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STRONG ROTUNDITY AND OPTIMIZATION*

J. M. BORWEIN AND A. S. LEWISt

Abstract. Standard techniques from the study of well-posedness show that if a fixed convex objective function
is minimized in turn over a sequence of convex feasible regions converging Mosco to a limiting feasible region,
then the optimal solutions converge in norm to the optimal solution of the limiting problem. Certain conditions on
the objective function are needed as is a constraint qualification. If, as may easily occur in practice, the constraint
qualification fails, stronger set convergence is required, together with stronger analytic/geometric properties of the
objective function: strict convexity (to ensure uniqueness), weakly compact level sets (to ensure existence and weak
convergence), and the Kadec property (to deduce norm convergence). By analogy with the Lp norms, such properties
are termed "strong rotundity." A very simple characterization ofstrongly rotund integral functionals on L1 is presented
that shows, for example, that the Boltzmann-Shannon entropy x log x is strongly rotund. Examples are discussed,
and the existence of everywhere- and densely-defined strongly rotund functions is investigated.
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1. Introduction. Consider the sequence of optimization problems

inf{f(z) x e Cn},

together with an associated limiting problem

(P) inf{f(x) x e C},

and let us ask the question "under what conditions will optimal solutions Zn for (P,) converge
to an optimal solutionz for (P)?" Such questions have of course been studied extensively
in the literature of well-posedness and variational convergence (see, for example, [17] and
[24]). Indeed, as we shall see, it is straightforward to establish by standard techniques that
when f is a strictly convex function on a Banach space, with weakly compact level sets, and
the sets C, and C are closed and convex, with Cn tending Mosco to C, then, providing
a suitable constraint qualification holds for (P), Xn will tend weakly to x. With the
extra assumption that the conjugate function f* is Fr6chet differentiable whenever it has a
subgradient, we obtain our goal: x, converges to x in norm. In the language of well-
posedness, this derivation is closely related to the well-known fact that the function f is
Tikhonov well posed; in other words, every minimizing sequence converges in norm to the
unique minimizer , if and only if f* has Fr6chet derivative at 0 (see Proposition in [1 ],
and 10]).

The natural constraint qualification required is thatC intersect the interior of the domain
of f. We use it at two points in the argument: first, to ensure the convergence of the values of
(Pn) to that of (P), and second, to deduce norm convergence of xn from weak convergence.

Our aim in this paper is in no sense to extend this general theory, but rather to cope
with a practical difficulty, namely, that in concrete problems the constraint qualification may
easily fail. Specifically, we have in mind cases where the limit set C reduces to a single
point at which the objective function f has no subgradient. For example, in best entropy
estimation (see, for example, [5]), the set Cn may consist of those functions whose first n
Fourier coefficients agree with those of an unknown function x, and the limit set C is
then simply {x }. In general, the objective function f, a measure of entropy, is a convex
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integral functional on L1, with domain some subset of the positive cone; typically f will have
no subgradients at zoo unless, at the very least, zoo is almost everywhere strictly positive.
Thus strong conditions on xoo are required if we wish to apply the above theory to deduce
convergence of the best entropy estimates; if this unknown density can take the value 0 on
regions of its domain, then we need a different approach to guarantee Ll-norm convergence.

Two refinements are necessary if we wish to remove the requirement of the constraint
qualification. The first step is to ensure the weak convergence of solutions by strengthening the
type of convergence of Cn to Coo. In the next section we show how this may be accomplished
by replacing the strong lim inf in the definition of Mosco convergence by the discrete lim inf.
We illustrate by considering the types of moment problems that appear in maximum entropy
estimation.

The section that follows contains the second step: moving from weak to norm conver-
gence. What is needed here is the strong rotundity of f, in other words, the fact that f is strictly
convex on its domain and has weakly compact level sets, and the fact that the Kadec property
holds: if Xn tends weakly to :coo in the domain of f, and f(xn) tends to f(xoo), then xn tends
to zoo in norm. The central result shows that strong rotundity of the integral functional on
L1, f(x) := f (x(s)), is characterized under very general conditions by the simple condition
that the conjugate integrand * is everywhere differentiable on ] (see also [25]). Examples
are given, including the Boltzmann-Shannon entropy and various other natural choices of
entropy (see, for example, [7]).

