ > 0 [14, 27].

ManifoldsEǫ andLǫ are calledslow manifolds. For smallǫ > 0, the dynamics of (1.1) and (1.2) on the
slow manifolds is approximated by

Lǫ : ẏ = ǫG(y), y < ybp − δ, (2.3)

Eǫ : ẏ = ǫg(ψ(y), y), y > ysn + δ, (2.4)
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where

G(y) =
1

T (y)

∫ T (y)

0
g (φ(s), y) ds. (2.5)

We distinguish two types of the asymptotic behavior of solutions of (1.1) and (1.2):burstingandspiking
(see Fig. 1). The following conditions on the slow subsystemyield bursting.

For somec > 0 independent ofǫ,

(SE)
g(ψ(y), y) < −c for y > ysn, (2.6)

(SB)
G(y) > c for y < ybp. (2.7)

Under these assumptions, for sufficiently smallǫ > 0 a typical trajectory of (1.1) and (1.2) consists of
the alternating segments closely followingLǫ andEǫ and fast transitions between them (see Fig. 3b).
For detailed discussions of the geometric construction of ’bursting‘ periodic orbits, we refer the reader to
[31, 37]. To obtain spiking, we substitute (SB) with

(SS) G(y) has a unique simple zero aty = yc ∈ (ysn, ybp):

G(yc) = 0 and G′(yc) < 0. (2.8)

In this case, the asymptotic behavior of solutions follows from the following theorem due to Pontryagin and
Rodygin:

Theorem 2.2. [36] If ǫ > 0 is sufficiently small, (1.1) and (1.2) has a unique exponentially stable limit cycle
Lǫ(yc) of periodT (yc) +O(ǫ) lying in anO(ǫ) neighborhood ofL(yc), provided (SS) holds.

Almost all trajectories of (1.1) and (1.2) are attracted by the limit cycle lying in anO(ǫ) neighborhood
of L(yc). This mode of behavior is called spiking (see Fig. 3c and Fig.3b). In the remainder of this paper
we assume (SS), in addition, to (PO), (EQ), (LS), and (SE).

2.2 The randomly perturbed models

In this subsection, we provide a heuristic description of the effects of the random perturbations on the
dynamics of (1.1) and (1.2). To study these effects quantitatively, at the end of this section, we propose two
randomly perturbed models.

Suppose the trajectories of (1.1) and (1.2) experience weakstochastic forcing, such that the perturbed
trajectories represent well-defined stochastic processesand are close to the trajectories of (1.1) and (1.2) on
finite intervals of time. Since the trajectories of the unperturbed system remain in a small neighborhood
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Figure 4: Noise-induced bursting. (a) A trajectory of the randomly perturbed system is shown in the phase
space of the frozen system (1.1), (1.2) withǫ = 0. The trajectory leaves the basin ofL(yc) mainly due to
the fluctuations in the fast plane. This is characteristic totype Ibursting. An alternativetype II scenario is
shown in plot (b), where the fluctuations in the slow direction dominate in the mechanism of escape from the
basin of the stable limit cycle. The trajectory in (b) samples a wide region ofL and leaves a neighborhood
of L near the right boundary,y ≈ ybp; while that in (a) remains nearL(yc) most of the time and jumps down
neary ≈ yc. The differences translate into the distinctive features of the generic time series of the bursting
patterns generated via type I or type II mechanisms shown in plots (c) and (d) respectively. Note that the
longer burst in (c) has a typical square-wave form (roughly,determined byL(yc)), while the burst shown in
(d) exhibits more variability due to the drifting of the trajectory alongL.
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of L(yc) (possibly after short transients), we expect that in the presence of noise the trajectories will occa-
sionally leave the BA ofL(yc) and after making a brief excursion alongE will return back to the vicinity
of L(yc). Therefore, under random perturbation the system can exhibit bursting dynamics, while the un-
derlying deterministic system is in the spiking regime. We refer to this mode of behavior asnoise-induced
bursting. Our goal is to describe typical statistical regimes associated with the noise-induced bursting and to
relate them to the structure of (1.1) and (1.2) and to the properties of the stochastic forcing. To illustrate the
implications of the structure of the deterministic vector field for the bursting patterns that it produces under
random perturbations, we refer to the following numerical examples. Note that the BA ofL(yc) naturally
extends along the cylinder of periodic orbitsL (Fig. 3c). The escape from the BA ofL(yc) can be dominated
by the fluctuations alongL or by those in the transverse plane. These two possibilitiesare shown in Fig. 4.
The trajectory shown in Fig. 4a spends most of the time nearL(yc) and leaves its BA due to the fluctuations
in the fast subsystem. We refer to this scenario astype Iescape. Alternatively, the trajectory shown in Fig.
4b travels a good deal alongL before the escape and exits from the BA neary = ybp. This mechanism is
dominated by the slow dynamics. We refer to this scenario astype II escape. These mechanisms of escape
translate into distinct features of the resultant burstingpatterns. First, note that since in type I and type II
scenarios, the transition from spiking to quiescence typically takes place aty ≈ yc andy ≈ ybp respectively,
by (1.2) and (EQ), the corresponding interburst intervals are approximately equal to

IBI ≈ ǫ−1

∫ ysn

ŷ

dy

g (ψ(y), y)
, where

{

ŷ = yc, type I,
ŷ = ybp, type II.

In addition, we expect that the interspike intervals (ISIs)within one burst in type I scenario are localized
aboutT (yc), since the trajectory of the randomly perturbed system in the active phase of bursting spends
most of the time nearL(yc). In type II bursting patterns, ISIs are expected to have morevariability, since
the trajectories sample a wider range of ISIs during their excursions alongL. Perhaps, a more pronounced
distinction between these two types of bursting patterns lies in the degree of the variability of the spikes
in one burst. Most of the spikes forming a burst in type I pattern are generated by (2.1) withy ≈ yc and,
therefore, are similar in shape (Fig. 4c). In contrast, spikes in type II scenario are subject to more variability
and the bursting patterns typically have ragged shape (Fig.4d).

To study type I and type II noise-induced bursting patterns it is convenient to consider two types of
models.Type I modelincorporates random forcing in the fast subsystem:

ẋt = f (xt, yt) + σpẇt, (2.9)

ẏt = ǫg(xt, yt), (2.10)

while, in type II modelthe slow subsystem is forced

ẋt = f (xt, yt) , (2.11)

ẏt = ǫ (g(xt, yt) + σqẇt) . (2.12)

Here,0 < σ ≪ 1, p(x, y) =
(

p1(x, y), p2(x, y)
)T

andq(x, y) are differentiable functions;̇wt stands for the
white noise, i.e. a generalized derivative of the Wiener process.
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3 The randomly perturbed maps

In this section, we develop probabilistic tools needed for the analysis of randomly perturbed systems (2.9)-
(2.12). The number of spikes in one burst is a natural random variable associated with the noise-induced
bursting. It is commonly used in the experimental studies ofbursting and we shall adopt it for characterizing
irregular bursting patterns in this work. In Section 4, we will show that the number of spikes in one burst is
represented by a stopping time (more precisely, the level exceedance time) of a discrete random process, the
Poincare map of the randomly perturbed system (2.9)-(2.12). In preparation for the analysis of the linearized
Poincare map in Section 4, in the present section we study certain stochastic linear difference equations. The
equations of this form equations have been considered in theliterature before. The study was initiated by
Kesten [29] who considered multidimensional case (in whichthe coefficients of the stochastic equations
are random matrices). Subsequent work focused mostly on the1D case. We refer the reader to the papers
[21, 45], which contain representative results, examples of applications, and further references. There is
also a review paper [12], unfortunately not easily accessible. The convergence properties of the solutions
that we will need could be deduced from a general theory of stochastic difference equations. However, the
results in the literature are often stated in the most general form and some of the proofs are rather involved.
We will be dealing with special cases that are much easier to justify. For this reason, and also to keep the
paper self-contained we will include the proofs of the needed results.

3.1 Geometric random variables

We begin by recalling the necessary properties of geometricrandom variables (RVs). Recall thatY is a
geometric RV with parameterp, 0 < p < 1 if

P (Y = k) = p(1− p)k−1, k ≥ 1. (3.1)

We refer the reader to [28, Chapter 5] for the review of the properties of geometric distributions and their
applications. In particular, the following characterization of geometric RVs is classical.

Lemma 3.1. LetY be a RV with values in the set of positive integers.Y is a geometric with parameterp,
0 < p < 1, iff

P(Y = n) = pP(Y ≥ n), n ≥ 1. (3.2)

Lemma 3.1 motivates the following definition:

Definition 3.2. LetY be a random variable with values in the set of positive integers and let0 < p < 1. We
say thatY is asymptotically geometric with parameterp if

lim
n→∞

P (Y = n)

P(Y ≥ n)
= p. (3.3)

9



3.2 The randomly perturbed map: additive perturbation

Consider
Yn = λYn−1 + ςrn, n ≥ 1, (3.4)

wherer1, r2, . . . are independent identically distributed (IID) copies of the standard normal RV, andY0 is
a real number. We will useN(µ, η2) notation for a normal RV with meanµ, varianceη2, and probability
density function given by

1√
2πη

exp

{

−(x− µ)2

2η2

}

, −∞ < x <∞.

