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Abstract

We consider a model of a square-wave bursting neuron residitne regime of tonic spiking. Upon
introduction of small stochastic forcing, the model getesarregular bursting. The statistical properties
of the emergent bursting patterns are studied in the presmht In particular, we identify two principal
statistical regimes associated with the noise-inducestingy. In the first case, (type I) bursting oscilla-
tions are created mainly due to the fluctuations in the fas$ysstem. In the alternative scenario, type Il
bursting, the random perturbations in the slow dynamicg aldominant role. We propose two classes
of randomly perturbed slow-fast systems that realize typad type Il scenarios. For these models,
we derive the Poincare maps. The analysis of the linearin&tcBre maps of the randomly perturbed
systems explains the distributions of the number of spikésimwone burst and reveals their dependence
on the small and control parameters present in the models. Midthematical analysis of the model
problems is complemented by the numerical experimentsaviteneric Hodgkin-Huxley type model of
a bursting neuron.

1 Introduction

Differential equation models of excitable cells often urd# small random terms to reflect the unresolved or
poorly understood aspects of the problem or to account fongically stochastic factors[[1]8,/9,110,/15] 16,
32,[41) 39| 43, 46]. In addition, many neuronal models al$obi#xmultistability [38,/26]. In systems with
multiple stable states, noise may induce transitions betwdeferent attractors in the system dynamics, thus,
creating qualitatively new dynamical regimes, that aregmesent in the deterministic system. In the present
paper, we study this situation for a class of square-wavstibgrmodels of excitable cell membranes. This
class includes many conductance-based models of excitelllenembranes. Here we just mention the
model of a pancreati@—cell [6,[7], models of neurons in various central patternggators such as those
involved in insect locomotion_[20], control of the heartb@aa leech [[25], and respiration in mammals
[4, 5], to name a few. These models, as well as the underlyinlpdical systems, exhibit characteristic
bursting patterns of the voltage time series: clusters sif $pikes alternating with pronounced periods
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Figure 1: The dynamical patterns generated by a model of gfiare-wave bursting neurdn (IL.1) ahd1.2):
(a) periodic bursting and (b) tonic spiking.

of quiescence (Figl]1a). For introduction to bursting, epl® and bibliography, we refer the reader to
[26], (31,37, 38]. The dynamical patterns generated by thelwxiance-based models typically depend
sensitively on parameters. For example, models of square-bursting neurons often exhibit both bursting
and spiking behaviors for different values of parameteee (Big. [1a,b). In many relevant experiments,
the transition from spiking to bursting is achieved by chiagghe injected current. In the present paper,
we consider a model of a square-wave bursting neuron in thimeeof tonic spiking (Fig[11b). We show
that a small noise can transform spiking patterns into i@g(noise-induced) bursting patterns and describe
two distinct mechanisms for generating noise-inducedtimgsin the first scenario, bursting oscillations are
triggered by the fluctuations in the fast subsystem. We tefltis mechanism as type | bursting. In contrast,
the bursting dynamics in type Il scenario are driven by theloan motion along the slow manifold. For
each of these cases, we describe the statistical propefties emergent bursting patterns and characterize
them in terms of the small and control parameters preseheimiodel.

Noise-induced phenomena have received considerable¢iatt@mthe context of neuronal modeling (see,
e.g., [1,/8/9] 32, 39, 41, 43, 146]). A representative exanyplpven by a2D excitable system perturbed
by the white noise of small intensity|[1]. In the presence oisa and under certain general conditions,
a typical trajectory occasionally leaves the basin of etima (BA) of the stable equilibrium and makes a
large excursion in the phase plane of the deterministicesydiefore returning to a small neighborhood
of the stable fixed point (Figl]2a). This gives rise to irregupiking (Fig.[2b). The properties of the
noise-induced spiking and stochastic resonance type®#esing in the context of the perturbed FitzHugh-
Nagumo model have been considered_in [1./8, 9, 10] (seel2|dd/[3A8/ 19] for the mathematical analysis
of more general classes of related phenomena in randomiyrped slow-fast systems). In the present
paper, we study a related mechanism for irregular burst8mecifically, we consider a class of models of
square-wave bursting neurons:

y = eg(zy), x= (xl,xz)T eR? yeR!, 1.2

where f and g are smooth functions an@l < ¢ < 1 is a small parameter. We refer fo (1.1), wheres
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Figure 2: (a) A phase-plane trajectory of the randomly pbed FitzHugh-Nagumo model in excitable
regime (see [1] for the model description and the parametieresg). (b) The time series corresponding to
the phase plot in (a).

treated as a parameter, as a fast subsystem. It is formatyneld from [(1.1l) and_(112) by settirg= 0.

We assume that the fast subsystem has a family of stabledymiés and that of stable equilibria fgrin

a certain intervaly € (ysn, ) (see Fig.[Ba). The additional assumptions[on](1.1) &nd,(&ich are
explained in Section 2, imply that for small> 0, (1.1) and[(1.2) has a stable limit cycle as shown in Fig.
[Bc. In the presence of noise, a typical trajectory of the oamg perturbed system will occasionally leave
the BA of the limit cycle of the deterministic system to makeexcursion along the curve of equilibria of
the degenerate system, E (see Fijy. 4a). Thus, in analogye tiiFitzHugh-Nagumo model (Fid.] 2a),
noise transforms spiking dynamics into irregular burstiidée refer to the latter as noise-induced bursting.
In both examples above, irregular spiking (Fig. 2a) or ogspatterns (Fig[l4a,b) are created due to the
escape of a trajectory of the randomly perturbed system fr@rBA of a stable fixed point in the case
of spiking or of that of the stable limit cycle in the case ofdiing. The statistics of the first exit times
can then be related to the properties of the emergent firitigrpa such as the frequency of spiking or the
distribution of the number of spikes within one burst. Coneplato the analysis of the irregular spiking in
the randomly perturbed FitzHugh-Nagumo model (Elg. 2) ahelysis of the noise-induced bursting faces
several additional challenges due to the fact that in therlaase one has to consider the exit problem for
the trajectories near a stable limit cycle as opposed tethear a stable equilibrium in the former case. The
structure of the BA of the limit cycle combined with the sldast character of the vector field determines the
main features of the resultant bursting patterns. The giser of the principal statistical regimes associated
with the noise-induced bursting is the focus of the presapep

There are general mathematical approaches for analyzihgreblems for stochastic processes gener-
ated by randomly perturbed differential equations sucHildal @nd [(1.R): the Wentzell-Freidlin theory of
large deviations| [19] and the geometric theory for randopdyturbed slow-fast systems due to Berglund
and Gentz[[B]. In this paper we study the vector fields arigntpe context of bursting. The specialized
structure of this class of problems allows us to keep theyaisabf the present paper self-contained and
avoid using more technical methods, which are necessagnfadyzing more general situations. Our analyt-
ical approach is based on the reduction of a randomly pestudifferential equation model to the Poincare



map and studying the exit problems for the trajectories efdiscrete system. Using maps is quite natural
in the context of bursting due to the intrinsic discretenafssursting patterns imposed by the presence of
spikes. Reductions to maps have been very useful for anglymirsting dynamics in a variety of determin-
istic models([6] 33, 34, 35, 40]. As follows from the resulfdt®e present paper, the first return maps also
provide a very convenient and visual representation fonteehanism underlying noise-induced bursting.
In particular, we show that the distributions of spikes i dmurst in many cases are effectively determined
by 1D linear randomly perturbed maps. We develop a set of prdbabitechniques for analyzing the dy-
namics of randomly perturbeld® and2D linear maps such as those arising in the analysis of bursting
special structure of this class of problems, which is métigddby the applications to bursting affords a more
direct and simpler analysis than the treatment of more g¢wésses of random linear maps found in the
literature [29] 21, 28, 45].

The outline of the paper is as follows. In section 2, we fomellour assumptions on the deterministic
system. We then present the preliminary numerical resultsivating our formulation of the randomly per-
turbed models at the end of this section. Specifically, windjgish two types of the noise-induced bursting.
Type Ibursting is generated due to the fluctuations predominamtlye fast subsystem, whitgpe Il burst-
ing is induced by variability mainly in the slow variable. éardingly, we introduce two types of models that
generate type | and type Il bursting patterns. Section 3ldps& set of probabilistic techniques, which will
be needed for the analysis of the first return maps for theorahdperturbed differential equation models.
We first analyze a simple linear map with an attracting slapé small additive Gaussian perturbations in
Section 3.2. Due to the simple structure of the map, we olvitiy explicit characterization of the first exit
times for this problem. The analysis of this first relativelynple example provides the guidelines for the
more complex cases dealt in Sections 3.3-3.5. Section 4iosnthe definition and the construction of the
Poincare map for the type | randomly perturbed model intteduin Section 2. TheD Poincare map is
decomposed into twbD maps for the fast and slow subsystems, which are construttgections 4.2 and
4.3 respectively. In Section 4.4, we apply the results ofiBe® to the linearization of the Poincare map to
derive the distributions of the first exit times. The lattex enterpreted as the distributions of the number of
spikes in one burst. In Sections 4.5, we outline the modifinatnecessary to cover type |l models. Since
the analysis for type Il models closely follows the linestudttfor type | models, we omit most of the details.
Finally, the numerical experiments in Section 5 are desldodllustrate our theory.

2 The model

In the present section, we introduce the model to be studigde remainder of this paper. We start by
formulating our assumptions on the deterministic modelthed describe the random perturbation.

2.1 The deterministic model

We consider slow-fast systemn (11.1) afd {1.2Rihwith oneslow variable. Thefastsubsystem associated
with (1.1) and[(1.R) is obtained by sendiag 0 in (1.2) and treating as a parameter:

= f(x,y). (2.1)
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Figure 3: (a) The bifurcation diagram of the fast subsyst@ri)( L denotes a cylinder foliated by the
stable periodic orbits. The lower branch of the paraboliveu is composed of stable equilibria of the fast
subsystem (see Figl 6b for the plot of a representative gilase of the fast subsystem fore (ysn, ypp))-
(b,c) Periodic trajectories of the full systeim (|1.1) and)kre superimposed on the bifurcation diagram of
the fast subsystem. Assumptions (SE) and (SB) (see theresstlt in a bursting limit cycle plotted in red
in (b), while (SS) yields spiking (c).