2. Sequences of optimization problems. We shall suppose throughout this section that
X is a Banach space, the function f X --, (-oo, +oo] is a proper convex function with
weakly compact lower level sets, and C1, Ce,... and Coo are closed convex subsets of X. We
shall use the following limiting notions:

(2.1) Coo D w lim Cn := {X ]Xnr Cnr with xn,. x weakly}.

(2.2) Coo c s -lim Cn := {x IXn E Cn with Ilxn xll o},

(2.3) Coo C d- lim Cn U N co.

Conditions (2.1) and (2.2) together say that Cn converges Mosco to Coo [18]. Condition
(2.3) is generally more restrictive than (2.2); in general,

cl(d lim Cn) C s lim Cn

with equality if d lim Cn has nonempty interior [16].
We will denote the value of the problem (P,) by V(Pn) E [-, +cx], for n

1,2,..., . The following easy result is standard.
LEMMA 2.4. If(2.1) holds, then lim V(Pn) >_ V(Poo) (finite or infinite).
Proof. Suppose not. Then for some M < V(Poo), there is a subsequence xn. Cn,

with f(Xn) < M for all r. Since f has compact level sets, there is a weakly convergent sub-
sequence Xn., with limit x in w lim C,, and therefore in Coo by (2.1), such that f(x) < M.
But then V(Poo) < M, which is a contradiction. [3

LEMMA 2.5. If (2.3) holds, then lim V(Pn) < V(Poo).
Proof. For any x Coo, (2.3) implies that x Cn for all n sufficiently large, so

f(x) >_ V(Pn), and the result follows. [3
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By contrast, if we wish to weaken (2.3) to (2.2), we need to add a regularity condition,
again using standard techniques.

Constraint Qualification. I1" int(dom f) fq C : . (The domain of f, dom f, is
the set on which f is finite.) Clearly, if the Constraint Qualification and (2.2) hold, then for
large n, a constraint qualification also holds for (Pn):

I1 int(dom f) N Cn 4 0.

LEMMA 2.6. If(2.2) and the Constraint Qualification hold, then lim V(Pn) < V(P) <
+x.

Proof. By Proposition 3.3 in 19], f is continuous on the interior of its domain. Suppose
x is arbitrary in int(dom f) fq C. By (2.2) there exist zn E Cn with IIz ill 0, and hence
V(P,) <_ f(z) - f(z). Thus lim V(P) <_ f(z).

Now by the Constraint Qualification there is an x0 in int(dom f) N C. Suppose y is
arbitrary in (dom f) N C. For any A in (0, ],

Axo + (1 A)y E C int(dom f),

so by the previous paragraph, lim V(P) <_ f(Axo + (1 A)y). But by Theorem 10.2 in [20],
f(Axo + (1 A)y) - f(y) as 0, so lim V(P) <_ f(y). Since y was arbitrary, the result
now follows. [3

Very simple examples demonstrate that the above result may fail without the Constraint
Qualification. The next lemma shows how we obtain weak convergence of the optimal solu-
tions.

LEMMA 2.7. Suppose (2.1) holds, V P, -- V P), and P has a unique optimum,
x. Thenfor any sequence ofoptimal solutions xnfor (Pn), xn x weakly.

Proof. Suppose the result fails, so for some 0 in X* and some subsequence, (xn
x, 0) > for all r. Now since f(x) f(x) < +x and f has compact level sets,
there is a convergent subsequence xi weakly with f() _< f(x) and C by
(2.1). Hence, by uniqueness, Y x, which contradicts (xi x, ) _> for all i. [3

The final lemma will allow us to move from weak to strong convergence. As usual,
f* X* -- (-, +cx] denotes the conjugate function,

f* (0) := sup { iX, ) f(x) }.
xEX

LEMMA 2.8. Suppose f* is Frdchet differentiable on the domain of Of*. Ifx
weakly,f(x) --. f(x) < +oc, and Of(x) 7 O, then itfollows that Ilxn xoll O.

