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It has been recognized recently that to represent a polyhedron as the projec-
tion of a higher dimensional, but simpler, polyhedron, is a powerful tool in
polyhedral combinatorics. We develop a general method to construct higher-
dimensional polyhedra (or, in some cases, convex sets) whose projection
approximates the convex hull of 0-1 valued solutions of a system of linear ine-
qualities. An important feature of these approximations is that one can optimize
any linear objective function over them in polynomial time.

In the special case of the vertex packing polytope, we obtain a sequence of
systems of inequalities, such that already the first system includes clique, odd
hole, odd antihole, wheel, and orthogonality constraints. In particular, for per-
fect (and many other) graphs, this first system gives the vertex packing
polytope. For various classes of graphs, including t-perfect graphs, it follows
that the stable set polytope is the projection of a polytope with a polynomial
number of facets.

We also discuss an extension of the method, which establishes a connection
with certain submodular functions and the Mdbius function of a lattice.
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0. Introduction

One of the most important methods in combinatorial optimization is to represent
each feasible solution of the problem by a 0-1 vector (usually the incidence vector of
the appropriate set), and then describe the convex hull K of the solutions by a system
of linear inequalities. In the nicest cases (e.g. in the case of the bipartite matching
problem) we obtain a system that has polynomial size (measured in the natural “size”
n of the problem). In such a case, we can compute the maximum of any linear objective
function in polynomial time by solving a linear program. In other cases, however,
the convex hull of feasible solutions has exponentially many facets and so can only
be described by a linear program of exponential size. For most of the polynomial
time solvable combinatorial optimization problems, this exponentially large set of linear

inequalities is still “nice” in one sense or the other. We mention two possible notions of
“niceness”:

— Given an inequality in the system, there is a polynomial size certificate of the
fact that it is valid for K. If this is the case, the property of a vector that it lies in K
is in the complexity class co-NP.

— There is a polynomial time separation algorithm for the system; that is, given a
vector, we can check in polynomial time whether it satisfies the system, and if not, we
can find a member of the system that is violated. It follows then from general results
on the ellipsoid method (see Grétschel, Lovdsz and Schrijver 1988) that every linear
objective function can be optimized over K in polynomial time.

Many important theorems in combinatorial optimization provide such “nice” de-
scriptions of polyhedra. Typically, to find such a system and to prove its correctness,
one needs ad hoc methods depending on the combinatorial structure. However, one can
mention two general ideas that can help obtaining such linear descriptions:

— Gomory-Chvdtal cuts. Let P be a polytope with integral vertices. Assume that
we have already found a system of linear inequalities valid for P whose integral solutions
are only the vertices of P. The solution set of this system is a polytope K containing
P but in general larger than P. Then we can generate further linear inequalities valid
for P (but not necessarily for K) as follows. Given a linear inequality

E a;z; < a
i

valid for K, where the a; are integers, the inequality

Z a;z; < |af
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is still valid for P but may eliminate some part of K. Gomory (1963) used a special
version of this construction in his integer programming algorithm. If we take all in-
equalities obtainable this way, they define a polytope K’ with P C K’ C K. Repeating
this with K’ in place of K we obtain K" etc. Chvétal (1973) proved that in a finite
number of steps, we obtain the polytope P itself. '

Unfortunately, the number of steps needed may be very large; it depends not only on
the dimension but also on the coefficients of the system we start with. Another trouble
with this procedure is that there is no efficient way known to follow it algorithmically.
In particular, even if we know how to optimize a linear objective function over K in
polynomial time (say, K is given by an explicit, polynomial-size linear program), and
K' = P, we know of no general method to optimize a linear objective function over P
in polynomial time.

— Projection representation (new variables). This method has received much at-
tention lately. The idea is that a projection of a polytope may have more facets than
the polytope itself. This remark suggests that even if P has exponentially many facets,
we may be able to represent it as the projection of a polytope @ in higher (but still
polynomial) dimension, having only a polynomial number of facets. Among others,
Ball, Liu and Pulleyblank (1987), Maculan (1987), Balas and Pulleyblank (1983, 1987),
Barahona and Mahjoub (1987), Cameron and Edmonds (1988) have provided non-trivial
examples of such a representation. It is easy to see that such a representation can be
used to optimize linear objective functions over P in polynomial time. In the nega-
tive direction, Yannakakis (1988) proved that the Travelling Salesman polytope and the
Matching Polytope of complete graphs cannot be represented this way, assuming that
the natural symmetries of these polytopes are preserved by this lifting. (No negative
results seem to be known without this symmetry assumption.)

One way to look at our results is that we provide a general procedure to create such
liftings. The idea is to extend the method of Grdtschel, Lovdsz and Schrijver (1981) for
finding maximum stable sets in perfect graphs to general 0-1 programs. We represent
a feasible subset not by its incidence vector v but by the matrix voT. This squares the
number of variables, but in return we obtain two new powerful ways to write up linear
constraints. Projecting back on the “usual” space, we obtain a procedure somewhat
similar to the Gomory-Chvéatal procedure: it “cuts down” a convex set K to a new
convex set K’ so that all 0-1 solutions are preserved. In contrast to the Gomory-
Chvital cuts, however, any subroutine to optimize a linear objective function over K
can be used to optimize a linear objective function over K’. Moreover, repeating the
procedure at most n times, we obtain the convex hull P of 0-1 vectors in K.

Our method is closely related to recent work of Sherali and Adams (1988). They
introduce new variables for products of the original ones and characterize the convex
hull, in this high-dimensional space, of vectors associated with 0-1 solutions of the
original problem. This way they obtain a sequence of relaxations of the 0-1 optimization
problem, the first of which is essentially the IV operator introduced in section 1 below.
Further members of the two sequences of relaxations are different, but closely related;
some of our results in section 3, in particular, formula (6) and Theorem 3.3, follow
directly from their work.



The method is also related to (but different from) the recent work of Pemantle,
Propp and Ullman (1989) on the tensor powers of linear programs.

In section 1, we describe the method in general, and prove its basic properties.
Section 2 contains applications to the vertex packing problem, one of the best studied
combinatorial optimization problems. It will turn out that our method gives in one step
almost all of the known classes of facets of the vertex packing polytope. It will follow
in particular that if a graph has the property that its stable set polytope is described
by the clique, odd hole odd antihole constraints, then its maximum stable set can be
found in polynomial time.

In section 3 we put these results in a wider context, by raising the dimension even
higher. We introduce exponentially many new variables; in this high-dimensional space,
rather simple and elegant polyhedral results can be obtained. The main part of the work
is to “push down” the inequalities to a low dimension, and to carry out the algorithms
using only a polynomial number of variables and constraints. It will turn out that
the methods in section 1, as well as other constructions like TH(G) as described in
Grotschel, Lovdsz and Schrijver (1986, 1988) follow in a natural way.

Acknowledgement. The first author is grateful to the Department of Combinatorics
and Optimization of the University of Waterloo for its hospitality while this paper was

written. Discussions with Mike Saks and Bill Pulleyblank on the topic of the paper
were most stimulating.



1. Matrix cuts

In this section we describe a general construction for “lifting” a 0-1 programming
problem in n variables to n? variables, and then projecting it back to the n-space so
that cuts, i.e., tighter inequalities still valid for all 0-1 solutions, are introduced. It will
be convenient to deal with homogeneous systems of inequalities, i.e., with convex cones
rather than polytopes. Therefore we embed the n-dimensional space in IR™*! as the
hyperplane zo = 1. (The Oth variable will play a special role throughout.)

a. The construction of matrix cones and their projections. Let K be a convex
cone in IR™*!. Let K* be its polar cone, i.e., the cone defined by

K*={ueR"":4Tz >0 forall z€ K}.

We denote by K° the cone spanned by all 0-1 vectors in K. Let Q denote the cone
spanned by all 0-1 vectors £ € IR*™! with zo = 1. We are interested in determining
K?, and generally we may restrict ourselves to subcones of Q. We denote by e; the ith
unit vector, and set f; = eg — e;. Note that the cone Q* is spanned by the vectors e;
and f;. For any (n +1) X (n+ 1) matrix Y, we denote by Y the vector composed of the
diagonal entries of Y.