We will also letZ denote a genericN(0, 1) RV and we will write

Φ(x) :=
1√
2π

x
∫

−∞

e−t2/2dt,

for its distribution function. For a givenh > 0, let

τ = inf{k ≥ 1 : Yk > h}.

Theorem 3.3. Let

ε ∈ (0, 1), λ = 1− ε, β2 =
ς2

ε(2− ε)
, and h− Y0 > 0. (3.5)

Then for sufficiently smallς > 0, τ is asymptotically geometric RV with parameter

p =
1√
2π

β

hΦ(h/β)
exp

{

− h2

2β2

}(

1 +O
( ς

ε

)2
)

. (3.6)

We precede the proof of the theorem with the auxiliary

Lemma 3.4. For n ≥ 1, Yn is a normal RV with

E Yn = λnY0 and var Yn =
ς2
(

1− λ2n
)

1− λ2
=: β2n. (3.7)

In particular,

Yn
d−→ Y

d
= N(0, β2),

where
d−→ (and

d
=) denote the convergence (equality) in distribution.

Proof (Lemma 3.4): The statements in (3.7) are verified by a straightforward calculation. The rest follows,
becauseE Yn → 0 andβn → β.

Proof (Theorem 3.3): LetY ∗
k = max{Yj : 1 ≤ j ≤ k}, k ≥ 1. Then

P(τ = n+ 1) = P(Yn+1 > h, Y ∗
n ≤ h) = P(Yn+1 > h|Y ∗

n ≤ h)P(Y ∗
n ≤ h)

= P(Yn+1 > h|Yn ≤ h, Yn−1 ≤ h, . . . , Y0 ≤ h)P(τ ≥ n+ 1)

= P(Yn+1 > h|Yn ≤ h)P(τ ≥ n+ 1). (3.8)

10



In the last equality, we used the fact that{Yn} is a Markov process which is clear from (3.4). By (3.8),

pn :=
P(τ = n+ 1)

P(τ ≥ n+ 1)
= P (Yn+1 > h |Yn ≤ h) =

P (Yn+1 > h, Yn ≤ h)

P (Yn ≤ h)
. (3.9)

In accordance with Definition 3.2, we need to show that{pn} converges and to estimate the limit. By
Lemma 3.4,

P (Yn ≤ h) −→ Φ(h/β), as n→ ∞.

Next, we turn to estimating the numerator in (3.9). We have

Qn := P (Yn+1 > h, Yn ≤ h) = P (λYn + ςrn+1 > h, Yn ≤ h)

→ P (λY + ςZ > h, Y ≤ h) =: Q,

whereZ is standard normal,Y is N(0, β2) and they are independent. This follows from Lemma 3.4 and
the fact thatrn+1 isN(0, 1) and is independent ofYn. Q is the probability that a 2D Gaussian vector is in
the region[h,∞) × (−∞, h]. There are several ways of estimating this probability. We take the following,
elementary approach. LetX = h− Y so thatX isN

(

h, β2
)

and is independent ofZ. Then

Q = P

(

Z >
ε

ς
h+

1− ε

ς
X,X ≥ 0

)

=
1√
2πβ

∫ ∞

0
P

(

Z >
εh+ (1− ε)s

ς

)

e
−(s−h)2

2β2 ds.

By the well–known asymptotics (see [13, Ch. VII, Lemma 2 and Sec. 7, Problem 1])

P(Z > u) = 1− Φ(u) =
1√
2π

e−
u2

2

u

(

1 +O

(

1

u2

))

, u > 0. (3.10)

Hence, for sufficiently smallς > 0 (ς ≪ ε), we have

Q ≈ 1

2π

ς

β

∫ ∞

0

exp
{

−1
2

(

(εh+(1−ε)s)2

ς2 + (s−h)2

β2

)}

εh+ (1− ε)s
ds. (3.11)

Since
(εh + (1− ε)s)2

ς2
+

(s− h)2

β2
=

(s− εh)2

ς2
+
h2

β2
,

we obtain

Q ≈ ς

2πβ
exp

{

− h2

2β2

}
∫ ∞

0

exp
{

− (s−hε)2

2ς2

}

εh+ (1− ε)s
ds.

By Laplace’s method [47], for sufficiently smallς > 0 (ς ≪ ε), the last integral is asymptotic to

√
2π

(hε + (1− ε)εh)
√

1/ς2
=

√
2πς

hε(2 − ε)
.

Hence,

Q ≈ ς

2πβ

√
2πς

hε(2 − ε)
exp

{

− h2

2β2

}

=
β√
2πh

exp

{

− h2

2β2

}

.
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By the same reasoning the error term from (3.10) is of order

exp

{

− h2

2β2

}

×O

(

1

ε

(

β

h

)3
)

,

which gives (3.6). �

3.3 The randomly perturbed map: random slope

Consider a process
Yn = µ(1 + σr1,n)Yn−1 + σr2,n, n ≥ 1, (3.12)

where(r1,n, r2,n)∞n=1 are IID copies of a two dimensional random vector(r1, r2). Here, we assume that
(r1, r2) has bivariate normal distribution with mean vector0 and covariance matrixΣ2 = [σi,j], where
σi,j = cov(ri, rj), 1 ≤ i, j ≤ 2. We assume that the entriesσi,j are of order 1 in a sense that they do not
depend on other parameters. Recall that the probability density function of a multivariate normal random
vector(r1, . . . , rd) with mean vector 0 and covariance matrixΣ is given by

1
√

(2π)ddet(Σ)
exp

{

−1

2
xTΣ−1x

}

, x = (x1, . . . , xd)
T .

and we denote such vectors byN(0,Σ).

For a givenh > 0, let
τ = inf{k ≥ 1 : Yk > h}.

Theorem 3.5. Suppose thath andµ ∈ (0, 1) are both of order 1 andσ ≪ 1 so that the following condition
holds

γ := µE|1 + σr1| < 1. (3.13)

Thenτ is asymptotically geometric RV with parameter

p =
σ

c
√
2π
e−

c2

2σ2

(

1 +O(σ2)
)

, (3.14)

where a positive constantc depends onh, µ, andΣ2, but not onσ.

As before, we first establish convergence of{Yn} and characterize the limit. Iteration of (3.12) yields

Yn = µ(1 + σr1,n)Yn−1 + σr2,n = µ(1 + σr1,n) (µ(1 + σr1,n−1)Yn−2 + σr2,n−1) + σr2,n

= · · · = µnY0

n
∏

j=1

(1 + σr1,j) + σ

n−1
∑

j=0

µjr2,n−j

n
∏

ℓ=n−j+1

(1 + σr1,ℓ), (3.15)

where as usually,
∏m

j=k( ∗ ) = 1 if k > m.

12



Lemma 3.6.

Yn
d−→ Y

d
= σ

∞
∑

j=0

µjg2,j

j−1
∏

ℓ=0

(1 + σg1,ℓ), n→ ∞, (3.16)

where(g1,j , g2,j), j = 0, 1, 2, . . . are IID copies of two-dimensional random vector, which is equal in
distribution to(r1, r2).

Proof (Lemma 3.6): First, we show thatY is well-defined as the series in (3.16) converges almost surely. To
see this, note that the summands

g2,j

j−1
∏

ℓ=0

(1 + σg1,ℓ)

are martingale differences with respect to the natural filtration. By triangle inequality, independence, and
(3.13),

E

∣

∣

∣

∣

∣

∣

σ

m
∑

j=0

µjg2,j

j−1
∏

ℓ=0

(1 + σg1,ℓ)

∣

∣

∣

∣

∣

∣

≤ σE|g2|
m
∑

j=0

µjE

∣

∣

∣

∣

∣

j−1
∏

ℓ=0

(1 + σg1,ℓ)

∣

∣

∣

∣

∣

= σE|g2|
m
∑

j=0

µj (E|1 + σr1|)j =
σE|g2|
1− γ

(1− γ(m+1)) ≤ σE|g2|
1− γ

.

Hence, the partial sums of the right–hand side of (3.16) formanL1–bounded martingale which converges
almost surely by the martingale convergence theorem (see e.g. [42]). For everyn ≥ 1

σ

n−1
∑

j=0

µjr2,n−j

n
∏

ℓ=n−j+1

(1 + σr1,ℓ)
d
= σ

n−1
∑

j=0

µjg2,j

j−1
∏

ℓ=0

(1 + σg1,ℓ).

Since the sequence on the right converges almost surely and the almost sure convergence implies con-
vergence in distribution, we infer that the sequence on the left converges in distribution. To conclude that

Yn
d→ Y it is enough to show that the first term on the right–hand side of (3.15) converges to 0 in probability.

But that is clear since we have

E

∣

∣

∣

∣

∣

∣

Y0µ
n

n
∏

j=1

(1 + σr1,j)

∣

∣

∣

∣

∣

∣

= |Y0|µn
n
∏

j=1

E|1 + σr1,j | = |Y0|γn.