Proof. Pick 0 Of(x), so xo Of*(O) {Vf*(0)} the Frdchet derivative of f* at

O. Now

(X,, ) f(x) -+ (X, O) f(x) f* (0),

so by Proposition in [ll, Ilx xo - 0,

The result above shows that f* being Fr6chet differentiable at any point where a subgra-
dient exists is almost enough to guarantee the Kadec property of f; the missing condition is
Of(x) . It is easily checked that the differentiability condition also implies that f is
strictly convex on any convex subset of dom Of (see [2]; cf. Chap. 26 in [20]). Note that
the converse of the above result is not true. For example, if f(x) := Ilzl12 on L2[0, 1], the
conclusion of the lemma is true by the Kadec property but f* is the indicator function of the
unit ball, which clearly is not Fr6chet differentiable at boundary points.
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We can now compare two contrasting convergence results. The first is standard, using
Mosco convergence and the Constraint Qualification, whereas the second uses the stronger
convergence involving the discrete lim inf and strong rotundity.

THEOREM 2.9 (i) (Mosco version). Suppose (2.1) and (2.2) hold (in other words, Cn --Co Mosco) and the Constraint Qualification holds. Then V Pn -- V Po < +o. Fur-
thermore, iff* is Frdchet differentiable on the domain ofOf*, then (Pn and (Poe) have unique
optimal solutions xn and xo, respectively (for all n sufficiently large), and Ilxn xo -- O.

(ii) (Discrete version). Suppose (2.1) and (2.3) hold. Then V(P,) V(Po) (finite
or infinite). Furthermore, if V(Poc) < +zxz and f is strongly rotund, then (Pn) and (P)
have unique optimal solutions xn and xo, respectively (for all n sufficiently large), and

Proof. (i) V(F’,) V(Po) < +oc follows from Lemmas 2.4 and 2.6. If we write tSc
for the indicator function of C, when x is optimal for (/:’),

0 E O(f + (Sc)(zo) Of(z) + 0(5c (zoo),

using the Constraint Qualification and Theorem 20 in [22]. Thus, we have Of(zoo) ,
so the set of optimal solutions of (Po) is a convex subset of dom Of. Since f must be
strictly convex on this set, (P) has a unique optimal solution, zoo. A similar argument
using the constraint qualification for (P) shows that for large n (Pn) has a unique optimal
solution z, and zn z weakly by Lemma 2.7. Finally, we apply Lemma 2.8 to deduce

(ii) V(P) V(P) follows from Lemmas 2.4 and 2.5. Strict convexity again ensures
the uniqueness of zn and z, so Lemma 2.7 once more shows weak convergence, and then
strong rotundity implies convergence in norm.

Note. In fact, due to Lemma 2.4, we could relax the strong rotundity assumption
in (ii) by replacing the Kadec property by the assumption that x, tends weakly to x and

f(zn) T f(z) implies that z tends to z in norm.

Example. If C1 D C2 D C3 D and Co C, then (2.1) and (2.3) hold. Indeed,
it is almost immediate that

w-limCn- NC-d-limC"

Our second example is modeled on sequences of moment problems. In best entropy esti-
mation we seek to estimate an unknown density given some of its moments by choosing that
density (perhaps within some tolerance) satisfying the known moment conditions which min-
imizes a certain objective function (a measure of entropy). We seek conditions ensuring that
the estimates converge in norm to the unknown density as the amount of moment information
increases.

Example. Suppose the functions al, a2... are weak-star densely spanning in L(S, #)
and : E L1. Suppose that for each i, n, F is a closed subset of , containing (ai, :), whose
diameter tends to 0 as n - oc. Suppose finally that

C, := {x L ](ai, x) F for all i}.

(Thus, C, consists of those densities whose moments agree with those of : within certain
tolerances.) Then w lira C, {Y} d- lira C,.
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To see this, note that certainly, since
d lim Cn. On the other hand, if x. C andx ---+ x weakly, for any i, (ai,x Y:) <_
diam F 0 as r c, so (ai, x Y) 0. Thus, x , which demonstrates the first

equality.
Finally, if x d lim Cn, then x Cn for all n sufficiently large, so (ai, x ) <

diam F/ 0 as n ---+ c, which shows that x . Hence, the second equality.