Let K; € Q and K3 C Q be convex cones. We define the cone M (K, K;) C
IR(+FDX(n+1) onsisting of all (n +1) X (n + 1) matrices Y = (y;;) satisfying (i), (ii)
and (iii) below (for motivation, the reader may think of Y as a matrix of the form zz7T,
where z is a 0-1 vector in K; N K3).

(i) Y is symmetric;
(i) Y = Yeo, i.e., yis = yoi forall 1 <4 < n;
(iii) wTYv > 0 holds for every u € K} and v € K}.

Note that (iii) can be re-written as
(ii’) YK; C K.

We shall also consider a slightly more complicated cone M, (K, K3), consisting of
matrices ¥ satisfying the following condition in addition to (i), (ii) and (iii):

(iv) Y is positive semidefinite.

From the assumption that K; and K, are contained in @ it follows that every
Y = (yi;) € M(K1, K2) satisfies yij > 0, yij < yis = yoi < yoo and yij > ¥ii + Y57 — Yoo-
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These cones of matrices are defined by linear constraints and so their polars can
also be expressed quite nicely. Let Upsq denote the cone of positive semidefinite (n+1) x
(n+1) matrices (which is self-dual in the space Uy, of symmetric matrices), and Uskew
the linear space of skew symmetric (n + 1) X (n + 1) matrices (which is the orthogonal
complement of Uy ). Let U; denote the linear space of (n+1) x (n+ 1) matrices (wy;),
where wg; = —wj; for 1 < 7 < n, wog =0 and w;;=0 if 7 # 0 and + # j. Note that U,
is generated by the matrices fie] (: =1,...,n).

With this notation, we have by definition

M(K1,K2)* = Uy + Uggew + cone{uvT : u € K}, v € K3},

and
M+(K1’ K2)* = Ul + Uskew + Upsd +Cone{uvT ue KI, vE K;}

Note that only the last term depends on the cones K3 and K;. In this term, it would
be enough to let © and v run over extreme rays of K; and K3, respectively. So if K;
and K, are polyhedral, then so is M (K, K3), and the number of its facets is at most
the product of the numbers of facets of K; and K.

Note that Upsq is in general non-polyhedral, and so neither is My (K1, K2).

We project down these cones from the (n + 1) X (n + 1)-dimensional space to the
(n + 1)-dimensional space by letting

N(K,K)={Yeo:Y € M(K,,K,)} ={Y :Y € M(K1,K3)}

and

N+(K1,K2) = {YCO 'Y € M+(K1,K2)} = {? 'Y € M+(K1,K2)}.

Clearly M (K, K2) = M(K>,K;) and so N(K;,K;) = N(K2, K1) (and similarly for
the “+” subscripts).

If A € R("HUX(+1) is 5 linear transformation mapping the cone @Q onto itself then
clearly M(AK;,AK;) = AM(K;,K3)AT. From AQ = Q it easily follows that ATeq
is parallel to eg, and hence N(AK,,AK,) = AN(K1, K2). In particular, we can “flip”
coordinates replacing z; by zo — z; for some 1 # 0.

If K; and K3 are polyhedral cones then so are M (K, K3) and N(K;, K;). The
cones M, (K, K;) and N4 (K, K;) are also convex (but in general not polyhedral),
since (iv) is equivalent to an infinite number of linear inequalities.

1.1 Lemma. (Kl ﬁKz)o C N+(K1,K2) - N(Kl,Kz) C KiNnK,.

Proof. 1. Let z be any non-zero 0-1 vector in K; N K;. Since K; C Q, we must have
zo = 1. Using this it is easy to check that the matrix ¥ = zzT satisfies (i)-(iv). Hence
r = Yeo € N+(K1,K2).

2. N+(K1,K2) - N(Kl,Kz) trivially.
3. Let z € N(Ky, K;). Then there exists a matrix Y satisfying (i)-(iv) such that
z = Yeo. Now by our hypothesis that K; C Q, it follows that eg € K7 and hence by
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(iii), z = Yeo is in K». Similarly, z € K;. |

We will see that in general, N(K;, K;) will be much smaller than K; N K.

The reason why we consider two convex cones instead of one is technical. We shall
only need two special choices: either K; = K3 = K or K; = K, K2 = Q. In fact, it is
this second choice which behaves algorithmically better and which we study most of the
time. To simplify notation, we set N(K) = N(K,Q) and M(K) = M(K, Q). In this
case, K; = Q" is generated by the vectors e; and f;, and hence (iii) has the following
convenient form:

(iii”) Every column of ¥ is in K ; the difference of the first column and any other
column is in K.

b. Properties of the cut operators. We give a lemma that yields a more explicit
representation of constraints valid for N(K) and N4 (K).

1.2 Lemma. Let K be a convez cone in IR™! and a € R* 1!,

(a) w € N(K)* if and only if there ezist vectors ay,...,a, € K*, a real number X,
and a skew symmetric matriz A such that a; + de; + Ae; € K* for i = 1,...,n, and
w =73 "_,a; + Al (where 1 denotes the all-1 vector).

(b) w € N (K)* if and only if there ezist vectors a,...,a, € K*, a real number
A, a positive semidefinite symmetric matriz B, and a skew symmetric matriz A such
that a; + de; + Ae; + Be; € K* fori=1,...,n, and w =E?=1ai+A11+Bll.

Proof. Assume that w € N(K)*. Then wel € M(K)* and so we can write
n
wel = Z abl + Z e fE + A,
t 1=1

where a; € K*, by € Q*, A\; € IR, and A is a skew symmetric matrix. Since Q* is
spanned by the vectors e; and f;, we may express the vectors b; in terms of them and
obtain a representation of the form

n n n
W = 3w+ 3 wT S s T A 0
1=1 =1

=1

where a;,d; € K*. Multiplying (1) by e, from the right we get
0=a; —a; — Aje; + Ae;. (2)

Multiplying (1) by eo and using (2) we get

w = i&i—i—i).,-e,--i—/leo: Zn:a,-+iAe,-+Aeo =§n:a,-+A]1.
i=1 i=1 1=1 =1 =1
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Here a; + Aje; + Aej = @; € K*. Since trivially e; € K*, this condition remains valid if
we increase A;. Hence we can choose all the A; equal. This proves the necessity of the
condition given in (a).

The sufficiency of the condition as well as assertion (b) are proved by similar argu-
ments. 3 |

Our next lemma gives a geometric property of N(K), which is easier to apply
than the algebraic properties discussed before. Let H; = {z € R®"! : z; = 0} and
G; = {z € R™' : z; = z0}. Clearly H; and G; are hyperplanes supporting Q at a
facet, and all facets of Q are determined this way. '

1.3 Lemma. For every 1<:<n, N(K) C (K N H;) + (K NGjy).

Proof. Consider any z € N(K) and let Y € M(K) be a matrix such that Yeo = z. Let
yi denote the ¢th column of Y. Then by (ii), y; € G; and by (iii”), y; € K,soy; € KNG;.
Similarly, yo —yi € KN H;,andso Yeo =yo = (yo —vi) +vi € (KN H;) + (KNG;). §

Let us point out the following consequence of this lemma: if K N G; = {0} then
N(K) C H;. If, in particular, K is meets both opposite facets of Q only in the 0 vector,
then N(K) = {0}. This may be viewed as a very degenerate case of Gomory—Chvatal
cuts (see below for more on the connection with Gomory—Chvital cuts).

One could define a purely geometric cutting procedure based on this lemma: for
each cone K, consider the cone

NO(K) = ﬂ,’((Kﬂ G,‘) + (K N H,)) (3)

This cone is similar to N(K) but in general bigger. We remark that this cone could
also be obtained from a rather natural matrix cone by projection: one should restrict
the symmetry assumption (i) to the first row and column.

Figure 1 shows the intersection of three cones in IR® with the hyperplane z3 = 1:
the cones K, N(K) and N(N(K)), and the constraints implied by Lemma 1.2.
We see that Lemma 1.2 gets close to N(K) but does not determine it exactly.
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K N(K) N*(K)

Figure 1

We remark that N(K N H;) = N(K)N H; for : =1,...,n; it should be noted that
N(K N H;) does not depend on whether it is computed as a cone in R™*! or in H;.

We can get better approximation of K° by iterating the operator N. Define N*(K)
recursively by N°(K) = K, N*(K) = N(N*~1(K)).