Under the variation ofj, the fast subsystem has the bifurcation structure as shchenstically in Fig.
[Ba. Specifically, we rely on the following assumptions:

(PO) There existsy, € R such that for each < y,, Equation[(Z.11) has an exponentially stable limit cycle
of period T (y):
Ly) ={z=9¢(s,y): 0<s<T(y)} (2.2)

The family of the limit cyclesL = J L(y), forms a cylinder irR? (Fig.[3a).

y<ybp

(EQ) There is a branch of asymptotically stable equilibria[ofl{2F = {z =¥ (y) : y > ysn}, Which
terminates at a saddle-node bifurcationy at y,,, < i, (Figure[3a).

(LS) For eachy € R, thew—Ilimit set of almost all trajectories of (2.1) belongsi¢y) | J{(y)}.

Remark2.1 At y = y,, L, either terminates of(y;, + 0) looses stability. We do not specify the type
of the bifurcation aty = y,. It may be, for instance, a homoclinic bifurcation as showirig. [3a, or a
saddle-node bifurcation of limit cycles [22].

Having specified the assumptions on the bifurcation streadfithe fast subsystem, we turn to the slow
dynamics. The geometric theory for singularly perturbesteays implies the existence of the exponentially
stable locally invariant manifold&. and L., which areO(e) close toE (\{(z,y) : y > ysn + 0} and
LM{(z,y) : v < ypp — 0}, respectively, for arbitrary fixed > 0 and sufficiently smalt > 0 [14,[27].
Manifolds E. and L. are calledslow manifolds For smalle > 0, the dynamics of (111) an@ (1.2) on the
slow manifolds is approximated by

L: y=eG(y), y<uyp—9I, (2.3)
E. : y=e9(V(®),y), Y>> yYsn+0, (2.4)
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where

T(y)
Gly) = 1) /0 " g (6(s),y) ds. (2.5)

T(y)

We distinguish two types of the asymptotic behavior of sohg of [1.1) and(1]2)burstingandspiking
(see Fig[1l). The following conditions on the slow subsysyéed bursting.

For some: > 0 independent of,

(SE)
Q(T/J(y),y) < —c for y>ysm, (2.6)

(SB)
G(y) >c for y < ypp. (2.7)

Under these assumptions, for sufficiently smalt> 0 a typical trajectory of[(1]1) and_(1.2) consists of

the alternating segments closely followidg and E, and fast transitions between them (see Hig. 3b).
For detailed discussions of the geometric constructiorbofsting’ periodic orbits, we refer the reader to

[31,[37]. To obtain spiking, we substitute (SB) with

(SS) G(y) has a unique simple zero@at= y. € (Ysn, Yop):
G(y.) =0 and G'(y.) <O0. (2.8)
In this case, the asymptotic behavior of solutions follovesf the following theorem due to Pontryagin and
Rodygin:
Theorem 2.2.[36] If € > 0 is sufficiently small[{1]1) an@(1.2) has a unique exporadéintstable limit cycle

L(y.) of periodT (y.) + O(e) lying in anO(¢e) neighborhood of.(y.), provided (SS) holds.

Almost all trajectories ofl (1]11) and (1.2) are attracted Hoy limit cycle lying in anO(e) neighborhood
of L(y.). This mode of behavior is called spiking (see Kig. 3c and Bm). In the remainder of this paper
we assume (SS), in addition, to (PO), (EQ), (LS), and (SE).

2.2 The randomly perturbed models

In this subsection, we provide a heuristic description @f éffects of the random perturbations on the
dynamics of[(1.1) and_(1l.2). To study these effects qudiveds, at the end of this section, we propose two
randomly perturbed models.

Suppose the trajectories ¢f (IL.1) ahd [1.2) experience wemthastic forcing, such that the perturbed
trajectories represent well-defined stochastic procemsgsire close to the trajectories [of (1.1) dndl(1.2) on
finite intervals of time. Since the trajectories of the umpdred system remain in a small neighborhood
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Figure 4: Noise-induced bursting. (a) A trajectory of thedamly perturbed system is shown in the phase
space of the frozen systefn (IL.1), (1.2) wite= 0. The trajectory leaves the basin bfy.) mainly due to
the fluctuations in the fast plane. This is characteristitype | bursting. An alternativaéype Il scenario is
shown in plot (b), where the fluctuations in the slow directitmminate in the mechanism of escape from the
basin of the stable limit cycle. The trajectory in (b) sanspewide region of. and leaves a neighborhood
of L near the right boundary, ~ y,,; while that in (a) remains nedr(y.) most of the time and jumps down
neary = y.. The differences translate into the distinctive featureth® generic time series of the bursting
patterns generated via type | or type Il mechanisms showtois fc) and (d) respectively. Note that the

longer burst in (c) has a typical square-wave form (rougthdyermined by.(y.)), while the burst shown in
(d) exhibits more variability due to the drifting of the wajory alongL.



of L(y.) (possibly after short transients), we expect that in thegmee of noise the trajectories will occa-
sionally leave the BA of.(y.) and after making a brief excursion alo&gwill return back to the vicinity

of L(y.). Therefore, under random perturbation the system can ixhitsting dynamics, while the un-
derlying deterministic system is in the spiking regime. \&ker to this mode of behavior amise-induced
bursting. Our goal is to describe typical statistical reggnassociated with the noise-induced bursting and to
relate them to the structure ¢f (I1.1) abd {1.2) and to thegut@s of the stochastic forcing. To illustrate the
implications of the structure of the deterministic vectetdifor the bursting patterns that it produces under
random perturbations, we refer to the following numericadraples. Note that the BA af(y.) naturally
extends along the cylinder of periodic orhitgFig.[3c). The escape from the BA 6{y..) can be dominated

by the fluctuations alon@ or by those in the transverse plane. These two possibiitieshown in Fig.14.
The trajectory shown in Fid.] 4a spends most of the time hégy) and leaves its BA due to the fluctuations
in the fast subsystem. We refer to this scenarityps |escape. Alternatively, the trajectory shown in Fig.
4b travels a good deal alorgbefore the escape and exits from the BA nga# y;,. This mechanism is
dominated by the slow dynamics. We refer to this scenarty@es || escape. These mechanisms of escape
translate into distinct features of the resultant burspagerns. First, note that since in type | and type II
scenarios, the transition from spiking to quiescence dfyicakes place aj ~ y. andy ~ 1y, respectively,

by (1.2) and (EQ), the corresponding interburst intervedsagproximately equal to

s 9@WW),y)’ G =1ypp, typell

In addition, we expect that the interspike intervals (ISi&hin one burst in type | scenario are localized
about7 (y.), since the trajectory of the randomly perturbed system énaittive phase of bursting spends
most of the time neakL(y.). In type Il bursting patterns, ISIs are expected to have mar@bility, since
the trajectories sample a wider range of ISls during thaiuesions alond.. Perhaps, a more pronounced
distinction between these two types of bursting patteres iln the degree of the variability of the spikes
in one burst. Most of the spikes forming a burst in type | pat@re generated by (2.1) with~ y. and,
therefore, are similar in shape (Fig. 4c). In contrast,epik type Il scenario are subject to more variability
and the bursting patterns typically have ragged shape [{@ig.

To study type | and type Il noise-induced bursting pattetns convenient to consider two types of
models.Type | modelncorporates random forcing in the fast subsystem:

&y = f (2, ye) + opuy, (2.9)
U = €g(x,yp), (2.10)

while, intype Il modethe slow subsystem is forced

oy = f(w,uy), (2.11)
g = e(g(xe,y) +oquy). (2.12)

Here,0 < 0 < 1, p(z,y) = (pl(x,y),pz(w,y))T andq(x,y) are differentiable functionsj, stands for the
white noise, i.e. a generalized derivative of the Wienecess.



3 The randomly perturbed maps

In this section, we develop probabilistic tools needed lieranalysis of randomly perturbed systems](2.9)-
(2.12). The number of spikes in one burst is a natural randarnable associated with the noise-induced
bursting. It is commonly used in the experimental studidsupéting and we shall adopt it for characterizing
irregular bursting patterns in this work. In Section 4, wd sliow that the number of spikes in one burst is
represented by a stopping time (more precisely, the levadadance time) of a discrete random process, the
Poincare map of the randomly perturbed sysfem (2.9)21dreparation for the analysis of the linearized
Poincare map in Section 4, in the present section we stutlicetochastic linear difference equations. The
equations of this form equations have been considered ihiténature before. The study was initiated by
Kesten [[29] who considered multidimensional case (in whiah coefficients of the stochastic equations
are random matrices). Subsequent work focused mostly oh/thease. We refer the reader to the papers
[21, [45], which contain representative results, exampfegpplications, and further references. There is
also a review paper [12], unfortunately not easily accéssilbhe convergence properties of the solutions
that we will need could be deduced from a general theory @hststic difference equations. However, the
results in the literature are often stated in the most géf@ma and some of the proofs are rather involved.
We will be dealing with special cases that are much easiardiify. For this reason, and also to keep the
paper self-contained we will include the proofs of the neladsults.

3.1 Geometric random variables

We begin by recalling the necessary properties of geometridom variables (RVs). Recall thitis a
geometric RV with parameter, 0 < p < 1 if

P(Y =k =p(l—p*t k>1 (3.1)

We refer the reader to [28, Chapter 5] for the review of theppries of geometric distributions and their
applications. In particular, the following characteriaatof geometric RVs is classical.

Lemma 3.1. LetY be a RV with values in the set of positive integéfsis a geometric with parameter,
0<p<l1,iff
P(Y =n)=pP(Y >n), n>1. (3.2)

Lemmd 3.1 motivates the following definition:

Definition 3.2. LetY be a random variable with values in the set of positive integad letd < p < 1. We
say thatY” is asymptotically geometric with parameteif
P(Y =n)

LBy =) ©2)



3.2 The randomly perturbed map: additive perturbation

Consider
Y, =AY, _1+¢r,, n>1, (3.4)

wherery, 9, ... are independent identically distributed (IID) copies o g8tandard normal RV, and, is
a real number. We will us& (1, n?) notation for a normal RV with meap, variancen?, and probability

density function given by
! ex {_(m—,u)2} —o0 < T <O
o p o : .