3. Strong rotundity. We shall suppose throughout that (S, #) is a complete finite mea-
sure space (with nonzero #), and 3 (-c, +] is a proper, closed, convex func-
tion. We denote the interior of the domain of (assumed nonempty) by (c,/3), where- <_ c </3 <_ +. Since b is a normal convex integrand, we can define the proper weakly
lower semicontinuous functional Ida" L (S, #) --+ (-x, +x] by Ida(x)"- fs (x(s))d#(s),
with conjugate I" L(S, #) (-c, +] given by 1( Ida., where 0* is the conjugate
of (see [22]).

LEMMA 3.1. Ida is strictly convex on its domain if and only if is strictly convex on its

domain.

Proof. It is well known and straightforward that lda is strictly convex if is. The converse
follows by considering constant functions.

LEMMA 3.2. Ida, is Frchet differentiable everywhere on L(S, It) if and only if * is

differentiable everywhere on .
Proof. Suppose * is differentiable on , so by Theorem 25.5 in [20] it is continuously

differentiable. Given any y E L(S, #), pick m and M in ] with m _< y(s) _< M almost
everywhere. Since (*)’ is uniformly continuous on Ira- 1, M + 1], for almost every s, given
any > 0, there is a (5 > 0 such that ](*)’(y(s) + v) (*)’(y(s)) < whenever Iv] < 5.
Thus, by the Mean Value Theorem, for some v

+

so if Ilhll -<

This demonstrates that lda. has Fr6chet derivative Vlda. (y) ((h*)’(Y(’)) at y. The converse
follows by considering constant functions.

LEMMA 3.3. /fx E L(S, #) with ess inf x >
Proof. Denote the essential infimum and supremum of x by m and M, respectively. The

multifunction 0 [m, M] - is upper semicontinuous 15]. In other words, for any closed
set F in ,

(04,) {u [m, M]lO(u) n F =/=

is closed. Thus, the multifunction s O(x(s)) is measurable, since

is measurable for any closed F. Since this multifunction has nonempty closed (actually
compact) values, there is a measurable selection y(s) O(x(s)) almost everywhere, by
Theorem 14.2.2 in [15]. Since- < min0(m) _< y(s) _< max0(m) < + almost
everywhere, it follows thaty L(S,#);so, directlyfromthedefinition, y Olda(x). I3



STRONG ROTUNDITY AND OPTIMIZATION 151

For any m, define (for a fixed z E L1 (S, #))

s,.- S’l(-)v o+- _<x()<_ -- A

LEMMA 3.4. Ifct < Z(S) < almost everywhere, then

Proof. The sets S, are nested and increasing with

Thus, #(S,) T #(S) as m - oc. [3

For any measurable subset T of S, we denote the restrictions of # and z to T by #Jr and
zl, and define If" L (Z, dlT) (--cx3,--(x3] by I(z) fT O(z(s))d[(8).

LEMMA 3.5. Suppose zn z weakly in L1 (S, lZ) and I(z,) -- I(z) < +oc. Then
for any measurable subset T of S, Znlr -- z r weakly in Ll(T,#[r) and/r(zl -_r2(l) < +.

Proof. The weak convergence of XnlT to XIT follows by integrating with respect to
functions zero on Tc. Since If and I are both weakly lower semicontinuous, we have

limI(xlT > i(xlr and lirnlf (x,lTc) _> Ir (xlrc)(since we also have XIT - xlr
weakly in L (Tc, #]r)). On the other hand, since I+(z) I(ZlT) + I (zlr) for any z,

lim sup z(xl-) lim sup(Ie(x) IC(xlr))
I4,(x -liminfI (XnlT)

_< i+(x)- 2(xl)
I(xlr),

and the result follows. M
LEMMA 3.6. Suppose O* is differentiable everywhere on . If x --, x weakly in

Ll(S, #), I(xn) -- 1(x) < +oc, and c < x(s) < almost everywhere, then it follows
that IIx xll --+ o.