1.4 Theorem. N"(K) = K°.

Proof. Consider the unit cube Q' in the hyperplane zo = O and let 1 <t < n. Consider
any face F' of Q' of dimension n —t and let F' be the union of faces of Q' parallel to F.
We prove by induction on ¢ that

N*(K) C cone(K N F). (4)

For t = n, this is just the statement of the theorem. For ¢t = 1, this is equivalent to
Lemma 1.3.

We may assume that F contains the vector eg. Let F’ be a (n —t + 1)-dimensional
face of Q' containing F and ¢, an index such that F/ N H; = F. Then by the induction
hypothesis,

N*=}(K) C cone(K N F").

Hence by Lemma 1.3,
NY(K) =N(N'"!(K)) C cone(N*"}(K)n (H; UGy))
Ccone([cone(K N F') N H;] U [cone(K N F') N Gi]).

Now H; is a supporting plane of cone(K N —F'7) and hence its intersection with the cone
is spanned by its intersection with the generating set of the cone:

cone(K NF') N H; = cone(K NF' N H;) C cone(K N F).

9



Similarly,

cone(K N F') N G; C cone(K N F).

Hence (4) follows. \ |

Next we show that if we use positive semidefiniteness, i.e., we consider N4 (K), then
an analogue of Lemma 1.3 can be obtained, which is more complicated but important
in the applications to combinatorial polyhedra.

1.5 Lemma. Let K C Q be a conver cone and let a € IR™*! be a vector such that
a; <0 fori=1,...,n and ap > 0. Assume that aTz > 0 s valid for KN G; for all 1
such that a; < 0. Then aTz >0 is valid for N4 (K).

(The condition that ag > 0 excludes only trivial cases. The condition that a¢; < 0
is a normalization, which can be achieved by flipping coordinates.)

Proof. First, assume that ag = 0. Consider a subscript ¢ such that a; < 0. (If no such
1 exists, we have nothing to prove.) Then for every z € G;, we have aTz < a;z; <O,
and so, z ¢ K. Hence K N G; = {0} and so by Lemma 1.3, N (K) C N(K) C KN H;.
As this is true for all ¢ with a; < 0, we know that a¥z = 0 for all z € N, (K).

Second, assume that ag > 0. Let £ € Ny(K) and let Y € M, (K) be a matrix
with Yeo = z. Similarly as in the proof of Lemma 1.3, we show that aTYe; > 0 for

all 1 <1 < n for which a; < 0. Hence aTY (agep — a) = aTY (—aje; — ... —anen) >0
(since those terms with a; = 0 do not contribute to the sum anyway), and hence
aTY (apeo) > aTYa > 0 by positive semidefiniteness. Hence aTY ey = aTz > 0. B

c. Algorithmic aspects. Next we turn to some algorithmic aspects of these con-
structions. We have to start with sketching the framework we are using; for a detailed
discussion, see Grotschel, Lovdsz and Schrijver (1988).

Let K be a convex cone. A strong separation oracle for the cone K is a subroutine
that, given a vector z € Q™T!, either returns that z € K or returns a vector w € K*
such that zTw < 0. A weak separation oracle is a version of this which allows for
numerical errors: its input is a vector z € Q™ and a rational number € > 0, and it
either returns the assertion that the euclidean distance of z from K is at most €, or
returns a vector w such that |w| > 1, wTz < € and the euclidean distance of w from K*
is at most €. If the cone K is spanned by 0-1 vectors then we can strengthen a weak
separation oracle to a strong one in polynomial time.

Let us also recall the following consequence of the ellipsoid method: Given a weak
separation problem for a convex body, together with some technical information (say,
the knowledge of a ball contained in the body and of another one containing the body),
we can optimize any linear objective function over the body in polynomial time (again,
allowing an arbitrarily small error). If we have a weak separation oracle for a cone K
then we can consider its intersection with the half-space o < 1; using the above result,
we can solve various important algorithmic questions concerning K in polynomial time.
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We mention here the weak separation problem for the polar cone K*.

1.6 Theorem. Suppose that we have a weak separation oracle for K. Then the weak
separation problem for N(K) as well as for Ny (K) can be solved in polynomial time.

Proof. Suppose that we have a (weak) separation oracle for the cone K. Then we have
a polynomial time algorithm to solve the (weak) separation problem for the cone M(K).
In fact, let Y be any matrix. If it violates (i) or (ii) then this is trivially recognized
and a separating hyperplane is also trivially given. (iii) can be checked as follows: we
have to know if Yu € K holds for each u € Q*. Clearly it suffices to check this for
the extreme rays of Q*, i.e. for the vectors e¢; and f;. But this can be done using the
separation oracle for K.

Since N (K) is a projection of K, the weak separation problem for N(K) can be also
solved in polynomial time (by the general results from Grétschel, Lovdsz and Schrijver
1988).

In the case of Ny (K), all we have to add that the positive semidefiniteness of the
matrix Y can be checked by Gaussian elimination, pivoting always on diagonal entries.
If we always pivot positive elements, the matrix is positive semidefinite. If the test fails,
it is easy to construct a vector v with vTY v < 0; this gives then a hyperplane separating
Y from the cone. B

d. Stronger cut operators. We could use stronger versions of this procedure to get
convex sets smaller than N(K).

One possibility is to consider N(K,K) instead of N(K) = N(K, Q). It is clear
that N(K,K) C N(K). Trivially, theorems 1.2 and 1.4, and lemma 1.3 remain valid
if we replace N(K) by N(K, K). Unfortunately, it is not clear whether theorem 1.6
also remains valid. The problem is that now we have to check whether Y K* C K and
unfortunately K* may have exponentially many, or even infinitely many, extreme rays.
If K is given by a system of linear inequalities then this is not a problem. So in this
case we could consider the sequence N (K, K), N(N(K, K), K), etc. This shrinks down
faster to K° than N!(K), as we shall see in the next section.

The following strengthening of the projection step in the construction seems quite
interesting. For v € R™"!, let M(K)v = {Yv :Y € M(K)}. So N(K) = M(K)eo.
Now define
NE)= [] M(K)w.

veint(Q+)

Note that the intersection can be written in the form

N(E)= ] M(E)(eo + u).
ueQ*

It is easy to see that )
K° C N(K) C N(K).

11



The following lemma gives a different characterization of N(K):

1.7 Lemma. z € N(K) if and only if for every w € R™! and every v € Q* such that
(eo +v)wT € M(K)*, we have wTz > 0.

In other words, N (K)* is generated by those vectors w for which there exists a
v € int(Q*) such that vwT € M(K)*.

Proof. (Necessity) Let z € N(K), w € R**! and v € int(Q*) such that vwT € M(K)*.
Then in particular z can be written as z = Yv where Y € M(K). So wTz = wTYv =
Y - (vwT) > 0.

(Sufficiency) Assume that z ¢ N(K). Then there exists a v € int(K*) such that
z ¢ M(K)v. Now M(K)v is a convex cone, and hence it can be separated from z by
a hyperplane, i.e., there exists a vector w € IR**! such that wTz < 0 but wTYv >0
for all Y € M(K). This latter condition means that vwT € M(K)*, i.e., the condition
given in the lemma is violated. |

The cone N(K) satisfies important constraints that the cones N(K) and N (K)
do not. Let b € IR™*!, and define F, = {z € R**' : Tz > 0}.

1.8 Lemma. Assume that N(K N F;) = {0}. Then —b¢€ N(K)*.

Proof. If N(K N Fy) < {0} then for every matrix Y € M (K N F) we have Yeg = 0.
In particular, Yoo = 0 and hence Y = 0. So M (K N F;) = {0}. Since clearly

M(K N Fy)* = M(K)* + cone{bu” : u e Q*},
this implies that M(K)* + {buT : uw € @Q*} = RUWFUX("+1) g5 in particular we can

write —bel = Z + buT with Z € M(K)* and u € Q*. Hence —b(eo + u)T € M(K)*.
By the previous lemma, this implies that —b € N(M)*. B

We can use this lemma to derive a geometric condition on N (K) similar to Lemma
1.5:

1.9 Lemma. Let K C Q be a conver cone and assume that eg ¢ K. Then
N(K)C (KNG +...+ (K NGy).
}n other words, if aTz > 0 is valid for the faces K N G; for all 1 then it is also valid
for N(K).