We will also letZ denote a generiV (0, 1) RV and we will write

O(x) := % / et

for its distribution function. For a giveh > 0, let

T=inf{k >1: Yy > h}.

Theorem 3.3. Let
2

0,1), A=1- 2-_¢ and h— Yy > 0. 35
66(7)7 67 B 5(2_5)7 0> ( )
Then for sufficiently smadl > 0, 7 is asymptotically geometric RV with parameter
s {“aef (00 ()
=———————exps——=, ([1+0O(= . 3.6
P= Vam ho(h/B) p{ 52 ) (36)
We precede the proof of the theorem with the auxiliary
Lemma 3.4. Forn > 1, Y,, is a normal RV with
2 1— /\Zn
EY, = \"Y, and varY, — % — 32 (3.7)

In particular,
Y -5 Y £ N(0, 5,

where—% (and i) denote the convergence (equality) in distribution.

Proof (Lemmd3.4): The statements [n (3.7) are verified by a sttfaighard calculation. The rest follows,
becausét Y,, — 0 andj, — 5.

Proof (Theoreni3.B): Let, = max{Y;: 1 <j <k}, k> 1. Then

Plr=n+1) = P(Yup >hY; <h) =PV > Yy < WP(Y; < h)
= P(Vp1 > Ay <h Yo 1 <h ... Yo<hP(r>n+1)
= P(Ype1 > h|Y, < HP(r >n+1). (3.8)
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In the last equality, we used the fact tHaf, } is a Markov process which is clear frofn (8.4). By (3.8),

P(r=n+1)
== = < =
Pn ]P’(TZTL-Fl) P(Yn+1>h‘Yn_h)

]P)(Yn-l-l > h7Yn < h)

< b (3.9)

In accordance with Definitioh 3.2, we need to show that} converges and to estimate the limit. By

Lemmd3.4,
P (Y, <h) — ®(h/B), as n — .

Next, we turn to estimating the numerator[in (3.9). We have

Qn = PYuy1>hY,<h)=P(\Y,+srpt1 > h,Y, <h)
— PAY +<¢Z>hY <h)=Q,
where 7 is standard normaly is N (0, 3?) and they are independent. This follows from Lenima 3.4 and
the fact that,, 1 is N(0,1) and is independent df,,. @ is the probability that a 2D Gaussian vector is in

the region[h, o) x (—oo, h]. There are several ways of estimating this probability. e tthe following,
elementary approach. L&f = h — Y so thatX is N (k, 3?) and is independent of. Then

— o — —(s=h)?
Q:]P’<Z>§h+1§EX7X20>:\/21_IB/ P<Z>M)e 232 ds.
us 0

By the well-known asymptotics (se€e [13, Ch. VII, Lemma 2 ard.S, Problem 1])

]P’(Z>u):1—<I>(u):\/%e_uT <1+O<%>>, u> 0. (3.10)

Hence, for sufficiently small > 0 (¢ < ¢), we have

Lo onfol ()

~ . 3.11
@ 27 B Jo eh+(1—¢)s ° (3.11)
Since
(eh+ (1—¢)s)? (s—h)? (s—ch)® K2
2 + 32 - 2 + 52
we obtain )
¢ e
Q~ —exp——= / ds
273 282 Jo eh+(1—¢)s
By Laplace’s method [47], for sufficiently small> 0 (¢ < ¢), the last integral is asymptotic to
V2T V2w
(he + (1 —e)eh)y/1/2  he(2—¢)
Hence,

< 2ms 1l o B h?
QX S Bhe2 =) exp{_z_/ﬂ} = V2nh exp{_ﬁ}'
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By the same reasoning the error term frém (B.10) is of order

ol g0 (L))

which gives|[(3.5). O

3.3 The randomly perturbed map: random slope

Consider a process
Y, =p(l+orin)Yn-1+orey,, n>1, (3.12)

where(r1 ,,,72.,)52, are lID copies of a two dimensional random vecter, ;). Here, we assume that
(r1,72) has bivariate normal distribution with mean vectoand covariance matriX, = [o; ;], where
oi; = cov(r;,rj), 1 < 4,5 < 2. We assume that the entrieg; are of order 1 in a sense that they do not
depend on other parameters. Recall that the probabilitgiyefunction of a multivariate normal random

vector(ry, ..., rq) with mean vector O and covariance matfixs given by
1 1 Twv—1 } T
————exps——=x X xp, = (T1,...,%4)" -
/(2n)ide(s) { 2 (= )

and we denote such vectors By(0, X).

For a givenh > 0, let
T=inf{k >1: Yy > h}.

Theorem 3.5. Suppose that and ;. € (0, 1) are both of order 1 and < 1 so that the following condition
holds
v = pE[l + o] < 1. (3.13)

Thenr is asymptotically geometric RV with parameter

2

c

¢ 507 (1 + 0(02)), (3.14)

o
b= cV 2T

where a positive constantdepends o, p, and.,, but not ono.

As before, we first establish convergence b}, } and characterize the limit. Iteration 6f (3112) yields

Yo = p(l4+orin)Yo-1+oro, =p(l4+ori,) (p(l4+oripn1)Yn2+oran_1)+ora,
n n—1 n
= o= [[A+orn) o) Wy [ +or), (3.15)
j=1 =0 t=n—j+1

where as usuallyf [72, (* ) = 1if k > m.
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Lemma 3.6.

o) 7j—1
Y, -Ly<s Z,ujggd' H(l +0g14), n — 00, (3.16)
=0 =0

where (g1,,92,5), j = 0,1,2,... are IID copies of two-dimensional random vector, which isi@qgn
distribution to(rq, r2).

Proof (Lemmd 3.6): First, we show that is well-defined as the series [0 (3116) converges almostysurie

see this, note that the summands
7j—1

925 [J(1 + og1.0)

=0
are martingale differences with respect to the naturahfitin. By triangle inequality, independence, and

(B.13),
j—1

H(1 +0g1,4)

£=0

m Jj—1 m
Elo Y 1w [[0+0010)| < oElga| Y WE
j=0 £=0 3=0

LR . E E
— O']E‘QQ‘ ZN’J (E’l +O’T‘1‘)] — M(l _ ,Y(m—i-l)) < o |92|
j=0 1=7
Hence, the partial sums of the right-hand side_of (3.16) fami ;—bounded martingale which converges
almost surely by the martingale convergence theorem (ged4€]). For everyn > 1

n—1 n n—1 Jj—1
o> wrany [ Q+ore)=od e [J(+0g10).
j=0 {=n—j+1 Jj=0 =0

Since the sequence on the right converges almost surelyhendlinost sure convergence implies con-
vergence in distribution, we infer that the sequence ondftecbnverges in distribution. To conclude that

Y, 2 Vitis enough to show that the first term on the right—hand si@@.@3) converges to 0 in probability.
But that is clear since we have

n n
E|You" [[(+ory)| = Yolp" [T I+ o] = [Yoly™
j=1 j=1

Hence, by Markov inequality it goes to 0 in probability. O

Proof (Theoreni 3.6): The proof follows the lines of the proof of Brem[3.8. The main complication in
treating the present case is that we know less about thébdistn of Y,, than in before. Nonetheless, we
will argue that for largen

B P(r =n)

L -
B(r > n) P(u(1 4 071,0)Yno1 + 0725 > h|Yn_1 < h) (3.17)

DPn :
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is approximately constant. For this, we rewrite the rightdhaide of [(3.1]7) as

P(u(l 4+ o0r1pn)Yn-1+0ren > h,Y,_1 <h)
P(Yn—l < h) ’

and since the denominator convergetd < h) we focus on the numerator. Lét;,r,) be a generic
vector distributed likgr ,,, 72 ,,) and independent df. Since for everyn > 1, (1, 72,,) IS independent
of Y,,_1, asn — oo we have

d
(Tl,ny T2.n, Yn—l) — (le r2, Y)

Thus,
P(u(l+or)Yp_1+o0re >h, Y1 <h) — P(u(l+o0r))Y +ore > h,Y < h),

which establishes the existencepof lim,, o0 i,

To estimatep, we first recall tha{r;, r2) is bivariate normal if and only if every linear combinatioh o
r1 andr; is a normal RV. Hence, conditionally dn = y, o(uyr1 4 r2) is N(0,0%02) RV, where

5 = 09 + 1Yot + 2uyon, (3.18)

g
Therefore,

P(u(l+o0rm)Y +0ora > h, Y <h)=P(oc(pYr1 +12) >h—pY,Y <h)

:/h P(Z > hg‘g’“‘y)dFy(y)z/h <1—<I><h;0’“‘y>>dFy(y)
(s

where—oco < yg < h by the mean value theorem. Hence,

P(u(l+orm)Y +ora > h, Y <h) h — nyo
= =1-®(———).
P(Y < h) 00y

Letc := ¢(yo) where

_ h—pux h — px

or V2ot a2 + 2uoar + 052'

c o _c o2
= — — = o2 —_—
p=1 @(U) . 2776 2 <1+O<Cz>>.

Furthermore, by elementary analysis we see that:

Then, by [3.1D)

e ¢(z)isincreasing on: € (—oo,z*) and decreasing an € (z*, o), where

o ohthon
u(ha%z + 0'12)’

14



—o0) = oL — (A=ph — (A=ph )
¢ C(_ OO) 011_’ C(h) ) ((/»lho'll)2+2,.l1«0'12h+0'22)1/2 ((pho11+022)2—2ph(011020—012)) /2’ andc(:c ) IS
given by a quite unwieldy expression that dependé amd>:, but not ong.

In particular,c is bounded away frorfi andoo providedy, andh are positive angs < 1. This proves[(3.14).
O

3.4 Atwo-dimensional randomly perturbed map

In this subsection we consider the following two dimensionadel:

§nr1 = pEn (L+0r1pt1) +0r2n1, (3.19)
Myl = A + €0T3 nt+1 + €az&y. (3.20)

where(ry ,, ron, r3n), n > 1, is a sequence of 11D copies 0f;, 72, r3) which, as follows form a discussion

at the beginning of Sectidn 4.4 is assumed to be a trivariatmal random vectoV (0, X3), with X3 =
[0i], 1 < 14,5 < 3, whereo; ; = cov(r;, ;) do not depend on any parameters[in (4.44) and (4.45). For
positiveh;, hy = O(1), we define

e = mf{&e > M}, 7y = jnf{ng > ho}.