Proof Since xn - x weakly, (xn) U {x} is weakly compact in LI(S, #). Given
any e > 0, by the Dunford-Pettis criterion [9] there exists a 6 > 0 such that if #(T) <
5, fr Ixn(s)ld#(s) <e for all n and fr [x(s)[d#(s) < e. By Lemma 3.4 there is an m with
,(s,) _< ,, so fs Ix,(,) x(s)ldlz(S) < 2e for all n.

Now by Lemma 3.5, as n - OC, ZlSr --+ Z[S. weakly in Ll(S,#ls. and

_r2 (,1..)--, z2’ (1.)< +o, and cert,,inly xl, L(S,,.I..)with

ess infxls, >a and ess supx[s, <.
Thus, by Lemma 3.3, OI (xls) 0, so we can apply Lemma 2.8 (on L1 (Sire, ls.)) to

deduce that
Finally, since for all n,

IIx-xll-Z Ix(s) x(s)ldp(s) / L Ix’(s) x(s)ldlz(S)

< Ixn(s) x(s)ld#(s) + 2e,
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we obtain lim sup Ilxn Xll 2e. As e was arbitrary, the result follows.
THEOREM 3.7. Suppose O* is differentiable everywhere on . If Xn --+ x weakly in

LI(S,#) and I(xn) -- I(x) < +, then ]]x Xlll 0.

Proof Since I(x) < +, x(s) almost everywhere and for all n sufficiently
large x(s) almost everywhere. Define

s := e s

By Lemma 3.5, xls xls weakly in L (S, piss), and

so applying Lemma 3.6, fs [Xn(S) x(s)ld,(s) 0. But now, for all n sufficiently large,

l[X Xl [ Xn(8)

O
asn .

We can now prove the central result.
THEOREM 3.8. If* is differentiable eye,where on , then I(.) is strongly rotund on

L (S, p). The converse is also true if (S, p) is not purely atomic.

Proofi If * is differentiable everywhere on , it is essentially smooth, so is essentially
strictly convex by Theorem 26.3 in [20]. On this is equivalent to being strictly convex on
its domain, and hence I is strictly convex on its domain (Lemma 3.1). Since is everywhere
finite, I has weakly compact level sets by Corollary 2B in [21 ]. Finally, Theorem 3.7 shows
the Kadec property.

Conversely, using Lemma 3. l, strict convexity of and hence essential smoothness of
follows from the strict convexity of I, whereas I having compact level sets implies that
is everywhere finite by Theorem 2.10 in [5].

Note. In fact the above argument shows that if * is differentiable everywhere on , then
for any y in L(S, ), the functional I(.) + (y, .) is strongly rotund.

The approach we have taken has been to work as far as possible via Fr6chet differentiability
of the conjugate. A different, more geometric technique may be found in [25], and another
independent approach in [23]. Theorem 3 in [25] shows that the hypotheses of Theorem 3.7

0.
As suggested in the previous section, our interest in strongly rotund functions arose from

the study of best entropy estimation for moment problems. Many of the functions that
are used in practice may be described in a unified framework based on a Bayesian statistical

interetation (see [7]). Each such choice of is associated with a unique "prior" nonnegative
measure p on , via conjugation and (two-sided) Laplace transformation:

(3.9) * (v) log edp().
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It may be easily checked from H61der’s inequality that 4* is strictly convex (providing
p is not supported on a single point) and is differentiable on the interior of its domain. In
particular, when b* is everywhere finite our results show that I4, is strongly rotund, implying
convergence in L norm of the associated estimates. Some examples follow:

1/32(i) Normal distribution dp --L--2/2du We obtain f5"(/3) so Is(x

3{} We obtain $* e-(ii) misson distribution =0 (v) so I()
f z log z, which is (minus) the Boltzmann-Shannon entropy. The strong rotundity in this
case was shown directly in [4].

(iii) Binomial distribution p (0 + 1). We obtain $*(v) log((1 + )), and

logu + (1 u)log(1 u)+ log 2
+x

ifuE (0, 1),
otherwise,

which is, up to a constant, (minus) the Fermi-Dirac entropy. It is curious that the general
binomial distribution leads to the same entropy.