Hence, by Markov inequality it goes to 0 in probability. �

Proof (Theorem 3.5): The proof follows the lines of the proof of Theorem 3.3. The main complication in
treating the present case is that we know less about the distribution of Yn than in before. Nonetheless, we
will argue that for largen

pn :=
P(τ = n)

P(τ ≥ n)
= P(µ(1 + σr1,n)Yn−1 + σr2,n > h|Yn−1 ≤ h) (3.17)

13



is approximately constant. For this, we rewrite the right hand side of (3.17) as

P(µ(1 + σr1,n)Yn−1 + σr2,n > h, Yn−1 ≤ h)

P(Yn−1 ≤ h)
,

and since the denominator converges toP(Y ≤ h) we focus on the numerator. Let(r1, r2) be a generic
vector distributed like(r1,n, r2,n) and independent ofY . Since for everyn ≥ 1, (r1,n, r2,n) is independent
of Yn−1, asn→ ∞ we have

(r1,n, r2,n, Yn−1)
d−→ (r1, r2, Y ).

Thus,
P(µ(1 + σr1)Yn−1 + σr2 > h, Yn−1 ≤ h) −→ P(µ(1 + σr1)Y + σr2 > h, Y ≤ h),

which establishes the existence ofp = limn→∞ pn.

To estimatep, we first recall that(r1, r2) is bivariate normal if and only if every linear combination of
r1 andr2 is a normal RV. Hence, conditionally onY = y, σ(µyr1 + r2) isN(0, σ2σ2y) RV, where

σ2y = σ222 + µ2y2σ211 + 2µyσ12. (3.18)

Therefore,

P(µ(1 + σr1)Y + σr2 > h, Y ≤ h) = P(σ(µY r1 + r2) > h− µY, Y ≤ h)

=

∫ h

−∞

P(Z >
h− µy

σσy
)dFY (y) =

∫ h

−∞

(

1− Φ

(

h− µy

σσy

))

dFY (y)

=

(

1− Φ

(

h− µy0
σσy0

))

P(Y ≤ h),

where−∞ < y0 < h by the mean value theorem. Hence,

p =
P(µ(1 + σr1)Y + σr2 > h, Y ≤ h)

P(Y ≤ h)
= 1− Φ

(

h− µy0
σσy0

)

.

Let c := c(y0) where

c(x) = ch,µ,Σ2(x) :=
h− µx

σx
=

h− µx
√

µ2σ211x
2 + 2µσ12x+ σ222

.

Then, by (3.10)

p = 1− Φ
( c

σ

)

=
σ

c
√
2π
e−

c2

2σ2

(

1 +O

(

σ2

c2

))

.

Furthermore, by elementary analysis we see that:

• c(x) is increasing onx ∈ (−∞, x∗) and decreasing onx ∈ (x∗,∞), where

x∗ = − σ211 + hσ12
µ(hσ222 + σ12)

,

14



• c(−∞) = σ−1
11 , c(h) = (1−µ)h

((µhσ11)2+2µσ12h+σ22)
1/2 = (1−µ)h

((µhσ11+σ22)2−2µh(σ11σ22−σ12))
1/2 , andc(x∗) is

given by a quite unwieldy expression that depends onh andΣ2 but not onµ.

In particular,c is bounded away from0 and∞ providedµ andh are positive andµ < 1. This proves (3.14).
�

3.4 A two-dimensional randomly perturbed map

In this subsection we consider the following two dimensional model:

ξn+1 = µξn (1 + σr1,n+1) + σr2,n+1, (3.19)

ηn+1 = ληn + ǫσr3,n+1 + ǫa2ξn. (3.20)

where(r1,n, r2,n, r3,n), n ≥ 1, is a sequence of IID copies of(r1, r2, r3) which, as follows form a discussion
at the beginning of Section 4.4 is assumed to be a trivariate normal random vectorN(0,Σ3), with Σ3 =
[σi,j], 1 ≤ i, j ≤ 3, whereσi,j = cov(ri, rj) do not depend on any parameters in (4.44) and (4.45). For
positiveh1, h2 = O(1), we define

τξ = inf
k≥1

{ξk > h1}, τη = inf
k≥1

{ηk > h2}.

We are interested inτ = min{τξ, τη}. We know the distribution ofτξ from Theorem 3.5. As we will show
below, under the suitable conditions the distribution ofτ is again asymptotically geometric. Moreover, if
ǫ > 0 is small thenτη has practically no effect on the distribution ofτ .

In order to be more precise, let us define

An =

[

µ(1 + σr1,n) 0
ǫa2 λ

]

, Gn =

[

r2,n
ǫr3,n

]

, and Θn =

[

ξn
ηn

]

. (3.21)

Then, (3.19) and (3.20) are described by

Θn+1 = An+1Θn + σGn+1, n ≥ 1. (3.22)

Theorem 3.7. Let µ, σ, ǫ ∈ (0, 1) be such thatµ is of order 1 andσ ≪ 1 so that condition (3.13) holds.
Assumeǫ ≪ 1and setλ = 1 − ǫ. Suppose further thath1 andh2 are of order 1. Thenτ is approximately
geometric RV with parameterp satisfying

p ≈ σ

c
√
2π
e−

c2

2σ2 , (3.23)

and where the constantc depends onh1, µ, andΣ3 but not onσ.

The following lemma shows that{Θn} converges in distribution and describes the limit.
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Lemma 3.8.

Θn
d−→ X

d
= σ

∞
∑

k=1





k−1
∏

j=1

Aj



Gk, n→ ∞, (3.24)

whereAn andGn, n = 1, 2, dots are defined in (3.21). Furthermore, this random vectorX satisfies the
distributional equation

X
d
= AX + σG, (3.25)

where

A =

[

µ(1 + σr1) 0
ǫa2 λ

]

and G =

[

r2
ǫr3

]

, (3.26)

(r1, r2, r3) isN(0,Σ3) be generic copies ofAn andGn, and,X on the right hand side of (3.25) is indepen-
dent of(A,G).

Proof (Lemma 3.8): Note first that each of the sequences(An) and(Gn) consists of IID random elements.
Let (r1, r2, r3) isN(0,Σ3) be generic copies ofAn andGn. By iterating (3.22), we obtain

Θn = An(An−1Θn−2 + σGn−1) + σGn = · · · =
(

n−1
∏

k=0

An−k

)

Θ0 + σ
n
∑

k=1





n−k−1
∏

j=0

An−j



Gk,

where, as usually, the product is set to be1 if its index range is empty. We have

n−1
∏

k=0

An−k =

[

µn
∏n

k=1(1 + σr1,k) 0
Tn λn

]

,

where

Tn = ǫa2

n
∑

j=1

λn−j
j−1
∏

k=1

(µ(1 + σr1,k)).

Setδ = max{λ, µE|1 + σr1|} and note that by (3.13)δ < 1. By triangle inequality and independence of
r1,k ’s

E|Tn| ≤ ǫa2

n
∑

j=1

λn−j
E

∣

∣

∣

∣

∣

j−1
∏

k=1

(µ(1 + σr1,k))

∣

∣

∣

∣

∣

= ǫa2

n
∑

j=1

λn−j (µE|1 + σr1|)j−1 ≤ ǫa2nδ
n−1.

Similarly,

µnE

∣

∣

∣

∣

∣

n
∏

k=1

(1 + σr1,k)

∣

∣

∣

∣

∣

= (µE|1 + σr1|)n ≤ δn.

It follows that both components of
(

∏n−1
k=0 An−k

)

Θ0 converge to0 in probability and thus, this term is

negligible.

Since the sequences(An) and(Gn) are IID, for everyn ≥ 1 we have

n
∑

k=1





n−k−1
∏

j=0

An−j



Gk
d
=

n
∑

k=1





k−1
∏

j=1

Aj



Gk.
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By the same argument as above we verify that both components of the sequence of partial sums on the right
hand side are Cauchy inL1. Hence, the components of the series

∞
∑

k=1





k−1
∏

j=1

Aj



Gk,

converge in probability (and thus, in distribution). Therefore, the sequence(Θn) defined by (3.22) converges
in distribution to a random vectorX defined in (3.24). Furthermore,X satisfies the distributional equation
(3.25). �

Proof (Theorem 3.7): Forh = (h1, h2) setBh := (−∞, h1]× (−∞, h2]. Then

{τ = n} = {Θj ∈ Bh, j < n, Θn /∈ Bh},

so that

P(τ = n) = P(Θn /∈ Bh|Θj ∈ Bh, j < n)P(Θj ∈ Bh, j < n)

= P(AnΘn−1 + σGn /∈ Bh|Θn−1 ∈ Bh)P(τ ≥ n).

SinceΘn converge in distribution toX we have

pn := P(AnΘn−1 + σGn /∈ Bh|Θn−1 ∈ Bh) =
P(AnΘn−1 + σGn /∈ Bh,Θn−1 ∈ Bh)

P(Θn−1 ∈ Bh)

−→ p :=
P(AX + σG /∈ Bh,X ∈ Bh)

P(X ∈ Bh)
, as n→ ∞. (3.27)

It follows from (3.24) thatX is symmetric, so since bothh1 andh2 are positive the denominator is at least
1/2 and does not affect the asymptotics.