Proof. Let b = —a + teg, where t > 0. Consider the cone K N F,. By the definition of
b, this cone does not meet any facet G; of @ in any non-zero vector. Hence by Lemma
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1.3, N(K N Fy) is contained in every facet H; of Q, and hence N(K N F;) C cone(eo).
But N(K N F3) C K and so N(K N Fy) = {0}.

Hence by Lemma 1.7, we get that —b = a —teq € N(K)*. Since this holds for every
t < aand N(K)* is closed, the lemma follows. |

Applying this lemma to the cone in Figure 1, we can see that we obtain K° in a
single step. The next corollary of Lemma 1.9 implies that at least some of the Gomory—
Chvétal cuts for K are satisfied by N(K):

1.10 Corollary. Let 1 < k < n and assume that Z:.;l z; > 0 holds for every z € K.
Then Ef__:l z; > T holds for every = € N(K)

The proof consists of applying Lemma 1.9 to the projection of K on the first k + 1
coordinates.

Unfortunately, we do not know if Theorem 1.6 remains valid for N (K). Of course,
the same type of projection can be defined starting with My (K) or with M (K, K)
instead of M (K), and properties analogous to those in Lemmas 1.8-1.9 can be derived.
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2. Stable set polyhedra

We apply the results in the previous section to the stable set problem. To this end,
we first survey some known methods and results on the facets of stable set polytopes.

a. Facets of stable set polyhedra and perfect graphs. Let G = (V, E) be a graph
with no isolated nodes. Let a(G) denote the maximum size of any stable set of nodes
in G, and w(G), the maximum size of any clique in G. For each A C V, let x4 € IRV
denote its incidence vector. The stable set polytope of G is defined as

STAB(G) = conv{x” : 4 is stable}.
So the vertices of STAB(G) are just the 0-1 solutions of the system of linear inequalities
z; >0 foreach 7 €V, (1)

and
z;+z; <1 foreachij€E. (2)

In general, STAB(G) is much smaller than the solution set of (1)-(2), which we
denote by FRAC(G) (“fractional stable sets”). In fact, they are equal if and only if
the graph is bipartite. The polytope FRAC(G) has many nice properties; what we will
need is that its vertices are half-integral vectors.

There are several classes of inequalities that are satisfied by STAB(G) but not
necessarily by FRAC(G). Let us mention some of the most important classes. The
clique constraints strengthen the class (2): for each clique B, we have

dom<t (3)

iEB

Graphs for which (1) and (3) are sufficient to describe STAB(G) are called perfect.
Many interesting classes of graphs are perfect; we mention line-graphs of bipartite
graphs, chordal graphs, comparability graphs and their complements. It was shown
by Grotschel, Lovész and Schrijver (1981) that the weighted stable set problem can be
solved in polynomial time for these graphs.

The odd hole constraints express the non-bipartiteness of the graph: if C induces a
chordless odd cycle in G then

Sz < 2(c|-1). (4)
2
1eC

Of course, the same inequality holds if C has chords; but in this case it easily follows
from other odd hole constraints and edge constraints. Nevertheless, it will be convenient
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that if we apply an odd hole constraint, we do not have to check whether the circuit in
question is chordless.

Graphs for which (1), (2) and (4) are sufficient to describe STAB(G) are called
t-perfect. Again, several interesting classes of t-perfect graphs are known; we mention
series-parallel graphs. Graphs for which (1), (3) and (4) are sufficient are called h-
perfect. It was shown by Grotschel, Lovdsz and Schrijver (1986) that the weighted
stable set problem can be solved in polynomial time for h-perfect (and hence also for
t-perfect) graphs.

The odd antihole constraints are defined by sets D that induce a chordless odd cycle
in the complement of G-

Z z; < 2. (5)

i€D
We shall see that the the weighted stable set problem can be solved in polynomial time
for all graphs for which (1)-(5) are enough to describe STAB(G) (and for many more
graphs).
All constraints (2)-(5) are special cases of the rank constraints: let U C V induce
a subgraph Gy, then the following constraint is valid for STAB(G):

Zﬂii < o(Gy). (6)

t€eU

Of course, many of these constraints are inessential. To specify some that are essential,
let us call a graph G a-critical if it has no isolated nodes and a(G — e) > «(G) for every
edge e. Chviétal (1975) showed that if G is a connected a-critical graph then the rank

constraint
> ;< oG)
1€V (G)

defines a facet of STAB(G).

(Of course, in this generality rank constraints are ill-behaved: given any one of
them, we have no polynomial time procedure to verify that it is indeed a rank constraint,
since we have no polynomial time algorithm to compute the stability number of the
graph on the right hand side. For the special classes of rank constraints introduced
above, however, it is easy to verify that a given inequality belongs to them.)

Finally, we remark that not all facets of the stable set polytope are determined by
rank constraints. For example, let U induce an odd wheel in G, with center ug € U.

Then the constraint
\U| -2 \U| -2
2wt S
1€U\{uo}

is called a wheel constraint. If e.g. V(G) = U then the wheel constraint induces a facet
of the stable set polytope.

Another class of non-rank constraints of a rather different character are orthogonal-
ity constraints, introduced by Grotschel, Lovész and Schrijver (1986). Let us associate
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with each vertex ¢ € V, a vector v; € R™, so that |v;| = 1 and non-adjacent vertices
correspond to orthogonal vectors. Let ¢ € IR™ with |¢| = 1. Then

Z(chg)Z:z:,- <1

eV

is valid for STAB(G). The solution set of these constraints (together with the non- .

negativity constraints) is denoted by TH(G). It is easy to show that
STAB(G) C TH(G) C FRAC(G).

In fact, TH(G) satisfies all the clique constraints. Note that there are infinitely many
orthogonality constraints for a given graph, and TH(G) is in general non-polyhedral (it
is polyhedral if and only if the graph is perfect). The advantage of TH(G) is that every
linear objective function can be optimized over it in polynomial time. The algorithm
involves convex optimization in the space of matrices, and was the main motivation for
our studies in the previous section. We shall see that these techniques give substantially
better approximations of STAB(G) over which one can still optimize in polynomial time.

b. The “N” operator. To apply the results in the previous chapter, we homogenize
the problem by introducing a new variable zo and consider STAB(G) as a subset of the
hyperplane Hy defined by zo = 1. We denote by ST(G) the cone spanned by the vectors
(XIA) € RVY{%} where A is a stable set. We get STAB(G) by intersecting ST(G) with
the hyperplane zo = 1. Similarly, let FR(G) denote the cone spanned by the vectors
(1) where z € FRAC(G). Then FR(G) is determined by the constraints

z; >0 foreachi €V,

and
;i +z; <zo foreachije€ E.

Since it is often easier to work in the original n-dimensional space (without homog-
enization), we shall use the notation N(FRAC(G)) = N(FR(G)) N Ho and similarly for
N, N etc. We shall also abbreviate N(FRAC(G)) by N(G) etc. Since FRAC(G) is
defined by an explicit linear program, one can solve the separation problem for it in
polynomial time. We shall say briefly that the polytope is polynomial time separable.
By Theorem 1.6, we obtain the following.

2.1 Theorem. For each fized r > 0, N7 (G) as well as N"(G) are polynomial time
separable. |

It should be remarked that, in most cases, if we use N”"(G) as a relaxation of
STAB(G) then it does not really matter whether the separation subroutine returns
hyperplanes separating the given z ¢ N"(G) from N"(G) or only from STAB(G). Hence
it is seldom relevant to have a separation subroutine for a given relaxation, say N (G);
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one could use just as well a separation subroutine for any other convex body containing
STAB(G) and contained in N"(G) (such as e.g. N7 (G)). Hence the polynomial time
separability of N_’;(G’) is substantially deeper than the polynomial time separability of
N7(G) (even though it does not imply it directly).

In the rest of this section we study the question of how much this theorem gives
us: which graphs satisfy N7 (G) = STAB(G) for small values of r, and more generally,
which of the known constraints are satisfied by N(G), N, (G), etc. With a little abuse
of terminology, we shall not distinguish between the original and homogenized versions
of clique, odd hole, etc. constraints.

It is a useful observation that if Y = (yi;) € M(FR(G)) then y;; = 0 whenever
ij € E(G). In fact the constraint z; + z; < 1 must be satisfied by the ith column of Y,
and so y;; + y;i < Yoi = Yii by non-negativity. This implies y;; = 0.