(iv) Lebesgue measure.

du on ]+,dp 0 on _.
We obtain

-log(-/3)**() +
ifv <0,
ifv _>0,

SO

-log(u)- if u>0,(u)- +oc if u _< 0,

and Is is the Burg entropy [6]. In this case, since b* is not everywhere finite, Is does not have
weakly compact level sets.

Not all of the entropies appearing in the literature may be encompassed in this framework.
For example, the choice

lup ifu > 0,
(3.10) b(u) p

+oc ifu <0

is made in"Lp spectral estimation" (1 < p < +oc) (see [3] and [11]) and then *(v) "= v_,
/ 1. Since * is not strictly convex, it cannot be written in the form (3.9). Ourwhere

results show that Is is strongly rotund in L1, and in fact more is clearly true: since the unit
ball in Lp is weakly compact and ]1" lip is Kadec [9], I4, is actually strongly rotund in Lp.
Notice that when p in (3.10), we obtain

b*(v)- ( 0 ifv _< l,
+oc ifv > l,

which is not everywhere finite, and thus Is does not have weakly compact level sets (not
surprisingly, since the unit ball in L is not weakly compact).
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4. Existence of strongly rotund functions. On any measure space (S, #), if < p <
+, then is a strongly rotund functional on Lp(S) (see, for example, [9]), which is
everywhere finite. Thus, as we have seen, sequences ofoptimization problems whose objective
function is an Lp norm are particularly well behaved. Of course, the L1 norm will not have
this property; the results below show that the existence of everywhere finite, strongly rotund
functions is characterized by reflexivity. The Boltzmann-Shannon entropy, f x log x, may be
thought of as a surrogate reflexive norm on the positive cone in L1 due to its strong rotundity.

LEMMA 4.1. If V is a vector space, f V -- (-cx, +x] is a convex function, and
c e (inff, +cx), then dom f C aff{v e V lf(v) <_ }.

Proof. Pick any vo with f(vo) < , and suppose v E dora f. Providing , > 0 is
sufficiently small,

f((1 ,k)vo +/Vl) (l /)f(vo) + Af(v,)
f(vo)+/k(f(vl)- f(vo))

and since Vl (1/,)((1 A)v0 + ,Vl) + (1 (1/A))v0, the result follows. [3

THEOREM 4.2. Suppose that X is a Banach space and f X (-x, +x] is a convex

function with weakly compact level sets, whose domain is spanning. Then X is reflexive.
Proof Choose any c E (inff, +) and define L :-- {x X f(x) <_ c}, which, by

assumption, is weakly compact. Thus, the closed, absolutely convex hull of L, a--C6 L, is also
weakly compact [13, p. 162]. But now we have

X span(dom f) C span(aft L) span L C span(a-C6 L) U n(a--c--6 L)
n---1

using Lemma 4.1. Now by Baire category, aco L has nonempty interior, so for some r > 0
and in X the closed ball/(; r) C a--e-6(L), and so is weakly compact. Thus X is reflexive
[13, p. 126].

Suppose that we wished to select an objective function for solving sequences of moment
problems that would guarantee convergence in the norm II1 of estimates to an arbitrary
unknown, nonnegative, L density. To ensure convergence of the estimates using our methods,
we would require a strongly rotund functional on the space L (S, #) whose domain contained
the positive cone and hence was spanning. Since L (S, #) is not reflexive unless the measure
space (S, #) decomposes as a finite set of atoms, the above result shows this to be impossible:
since the level sets of the objective function cannot be weakly compact, we cannot even ensure
attainment.

Example. Suppose X is a reflexive Banach space. Then X has a renorming ]]. that
is Fr6chet differentiable and locally uniformly convex (and whose dual norm has the same
properties) [8, p. 167]. It is then easy to check that f(x) := Ilxl[ 2 is everywhere finite and
strongly rotund.

COROLLARY 4.3. Suppose X is a Banach space. Then there exists an everywhere finite
strongly rotundfunction f X ---. ifand only ifX is reflexive.

Suppose instead that we ask just for a strongly rotund functional on L (S, #) whose
domain is dense. Assuming (S, #) is finite, we could use f(x) := f x(s)Zd8. This is a
consequence of the following general construction.