We are interested in = min{r¢, 7,}. We know the distribution of; from Theoreni 3)5. As we will show
below, under the suitable conditions the distributionraé again asymptotically geometric. Moreover, if
e > 0is small thenr, has practically no effect on the distributionaf

In order to be more precise, let us define

An — M(l +O'7°1,n) 0 :| ’ Gn _ |: T2n :| ’ and ®n — |: Sn :| ) (321)
€as A

Then, [3.19) and_(3.20) are described by
@n—i-l = An—i—l@n + O‘Gn+1, n > 1. (322)

Theorem 3.7. Letu,0,¢ € (0,1) be such thaj is of order 1 ands < 1 so that condition[(3.13) holds.
Assume < land seth = 1 — e. Suppose further thdt; and hy are of order 1. Therm is approximately
geometric RV with parametersatisfying

o _<

=, (3.23)

p%

and where the constartdepends o+, 1, and3l3 but not ono.

The following lemma shows thd©,, } converges in distribution and describes the limit.
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Lemma 3.8.
o, L x4 Z(HA)Gk, n — 0o, (3.24)
k=1 \j=1

where A,, and G,,,n = 1,2, dots are defined in[(3.21). Furthermore, this random vectorsatisfies the
distributional equation

XL AX 100G, (3.25)
where
a1 0] e =[], (3.26)
€a9 A €r3

(r1,72,73) IS N (0, X3) be generic copies o,, andG,,, and, X on the right hand side of (3.25) is indepen-
dentof(4, G).

Proof (Lemma3.8): Note first that each of the sequer(cés) and(G,,) consists of 1ID random elements.
Let (ry, 72, 73) is N(0,X3) be generic copies ol,, andG,,. By iterating [3.22), we obtain

n—1 n 1T

T Anr = { P = (M o) 0 ] 7
k=0

where

n—ECLQZ/\n]H 1—|—O”I"1k

Setd = max{\, pE|1 + or¢|} and note that b)[(zl?b) < 1. By triangle inequality and independence of
T17k1S

j—1

H(,u(l +ori))| = eas Z A (B + oY < eagnd™ L
k=1 j=1

E|T,| < eay Y A"7E
j=1

Similarly,

n
H L+orig)| = (RE[L +or])" < 6"

It follows that both components <<HZ éAn k) B converge tad) in probability and thus, this term is
negligible.
Since the sequencé¢d,,) and(G,,) are 11D, for everyn > 1 we have

Z nﬁlAnj) G < zn: (lﬁAJ») G
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By the same argument as above we verify that both componétite sequence of partial sums on the right
hand side are Cauchy ify,. Hence, the components of the series

[ k—
k=1 \j

converge in probability (and thus, in distribution). THere, the sequend®,,) defined by((3.22) converges
in distribution to a random vectoX defined in[(3.24). Furthermore& satisfies the distributional equation

(8.25). O

1
Aj | G,
1

Proof (Theoren 3.l7): Foh = (hy, ha) setBy, := (—oo, h1] X (—o0, he]. Then
{r=n}={0; € By, j<n, On ¢ Br},
so that
P(r=n) = P(O, ¢ By|©; € By, j <n)P(O; € By, j <n)
= P(A,On_1+0G, ¢ B,|On_1 € Bp)P(T > n).
Since®,, converge in distribution t&X we have

P(An@n—l + oG, ¢ B;,0,_1 € Bh)

Pn = P(44Ou-1 +0C & Bi|@uo1 € By) = P(On-1 € By)

P(AX + oG §é By, X € Bh)

P(X € By) ’
It follows from (3.24) thatX is symmetric, so since botty andhs are positive the denominator is at least
1/2 and does not affect the asymptotics.

as n — oo. (3.27)

—> P =

To handle the numerator, using (3.26), denoting the compenaf X by X; and X5, and using the
notation adopted il (3.18) we see that it is equal to

P((u(1 4+ or1) Xy + org,€ae X1 + AXo + €ors) & B, (X1, X32) € Bp)
=P(u(l +o0r1)Xy +ore > hy, (X1, X2) € By)
+P(eas X1 + AXy + €org > ho, (X1, X2) € By)
—P(u(1+ or1) X1 + ore > hy,eaa Xy + AXao + eors > ha, (X1, X2) € By)

X h1 — uX
:IP’<M 17’1+7“2> 1— M 1,(X1,X2)eBh>
ox, oox,

ho — X1 —AX
+P <7°3 > 2 6&2601 2,(X1,X2) e Bh>

X hy — pX ha — €as X1 — XX,
—]P’<M 17“1+7“2> 1= M L pg > 22 €azX 2

ox, oox, €0

,(Xl,Xg) S Bh> . (328)

Conditionally on(X1, Xs) = (z1, z2),

T1T1 + T2 T
7y = ,u7’ and Z5 := -3
O 033
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areN(0,1) RVs. Hence by letting”x (x1, x2) denote the distribution function ¢fX;, X), we see that the
first of the last three probabilities is

/h2 /hl (1 ~ <$>> dFx (21, 73), (3.29)

Likewise, for the second of these probabilities we get

ho h1 _ _
/ / (1 — 9 <h2 caat m)) dFx (21, 2). (3.30)
—o0 J—co €0033

We now note that i is of a smaller order than all other parameters (except plgss) then [3.10) implies
that (3.30) (and hence aldo (3128)) are negligible when esetpto[(3.29). To analyze the behavior[of (3.29)
as a function of its parameters note that by the mean valweahethe quantity in(3.29) is equal to

_ ho h1 —
O-@(ﬂ—ﬁ@>>/ dEﬂmwﬂ:<1—¢<@—ﬁ@>>MX6Bw,
00z, oo ) oo 00z,

for some—oo < zy < h. Substituting this into[(3.27) (and neglecting the ternst tfepend or) we see
that

_]P’(AX—FUGﬁéBh,XEBh) 1_ & h1 — pxg
N P(X € Bp) ‘
If both 0 < p < 1 andh; are of orderl we are in the same situation as with (3.14). This shéws{3.23)

00z,

3.5 Diffusive escape

The exit problems for the stochastic difference equatiorayaed in the previous subsections all feature
the geometric escape mechanism. In the simplest case wleavdkution is given by Equation (3.4), the
geometric distribution characterizes the statistics etifmes of exit of the trajectories ¢f (3.4) from a certain
neighborhood of the attracting fixed point. In this subsetgtwe study another important in applications
statistical regime associated with the exit problem [fodl(3the diffusive regime. The role of the diffusive
regime in characterizing the statistics of the exit timesthe trajectories of_ (314) is twofold. First, the
geometric distribution approximates the distribution lod £xit times only for sufficiently large times, i.e.
for largen. In this subsection, we show that in the intermediate rarige be. whenn is neither too large
nor too smallY,,’'s are approximated by the sums of the IID RVs and, therethi=|evel exceedance times
are distributed as those for random walks. We refer to thigson as the diffusive regime. Second, we
recall that to justify the geometric distribution in the pff Theoreni 3.3, we implicitly assumed that the
rate of attraction of the fixed point is stronger than the eaigensity. Specifically, it is easy to see from the
proof of Theoreni 313 that is required to be(e), e = 1 — A. The analysis in this subsection does not use
this assumption. We show that when the noise is strongerth@attraction of the fixed point (albeit both
are sufficiently small), the mechanism of escape of thedtajges from the basin of attraction of the fixed
point changes from the geometric to diffusive. Therefore,canclude this section by pointing out to some
features intrinsic to the diffusive escape. Specificallg,a@nsider[(3}4), for which as before, we define

r=inf{k>1: Yy > hl}, (3.31)
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10 20

Figure 5: Probability density function corresponding te thistribution?, (y), a = 1. With a suitablez > 0,
U, (y) approximates the distribution of the exit times in the diffie escape.

for givenh > 0. In contrast to the case considered in Section 3.2, here sugres
e=0("), a>0. (3.32)

In Theoreni39 below, we show that in the present situatichenntermediate range of, Y, s behave as
sums of IID normal RVs. The behavior of the latter is well-wmo(cf, Lemmd 3.11).

Recall that® (z) stands for the distribution function of a@(0, 1) RV and denote

U, (z) = 2 (1 — 9 (%)) . a>0. (3.33)

Note that¥, () is a probability distribution function oR™* (see Fig[h).

Theorem 3.9. Let the evolution ol;,, n = 0,1,2,... be given by[(3}4). Suppose that= 1 — ¢ with
e =0 (<%, a> 0. Then for arbitrary positive3; and 3, such that3; + 2 < 2«/3, for sufficiently small

s >0,
P(7 < n) = Uy(n) (1 + 0(1)), a= % (3.34)

in the ranges % < n < ¢ 5 +P2,

Remark3.1Q Sincep; 2 > 0 are arbitrary,¥,(n) practically approximate®(r < n) in the rangel <
n < e 23,

We will need the following auxiliary lemma [11, Theorem 2@hapter Ill]. It may be viewed as a
qguantified version of a reflection principle for random wak€, e.g./[42, Sec. 5.3, 5.4]).

Lemma 3.11. Let X1, X5, ... be a sequence of independent, symmetric RVs and set

k
S, =S X, and S = S, i>1.
L Z; i P = max S, j2
j:

19



Then for anyt, v > 0 the following inequalities hold:

OP(Sy >t +2u) —2) P(X >u) <P(S; > 1) < 2P(S, > 1). (3.35)
k=1

Remark3.12 As was noticed by S. Kwapieh a bit stronger version of the iiirsquality in [3.35) follows
from a slight modification of the proof of Proposition 1.3m1]80].