Let a®z < b be any inequality valid for STAB(G). Let W C V and let aw € RY be
the restriction of a to W. For everyv € V, if Tz < bis valid for STAB(G) thenaf_ z <
b is valid for STAB(G — v) and ar‘l,‘_r(v)_u:c < b - a, is valid for STAB(G — I'(v) — v)
(here I'(v) denotes the set of neighbors of the node v). Let us say that these inequalities
arise from aTz < b by the deletion and contraction of node v, respectively. Note that if
aTz < b is an inequality such that for some v, both the deletion and contraction of v
yield inequalities valid for the corresponding graphs, then aTz < b is valid for G.

Let K be any convex body containing STAB(G) and contained in FRAC(G). Now
Lemma 1.3 implies:

2.2 Lemma If aTz < b is an inequality valid for STAB(G) such that for some v €V,

both the deletion and contraction of v gives an inequality valid for K then a®z < b is
valid for N(K). ]

This lemma enables us to completely characterize the constraints obtained in one
step (not using positive semidefiniteness):

2.3 Theorem The polytope N(G) is ezactly the solution set of the non-negativity, edge,
and odd hole constraints.

Proof. 1. It is obvious that N(G) satisfies the non-negativity and edge constraints.
Consider an odd hole constraint Ziec z; < —;—([C| —1). Then for any 1 € C, both the
contraction and deletion of 7 results in an inequality trivially valid for FRAC(G). Hence
the odd hole constraint is valid for N(G) by Lemma 2.2.

2. Conversely, assume that z € IRV satisfies the non-negativity, edge-, and odd
hole constraints. We want to show that there exists a non-negative symmetric matrix
Y = (yi5) € R(*H1)X(n+1) g ch that Vio=yii = z; forall 1 <1 < n, yoo =1, and

i+ T+ 2k — 1 < yik + Yk < Ik

for all 7,5,k € V such that ij € E (the lower bound comes from the condition that
Y fr € FR(G), the upper, from the condition that Yex € FR(G)). Note that the
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constraint has to hold in particular when ¢ = k; then the upper bound implies that
yi; = 0, while the lower bound is automatically satisfied.

The constraints on the y’s are of a special form: they only involve two variables.
So we can use the following (folklore) lemma, which gives a criterion for the solvability
of such a system, more combinatorial than the Farkas Lemma:

2.4 Lemma. Let H = (W,F) be a graph and let two values 0 < a(ij) < b(15) be
assoctated with each edge of H. Let U C W be also given. Then the linear system

a(iy) < yi +y; < b(z7), (xj € F)
y; >0 (i ew),

y: =0 (iEU)

has no solution if and only if there exists a sequence of (not necessarily distinct) vertices

V0,V1,...,Vp Such that v; and vit, are adjacent (the sequence is a walk), and one of the
followsng holds:

a) p is odd and b(vovy) — a(vyva) + b(vavg) — ... + b(vp—1vp) < O;

b) p is even, vo = vp, and b(vovy) — a(vive) + b(vevs) — ... — a(vp—1vp) < O;

c) p is even, v, € U, and b(vovy) — a(vyvz) + b(vav3) — ... — a(vp—1vp) < O;

d) p is odd, vo,vp, € U, and —a(vovy) + b(vive) — a(vavs) — ... — a(vp—1vp) < 0. K

In our case, we have as W the set of all pairs {¢,5} (¢ # j), U is the subset
consisting of the edges of G, two pairs are adjacent in H iff they intersect, and a(tj, jk) =
Ti + z; + zx — 1, b(ij, jk) = z;. We want to verify that if z satisfies all the odd hole
constraints then none of the walks of the type a)-d) in the lemma above can occur.
Let us ignore for a while how the walk ends. The vertices of the walk in H correspond
to pairs ¢7; the edges in the walk correspond to triples (i5k) such that ik € E. Let
us call this edge the bracing edge of the triple. We have to add up alternately z; and
1 — z; — z; — zi; call the triple positive and negative accordingly.

Let w be a vertex of G that is not an element of the first and last pair vo and vp.
Then following the walk, w may become an element of a v;, stay an element for a while,
and the cease to be; this may be repeated, say, f(w) times. It is then easy to see that
the total contribution of the variable z,, to the sum is — f(w)z,,.

It is easy to settle case b) now. Then any v; can be considered first, and so the

above counting applies to each vertex (unless all pairs v; share a vertex of G, which is
a trivial case). So the sum

b(vov1) — a(vivz) + b(vavs) — ... — a(vp—1vp) = g - Z f(w)zy.

But note that every vertex w occurs in exactly 2f(w) bracing edges. If we add up the

edge constraints for all bracing edges, we get p — > 2f(w)zy > 0, which shows that
b) cannot occur.
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Cases a) and c) only take a little care around the end of the walk, and are left to
the reader. Let us show how case d) can be settled, which is the only case when the
odd hole constraints are needed.

Consider again the bracing edges of the triples, except that count now the pairs
vo and v, (which are edges of G) as bracing edges. Again, it is easy to see that the
total sum in question is (p + 1)/2 — Y_ f(w)zy, where each w is contained in exactly
2f(w) bracing edges. Unfortunately, we now have p + 2 bracing edges, so adding up the
edge constraints for them would not yield the non-negativity of the sum. But observe
that the multiset of bracing edges (we count an edge that is bracing in more than one
triple with multiplicity) forms an Eulerian graph, and is, therefore, the union of circuits.
Since the total number of bracing edges, p + 2, is 0odd, at least one of these circuits is
odd. Add up the odd hole constraint for this circuit and the edge constraint, divided
by two, for each of the remaining bracing edges. We get that 3 f(w)zw < (p +1)/2,
which shows that d) cannot occur. ]

2.5 Corollary. If G 1s t-perfect then STAB(G) is the projection of a polytope whose
number of facets 1s polynomial in n. ]

This Corollary generalizes a result of Barahona and Mahjoub (1987) that constructs
such a projection representation for series-parallel graphs.

c. The repeated “N” operator. Next we prove a theorem which describes a large
class of inequalities valid for N"(G) for a given r. The result is not as complete as in

the case r = 1, but it does show that the number of constraints obtainable grows very
fast with r.

Let aTz < b be any inequality valid for STAB(G). By Theorem 1.4, there exists
an r > 0 such that aTz < b is valid for N7 (G). Let the N-indez of the inequality be
defined as the least r for which this is true. We can define (and will study later) the
N-index analogously. Note that in each version, index of an inequality depends only
on the subgraph induced by those nodes having a non-zero coefficient. In particular, if
these nodes induce a bipartite graph then the inequality has N-index 0. We can define
the N-index of a graph as the largest N-index of any facet of STAB(G). The N-index
of G is 0 if and only if G is bipartite; the N-index of G is 1 if and only if G is t-perfect.
Lemma 2.2 implies (using the obvious fact that the N-index of an induced subgraph is
never larger than the N-index of the whole graph):

2.6 Corollary. If for some node v, G — v has N-indez k then G has N-indez at most
k+1. |

The following lemma about the iteration of the operator N will be useful in esti-
mating the N-index of a constraint.

2.7 Lemma. 251 € N¥(G) (k > 0).
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Proof. We use induction on k. The case k = 0 is trivial. Consider the mat
Y = (yi;j) € RVVODXVOOD gefined by

1, ifi=3=0,
1 . L . . .
vij = o 1f1.—0.and]>0, ort>0and j =0,
I ori=35>0,

0, otherwise.

Then Y € M (N*~!(FR(G))), since

Yei = = (eo + ;) €ST(G) C N*(FR(G))
k+2
and
k+1 1 kt1 1 k=1
.= < _ . FR(G
Y f; k+2€0+#zo:ik+2e3_k+2 eo+k+1j4:;vea € N*(FR(G))

and so by the monotonicity of N¥~1(FR(G)), Yf; € N¥"1(FR(G)). Hence the f

column of Y is in N¥(FR(G)), and thus 151 € N¥(G).

From these two facts, we can derive some useful bounds on the N-index of a gra

2.8 Corollary. Let G be a graph with n nodes and at least one edge. Assume tha
has stability number o(G) = a and N-indez k. Then

2~2§k§n—~a—1.
a

Proof. The upper bound follows from Corollary 2.6, applying it repeatedly to
but one nodes outside a maximum stable set. To show the lower bound, assume t!
k < (n/a) — 2. Then the vector ;351 does not satisfy the constraint 3, z; < ¢

so it does not belong to STAB(G). Since it belongs to N*(G) by Lemma 2.7, it follc
that N*(G) # STAB(G), a contradiction.