To handle the numerator, using (3.26), denoting the components ofX by X1 andX2, and using the
notation adopted in (3.18) we see that it is equal to

P((µ(1 + σr1)X1 + σr2, ǫa2X1 + λX2 + ǫσr3) /∈ Bh, (X1,X2) ∈ Bh)

= P(µ(1 + σr1)X1 + σr2 > h1, (X1,X2) ∈ Bh)

+P(ǫa2X1 + λX2 + ǫσr3 > h2, (X1,X2) ∈ Bh)

−P(µ(1 + σr1)X1 + σr2 > h1, ǫa2X1 + λX2 + ǫσr3 > h2, (X1,X2) ∈ Bh)

= P

(

µX1r1 + r2
σX1

>
h1 − µX1

σσX1

, (X1,X2) ∈ Bh

)

+P

(

r3 >
h2 − ǫa2X1 − λX2

ǫσ
, (X1,X2) ∈ Bh

)

−P

(

µX1r1 + r2
σX1

>
h1 − µX1

σσX1

, r3 >
h2 − ǫa2X1 − λX2

ǫσ
, (X1,X2) ∈ Bh

)

. (3.28)

Conditionally on(X1,X2) = (x1, x2),

Z1 :=
µx1r1 + r2

σx1

, and Z2 :=
r3
σ33
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areN(0, 1) RVs. Hence by lettingFX(x1, x2) denote the distribution function of(X1,X2), we see that the
first of the last three probabilities is

∫ h2

−∞

∫ h1

−∞

(

1− Φ

(

h1 − µx1
σσx1

))

dFX(x1, x2), (3.29)

Likewise, for the second of these probabilities we get
∫ h2

−∞

∫ h1

−∞

(

1− Φ

(

h2 − ǫa2x1 − λx2
ǫσσ33

))

dFX(x1, x2). (3.30)

We now note that ifǫ is of a smaller order than all other parameters (except possibly σ) then (3.10) implies
that (3.30) (and hence also (3.28)) are negligible when compared to (3.29). To analyze the behavior of (3.29)
as a function of its parameters note that by the mean value theorem the quantity in (3.29) is equal to

(

1−Φ

(

h1 − µx0
σσx0

))∫ h2

−∞

∫ h1

−∞

dFX(x1, x2) =

(

1−Φ

(

h1 − µx0
σσx0

))

P(X ∈ Bh),

for some−∞ < x0 < h. Substituting this into (3.27) (and neglecting the terms that depend onǫ) we see
that

p =
P(AX + σG /∈ Bh,X ∈ Bh)

P(X ∈ Bh)
∼ 1− Φ

(

h1 − µx0
σσx0

)

.

If both 0 < µ < 1 andh1 are of order1 we are in the same situation as with (3.14). This shows (3.23). �

3.5 Diffusive escape

The exit problems for the stochastic difference equations analyzed in the previous subsections all feature
the geometric escape mechanism. In the simplest case when the evolution is given by Equation (3.4), the
geometric distribution characterizes the statistics of the times of exit of the trajectories of (3.4) from a certain
neighborhood of the attracting fixed point. In this subsection, we study another important in applications
statistical regime associated with the exit problem for (3.4), the diffusive regime. The role of the diffusive
regime in characterizing the statistics of the exit times for the trajectories of (3.4) is twofold. First, the
geometric distribution approximates the distribution of the exit times only for sufficiently large times, i.e.
for largen. In this subsection, we show that in the intermediate range of n, i.e. whenn is neither too large
nor too small,Yn’s are approximated by the sums of the IID RVs and, therefore,the level exceedance times
are distributed as those for random walks. We refer to this situation as the diffusive regime. Second, we
recall that to justify the geometric distribution in the proof of Theorem 3.3, we implicitly assumed that the
rate of attraction of the fixed point is stronger than the noise intensity. Specifically, it is easy to see from the
proof of Theorem 3.3 thatς is required to beo(ǫ), ǫ = 1 − λ. The analysis in this subsection does not use
this assumption. We show that when the noise is stronger thanthe attraction of the fixed point (albeit both
are sufficiently small), the mechanism of escape of the trajectories from the basin of attraction of the fixed
point changes from the geometric to diffusive. Therefore, we conclude this section by pointing out to some
features intrinsic to the diffusive escape. Specifically, we consider (3.4), for which as before, we define

τ = inf{k ≥ 1 : Yk > h}, (3.31)
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Figure 5: Probability density function corresponding to the distributionΨa(y), a = 1. With a suitablea > 0,
Ψa(y) approximates the distribution of the exit times in the diffusive escape.

for givenh > 0. In contrast to the case considered in Section 3.2, here we assume

ε = O(ςα), α > 0. (3.32)

In Theorem 3.9 below, we show that in the present situation inthe intermediate range ofn, Y ′
ns behave as

sums of IID normal RVs. The behavior of the latter is well-known (cf, Lemma 3.11).

Recall thatΦ(x) stands for the distribution function of anN(0, 1) RV and denote

Ψa(x) = 2

(

1− Φ

(

a√
x

))

, a > 0. (3.33)

Note thatΨa(x) is a probability distribution function onR+ (see Fig. 5).

Theorem 3.9. Let the evolution ofYn, n = 0, 1, 2, . . . be given by (3.4). Suppose thatλ = 1 − ε with
ε = O (ςα) , α > 0. Then for arbitrary positiveβ1 andβ2 such thatβ1 + β2 < 2α/3, for sufficiently small
ς > 0,

P(τ ≤ n) = Ψa(n)
(

1 + o(1)
)

, a =
h

ς
, (3.34)

in the rangeς−β1 ≪ n≪ ς
−2α
3

+β2 .

Remark3.10. Sinceβ1,2 > 0 are arbitrary,Ψa(n) practically approximatesP(τ ≤ n) in the range1 ≪
n≪ ε−2/3.

We will need the following auxiliary lemma [11, Theorem 2.2,Chapter III]. It may be viewed as a
quantified version of a reflection principle for random walk (see, e.g., [42, Sec. 5.3, 5.4]).

Lemma 3.11. LetX1,X2, . . . be a sequence of independent, symmetric RVs and set

Sk =

k
∑

j=1

Xj , and S∗
k = max

1≤j≤k
Sj, j ≥ 1.
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Then for anyt, u > 0 the following inequalities hold:

2P(Sn ≥ t+ 2u)− 2

n
∑

k=1

P(Xk ≥ u) ≤ P(S∗
n ≥ t) ≤ 2P(Sn ≥ t). (3.35)

Remark3.12. As was noticed by S. Kwapień a bit stronger version of the first inequality in (3.35) follows
from a slight modification of the proof of Proposition 1.3.1 in [30].

Proof (Theorem 3.9): Without loss of generality, we assume thatY0 = 0 (otherwise, apply the same argu-
ment toYk − Y0). Note that the distributions ofτ andY ∗

k are linked by the following relation

P(τ ≤ n) = P(Y ∗
n ≥ h).

Unwinding (3.4) and usingY0 = 0 gives

Yk = ς(λk−1r1 + λk−2r2 + · · ·+ λrk−1 + rk),

which we write asSk +Wk, where

Sk := ς
k
∑

j=1

rj, Wk := ς
k−1
∑

j=1

rj(λ
k−j − 1). (3.36)

We will first show that the main contribution toY ∗
n is from theS∗

n. First, by subadditivity of maxima, for
any0 < h1 < h,

P(Y ∗
n ≥ h) ≤ P(S∗

n +W ∗
n ≥ h) ≤ P(S∗

n ≥ h− h1) + P(W ∗
n ≥ h1)

≤ P(S∗
n ≤ h− h1) + P (|Wn|∗ ≥ h1) . (3.37)

Further,Yk ≥ Sk − |Wk| so that

P(S∗
n ≥ h+ h1) ≤ P(S∗

n ≥ h+ h1, |Wn|∗ < h1) + P(|Wn|∗ ≥ h1) ≤ P(Y ∗
n ≥ h) + P(|Wn|∗ ≥ h1),

which, when combined with (3.37) means that

P(S∗
n ≥ h+ h1)− P(|Wn|∗ ≥ h1) ≤ P(Y ∗

n ≥ h) ≤ P(S∗
n ≥ h− h1) + P(|Wn|∗ ≥ h1). (3.38)

First, we estimateP(|Wn|∗ ≥ h1) in (3.38). To this end, we use1− λj = 1− (1− ε)j ≤ jε to obtain

var(Wn) = ς2
n−1
∑

j=1

(1− λj)2 ≤ ς2ε2
n3

3
= ς2n

ε2n2

3
.