Proof (Theoreni 3.B): Without loss of generality, we assume ¥yat 0 (otherwise, apply the same argu-
ment toY}, — Yp). Note that the distributions of andY;" are linked by the following relation

P(r <n) =P, > h).
Unwinding (3.4) and usind) = 0 gives
Vi = e\l + N 2y o b Arpg + 1),

which we write asSj, + Wy, where

e

k -1
Sy = ngj, Wi i=¢ rj(/\k_j -1). (3.36)
=1 =1

We will first show that the main contribution 5 is from the S;;. First, by subadditivity of maxima, for
any0 < hy < h,

P(Y,) > h) <P(S;+ W} >h) > >
P(S: <h—hy) +P(W,[* > hy). (3.37)

Further,Y;, > S — |Wj| so that
P(S; > h+ hi) <P(S; > h+ hy, [Wa|* < hy) + P(|[Wo|* > hy) < P(Y,S > h) + P(|W,|* > hy),
which, when combined with_(3.87) means that
P(S;, = h4ha) = P([Wyp|" = h) < P(Y > h) <P(S; > h—ha) + P((W|" = h). (3.38)

First, we estimat@(|W,,|* > h;) in (3.38). To this end, we use— ) =1 — (1 — )’ < je to obtain

5 % . 9 5 om3 , £%n?
var(W,) =2 ) (1= N)? <P’ = Pn——.
ar(W,) =¢ : 1( ) el =on—g

Consequently, by (3.35) and (3136), we have

P(|Wp|* > h1) < 2P(|Wy| > hi) < AP(W,, > hy) = 4P (Z > L)

— y/var(Wy,)
hi V3
< 4P (Z > m . z—:_n> .
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Next, we turn to estimating the probabilities involvisg in (3.38). By the second inequality in_(3135), for
everyu > 0, we have

h — hy
P(S* > h—hy) < 2P(S, >h—hy)=2P (2> , 3.39
(S12 0 I) <27(5, > 0o h) =26 (22 210 3:39)

while the first one yields

P(S; > h+h1) > 2P(Sp>h+hy+2u)—2) Plery > u)
k=1

— op (Z > w) _ P (Z > 3) . (3.40)
V4D S

The combination of(3.38)[(3.89), arid (3.40) yields

P(Y'>h) > 2@(22h+h1+2“>—2m@<223>—4P<Zzi-£>, (3.41)

n T S g\/ﬁ En
PY;>h) < 2P(zzh‘h1>+w<zzi.@> (3.42)
sv/n sv/n en
To complete the proof, we need to chdseandu such that

hy u S -1__.3
—L =0o(1), ——= =o0(1), =~=o0(1), and h /2 = o(1). 3.43
§\/ﬁ 0( )7 §\/ﬁ 0( )7 w 0( )7 n 1 CEM 0( ) ( )

38
It is straightforward to verify that relations in_(3]43) dolith h; = ¢ andu = gl‘%l, Br2 > 0,
b1+ B2 < 2a/3, andn as in [3.34). O

4 The Poincare map

In the present section, we consider the type | model, i.erahdomly perturbed system with the stochastic
forcing acting via the fast subsystem (deel(2.9) and (2.10}he active phase of bursting (when the system
undergoes spiking), the trajectory of the randomly perdrbystem remains in the vicinity of the cylinder
foliated by the periodic orbits of the fast subsystems, [Ege6a). The time that the trajectory spends near
L determines the duration of the active phase. The goal ofstiition is to describe the slow dynamics
nearL. In particular, we will estimate the distribution of the nlben of spikes in one burst. To this end,
we introduce a transverse focrossectior® (see Fig[ ba) and construct the first return map. Specifically
we estimate the change in the state of the system after oie ofycotation of the trajectory around.
The construction of the first return map for (2.9) and (.50Jane in analogy to that for the deterministic
models of bursting (se& [34,131]). However, the treatmetti@fandomly perturbed system requires certain
modifications. First, we have to resolve the ambiguity in tladion of the first return time. The latter
is due to the fact that generically a trajectory of the ranigoperturbed system makes multiple crossings
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with ¥ during each cycle around. We refer the reader to the comments following Theorem 239

for an explicit example illustrating this effect. For thendmmly perturbed system, we define the time of
the first return so that it approaches the first-return tim#hefunderlying deterministic system in the limit
of vanishing random perturbation. The definition of the fietiurn time motivates the definition of the
Poincare map (see Definition 4.1). In Sections 4.1 and 4.2jsgeasymptotic expansions to construct the
linear approximation for the Poincare map of the fast sulesysHere, we use an obvious observation that
on finite time intervals and for sufficiently small > 0, the slow variable typically remains in an(e)
neighborhood of its initial value. Therefore, for finite Bsthe Poincare map of the fast subsystem captures
the dynamics of the full system. Since we are interestedrig term behavior of the system, to complete
the description of the first return map we also need to traelk(small) changes in the slow variable after
each cycle of oscillations. This is done in Section 4.3, wivee derive d D map for the slow variable. The
combination of the D Poincare map for the fast subsystem and that for the slowablarprovides the first
return map for the full probleni_(2.9) arid (2110). The lingaprximation of the2D map is used in Section
4.4 to estimate the distribution of the number of spikes ia barst for the type | model. Effectively, the
problem is reduced to the exit problem fot B linear randomly perturbed map. For the latter problem, we
have already developed necessary analytical tools ind@e8ti Finally, in Section 4.5, we comment on the
straightforward modifications necessary to extend theyarsabf this section to cover type Il models.

4.1 Preliminary transformations

Recall that® stands for the transverse section located as shown scleeityatn Fig. [6a. Letyy < v,

be outside ar©(c) neighborhood ofy,, andzy = (mé,m%)T € X be from anO(o) neighborhood of..
Consider an initial value problem fdr (2.9) and (2.10) witkiial data(zo, yo). By standard results from the
asymptotic theory for randomly perturbed systems [19], arxeththe following estimate

yr = yo + O(e), (4.1)

valid on a finite interval of time € [0,¢]. Here and below, for a small parameter 0, the symbolsD (e)
ando(e) in the asymptotic expansions of the random functions meainttie corresponding relations hold
almost surely (a.s.). Specificallyy(¢) = O(e) for ¢ € [t;,t2] means that there exists > 0 such that

sup ‘e_lwt(eﬂ < oo a.s.
t € [t1, 2]
e € [0, €]

In a similar fashion, we interpret;(¢) = o(e¢) when,(e) is a random function.
By plugging in [4.1) into[(2.9), we obtain the following SODE
dxy = f () dt + op(z¢)dwy + O(€), 4.2)

where f (z) = f(z,y0), p(x) := p(x,y0), andyp is fixed. Equation[(4]2) witk = ¢ = 0 has an
exponentially orbitally stable periodic solution= ¢(¢, yo) of period7T (yo):

L(yo) = {x = ¢(0,y0) : 0 €10, 7T (y0))} (cf. 2.2)).
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To simplify the notation, throughout the analysis of the fagsystem, we will omit to indicate the depen-
dence ony, when refer tal, ¢, and7 . At each pointz = ¢(0) € L, we define vectors

7(0) = (fL(@), f2(2))" and w(8) = Jf(x), where ] = ( ‘1) _01 > , 4.3)

pointing in the tangential and normal directions, respetti To study the trajectories df (4.2) in a small
neighborhood of_, it is convenient to rewrité (412) in normal coordinatés¢) [23]:

z=¢(0) +&v(0), 0[0,T) (4.4)

Lemma 4.1. For sufficiently smalb > 0 Equation [4.4) defines a smooth change of coordinates in
By ={x=¢(0) +&v(0) : [§] <6, 6 €[0,T)} (4.5)
In new coordinates[ (412) has the following form:

oy = (1 + bl(et)ft)dt + Jhl(eta ft) (1 + 52(90&) dwy + O(Ev 527 02)7 (4-6)
A& = a(0y)&dt + oha(0y,&)dwy + O(e, 6%, 0%), (4.7)

where smooth functions(6), b1 (€), andby(#) are T —periodic and

0 < 1= exp </0Ta(9)d0> ~ exp </0Tdivf (¢(9))> <1, (4.8)

_<pr>_ pft4pPf?
<7, 7> ik

_<pv>_ pf-p'f?
<7, T > T

hl (97 6) ) h2 (97 6) (49)

Proof : The proof of the lemma follows the lines of the proof of Theror VI.1.2 in [23]. Letz =
(24, 22T .= (0,¢)T and denote the transformation in_(4.4) by

x =v(2), z € Bs. (4.10)

Note

¢1'(0) —f7((9)) 2
Dv(0,0)| = =|f (o0 0, 60, 7).
Du,0 = | Sy 1oy |~ OO #0 0 €D.T)
Therefore, for sufficiently smali > 0, (4.10) defines a smooth invertible transformatiorBin Denote the
inverse ofv by z = u(z), = € v(Bs) and note that

[Du(z)] ™' = Du(z), = € v(Bj). (4.11)
By Itd’s formula, we have
dz = Du(z¢)dxy + O(0®)dt (4.12)
and, therefore,
Du(z)dz = dxy + O(0?)dt. (4.13)
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Figure 6: (a) Crossectiol is used in the construction of the first return map. (b) Thesphaane of the
fast subsysteni (2.1) for € (ysn, ypp)-
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By recalling that: = (6, £) and after plugging in_(4]12) int¢ (4.1.3), we obtain

00) | @O | g, 4 v(o)de, = (F(6(0)) + DI (9(00)) w(B)E + Q00 &1)) de

do do
+  opdw; + O(e, 0?), (4.14)
where
Q(0,€) = [ (¢(0) + v (0)) — £ (4(0)) — Df (¢(0)) v(0)E = O (€%),  [¢] < 6.
Note that
WO~ 1(60) =70, 77 (O)r(0) = (0 v(0) = |1 (G(O))*, (4.15)
dv(9)  d B
- = 257 (0(0) = TDf (9(6)) f (6(6)). (4.16)

Taking into accoun{ (4.15) and (4]116), we projéct (#.14pdhe subspace spannedhy;) and after some
algebra obtain:

fTQ+ fT[DfJ = IDF] f& + o fTpuin + O(e)
frf+fTIDff& '
Here and for the rest of the proof, for brevity we use the feiie notation:
f = f (Qb(et)) ) Q = Q(etvgt)7 and v := V(et)‘
Equation[(4.1l7) can be rewritten as (4.6) with

bi(6;) = Hng[DfJ JDf]f,

ba(6:) = mngJfo

Similarly, by projecting[(4.14) onto the subspace spanned(B) and using[(4.15) and (4.14), we derive
& = a(0)& + oha (0 + O (52) )

0y =1+ (4.17)

where

dz/ 2VT dv
D — .
The expression in the square brackets can be simplified lagvfol

[war fw} fE[ITDfJT + Df] =divf (6(9)) | f]*.