It follows in particular that the N-index of a complete t-graph is t — 2. The
index of an odd hole is 1, since an odd hole is a t-perfect graph. The N-index of an ¢
antihole with 2k + 1 nodes is k; more generally, we have the following corollary:

2.9 Corollary. The N-indez of a perfect graph G is w(G) — 2. The N-indez o
critically imperfect graph G is w(G) — 1.
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Next we study the index of a single inequality. Let aTz < b be any constraint valid
for STAB(G) (a € ZK, b € Z.). Define the defect of this inequality as 2-max{aTz—b:
z € FRAC(G)}. The factor 2 in front guarantees that this is an integer. In the special
case when we consider the constraint ) z; < «(G) for an a-critical graph G, the defect
is just the Gallai class number of the graph (see Lovdsz and Plummer (1986) for a
discussion of a-critical graphs, in particular of the Gallai class number).

Given a constraint, its defect can be computed in polynomial time, since optimizing
over FRAC(G) is an explicit linear program. The defect of a constraint is particularly
easy to compute if the constraint defines a facet of STAB(G). This is shown by the
following lemma, which states a property of facets of STAB(G) of independent interest.

2.10 Lemma. Let Y ;a;z; < b define a facet of STAB(G), different from those deter-
mined by the non-negativity and edge constraints. Then every vector v mazimizing a*z
over FRAC(G) has v; = 1/2 whenever a; > 0. In particular,

max{aTz: z € FRAC(G)} = % Z a;

and the defect of the inequality is ) . a; — 2b.

Proof. Let v be any vertex of FRAC(G) maximizing aTz. It suffices to prove that
v; # 1 whenever a; > 0; this will imply that the vector (1/2,...,1/2)T also maximizes
aTz, and to achieve the same objective value, v must have v; = 1 /2 whenever a; > 0.

Let U = {t € V : v; = 1} and assume, by way of contradiction, that a(U) > 0.
Clearly U is a stable set. If we choose v so that U is minimal (but of course non-empty),
then a; > O for every 1 € U. Let I'(U) denote the set of neighbors of U. Let X be
any stable set in G whose incidence vector x* is a vertex on the facet of STAB(G)
determined by aTz = b.

Consider the set Y = UU (X \T(U)). Clearly, Y is stable and a(Y) = a(X)+a(U '\
X) —a(T(U) N X). So by the optimality of X, we have

a(U \ X) < o(T(U) N X).

On the other hand, consider the vector w € IRV defined by

1, frelUnNX,
Wy = O, 1fz€F(U)\X,
%, otherwise.

Then w € FRAC(G) and aTw > aTv + (1/2)a(T(U) N X) — (1/2)a(U \ X) > aTv. By
the optimality of v, we must have equality, and so a(U \ X) = o(T(U) N X). But this
means that xX satisfies the linear equation

Z a;T; — a(U).

i€UUT (V)
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So this linear equation is satisfied by every vertex of the facet determined by aTz =b.
The only way this can happen is that it is the equation a¥z = b itself. But then aTv=>
and so aTv < b defines also a face4 of FRAC(G), which was excluded. |

We need some further, related lemmas about stable set polytopes. These may be
viewed as weighted versions of results on graphs with the so-called Konig property; see
Lovdsz and Plummer (1986), section 6.3.

2.11 Lemma. Leta € IR},’_ and assume that
max{aTz: £ € STAB(G)} < max{aTz: z € FRAC(G)}.

Let E' be the set of those edges t1j for which y; + y; = 1 holds for every vector y €
FRAC(G) mazimizing aTz. Then (V, E') is non-bipartite.

Proof. Suppose that (V, E’) is bipartite. Let z be a vector in the relative interior of
the face F of FRAC(G) maximizing aTz. Then clearly

E'={ijeE: zi+2z; =1}
and
F={z€FRAC(G): z;+z;=1forall i € E}.
Let (U,W) be a bipartition of (V, E’). In every connected component of (V, E’), z; > 1/2
on at least one color class and hence we may choose (U,W) so that z; > 1/2 for all

i € W. Then W is a stable set in the whole graph G. Hence it follows that x"¥ € F.

This implies that max{aTz : z € STAB(G)} = max{a®z: z € FRAC(G)}, a contra-
diction. ]

2.12 Lemma. As tn the previous lemma, let a € IRK and assume that

max{aTz: z € STAB(G)} < max{aTz: z € FRAC(G)}.

Then there ezists an i € V such that every vector y € FRAC(G) mazimizing aTz has
yi = 1/2.

Proof. Let E’ be as before. Then by Lemma 2.11, there exists an odd circuit C in G

such that E(C) C E'. If y is any vector in FRAC(G) maximizing a” z then by the defini-
tion of E’, y; +y; = 1 for every edge 15 € E(C), and hence y; = 1/2 for every 1 € V(C).§

Now we can state and prove our theorem that shows the connection between defect
and the N-index:
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2.13 Theorem. Let aTz < b be an inequality with integer coefficients valid for
STAB(G) with defect r and N-indez k. Then

<k<Lr.

ol

Proof. (Upper bound.) We use induction on r. If r = 0 we have nothing to prove,
so suppose that » > 0. Then Lemma 2.12 can be applied and we get that there is a
vertex 7 such that every vector y optimizing a®z over FRAC(G) has y; = 1/2. Note
that trivially a; > 0.

We claim that both the contraction and deletion of ¢ result in constraints with
smaller defect. In fact, let y be a vertex of FRAC(G) maximizing af_,z. If y also
maximizes aTz then y; = 1/2 and hence

2(af_;y —b) = 2(aTy —b) —a; <2(aTy—b) =r.
On the other hand, if y does not maximize aTz then
2(af_;y—b) <2(aTy—b) < 2-max{aTz —b: z € FRAC(G)} =r.
The assertion follows similarly for the contraction. Hence by the induction hypothesis,

the contraction and deletion of 7 yields constraints valid for N"™=1(G). It follows by
Lemma 2.2 that aTz < b is valid for N™(G).

(Lower bound.) By Lemma 2.7, 251 € N¥(G), and so aTz < b must be valid for

7:%11. So —k_}_—zaTill < b and hence

T

ol

It follows from our discussions that for an odd antihole constraint, the lower bound
is tight. On the other hand, it is not difficult to check that for a rank constraint defined
by an a-critical subgraph that arises from K, by subdividing an edge by an even number
of nodes, the upper bound is tight.

We would like to mention that Ceria (1989) proved that N(FRAC(G), FRAC(G))
also satisfies, among others, the K4-constraints. We do not study the operator K
N(K,K) here in detail, but a thorough comparison of its strength with N and N
would be very interesting.

d. The “N,” operator. Now we turn to the study of the operator N4 for stable set
polytopes. We do not have as general results as for the operator N, but we will be able
to show that many constraints are satisfied even for very small r.

Lemma 2.3 implies:
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2.14 Lemma. If aTz < b is an inequality valid for STAB(G) such that for allv eV
with positive coeffictent the contraction of v gives an inequality with N, -indez at most
r, then a*z < b has Ny -indez at most r + 1. |

The clique, odd hole, odd wheel, and odd antihole constraints have the property
that contracting any node with positive coefficient we get an inequality in which the
nodes with positive coefficient induce a bipartite subgraph. Hence

2.15 Corollary. Clique, odd hole, odd wheel, and odd antihole constraints have N, -
indez 1. |

Hence all h-perfect (in particular all perfect and t-perfect) graphs have N, -index
at most 1. We can also formulate the following recursive upper bound on the N -index
of a graph:

2.16 Corollary. If G —T'(v) — v has Ny-indez at most r for every v €V then G has
Ny -indez at most r + 1. |

Next, we consider the orthogonality constraints. To this end, consider the cone
Mry of (V U{0}) x (V U{0}) matrices Y = (yi;) satisfying the following constraints:

(i) Y is symmetric;
(ii) yis = yio for every ¢ € V;
(ili’) yi; = O for every 15 € E;
(iv) Y is positive semidefinite.
As remarked, (iii’) is a relaxation of (iii) in the definition of M, (FR(G)). Hence
M, (FR(G)) C Mrg.
2.17 Lemma. TH(G) = {Yeo: Y € Mry,elYeo = 1}.