Consequently, by (3.35) and (3.36), we have

P(|Wn|∗ ≥ h1) ≤ 2P(|Wn| ≥ h1) ≤ 4P(Wn ≥ h1) = 4P

(

Z ≥ h1
√

var(Wn)

)

≤ 4P

(

Z ≥ h1
ς
√
n
·
√
3

εn

)

.
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Next, we turn to estimating the probabilities involvingS∗
n in (3.38). By the second inequality in (3.35), for

everyu > 0, we have

P(S∗
n ≥ h− h1) ≤ 2P(Sn ≥ h− h1) = 2P

(

Z ≥ h− h1
ς
√
n

)

, (3.39)

while the first one yields

P(S∗
n ≥ h+ h1) ≥ 2P (Sn ≥ h+ h1 + 2u)− 2

n
∑

k=1

P(ςrk ≥ u)

= 2P

(

Z ≥ h+ h1 + 2u

ς
√
n

)

− 2nP

(

Z ≥ u

ς

)

. (3.40)

The combination of (3.38), (3.39), and (3.40) yields

P(Y ∗
n ≥ h) ≥ 2P

(

Z ≥ h+ h1 + 2u

ς
√
n

)

− 2nP

(

Z ≥ u

ς

)

− 4P

(

Z ≥ h1
ς
√
n
·
√
3

εn

)

, (3.41)

P(Y ∗
n ≥ h) ≤ 2P

(

Z ≥ h− h1
ς
√
n

)

+ 4P

(

Z ≥ h1
ς
√
n
·
√
3

εn

)

(3.42)

To complete the proof, we need to choseh1 andu such that

h1
ς
√
n
= o(1),

u

ς
√
n
= o(1),

ς

u
= o(1), and h−1

1 ςεn3/2 = o(1). (3.43)

It is straightforward to verify that relations in (3.43) hold with h1 = ς
1+ 3β

2 andu = ς1−
β1
2 , β1,2 > 0,

β1 + β2 < 2α/3, andn as in (3.34). �

4 The Poincare map

In the present section, we consider the type I model, i.e. therandomly perturbed system with the stochastic
forcing acting via the fast subsystem (see (2.9) and (2.10)). In the active phase of bursting (when the system
undergoes spiking), the trajectory of the randomly perturbed system remains in the vicinity of the cylinder
foliated by the periodic orbits of the fast subsystems, (seeFig. 6a). The time that the trajectory spends near
L determines the duration of the active phase. The goal of thissection is to describe the slow dynamics
nearL. In particular, we will estimate the distribution of the number of spikes in one burst. To this end,
we introduce a transverse toL crossectionΣ (see Fig. 6a) and construct the first return map. Specifically,
we estimate the change in the state of the system after one cycle of rotation of the trajectory aroundL.
The construction of the first return map for (2.9) and (2.10) is done in analogy to that for the deterministic
models of bursting (see [34, 31]). However, the treatment ofthe randomly perturbed system requires certain
modifications. First, we have to resolve the ambiguity in thenotion of the first return time. The latter
is due to the fact that generically a trajectory of the randomly perturbed system makes multiple crossings

21



with Σ during each cycle aroundL. We refer the reader to the comments following Theorem 2.3 in[19]
for an explicit example illustrating this effect. For the randomly perturbed system, we define the time of
the first return so that it approaches the first-return time ofthe underlying deterministic system in the limit
of vanishing random perturbation. The definition of the firstreturn time motivates the definition of the
Poincare map (see Definition 4.1). In Sections 4.1 and 4.2, weuse asymptotic expansions to construct the
linear approximation for the Poincare map of the fast subsystem. Here, we use an obvious observation that
on finite time intervals and for sufficiently smallǫ > 0, the slow variable typically remains in anO(ǫ)
neighborhood of its initial value. Therefore, for finite times the Poincare map of the fast subsystem captures
the dynamics of the full system. Since we are interested in long term behavior of the system, to complete
the description of the first return map we also need to track the (small) changes in the slow variable after
each cycle of oscillations. This is done in Section 4.3, where we derive a1D map for the slow variable. The
combination of the1D Poincare map for the fast subsystem and that for the slow variable provides the first
return map for the full problem (2.9) and (2.10). The linear approximation of the2D map is used in Section
4.4 to estimate the distribution of the number of spikes in one burst for the type I model. Effectively, the
problem is reduced to the exit problem for a1D linear randomly perturbed map. For the latter problem, we
have already developed necessary analytical tools in Section 3. Finally, in Section 4.5, we comment on the
straightforward modifications necessary to extend the analysis of this section to cover type II models.

4.1 Preliminary transformations

Recall thatΣ stands for the transverse section located as shown schematically in Fig. 6a. Lety0 < ybp

be outside anO(σ) neighborhood ofybp, andx0 =
(

x10, x
2
0

)T ∈ Σ be from anO(σ) neighborhood ofL.
Consider an initial value problem for (2.9) and (2.10) with initial data(x0, y0). By standard results from the
asymptotic theory for randomly perturbed systems [19], we have the following estimate

yt = y0 +O(ǫ), (4.1)

valid on a finite interval of timet ∈ [0, t̄]. Here and below, for a small parameterǫ > 0, the symbolsO(ǫ)
ando(ǫ) in the asymptotic expansions of the random functions mean that the corresponding relations hold
almost surely (a.s.). Specifically,ψt(ǫ) = O(ǫ) for t ∈ [t1, t2] means that there existsǫ0 > 0 such that

sup
t ∈ [t1, t2]
ǫ ∈ [0, ǫ0]

∣

∣ǫ−1ψt(ǫ)
∣

∣ <∞ a.s..

In a similar fashion, we interpretψt(ǫ) = o(ǫ) whenψt(ǫ) is a random function.

By plugging in (4.1) into (2.9), we obtain the following SODE

dxt = f (xt) dt+ σp(xt)dwt +O(ǫ), (4.2)

wheref (x) := f (x, y0), p(x) := p (x, y0) , and y0 is fixed. Equation (4.2) withǫ = σ = 0 has an
exponentially orbitally stable periodic solutionx = φ(t, y0) of periodT (y0):

L(y0) = {x = φ(θ, y0) : θ ∈ [0,T (y0))} (cf. (2.2)).
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To simplify the notation, throughout the analysis of the fast subsystem, we will omit to indicate the depen-
dence ony0 when refer toL, φ, andT . At each pointx = φ(θ) ∈ L, we define vectors

τ(θ) =
(

f1(x), f2(x)
)T

and ν(θ) = Jf(x), where J =

(

0 −1
1 0

)

, (4.3)

pointing in the tangential and normal directions, respectively. To study the trajectories of (4.2) in a small
neighborhood ofL, it is convenient to rewrite (4.2) in normal coordinates(θ, ξ) [23]:

x = φ(θ) + ξν(θ), θ ∈ [0,T ). (4.4)

Lemma 4.1. For sufficiently smallδ > 0 Equation (4.4) defines a smooth change of coordinates in

Bδ = {x = φ(θ) + ξν(θ) : |ξ| < δ, θ ∈ [0,T )}. (4.5)

In new coordinates, (4.2) has the following form:

dθt = (1 + b1(θt)ξt)dt+ σh1(θt, ξt) (1 + b2(θt)ξt) dwt +O(ǫ, δ2, σ2), (4.6)

dξt = a(θt)ξtdt+ σh2(θt, ξt)dwt +O(ǫ, δ2, σ2), (4.7)

where smooth functionsa(θ), b1(θ), andb2(θ) areT −periodic and

0 < µ := exp

(
∫ T

0
a(θ)dθ

)

= exp

(
∫ T

0
divf (φ(θ))

)

< 1, (4.8)

h1(θ, ξ) =
< p, τ >

< τ, τ >
=
p1f1 + p2f2

|f |2
, h2(θ, ξ) =

< p, ν >

< τ, τ >
=
p2f1 − p1f2

|f |2
. (4.9)

Proof : The proof of the lemma follows the lines of the proof of Theorem VI.1.2 in [23]. Letz =
(z1, z2)T := (θ, ξ)T and denote the transformation in (4.4) by

x = v(z), z ∈ Bδ. (4.10)

Note

|Dv(θ, 0)| =
∣

∣

∣

∣

φ1
′
(θ) −f2 (φ(θ))

φ2
′
(θ) f1 (φ(θ))

∣

∣

∣

∣

= |f (φ(θ))|2 6= 0, θ ∈ [0,T ).

Therefore, for sufficiently smallδ > 0, (4.10) defines a smooth invertible transformation inBδ. Denote the
inverse ofv by z = u(x), x ∈ v(Bδ) and note that

[Du(x)]−1 = Dv(z), x ∈ v(Bδ). (4.11)

By Itô’s formula, we have
dzt = Du(xt)dxt +O(σ2)dt (4.12)

and, therefore,
Dv(zt)dzt = dxt +O(σ2)dt. (4.13)
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Figure 6: (a) CrossectionΣ is used in the construction of the first return map. (b) The phase plane of the
fast subsystem (2.1) fory ∈ (ysn, ybp).
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By recalling thatz = (θ, ξ) and after plugging in (4.2) into (4.13), we obtain
[

dφ(θt)

dθ
+
dν(θt)

dθ
ξt

]

dθt + ν(θt)dξt = (f (φ(θt)) +Df (φ(θt)) ν(θt)ξt +Q(θt, ξt)) dt

+ σpdwt +O(ǫ, σ2), (4.14)

where
Q(θ, ξ) = f (φ(θ) + ξν(θ))− f (φ(θ))−Df (φ(θ)) ν(θ)ξ = O

(

ξ2
)

, |ξ| < δ.