Also,

2vT dl/ T T 2 T 2
& Y —Jf = —f= 1 0))|”.
Therefore, J
a(6) = divf ((0)) = 25 n |f (#(6)) - (4.18)
Equation [(4.1B) implieg (418), since the integral oj&f7] of the last term on the right hand side bf (4.18)
is zero. O
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4.2 The Poincare map for the fast subsystem

In the present subsection, we analyze the trajectorieseafaihdomly perturbed systet (4.2) lying close to
the limit cycle L(yo), yo < ysp- TO this end, we consider an IVP fdr (#.6) and {4.7) subje¢héoinitial
condition:

0p =0 and |£0| < 4. (4.19)

Throughout this section, we assume (even when it is notdsedglicitly) thaté > 0 is sufficiently small. It
will be convenient to view the range 6f asR! rather than a circle. Equation (%.4) provides the transéerm
tion of (6, &) to the Cartesian coordinates even widgexceeds/ .

We now turn to the construction of the Poincare map. Condilie= 0 defines a transverse crossection
of L(yp), X. The trajectory of the deterministic systein (4.6) dndl(4vith « = 0 returns toX in time
T + O(&). To define the Poincare map for the randomly perturbed systenalso use another transverse
crossection®:, which is located at a (1) distance away front. Let (6;,¢;) be the solution of the IVP

@4.6), (4.7), and (4.19) and
T=inf{t >0: (6;,&) € X}

Definition 4.2. By the time of the first return of the trajectoty (4.6), {4and (4.19) to>, we call stopping
timeT such that .
T=inf{t>T: 6,=T}. (4.20)

The first return map fo (416)[_(4.7), and (4119) is defined as

§=P(&), where &=¢rp.

In the remainder of this subsection, we compute the linegrgiahe Poincare map. In the asymptotic
expansions below, we omit to indicate the dependence ofdahminder terms om > 0. The latter is
assumed to be sufficiently small so that it has no effect ohetliding order approximation of the Poincare
map.

The following notation is reserved for four functions, whiwill appear frequently in the asymptotic
expansions below:
A(t,s) = exp{ [l a(u)du},  A(t) = A(t,0),
B(t,s) = [ A(u, 8)bi (u)du, B(t) = B(t,0).

Lemma 4.3. On a finite time intervat € [0,¢],0 < t < oo, the solution of the IVA(416),(4.7) and (4119)
admits the following asymptotic expansion

6, = 091500 +0(02,¢2), (4.21)
& = &V ot +0(0%€d). (4.22)

The leading order coefficients are given by

00 = t+&B() +0(2), (4.23)
O = gA) +0@&). (4.24)
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T
The first order terms are given by Gaussian diffusion proegss (99, t(l)) :

2t = /Ot U(t, s)h(s)dws + O(&o), (4.25)
where
Ul(t,s) = < (1) ﬁ((z: 3 > ,  h(t) :==h(t,0) = (hl(t,O),hg(t,O))T. (4.26)

Proof: The procedure for constructing asymptotic expansionslatisns for a class of IVP, which includes
(4.9), (4.T) and[(4.19) can be found In [2,/19]. These souatss contain the estimates controlling the
remainder terms. The coeﬁicierﬂéo’l) andgt(o’l) are determined as follows. By plugging [n_(4.21) and
(4.22) into [4.6) and[(4]7) and extracting the coefficientdtiplying different powers ofr, one obtains
IVPs for the functions on the right hand sides[of (4.21) andd% Specifically, for the leading order terms
we have the following IVP:

00 = 140 (et@’) © (4.27)
& = a(0)€, (4.28)
& = &, 6 =o. (4.29)
To the next order,
4 = A(t,go)zt+h(9§°) t(o))dws, (4.30)
2w = 0, (4.31)

T
Where,zt = <9t(0) t(1)> s h = (hh h2)T7 and

(8 (87@) 67 @) b (67 60)
A“’&’)(bl éﬂ(o)(ﬁo); D) a(8V@) ) 5

Here, we explicitly indicated the dependence of the leadirdgr coefficients orfy and used prime to
denote the differentiation with respect@o Formulae[(4.23):(4.26) in the statement of the lemma ollo
from (4.27){4.32). The details can be found in the appetwlikis paper.

O

Next, we calculate the time of the first return.

Lemma 4.4. The time of the first return is given by

T=TO 467 1 o(c) + O(€2), (4.33)

where
TO = T —&B(T)+0(£), (4.34)
W = oV = 4 /0 " () + BT w)ha(w)] duon. (4.35)
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Proof: From the definition of the first return time, (4]121), ahd @),2ve have

T+ &B(T) + 065 + 0(c%,¢2) = T as. (4.36)
Thus,
lim 7 = T (&) a.s, (4.37)
o—

whereT(©) (&) is found from the following equation
70 (&) + B (T (&) ) + O(&5) = T- (4.38)

Equation [(4.3B) implies (4.34). Furthermore, the combamatf (4.34), [(4.36), and (4.87) yields (4]35).
O

Lemma 4.5. The first return map is given by the
E=pé(1+ory) +oryg+o(o) +0O(&), (4.39)

where Gaussian RV » are given by

T T
r = —a(0) /0 h(w) + B(T, w)ho(u)] duw, 75 = /0 ACT, u)hs () dwy. (4.40)

Proof: From [4.22),[(4.24)E(4.26), and (4)33), we have
T
€ = &r=6AT) 0 [ AT.9ha(s)du, + 0, )
0
= &A(T) +ory + O(a%,£5), (4.41)
wherer, is defined in[(4.40). The first term on the right hand sidé_afI%can be rewritten as follows
AT) = ATMAT +0TW T) + o(c) + O(&) = pexp (aa(O)T<l>) +o(0)

- u (1 - aa(O)ng) +o(o) + O(&). (4.42)

Finally, we extract the expression f@?’ from (4.25) and[(4.26):

-
o) — / [ (u) + B(T,u)hy(u)] dw,. (4.43)

0
Equations[(4.41)-(4.43) yield (4.89) aid (4.40). O

Remark4.6. We close this section by observing that as follows from (¥R r; andr, are stochastic

integrals of different deterministic functions, s#yt) andg(t¢) with respect to the same Brownian motion
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over the interval0, 7]. Consequently, their joint distribution is bivariate namvith 0 mean vector and a
covariance matrix that whose diagonal entries are

T T
/ f3(t)dt and / g (t)dt,
0 0
and the off diagonal entry is
.
| rwstae

This is perhaps easiest to see by using Riemann representdith stochastic integral (see elg.l[42, Propo-
sition 7.6]), basic properties of Brownian motion, and & that a random vector is multivariate normal if
and only if any linear combination of its components is a rairRV.

4.3 The first return map for the slow variable

Our next goal is to estimate the change of the slow varia@leafter one cycle of oscillations of the fast
subsystem for the following initial conditions:

0 <y —yo =0(1), zo = ¢(0) + &r(0) € X, and |§| < 4. (4.44)
We denote the first return map fgiby
y= Py, &), where P(yo,&) = yr,
andT is the first return time of the fast subsystem (see Definitid). 4
Lemma 4.7. The first return map foy has the following form:
P(y,€) =y + €eG(y) + eors + eal + o(eo), (4.45)
where -
G = [ 9(0t).)ds (4.46)
andrz = N (0,0(1)) anda is a constant independent efande.

Remarkd.8. Recall that7 and¢(-) are functions of slow variablg (see[(2.2)). To avoid using cumbersome
notation we continue to suppress the dependengg on

Proof: By (2.10),
T
yr=wte [ glanm)ds +0(), (4.47)
wherez; satisfies IVP[(4.6)[(4]7), and (4]19). Let= ¢(9) + £v(F) and denote
0§ g
§(97§7y) = g(way)7 90(3) = g(S,O), 91(3) = a_g(sao)a andg?(s) = O_‘Z(Sao) (448)

29



Using (4.48), we rewritd (4.47) as
T
yr =1yo+e / G0 + 061 £V 1 oMy + O(ea?). (4.49)
0

Using the Taylor expansion fgrin (4.49) and[(4.21)[(4.22) and (4133), froim_(4.49) we deriv
T
yr = yo+e / {90(5) + 91(5) [60B(5) + 00D + ga(s) [€0A(s) + o€V] } ds
0

T—60B(T)—obs)
- / go(s)ds + o(ea) + O(€3). (4.50)
T

We approximate the last integral on the right hand sidé_&0yby
/T—&)B(T)—o—e;”

i go(s)ds = —go(0) |&B(T) + 09(1)] + o(0, &o). (4.51)

The combination of(4.530) and (4J51) impliés (4.45) with

.