Proof. Let z € TH(G). Then by the results of Grétschel, Lovasz and Schrijver (1986),
z can be written in the form z; = (vdv;)?, where the v; (i € V) form an orthonormal
representation of the complement of G and vg is some vector of unit length. Set zg = 1
and define ¥;; = v?vj\/:?ﬁ}. Then it is easy to verify that Y € Mty and Yeg = z.
The converse inclusion follows by a similar direct construction. |

This representation of TH(G) is not a special case of the matrix cuts introduced
in section 1 (though clearly related). In section 3 we will see that in fact TH(G) is in

a sense more fundamental than the relaxations of STAB(G) constructed in section 1.
Right now we can infer the following. ‘

2.18 Corollary. Orthogonality constraints have N -indez 1. |
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We mention the following general upper bound on the N -index of a single inequal-
ity. Since (G — I'(v) — v) < «(G), Lemma 2.3 gives by induction

2.19 Corollary. If aTz < b is an inequality valid for STAB(G) such that the nodes
with positive coefficient induce a graph with independence number r then aTz < b has
N -indez at most r. In particular, aTz < b has indez at most b. ) [ ]

Let us turn to the algorithmic aspects of these results. Theorem 2.1 implies:

2.20 Corollary. The mazimum weight stable set problem is polynomsial time solvable
for graphs with bounded N -indez. B

Note that even for small values of r, quite a few graphs have N -index at most r.
Collecting previous results, we obtain:

2.21 Corollary. For any fizedr > 0, if STAB(G) can be defined by constrasntsaTz < b
such that either the defect of the constraint 1s at most r or the support of a contains no

stable set larger than r, then the mazimum weight stable set problem is polynomial time
solvable for G. [ ]
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3. Comnes of set-functions

Vectors in RS are just functions defined on the one-element subsets of a set S; the
symmetric matrices in the previous sections can be considered as functions defined on
unordered pairs. We show that if we consider set-functions, i.e., functions defined on
all subsets of S, then some of the previous considerations become more general and
sometimes even simpler.

In fact, most of the results extend to a general finite lattice in the place of the
Boolean algebra, and we present them in this generality for the sake of possible other
applications.

a. Preliminaries: vectors on lattices. Let us start with some general facts about
functions defined on lattices. Given a lattice L, we associate with it the matrix Z = (¢;;),
called the zeta-matriz of the lattice, defined by

L iy,
ij = 0, otherwise.

For j € L, let ¢/ denote the jth column of the zeta matrix, i.e., let
¢/ (4) = ¢ij-

If we order the rows and columns of Z compatibly with the partial ordering defined
by the lattice, it will be upper triangular with 1’s in its main diagonal. Hence it is
invertible, and its inverse M = Z~! is an integral matrix of the same shape. This
inverse is a very important matrix, called the Mébius matriz of the lattice. Let

M= (6.9, e

The function p is called the Mébius function of the lattice. From the discussion above
we see that u(i,7) = 1 for all ¢ € £, and p(7,7) = 0 for all 7,5 € L such that 7 £ j.
Moreover, the definition of M implies that for every pair of elements a < b of the lattice,

Z (a,i) = 1, ifa=0b,
- A 0, otherwise;
a<i<b

and
. 1, ifa=04b,
Z ,u(z,b) - {0, otherwise.
a<i<b

Either one of these identities provides a recursive procedure to compute the Mdbius
function. It is easy to see from this procedure that the value of the Mdbius function
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(7, 5), where 7 < 7, depends only on the internal structure of the interval [7,5]. Also
note the symmetry in these two identities. This implies that if u* denotes the Mébius
function of the lattice turned upside down, then

©*(2,9) = u(d,9).
For j € L, let u/ denote the jth column of the Mébius matrix, i.e., let
w(0) = iy

We denote by p; the ]th row of the Mobius matrix, and by py; 5] the restriction of y;
to the interval [z, 7], i.e., vector defined by

-’k b .f k S .3
N(i,J'](k) = {,u(z ) 1 J

0, otherwise.

The Mobius function of a lattice generalizes the Mdbius function in number theory,
and it can be used to formulate an inversion formula extending the Mobius inversion in
number theory. Let g € IRY be a function defined on the lattice. The zeta matrix can
be used to express its lower and upper summation function:

(2T9)() =) als),

<t

(Zg)(5) =) _g(s)-

>t

and

Given (say) f = Zg, we can recover g uniquely by

g(t) = (M) =D u(i,5)f ().

j2>1

The function g is called the (upper) Mébius inverse of f.
There is a further 51mple but important formula relating a function to its inverse.
Given a function f € IRY, we associate with it the matrix W/ = (w;;), where

Wiy =f(iVj).

We also consider the diagonal matrix Df with (Df);; = f(i). Then it is not difficult to
prove the following important identity (Lindstrém 1969, Wilf 1968):

3.1 Lemma. If g is the upper Mdbius inverse of f then W/ = ZD9ZT. |

For more on Mdbius functions see Rota (1964), Lovédsz (1979, Chapter 2), or Stanley
(1986, Chapter 3).
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A function f € IRY will be called strongly decreasingif M f > 0. Since f = Z(Mf),
this is equivalent to saying that f is a non-negative linear combination of the columns of
Z,i.e., of the vectors ¢;. So strongly decreasing functions form a convex cone H = H(L),
which is generated by the vectors ¢, j € L. Also by definition, the polar cone H* is
generated by the rows of M, i.e., by the vectors u;.

Let us mention that the vector u(; ; is also if H* for every ¢+ < j. This is straight-.
forward to check by calculating the inner product of u[; ;) with the generators ¢; of H. It
is easy to see that strongly decreasing functions are non-negative, monotone decreasing
and supermodular, i.e., they satisfy

HATESIWIESIORSIOR
Lemma 3.1 implies:
Corollary 3.2 A function f is strongly decreasing if and only if W7 is positive semidef-
inite. |
It follows in particular that f is strongly decreasing iff for every z € RE,

TWir = Zm;zjf(i vVj)>o0.
%)

It is in fact worth while to mention the following identity, following immediately from
Lemma 3.1. Let f,z € IR and let g=Mfand y= Zz. Then

W'z = Z g(2)y(%)?.

i€l
In particular, if f is strongly decreasing then

W'z > ¢(0)z(0)2. (5)

Remark. Let L = 25, and let f € IRY such that f(#) = 1. Then f is strongly decreasing
if and only if there exist random events 4, (s € S) such that for every X C S,

Y
Prob(é As ) = f(X).
X

(If this is the case, (M f)(X) is the probability of the atom [],.x A, [Ties_x As) In
particular, we obtain from (5) that for any A € RE with A(0) =1,

Y Y _
> AxAyProb As) >Prob| 4; |.
X, Y sEXUY S
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This is a combinatorial version of the Selberg Sieve in number theory (see Lovész (1979),
Chapter 2). Inequality (5) can be viewed as Selberg’s Sieve for general lattices; see
Wilson (1970).

The lattice structure also induces a “multiplication”, which leads to the semigroup
algebra of the semigroup (L, V). Given a,b € IRL, we define the vector a V b € RY by

(avo)(k) = ) a(i)p(y).

1Vi=k

In particular,

e; Ve =ep;
(and the rest of the definition is obtained by distributivity). It is straightforward to
see that this operation is commutative, associative and distributive with respect to the

vector addition, and has unit element eg (where 0 is the zero element of the lattice).
This semigroup algebra has a very simple structure: elementary calculations show that

Z%(avb)(k) = (ZTa) (k) - (ZTb)(K), (6)

and hence the semigroup algebra is isomorphic to the direct sum of |L| copies of IR. It

also follows from (6) that a vector a has an inverse in this algebra iff (ZTa)(k) # O for
all k.

Another identity which will be useful is the following:
(avb)Te =aTWes, (7)
Using this, we can express the fact that a vector ¢ is strongly decreasing as follows:
(aV a)Te > 0 for every a € RE.