Note that

dφ(θ)

dθ
= f (φ(θ)) = τ(θ), τT (θ)τ(θ) = ν(θ)Tν(θ) = |f (φ(θ))|2 , (4.15)

dν(θ)

dθ
=

d

dθ
Jf (φ(θ)) = JDf (φ(θ)) f (φ(θ)) . (4.16)

Taking into account (4.15) and (4.16), we project (4.14) onto the subspace spanned byτ(θt) and after some
algebra obtain:

θ̇t = 1 +
fTQ+ fT [DfJ − JDf ] fξt + σfT pẇt +O(ǫ)

fTf + fTJDffξt
. (4.17)

Here and for the rest of the proof, for brevity we use the following notation:

f := f (φ(θt)) , Q := Q(θt, ξt), and ν := ν(θt).

Equation (4.17) can be rewritten as (4.6) with

b1(θt) =
1

|f |2
fT [DfJ − JDf ] f,

b2(θt) =
1

|f |2
fTJDff.

Similarly, by projecting (4.14) onto the subspace spanned by ν(θ) and using (4.15) and (4.14), we derive

ξ̇t = a(θt)ξt + σh2(θt)ẇt +O
(

δ2
)

,

where

a(θt) =
1

|ν|2
νT
[

Dfν +
dν

dθ

]

− 2νT

|ν|2
dν

dθ
.

The expression in the square brackets can be simplified as follows:

νT
[

Dfν +
dν

dθ

]

= fT
[

JTDfJ +Df
]

= divf (φ(θ)) |f |2 .

Also,
2νT

|ν|2
dν

dθ
=

2

|f |2
fTJT d

dθ
Jf =

2

|f |2
fT

d

dθ
f =

1

|f |2
d

dθ
|f |2 = d

dθ
ln |f (φ(θ))|2 .

Therefore,

a(θ) = divf (φ(θ))− d

dθ
ln |f (φ(θ))|2 . (4.18)

Equation (4.18) implies (4.8), since the integral over[0,T ] of the last term on the right hand side of (4.18)
is zero. �
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4.2 The Poincare map for the fast subsystem

In the present subsection, we analyze the trajectories of the randomly perturbed system (4.2) lying close to
the limit cycleL(y0), y0 < ybp. To this end, we consider an IVP for (4.6) and (4.7) subject tothe initial
condition:

θ0 = 0 and |ξ0| < δ. (4.19)

Throughout this section, we assume (even when it is not stated explicitly) thatδ > 0 is sufficiently small. It
will be convenient to view the range ofθt asR1 rather than a circle. Equation (4.4) provides the transforma-
tion of (θt, ξt) to the Cartesian coordinates even whenθt exceedsT .

We now turn to the construction of the Poincare map. Condition θ = 0 defines a transverse crossection
of L(y0), Σ. The trajectory of the deterministic system (4.6) and (4.7)with σ = 0 returns toΣ in time
T +O(ξ0). To define the Poincare map for the randomly perturbed system, we also use another transverse
crossectioñΣ, which is located at anO(1) distance away fromΣ. Let (θt, ξt) be the solution of the IVP
(4.6), (4.7), and (4.19) and

T̃ = inf{t > 0 : (θt, ξt) ∈ Σ̃}.

Definition 4.2. By the time of the first return of the trajectory (4.6), (4.7),and (4.19) toΣ, we call stopping
timeT such that

T = inf{t > T̃ : θt = T }. (4.20)

The first return map for (4.6), (4.7), and (4.19) is defined as

ξ̄ = P (ξ0), where ξ̄ = ξT .

In the remainder of this subsection, we compute the linear part of the Poincare map. In the asymptotic
expansions below, we omit to indicate the dependence of the remainder terms onǫ > 0. The latter is
assumed to be sufficiently small so that it has no effect on theleading order approximation of the Poincare
map.

The following notation is reserved for four functions, which will appear frequently in the asymptotic
expansions below:

A(t, s) = exp{
∫ t
s a(u)du}, A(t) = A(t, 0),

B(t, s) =
∫ t
s A(u, s)b1(u)du, B(t) = B(t, 0).

Lemma 4.3. On a finite time intervalt ∈ [0, t̄], 0 < t̄ < ∞, the solution of the IVP (4.6), (4.7) and (4.19)
admits the following asymptotic expansion

θ̇t = θ
(0)
t + σθ

(0)
t +O(σ2, ξ20), (4.21)

ξ̇t = ξ
(0)
t + σξ

(1)
t +O(σ2, ξ20). (4.22)

The leading order coefficients are given by

θ
(0)
t = t+ ξ0B(t) +O(ξ20), (4.23)

ξ
(0)
t = ξ0A(t) +O(ξ20). (4.24)
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The first order terms are given by Gaussian diffusion processzt =
(

θ
(1)
t , ξ

(1)
t

)T
:

zt =

∫ t

0
U(t, s)h(s)dws +O(ξ0), (4.25)

where

U(t, s) =

(

1 B(t, s)
0 A(t, s)

)

, h(t) := h(t, 0) = (h1(t, 0), h2(t, 0))
T . (4.26)

Proof : The procedure for constructing asymptotic expansions of solutions for a class of IVP, which includes
(4.6), (4.7) and (4.19) can be found in [2, 19]. These sourcesalso contain the estimates controlling the
remainder terms. The coefficientsθ(0,1)t andξ(0,1)t are determined as follows. By plugging in (4.21) and
(4.22) into (4.6) and (4.7) and extracting the coefficients multiplying different powers ofσ, one obtains
IVPs for the functions on the right hand sides of (4.21) and (4.22). Specifically, for the leading order terms
we have the following IVP:

θ̇
(0)
t = 1 + b1

(

θ
(0)
t

)

ξ
(0)
t , (4.27)

ξ̇
(0)
t = a

(

θ
(0)
t

)

ξ
(0)
t , (4.28)

ξ
(0)
0 = ξ0, θ

(0)
t = 0. (4.29)

To the next order,

żt = Λ(t, ξ0)zt + h
(

θ
(0)
t , ξ

(0)
t

)

dws, (4.30)

z0 = 0, (4.31)

wherezt =
(

θ
(0)
t , ξ

(1)
t

)T
, h = (h1, h2)

T , and

Λ(t, ξ0) =





b′1

(

θ
(0)
t (ξ0)

)

ξ
(0)
t (ξ0) b1

(

θ
(0)
t (ξ0)

)

b1

(

θ
(0)
t (ξ0)

)

ξ
(0)
t (ξ0) a

(

θ
(0)
t (ξ0)

)



 . (4.32)

Here, we explicitly indicated the dependence of the leadingorder coefficients onξ0 and used prime to
denote the differentiation with respect toθ. Formulae (4.23)-(4.26) in the statement of the lemma follow
from (4.27)-(4.32). The details can be found in the appendixto this paper.
�

Next, we calculate the time of the first return.

Lemma 4.4. The time of the first return is given by

T = T (0) + σT (1) + o(σ) +O(ξ20), (4.33)

where

T (0) = T − ξ0B(T ) +O(ξ20), (4.34)

T (1) = −σθ(1)T = −σ
∫ T

0
[h1(u) +B(T , u)h2(u)] dwu. (4.35)
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Proof : From the definition of the first return time, (4.21), and (4.23), we have

T + ξ0B(T ) + σθ
(1)
T +O(σ2, ξ20) = T a.s.. (4.36)

Thus,
lim
σ→0

T = T (0)(ξ0) a.s., (4.37)

whereT (0)(ξ0) is found from the following equation

T (0)(ξ0) + ξ0B
(

T (0)(ξ0)
)

+O(ξ20) = T . (4.38)

Equation (4.38) implies (4.34). Furthermore, the combination of (4.34), (4.36), and (4.37) yields (4.35).
�

Lemma 4.5. The first return map is given by the

ξ̄ = µξ (1 + σr1) + σr2 + o(σ) +O(ξ20), (4.39)

where Gaussian RVsr1,2 are given by

r1 = −a(0)
∫ T

0
[h1(u) +B(T , u)h2(u)] dwu, r2 =

∫ T

0
A(T , u)h2(u)dwu. (4.40)

Proof : From (4.22), (4.24)-(4.26), and (4.33), we have

ξ̄ = ξT = ξ0A(T ) + σ

∫ T

0
A(T, s)h2(s)dws +O(σ2, ξ20)

= ξ0A(T ) + σr2 +O(σ2, ξ20), (4.41)

wherer2 is defined in (4.40). The first term on the right hand side of (4.41) can be rewritten as follows

A(T ) = A(T )A(T + σT (1),T ) + o(σ) +O(ξ0) = µ exp
(

σa(0)T (1)
)

+ o(σ)

= µ
(

1− σa(0)θ
(1)
T

)

+ o(σ) +O(ξ0). (4.42)

Finally, we extract the expression forθ(1)T from (4.25) and (4.26):

θ
(1)
T =

∫ T

0
[h1(u) +B(T , u)h2(u)] dwu. (4.43)

Equations (4.41)-(4.43) yield (4.39) and (4.40). �

Remark4.6. We close this section by observing that as follows from (4.40) RV r1 andr2 are stochastic
integrals of different deterministic functions, sayf(t) andg(t) with respect to the same Brownian motion
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over the interval[0,T ]. Consequently, their joint distribution is bivariate normal with 0 mean vector and a
covariance matrix that whose diagonal entries are

∫ T

0
f2(t)dt and

∫ T

0
g2(t)dt,

and the off diagonal entry is
∫ T

0
f(t)g(t)dt.