0 = /0 [91(3)B(5) + g2(5) A(s)] ds — go(0) B(T), (4.52)
.

ry = /0 [gl(s)ﬂgl)—l—gg(s)fgl)] ds. (4.53)

]

4.4 The exit problem

In the present subsection, we first combine the return magedefor the slow and fast subsystems to
obtain the Poincare map for the full three-dimensional esyst Next, we approximate the Poincare map
and the BA of the limit cyclel(y.) and characterize the distribution of the exit times for thpraximate
problem. This distribution is then related to the distribatof the number of spikes within bursting episodes.
To approximate the Poincare map we linearize it around taklestfixed point of the deterministic map
corresponding to the limit cyclé(y.). Aside from the systematic derivation of the Poincare mathén
previous subsections, we offer no rigorous justificationsigbstituting the nonlinear Poincare map with its
linear part in the analysis of the exit problem. While in gathesuch approximation may not be accurate,
we believe that for the present problem, the analysis ofitteatized system captures the statistics of the
first exit times well for the following reason. In models ofusge wave bursting the limit cycle generating
spiking is often located close to the boundary of its BA (sige[Bb for a representative example). Therefore,
before the trajectories leave the BA, they remain in a snr&adltborhood of the limit cycle, where the linear
part of the vector field governs the dynamics. After theséimmeary remarks, we turn to the derivation of
the approximate problem and its analysis.
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Lemmad 4.6 and 4.7 yield the asymptotic formulae for the fekirn map of the randomly perturbed
system[(2.9) and (2.10) in the normal coordinates| (4.4):

bnt1 = p€n (1 +or1y) +ora, +o(o), (4.54)
Yn+1 = Yn +€G(yn) +eorsy, +ea, +o(ec), n=0,1,2,..., (4.55)

where({p, yo) are given in[(4.44) and the expressionsdandr; ,,, ¢ = 1,2, 3 are are given i (4.40).(4.52),
and [4.58). Recall that by (SS) (see Section@y) has a simple zero at = y. and\ := —G'(y.) >
0. Thus,(0,y.) is an attracting fixed point of the unperturbed miap (4.54) @853) withc = 0. The

linearization of [(4.54) and (4.55) abo(, y..) yields

Sn-i-l = uéy (1 + 0'7:1,71) + 0'7:2,717 (456)
M4l = ANy + €073, +€a2l,, n=0,1,2,..., (4.57)

wheren =y —y., 0 < A =1 —eay, and0 < p < 1. The distributions of the RVS; ,,, i = 1,2,3
depend ony,,, as both the upper bound of integrati@nand the integrands i (4.40) ard (4.53) are smooth
functions ofy. The stochastic termg ,,, « = 1,2,3 in the linearized system are obtained by evaluating
the expressions faf; ,, @ = 1,2,3 in (4.40) and[(4.593) aj = y.. Thus,(71 ,,, 72.n, 73, ) are lID copies of
aN (0,%3), where the entries df; areO(1) in a sense that they do not depend on any other parameters.
Further, we approximate the BA @f(y.) by a cylindrical shell, so that i(¢, ) coordinate plane, it projects
to Il := [—Eg,hs] X [—ﬁn,hn] for somehg,, > he, > 0 independent o& > 0. Each iteration of the
Poincare map corresponds to a spike within a burst. The tarsinates when the trajectory leaves the BA
of L(y.). Assuming that the linearizatioh (4]56) ahd (4.57) &hgrovide suitable approximations for the
Poincare map and the BA @f(y.) respectively, the distribution of the number of spikes ie barst can be
approximated by the distribution of the first exit times floe trajectories of (4.56) and (4]57) frdm

7 = min{7e, 7}, (4.58)
& ln

where
Te = ég%{fn > he} and 7, = }Lrif(’]{nn > hp}.

We are now in a position to apply the the results of Section 8escribe the distribution of (4.58). By
Theoreni 3.7, the distribution afis asymptotically geometric with parameter

~— e 4.59
N (4.59)
for someC > 0 independent of ando. In the proof of Theorerh 317, we studied a clas€ bf randomly
perturbed maps that includds (4.56) aind (4.57). Howeverdis$tribution ofr is effectively determined by
the first equatior (4.56), i.e. by theD first return map of the fast subsystem. This can be seen bywohge
that according to the approximations given at the end offpsb®heoreni 3.7 (see the arguments following
(3.30)) if e > 0 is sufficiently small themy < 7, andT ~ 7¢. Thus, in type | models the distribution of
spikes in one burst is effectively determined by ihe first return map for the fast subsysteim (4.56). In
particular, the statistics of the number of spikes in onestodoes not depend on the relaxation parameter
e > 0, provided the latter is sufficiently small.
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4.5 Type Il model

The derivation of the Poincare map for the type Il modelsedifffrom the analysis in Sections 4.1-4.4 for
type | models only in some minor details. In this subsectisa,comment on the necessary modifications
and state the final result. Recall that in contrast to type deh in [2.111) and (2.12), stochastic forcing
enters the slow equation. As before, the initial condit®given by[(4.44). On finite time intervals, solutions
of the IVP for [2.11) and(2.12) admit the following asymjtaxpansions

Ty = ;UEO) + eaacgl) +0 ((60‘)2) , (4.60)
v =y + ey + 0 ((e0)?). (4.61)

where the first order correctiomﬁl) andyt(l) are Gaussian processes (cf. Theorem|2.2 [19]). Ukingl(4.60)
and [4.61), we obtain the leading order approximation ofdlsesubsystem:

o (0)
Ty = f(xe,y0) + ea%yta) + o(eo). (4.62)

From this point, the derivation of the Poincare map follotes $ame lines as we described in detail for type
I models in Sections 4.1-4.4. We omit any further details state the final result, the linear approximation
of the Poincare map for the present case:

Sny1 = péy (1 + Eo'fl,n) + 50f2,m (4.63)
Ml = Np + €073, +€asd,, n=0,1,2,..., (4.64)

As in the previous case, we are interested in the distribugfcthe first exit timer (see[4.5B)). To estimate
the latter, we use the same argument as in the previous s$uglpsethis time the system is described by

Ont1 = Apt10n + 0eGpyr, n>1, (4.65)
T2.n

T3n
the following expression for the numeratorofsee [(3.27)):

whereA,, is as before andr,, = ] . The presence of the factein both components afr,, leads to

P (MX17”1 + 7o - hi — MX17T3 S hy — a X1 . A(ha — X2)’

ox, €00X, o €0

(Xl,XQ) S Bh> .

This expression decays very fast as a function0f X5 and sinceX, has heavy tails it is approximated
(up to inessential polynomial factors) by

X hi1 — uX ho — a9 X
P(M 1r1+7"2> 1— M 1,r3>$,(X1,X2)eBh>.

ox, €00 X, o

We are now in the analogous situation to that encounterd8.28), except that the small parametes 0
appears in the denominator of the other variable. As a corseg, this time we obtain that < 7, for
smalle > 0. Therefore, in contrast to type | models, the escape of edi@jy of [(2.11) and (2.12) fromd
is dominated by the slow subsystem, ie= 7,,.
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5 Numerical example

In the present section, we illustrate the statistical regimdentified in this study with numerical simulations
of a conductance based model of a neuron in the presence s#f. 0 this end, we use a three variable
model of a bursting neuron introduced by Izhikevich|[26].eThodel dynamics is driven by the interplay
of the three ionic currents: persistent sodium, p, the delayed rectifietix, a slow potassiund/-current,
Ix v, and a passive leak curreft. The following system of three differential equations dimes the
dynamics of the membrane potential,and two gating variables andy:

Cv = F(u,n,y), (5.1)
W = Neo(v) —n, (5.2)
Tyy = yoo(v) - Y, (5.3)

whereF (v,n,y) = —gnaPMoo(V)(v— Engp) —grn(v—Ex) —gxmy(v— Ex) —gr(v—Er)+1; gs and

E,, are the maximal conductance and the reversal potential efc { NaP, K, K M, L}, respectively; and

I is the applied current. The time constantsandr, determine the rates of activation in the populations
of K and KM channels. The steady-state functions are defineglfly) = (1 + exp (%)) 1, s €
{m,n,y}. The parameter values are given in the caption to Eig. 7. Tdmspietes the description of the
deterministic model. The random perturbation is used irféhm of white noisegw,; and is added to the
first equation[(5.11) for type | model or to the third ome {5.8) fype Il model. After suitable rescaling,
these models can be put in the nondimensional form (Z.9)0j2r (2.11), [(2.12). The separation of the
timescales in the nondimesional models (i.e. small)) is the result of the presence of the disparate time
constants, > T, in the original model (see caption to Fig. 7).

The parameters of the deterministic system are chosen &d tfes a limit cycle located as shown in
Fig. [3c. In the presence of small noise the system generatstirty. In each numerical experiment, we
integrated the randomly perturbed system using the Eubsuivama method [24] until it generatéd000
bursts. We used these data to estimate the probability tygeinsithe number of spikes within one burst.
In Fig. [@, we plot the histograms for the number of spikes ie barst for type | and type Il models.
The histograms in Fid.] 7 are scaled to approximate the pitityadiensity function (PDF) for the number
of spikes in one burst. Both PDFs shown Fig. 7a,b have disérponential tails as expected for the
asymptotically geometric RVs. Note that the distributiarig.[1a fits well with the geometric distribution
for N > 100, while in Fig.[7b the geometric distribution fits the data a#hon the entire domaily > 10.

In addition, the peak in the histogram in Hig. 7a is reminiéaef the PDF characteristic for the diffusive
escape (see Figl 5). For comparison, we plotted a slighifiedtdiffusive PDFY,(z), a = 10.8 in Fig.[7a.
Matching the data and, is a delicate matter, because it is not clear how wide is thgeafn, to which
the estimates of Theorem 8.9 apply. Nonetheless, the gtiraditsimilarity of the peak in the histogram in
the ranger ~ 50 — 100 and the diffusive PDF is apparent. We repeated these nusherperiments for a
few other sets of parameters and found qualitatively simn@aults.

Collecting the statistical data shown in Flg. 7 requireggnating the system over very long intervals
of time, for which it would be hard to justify the accuracy oketEuler-Maruyama method. However,
capturing the statistical features of the dynamical pasteloes not require having an accurate solution on
the entire interval of time, because they are determinetidgiscrete dynamics of the first return map. The
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Figure 7: The histograms for the number of spikes in one burke histograms computed for the type |
model in (a) and type Il in (b) are normalized to approximéie ¢orresponding PDFs. The tails of both
functions are well approximated by the exponential degsitith parameter8.0067 and0.0125 respec-
tively. In (b) the exponential distribution already giveseay good approximation for the number of spikes
exceedingl0. The region of exponential behavior in (a) starts around 100. In (a), we also plotted in
solid blue line the shifted diffusive densifi, (z — 25), a ~ 10.8. Although it is hard to claim a quantitative
fit of the diffusive density and the data, the qualitative ikinty between the diffusive pd¥,(z) and the
peak in the data in the range~ 50 — 100 is apparent. The values of parameters@re- 1 (uFem™?) ;
gna = 20, g = 10, ggmr = 5, gr = 8 (mSem™2); Eng = 60, Ex = —90, E, = —80 (mV);

am = —20, a, = =25, ay = —10 (mV); by, = 15, b, = 5, by = 5; 7, = 0.152, 7, = 20 (ms™'),
I =5pA, ando = 1.
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iterations of the latter are expected to be insensitive éontlmerical noise as suggested by the analysis of
the randomly perturbed maps in Section 3. Therefore, we eyl to have accurate numerical solutions on
the time intervals comparable with the typical periods @f thst oscillations. This is easy to achieve with
the Euler-Maruyama method. We repeated these numericatiexgnts using the second order Runge-Kutta
method and obtained very similar results. These inforn@ments form the rationale for using the above
numerical scheme. The rigorous justification of the nunsesdeyond the scope of this paper.