In particular it follows that H* 1s generated by the vectors aV a, a € IRE. Comparing
this with our previous characterization it follows that the vectors p; must be of the form
aVa. In fact, u; V pu; = pj; more generally, the vectors H(i,;) are also idempotent. Using
(6) it is easy to see that the idempotents are exactly the vectors of the form ), ; pi,
where I C L. Moreover, the “v” product of any two vectors u; is zero.

b. Optimization in lattices. Given a subset F C L, we denote by cone(F) the
convex cone spanned by the vectors ¢!, 1 € F. Since these vectors are extreme rays
of H, and all extreme rays of H are linearly independent, it is in principle trivial to
describe F by linear inequalities: It is determined by the system

T [=0, ifigF, |
Wz{zo,ﬁiEF. )

But since cone(F) is in general not full-dimensional, it may have many other minimal
descriptions. For example, in the case when F is an order ideal (i.e., z€ F,y < zimply
y € F), cone(F) could be described by

z € H, z(z) =0 for all ¢ ¢ F. (9)
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The polar cone also has a simple description:
cone(F)* = {a € RE: (Z%a)(k) >0 for all k € F}. (10)

Our main concern will be to describe the projection of cone(F) on the subspace
spanned by a few “small” elements in the lattice. Let I be the set of these “interesting”
lattice elements. We consider IR? as the subspace of IRE spanned by the elements of I.
For any convex cone K C H, let Ky denote the intersection of K with IR! and let K /I
denote the projection of K onto IR, Then (K*); C K* is the set of linear inequalities
valid for K involving only variables corresponding to elements of I. Also, (K*)s is the
polar of K/I with respect to the linear space RT.

For example in the case when L = 25, where S is an n-element set, we can take I
as the set of all singletons and 0. If we project cone(F) on this subspace, and intersect
the projection with the hyperplane zg = 1, then we recover the polyhedron usually
associated with F' (namely the convex hull of incidence vectors of members of F). Note
that the projection itself is just the homogenization introduced in the section 1. The
cone Q considered in section 1 is just H/I.

From these considerations we can infer the following theorem, due (in a slightly
different form) to Sherali and Adams (1988):

3.3 Theorem. If ¥ C 25 then conv{x? : A € 7} is the projection of the following
convez polytope to the subspace spanned by singleton sets:

zp =1, wiz>0(j€¥), piz=0(j ¢ 7).

The (n+1) x (n+ 1) matrices Y used in section 1 can be viewed in this framework

in two different ways. First, they can be viewed as portions of the vector z € IR2’
determined by the entries indexed by @, singletons, and pairs; the linear constraints on
M(K) used in section 1 are just the constraints we can derive in a natural way from
the constraints involving just the first n + 1 variables.

Second, the matrices Y also occur as principal minors of the corresponding (huge)
matrix W=. So the positive semidefiniteness constraint for M (K) is just a relaxation
of the condition that for z € H, W? is positive semidefinite. (It is interesting to
observe that while by Corollary 3.2, the positive semidefiniteness of W# is a polyhedral
condition, this relaxation of it is not.)

Let us discuss the case of the stable set polytope. We have a graph G = (V, E) and
we take S =V, L = 25. Let F consist of the stable sets of G. Then cone(F) C IRY is
defined by the constraints

z€ H, z;; = 0 for every 17 € E.

We can relax the first constraint by stipulating that the upper left (n + 1) x (n + 1)
submatrix W of W= is positive semidefinite. Then these submatrices form exactly the
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cone M7y as introduced in section 2. As we have seen, the projection of this cone to
IR”, intersected with the hyperplane zo = 1, gives the body TH(G).

Note that the “supermodularity” constraints z;; — z; — z; + o > O are linear
constraints valid for H, and involve only the variables indexed by sets with cardinality
at most 2, but they do not follow from the positive semidefiniteness of W¥. Using these
inequalities we obtain from z;; = 0 the constraint z; + z; < z¢ for every edge ij € E.

Returning to our general setting, we are going to interpret the operators N, N, and
N in this general setting, using the group algebra. In order to describe the projection of
cone(F) on RY, we want to generate linear constraints valid for cone(F) such that only
the coefficients corresponding to elements of I are non-zero. To this end, we use the
semigroup algebra to combine constraints to yield new constraints for cone(F). (This
may temporarily yield constraints having some further non-zero coefficients, which we
can eliminate afterwards.)

We have already seen that a V a € cone(F)* for every a. From (6) and (10) we can
read off the following further rules:

(2) If a,b € cone(F)* then a V b € cone(F)*.
(b) If a € int(cone(F)*) and a V b € cone(F)* then b € cone(F)*.

In rule (b), we can replace the condition that a € int(cone(F)*) by the perhaps more
manageable condition that a = eg+c with ¢ € cone(F)*. In fact, eo € int(cone(F)*) and
hence for every ¢ € cone(F)*, o + ¢ € int(cone(F)*). Conversely, if a € int(cone(F)*)
then for a sufficiently small ¢t > 0, a — teg € cone(F)*. Set ¢ = %a — ep, then c+ e €
cone(F)* and (c + eo) Vb = 1(a Vv b) € cone(F)*, and hence b € cone(F)*.

If ZTa > 0 then rule (b) follows from rule (a). In fact, let ¢(k) = 1/(ZTa)(k), and
d = MTc. Then d is the inverse of a, that is, d V a = eg, and (Z7d)(k) = c(k) > 0 for
all k, so d € cone(F)*. Hence

b= (aVb)VdE cone(F)*

by rule (a).
For two cones K, K, C IRY, we denote by K; V K the convex cone spanned by all
vectors u; V up, where u; € K;. (The set of all vectors arising this way is not convex in

ggneral.) This operation generalizes the construction of N(Ki, K2), N4+ (K1, K2) and
N(K) in the following sense.

Proposition 3.3. Let L = 25, I, the set consisting of @ and the singleton subsets of
S, and let K1, Ko C H/I be two convez cones. Then

(i) N(K1, K2)* = ((K{)r v (K3)1)1s
(ii) Ny (K1, Ko)* = ((K;) v (K3)r +RTv lR’)I.

Proof of (i): First, we assume that w € ((Ki)1V (K3)1);- The we can write w =
>o.at Vb, where a; € (Ki)r and by € (K3)1. Let z € N(Ky, K2), then we can write
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z=Yeo with Y = (y;; € M(Ky, K32). Define the vector y € IRE by
zr, ke,
y(k) = {yijs if k = {yaJ}s
0, else.

Then we have

wiz=wTy= Z(at v b)) Ty = Z afYby > 0.
t t

This proves that w € N(K, K»)*.
Second, assume that w € N(Kj, K2)*. Then we can write

n
weg = Z aby + Z Xief¥ + A,
t 1=1

where a; € K7, by € K5, A; € R and A is a skew symmetric matrix. Now it is easy to

check that
w=Y (arVb),
ol

and so w € ((K{)r Vv (K3)1);-
The proof of part (ii) is analogous. |

Next we show that the construction of N is in fact a special case of the application
of rule (b):

3.4 Lemma. Let L = 25, I, the set consisting of B and the singleton subsets of S, and
let K C H/I a convex cone. Then

A~

N(K)* = {a € RT : 3b€int(K*); such that aVbe (K*)rV (Q*)s}-

The proof is analogous to that of Lemma 3.3, and is omitted.

We can use the formula in Lemma 3.3 to formulate a stronger version of the repe-
tition of the operator N. Note that

N2(K)" = [[(E")r v (@)1]r v (@)1l CIE™)r V(@)1 v (Q)1ly»
and similarly, if we denote (Q*); V...V (Q*); (r factors) by Q, then
NTK) € [(K7)rv @],

Now it is easy to see that the cone Q- is spanned by the vectors p; ;) where + C 5 and
|71 < r. For fixed r, this is a polynomial number of vectors. Let N"(K) denote the
polar cone of [(K*);V Q] ; in the linear space RY. Then N7(K) C N"(K).
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For the case of Boolean algebras (and in a quite different form), the sequence N (K)

of relaxatxons of K° was introduced by Sherali and Adams (1988), who also showed that
N™(K) =

It is easy to see that if K is polynomial time separable then so is N™(K) for every
fixed r: to check whether z € N r(K ), it suffices to check whether there exist vectors
aliil e (K )1 for every 7 and j with ¢ C j and |n| < r such that a = E - altd] Vi) €.

IRT and aTz < 0. This is easdy done in polynomial time using the elllpsoxd method.
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