This is perhaps easiest to see by using Riemann representation of a stochastic integral (see e.g. [42, Propo-
sition 7.6]), basic properties of Brownian motion, and a fact that a random vector is multivariate normal if
and only if any linear combination of its components is a normal RV.

4.3 The first return map for the slow variable

Our next goal is to estimate the change of the slow variable,yt, after one cycle of oscillations of the fast
subsystem for the following initial conditions:

0 < ybp − y0 = O(1), x0 = φ(0) + ξ0ν(0) ∈ Σ, and |ξ0| < δ. (4.44)

We denote the first return map fory by

ȳ = P (y, ξ0), where P (y0, ξ0) = yT ,

andT is the first return time of the fast subsystem (see Definition 4.2).

Lemma 4.7. The first return map fory has the following form:

P (y, ξ) = y + ǫG(y) + ǫσr3 + ǫaξ + o(ǫσ), (4.45)

where

G(y) =

∫ T

0
g (φ(s), y) ds (4.46)

andr3 = N (0, O(1)) anda is a constant independent ofσ andǫ.

Remark4.8. Recall thatT andφ(·) are functions of slow variabley (see (2.2)). To avoid using cumbersome
notation we continue to suppress the dependence ony.

Proof : By (2.10),

yT = y0 + ǫ

∫ T

0
g(xs, y0)ds+O(ǫ2), (4.47)

wherexs satisfies IVP (4.6), (4.7), and (4.19). Letx = φ(θ) + ξν(θ) and denote

g̃(θ, ξ, y) := g(x, y), g0(s) = g̃(s, 0), g1(s) =
∂g̃

∂θ
(s, 0), andg2(s) =

∂g̃

∂ξ
(s, 0). (4.48)

29



Using (4.48), we rewrite (4.47) as

yT = y0 + ǫ

∫ T

0
g̃(θ(0)s + σθ(1)s , ξ(0)s + σξ(1)) +O(ǫσ2). (4.49)

Using the Taylor expansion for̃g in (4.49) and (4.21), (4.22) and (4.33), from (4.49) we derive

yT = y0 + ǫ

∫ T

0

{

g0(s) + g1(s)
[

ξ0B(s) + σθ(1)s

]

+ g2(s)
[

ξ0A(s) + σξ(1)s

]}

ds

+

∫ T −ξ0B(T )−σθ
(1)
T

T

g0(s)ds + o(ǫσ) +O(ǫξ20). (4.50)

We approximate the last integral on the right hand side of (4.50) by

∫ T −ξ0B(T )−σθ
(1)
T

T

g0(s)ds = −g0(0)
[

ξ0B(T ) + σθ(1)
]

+ o(σ, ξ0). (4.51)

The combination of (4.50) and (4.51) implies (4.45) with

a =

∫ T

0
[g1(s)B(s) + g2(s)A(s)] ds− g0(0)B(T ), (4.52)

r3 =

∫ T

0

[

g1(s)θ
(1)
s + g2(s)ξ

(1)
s

]

ds. (4.53)

�

4.4 The exit problem

In the present subsection, we first combine the return maps derived for the slow and fast subsystems to
obtain the Poincare map for the full three-dimensional system. Next, we approximate the Poincare map
and the BA of the limit cycleL(yc) and characterize the distribution of the exit times for the approximate
problem. This distribution is then related to the distribution of the number of spikes within bursting episodes.
To approximate the Poincare map we linearize it around the stable fixed point of the deterministic map
corresponding to the limit cycleL(yc). Aside from the systematic derivation of the Poincare map inthe
previous subsections, we offer no rigorous justification for substituting the nonlinear Poincare map with its
linear part in the analysis of the exit problem. While in general, such approximation may not be accurate,
we believe that for the present problem, the analysis of the linearized system captures the statistics of the
first exit times well for the following reason. In models of square wave bursting the limit cycle generating
spiking is often located close to the boundary of its BA (see Fig. 6b for a representative example). Therefore,
before the trajectories leave the BA, they remain in a small neighborhood of the limit cycle, where the linear
part of the vector field governs the dynamics. After these preliminary remarks, we turn to the derivation of
the approximate problem and its analysis.
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Lemmas 4.5 and 4.7 yield the asymptotic formulae for the firstreturn map of the randomly perturbed
system (2.9) and (2.10) in the normal coordinates (4.4):

ξn+1 = µξn (1 + σr1,n) + σr2,n + o(σ), (4.54)

yn+1 = yn + ǫG(yn) + ǫσr3,n + ǫaξn + o(ǫσ), n = 0, 1, 2, . . . , (4.55)

where(ξ0, y0) are given in (4.44) and the expressions fora andri,n, i = 1, 2, 3 are are given in (4.40),(4.52),
and (4.53). Recall that by (SS) (see Section 2),G(y) has a simple zero aty = yc andλ := −G′(yc) >
0. Thus,(0, yc) is an attracting fixed point of the unperturbed map (4.54) and(4.55) withσ = 0. The
linearization of (4.54) and (4.55) about(0, yc) yields

ξn+1 = µξn (1 + σr̃1,n) + σr̃2,n, (4.56)

ηn+1 = ληn + ǫσr̃3,n + ǫa2ξn, n = 0, 1, 2, . . . , (4.57)

whereη = y − yc, 0 < λ = 1 − ǫa1, and0 < µ < 1. The distributions of the RVsri,n, i = 1, 2, 3
depend onyn, as both the upper bound of integrationT and the integrands in (4.40) and (4.53) are smooth
functions ofy. The stochastic terms̃ri,n, i = 1, 2, 3 in the linearized system are obtained by evaluating
the expressions for̃ri,n, i = 1, 2, 3 in (4.40) and (4.53) aty = yc. Thus,(r̃1,n, r̃2,n, r̃3,n) are IID copies of
aN (0,Σ3), where the entries ofΣ3 areO(1) in a sense that they do not depend on any other parameters.
Further, we approximate the BA ofL(yc) by a cylindrical shell, so that in(ξ, η) coordinate plane, it projects

to Π :=
[

−h̃ξ, hξ
]

×
[

−h̃η, hη
]

for someh̃ξ,η > hξ,η > 0 independent ofσ > 0. Each iteration of the

Poincare map corresponds to a spike within a burst. The burstterminates when the trajectory leaves the BA
of L(yc). Assuming that the linearization (4.56) and (4.57) andΠ provide suitable approximations for the
Poincare map and the BA ofL(yc) respectively, the distribution of the number of spikes in one burst can be
approximated by the distribution of the first exit times for the trajectories of (4.56) and (4.57) fromΠ:

τ = min{τξ, τη}, (4.58)

where
τξ = inf

n>0
{ξn > hξ} and τη = inf

n>0
{ηn > hη}.

We are now in a position to apply the the results of Section 3 todescribe the distribution of (4.58). By
Theorem 3.7, the distribution ofτ is asymptotically geometric with parameter

p ≈ σ

C
√
2π
e−

C
σ2 (4.59)

for someC > 0 independent ofǫ andσ. In the proof of Theorem 3.7, we studied a class of2D randomly
perturbed maps that includes (4.56) and (4.57). However, the distribution ofτ is effectively determined by
the first equation (4.56), i.e. by the1D first return map of the fast subsystem. This can be seen by observing
that according to the approximations given at the end of proof of Theorem 3.7 (see the arguments following
(3.30)) if ǫ > 0 is sufficiently small thenτξ ≪ τη andτ ∼ τξ. Thus, in type I models the distribution of
spikes in one burst is effectively determined by the1D first return map for the fast subsystem (4.56). In
particular, the statistics of the number of spikes in one burst does not depend on the relaxation parameter
ǫ > 0, provided the latter is sufficiently small.