Acknowledgments.This work was partially supported by NSF grant IOB 0417624GM) and NSA grant
MSPF-04G-054 (to PH).

Apendix
In this appendix, we provide the details of the derivatiorflbP3)-(4.26), which were omitted in the main
part of the paper.

To derive [4.2B) and (4.24), we first note thﬂ{ff) is @ monotonic function of0, ¢], providedd > 0 is
sufficiently small. Thus,

de(0)

%5 = a6 +O(ed)
and

000 = &A0©) + 0(&). (A1)

By plugging in [A.1) into [[4.27), we have

0% =1+ b0 A(0©). (A.2)
By Gronwall's inequality,

0 =i+ 0(&), te (0.1, (A3)
wherey); solves

O — 1 4 &b (HA(2), 1o = 0. (A.4)

The combination of (AJ1)[(Al3), and (A.4) impligs (4124).

We next turn to IVP[(4.30)[(4.31) and (4]24). LE(t,¢,) denote the principal matrix solution of the
homogeneous system
5= A(t, &)z (A.5)

Then the solution 0f(4.30) and (4131) is given by

t t
Rt = / U(ta S, gO)h (egO)angO)) dws = / U(ta S)h (37 0) dws + O(SO)? te [07 ﬂ? (AG)
0 0

where
U(t73>£0) = U(t>£0)U_1(3>£0) and U(t> 8) = U(t7370)' (A7)
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Finally, by integrating[(A.b) witr§, = 0 and appropriate initial conditions, one computes
_ (1 B@
U(t,0) = ( 0 A(t) > (A.8)

The expression fob/ (¢, s) in (4.26) follows from [A.T) and.(Al8).

36



References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]
[14]

[15]
[16]

[17]

[18]

J.P. Baltanas and J.M. Casado, Bursting behavior, oFtteHugh-Nagumo neuron model subject to
monochromatic noisé€?hysica Q) 122, 231-240, 1998.

Yu.N. Blagoveshchenskii, Diffusion processes depegdin small parametef,heory of Probability
and Its ApplicationsV1I(2), 130-146, 1962.

N. Berglund and B. Genta\oise-Induced Phenomena in Slow-Fast Dynamical Systen8anple-
Paths ApproachSpringer, 2006.

J. Best, A. Borisyuk, J. Rubin, D. Terman and M. Wechskbe The dynamic range of bursting in a
model respiratory pacemaker netwoBtAM J. Appl. Dyn. Sys#4, 1107-1139, 2005.

R. J. Butera, J. Rinzel, and J. C. Smith, Models of respisarhythm generation in the pre-Botzinger
complex: I. Bursting pacemaker neurodsurnal of Neurophysiology82, 382-397, 1999.

T.R. Chay, Chaos in a three-variable model of an excgta&lell, Physica D 16, 233-242, 1985.

T.R. Chay and J. Rinzel, Bursting, beating, and chaosixecitable membrane moddjophys. J.
47, 357-366, 1985.

C. Chow and J. White, Sponteneous action potentials dushannel fluctuationsBiophys. J. 71,
3013-3021, 1996.

J.J. Collins, C.C. Chow, and T.T. Imhoff, Aperiodic shastic resonance in excitable systemhys.
Rev. E52(4), R3321-R3324, 1995.

R.E.L. DeVille, C. Muratov, and E. Vanden-Eijnden, Twstinct mechanisms of coherence in ran-
domly perturbed dynamical systenf®ysical Review Er2, 031105, 2005.

J. L. Doob. Stochastic ProcesseReprint of the 1953 original, Wiley, 1990.

P. Embrechts and C.M. Goldie, Perpetuities and randquations, inAsymptotic statistics75-86,
Physica, Heidelberg, 1994.

W. Feller, An Introduction to Probability Theory and Its Applicatign®l. I. Wiley, 3rd edition, 1968.

N. Fenichel, Persistence and smoothness of invariamifoids for flows,Indiana Univ. Math. J.21,
193-226, 1971/1972.

R.F. Fox, Stochastic versions of the Hodgkin-Huxlewaipns,Biophys. J.72(5), pp. 2068-2074.

R.F. Fox and Y. Lu, Emergent collective behavior in mrgumbers of globally coupled independently
stochastic ion channelBhys. Rev. F49(5), pp. 3421-3431.

M.I. Freidlin, On stable oscillations and equilibrisnimduced by small noisd, of Stat. Phys103(1-
2), 283-300, 2001.

M.I. Freidlin, On stochastic perturbations of dynaalicystems with fast and slow components,
Stochastics and Dynamick(2), 261-281, 2001.

37



[19] M.I. Freidlin and A.D. WentzellRandom perturbations of dynamical systeérsd ed., Springer, New
York, 1998.

[20] R. Ghigliazza and P. Holmes, Minimal models of burstimaurons: The effects of multiple currents,
conductances and timescal&AM J. on Appl. Dyn. SysB (4), 636-670, 2004.

[21] C.M. Goldie, Implicit renewal theory and tails of sdluts of random equation$he Annals of Applied
Probability, 1(1), 126-166, 1991.

[22] J. Guckenheimer and P. Holmégpnlinear Oscillations, Dynamical Systems, and Bifumagi of Vec-
tor Fields Springer, 1983.

[23] J. Hale,Ordinary Differential Equationssecond edition, R.E. Krieger Publishing Company, 1980.

[24] D.J. Higham, An algorithmic introduction to numericainulation of stochastic differential equations,
SIAM Rev.43(3), pp. 525-546, 2001.

[25] A.A. Hill, J. Lu, M.A. Massino, O.H. Olsen, and R.L. Céleese, A model of a segmental oscillator in
the leech heartbeat neuronal netwarkComp. Neurosgil0, 281-302, 2001.

[26] E.M.lzhikevich,Dynamical Systems in Neuroscience: The Geometry of EXditadnd Bursting The
MIT Press, Boston, MA, 2007.

[27] C.K.R.T. Jones, Geometric singular perturbation thebecture Notes in Mathematics, Vol. 1609,
Springer, Berlin, pp. 44-118, 1995.

[28] N. L. Johnson and S. KotDiscrete Distributions Wiley, 1969.

[29] H. Kesten, Random difference equations and renewalryhfor products of random matricedcta
Math, 131, 207-248, 1973.

[30] S. Kwapieh and W. A. WoyczyhskiRandom Series and Stochastic Integrals: Single and Maltipl
Birkhauser, 1992.

[31] E. Lee and D. Terman, Uniqueness and stability of pecibdrsting solutions)DE, 158, 48—78, 1999.

[32] A. Longtin and K. Hinzer, Encoding with bursting, sut#khold oscillations, and noise in mammalian
cold receptorsNeural Computation8(2), 215-255, 1996

[33] G.S. Medvedeyv, Transition to bursting via determigishaosPhys. Rev. Lett97, 048102, 2006.

[34] G.S. Medvedev, Reduction of a model of an excitabletoedl one-dimensional maphysica ) 202,
37-59, 2005.

[35] G.S. Medvedev and J.E. Cisternas, Multimodal reginmea compartmental model of the dopamine
neuron,Physica Q) 194, 333-356 , 2004.

[36] L. S. Pontryagin and L. V. Rodygin, Approximate solutiof a system of ordinary differential equa-
tions involving a small parameter in the derivativBsyiet. Math. Dok].1, 237-240, 1960.

38



[37] J. Rinzel, A formal classification of bursting mechanssin excitable systems, in A.M. Gleason, ed.,
Proc. of the Intern. Congress of Mathematicians, AMS, 189-1987.

[38] J.Rinzel and G.B. Ermentrout, Analysis of neural exgility and oscillations, in C. Koch and . Segev,
edsMethods in Neuronal ModelingMIT Press, Cambridge, MA, 1989.

[39] P.F. Rowat and R.C. Elson, State-dependent effectsaafidnnel noise on neuronal burst generation,
J. Comp. Neurosgil6, pp. 87-112, 2004.

[40] J. Rinzel and W.C. Troy, A one-variable map analysis afsking in the Belousov-Zhabotinskii re-
action, in: J.A. Smoller, edNonlinear Partial Differential EquationsAMS, Providence, 411-427,
1982

[41] G. Smith, Modeling the stochastic gating of ion chasnéh C.P. Fall et al, editorsComputational
Cell Biology, Interdisciplinary Applied Mathematics, vol. 20, Spring2002.

[42] J.M. Steele Stochastic Calculus and Financial Applicatiogringer-Verlag, 2001.
[43] J. Su, J. Rubin, and D. Terman, Effects of noise on éliptirstersNonlinearity, 17, 133-157, 2004.

[44] D. Terman, The transition from bursting to continuopisng in excitable membrane models,Nonl.
Sci, 2, 135-182, 1992.

[45] W. Vervaat, On a stochastic difference equation angheesentation of nonnegative infinitely divisible
random variablesidv. in Appl. Probab.11(4) 750-783, 1979.

[46] J. White, J. Rubenstein, and A. Kay, Channel noise irrores) Trends in Neurosci23(3), 131-137,
2000.

[47] V.A. Zorich, Mathematical Analysis II, Springer, 2004

39



	Introduction
	The model
	The deterministic model
	The randomly perturbed models

	The randomly perturbed maps
	Geometric random variables
	The randomly perturbed map: additive perturbation
	The randomly perturbed map: random slope
	A two-dimensional randomly perturbed map
	Diffusive escape

	The Poincare map
	Preliminary transformations
	The Poincare map for the fast subsystem
	 The first return map for the slow variable
	The exit problem
	Type II model

	Numerical example