31



4.5 Type II model

The derivation of the Poincare map for the type II models differs from the analysis in Sections 4.1-4.4 for
type I models only in some minor details. In this subsection,we comment on the necessary modifications
and state the final result. Recall that in contrast to type I models, in (2.11) and (2.12), stochastic forcing
enters the slow equation. As before, the initial condition is given by (4.44). On finite time intervals, solutions
of the IVP for (2.11) and (2.12) admit the following asymptotic expansions

xt = x
(0)
t + ǫσx

(1)
t +O

(

(ǫσ)2
)

, (4.60)

yt = y
(0)
t + ǫσy

(1)
t +O

(

(ǫσ)2
)

. (4.61)

where the first order correctionsx(1)t andy(1)t are Gaussian processes (cf. Theorem 2.2 [19]). Using (4.60)
and (4.61), we obtain the leading order approximation of thefast subsystem:

ẋt = f(xt, y0) + ǫσ
∂f(x

(0)
t , y0)

∂y
y
(1)
t + o(ǫσ). (4.62)

From this point, the derivation of the Poincare map follows the same lines as we described in detail for type
I models in Sections 4.1-4.4. We omit any further details andstate the final result, the linear approximation
of the Poincare map for the present case:

ξn+1 = µξn (1 + ǫσr̃1,n) + ǫσr̃2,n, (4.63)

ηn+1 = ληn + ǫσr̃3,n + ǫa2ξn, n = 0, 1, 2, . . . , (4.64)

As in the previous case, we are interested in the distribution of the first exit timeτ (see (4.58)). To estimate
the latter, we use the same argument as in the previous subsection. This time the system is described by

Θn+1 = An+1Θn + σǫGn+1, n ≥ 1, (4.65)

whereAn is as before andGn =

[

r2,n
r3,n

]

. The presence of the factorǫ in both components ofGn leads to

the following expression for the numerator ofp (see (3.27)):

P

(

µX1r1 + r2
σX1

>
h1 − µX1

ǫσσX1

, r3 >
h2 − a2X1

σ
+
λ(h2 −X2)

ǫσ
, (X1,X2) ∈ Bh

)

.

This expression decays very fast as a function ofh2 −X2 and sinceX2 has heavy tails it is approximated
(up to inessential polynomial factors) by

P

(

µX1r1 + r2
σX1

>
h1 − µX1

ǫσσX1

, r3 >
h2 − a2X1

σ
, (X1,X2) ∈ Bh

)

.

We are now in the analogous situation to that encountered in (3.28), except that the small parameterǫ > 0
appears in the denominator of the other variable. As a consequence, this time we obtain thatτξ ≪ τη for
smallǫ > 0. Therefore, in contrast to type I models, the escape of a trajectory of (2.11) and (2.12) fromA
is dominated by the slow subsystem, i.e.,τ = τη.
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5 Numerical example

In the present section, we illustrate the statistical regimes identified in this study with numerical simulations
of a conductance based model of a neuron in the presence of noise. To this end, we use a three variable
model of a bursting neuron introduced by Izhikevich [26]. The model dynamics is driven by the interplay
of the three ionic currents: persistent sodium,INaP , the delayed rectifier,IK , a slow potassiumM -current,
IKM , and a passive leak currentIL. The following system of three differential equations describes the
dynamics of the membrane potential,v, and two gating variablesn andy:

Cv̇ = F (v, n, y), (5.1)

τnṅ = n∞(v)− n, (5.2)

τyẏ = y∞(v)− y, (5.3)

whereF (v, n, y) = −gNaPm∞(v)(v−ENaP )−gKn(v−EK)−gKMy(v−EK)−gL(v−EL)+I; gs and
Es, are the maximal conductance and the reversal potential ofIs, s ∈ {NaP,K,KM,L}, respectively; and
I is the applied current. The time constantsτn andτy determine the rates of activation in the populations

of K andKM channels. The steady-state functions are defined bys∞(v) =
(

1 + exp
(

as−v
bs

))−1
, s ∈

{m,n, y} . The parameter values are given in the caption to Fig. 7. This completes the description of the
deterministic model. The random perturbation is used in theform of white noise,σẇt and is added to the
first equation (5.1) for type I model or to the third one (5.3) for type II model. After suitable rescaling,
these models can be put in the nondimensional form (2.9), (2.10) or (2.11), (2.12). The separation of the
timescales in the nondimesional models (i.e. smallǫ >)) is the result of the presence of the disparate time
constantsτh ≫ τn in the original model (see caption to Fig. 7).

The parameters of the deterministic system are chosen so that it has a limit cycle located as shown in
Fig. 3c. In the presence of small noise the system generates bursting. In each numerical experiment, we
integrated the randomly perturbed system using the Euler-Maruyama method [24] until it generated5, 000
bursts. We used these data to estimate the probability density for the number of spikes within one burst.
In Fig. 7, we plot the histograms for the number of spikes in one burst for type I and type II models.
The histograms in Fig. 7 are scaled to approximate the probability density function (PDF) for the number
of spikes in one burst. Both PDFs shown Fig. 7a,b have distinct exponential tails as expected for the
asymptotically geometric RVs. Note that the distribution in Fig. 7a fits well with the geometric distribution
for N > 100, while in Fig. 7b the geometric distribution fits the data almost on the entire domainN > 10.
In addition, the peak in the histogram in Fig. 7a is reminiscent of the PDF characteristic for the diffusive
escape (see Fig. 5). For comparison, we plotted a slightly shifted diffusive PDF,Ψa(x), a = 10.8 in Fig. 7a.
Matching the data andΨa is a delicate matter, because it is not clear how wide is the range ofn, to which
the estimates of Theorem 3.9 apply. Nonetheless, the qualitative similarity of the peak in the histogram in
the rangen ∼ 50 − 100 and the diffusive PDF is apparent. We repeated these numerical experiments for a
few other sets of parameters and found qualitatively similar results.

Collecting the statistical data shown in Fig. 7 requires integrating the system over very long intervals
of time, for which it would be hard to justify the accuracy of the Euler-Maruyama method. However,
capturing the statistical features of the dynamical patterns does not require having an accurate solution on
the entire interval of time, because they are determined by the discrete dynamics of the first return map. The
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Figure 7: The histograms for the number of spikes in one burst. The histograms computed for the type I
model in (a) and type II in (b) are normalized to approximate the corresponding PDFs. The tails of both
functions are well approximated by the exponential densities with parameters0.0067 and0.0125 respec-
tively. In (b) the exponential distribution already gives avery good approximation for the number of spikes
exceeding10. The region of exponential behavior in (a) starts aroundn ∼ 100. In (a), we also plotted in
solid blue line the shifted diffusive densityΨa(x−25), a ≈ 10.8. Although it is hard to claim a quantitative
fit of the diffusive density and the data, the qualitative similarity between the diffusive pdfΨa(x) and the
peak in the data in the rangen ∼ 50 − 100 is apparent. The values of parameters areC = 1

(

µFcm−2
)

;
gNA = 20, gK = 10, gKM = 5, gL = 8

(

mScm−2
)

; ENa = 60, EK = −90, EL = −80 (mV );
am = −20, an = −25, ay = −10 (mV ); bm = 15, bn = 5, by = 5; τn = 0.152, τy = 20

(

ms−1
)

,
I = 5pA, andσ = 1.
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iterations of the latter are expected to be insensitive to the numerical noise as suggested by the analysis of
the randomly perturbed maps in Section 3. Therefore, we onlyneed to have accurate numerical solutions on
the time intervals comparable with the typical periods of the fast oscillations. This is easy to achieve with
the Euler-Maruyama method. We repeated these numerical experiments using the second order Runge-Kutta
method and obtained very similar results. These informal arguments form the rationale for using the above
numerical scheme. The rigorous justification of the numerics is beyond the scope of this paper.

Acknowledgments.This work was partially supported by NSF grant IOB 0417624 (to GM) and NSA grant
MSPF-04G-054 (to PH).

Apendix

In this appendix, we provide the details of the derivation of(4.23)-(4.26), which were omitted in the main
part of the paper.

To derive (4.23) and (4.24), we first note thatθ
(0)
t is a monotonic function on[0, t̄], providedδ > 0 is

sufficiently small. Thus,
dξ(0)

dθ(0)
= a(θ(0))ξ(0) +O(ξ20),

and
ξ(0)(θ(0)) = ξ0A(θ

(0)) +O(ξ20). (A.1)

By plugging in (A.1) into (4.27), we have

θ̇
(0)
t = 1 + b1(θ

(0)
t )ξ0A(θ

(0)). (A.2)

By Gronwall’s inequality,
θ
(0)
t = ψt +O(ξ20), t ∈ [0, t̄], (A.3)

whereψt solves
ψ̇
(0)
t = 1 + ξ0b1(t)A(t), ψ0 = 0. (A.4)

The combination of (A.1), (A.3), and (A.4) implies (4.24).

We next turn to IVP (4.30), (4.31) and (4.24). LetU(t, ξ0) denote the principal matrix solution of the
homogeneous system

żt = Λ(t, ξ0)zt. (A.5)

Then the solution of (4.30) and (4.31) is given by

zt =

∫ t

0
U(t, s, ξ0)h

(

θ(0)s , ξ(0)s

)

dws =

∫ t

0
U(t, s)h (s, 0) dws +O(ξ0), t ∈ [0, t̄], (A.6)

where
U(t, s, ξ0) = U(t, ξ0)U

−1(s, ξ0) and U(t, s) = U(t, s, 0). (A.7)
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Finally, by integrating (A.5) withξ0 = 0 and appropriate initial conditions, one computes

U(t, 0) =

(

1 B(t)
0 A(t)

)

. (A.8)

The expression forU(t, s) in (4.26) follows from (A.7) and (A.8).
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