THEOREM 4.4. Suppose X and Y are normed spaces, T X -- Y is continuous and
linear, and f X -- (-x, +x] is strongly rotund. Define g Y -- (-x, +x] by
g(y) :- inf{f(x) Yx y). Then g is strongly rotund.
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Proof Because the level sets of f are weakly compact, for any x in , 9(Y) < c if and
only if there exists an x with Tx y and f(x) _< c, so

Thus the level sets of 9 are weakly compact. A similar calculation shows that dom 9
T(dom f).

Now suppose that y - Y2 in dom 9 and , E (0, 1). By compactness, 9(Y) f(x) for
some x with Tx y, 1,2, and because

T(,Xl nt- (1 ,)x2) /yl -+-(1 -/)y2,

we have

g()y + (1 -/k)y2) <_ f()x + (1
< /f(x,) +(1 -/)f(x2)

,9(Yl) -+- (1 ,)9(Y2).

Thus 9 is strictly convex.
It remains to demonstrate the Kadec property, so suppose Yn Y weakly in Y and

9(Yn) 9(Y) < +. By compactness, 9(,) f(xn)for some Xn with Txn n, n
1,2,..., . Pick an arbitrary subsequence (Yni). Since f has weakly compact level sets,
there is a subsequence (Xn,j) converging weakly to some 2 in X. Now note that

T w-lim Txnj w-lim Ynij Y,

and so, by the lower semicontinuity of f,

g(y) <_ f() <_ lirn f(xn limg(yn, g(y).

Thus 9(Y) f(Yc), and since f is strictly convex, 2 x. Now wehavexn x weakly
in X and f(xn f(x) < +, so by the strong rotundity of f, Ilxn xll 0, and
thus IlYn j 0 by continuity. Since (Yn,) was an arbitrary subsequence, we deduce
that Ily y 0 as required.

COROLLARY 4.5. Suppose (S, #) is a finite measure space,1 < r < +oc, < p < r,
and f Lr(S, #) (-oo, +] is strongly rotund. Then the functional g Lp(S, #) ---,

(-oc, +oc] defined by

f(y) ify E L,g(Y) + otherwise,

is strongly rotund.
Proof Let T L Lp be the (continuous) embedding, and apply Theorem 4.4.
Example. For any < r < +, 11. I1 is strongly rotund on L(S, #), so providing (S, #)

is finite, 9(Y) f Y(S)ds will be strongly convex on Lp(S, #) for any _< p _< r.
Example. Let X L1 [0, 1] , Y "= C[0, 1], and then proceed to define T" X -- Yby (T(x; r))(t) r + f x(s)ds. If we define f" X --+ (-x, +x] by

f(x; r)"-- O(x(s))ds + b(r),
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where is (minus) the Boltzmann-Shannon entropy,

ulogu ifu>O,
(u):= 0 ifu=O,

+ ifu < O,

then f is strongly rotund by Theorem 3.8.
It is now easy to verify that the functional 9 C[0, 1] (-ec, +oc] of Theorem 4.4 is

given by

9(Y)’- -s ds+ q(y(O)), ifss EL
+oc, otherwise,

and so 9 is strongly rotund.
Now consider the sequence of moment problems

inf g(y)
(M) subject to (ai, y) (ai, ), i= 1,...,n,

where the functions a, a2,..., are weak-star densely spanning in M[0, 1], the regular Borel
measures, and 9 is a fixed, monotonically increasing, nonnegative function. Then, providing
9(3) < +x (which will be the case, for example, if is Lipschitz on [0,1]), we can apply
Theorem 2.9(ii) to deduce the uniform convergence of the optimal solutions of (M) to .

The construction in Theorem 4.4 also allows us to characterize those spaces on which
there exist strongly rotund functions with dense domain. We say a normed space is weakly
compactly generated (WCG) if there exists a weakly compact convex set whose linear span
is dense (see [8]). Any reflexive space is WCG, as is any separable space. For any a-finite
measure space (S, #), L1 (S, #) is WCG [8, p. 143].

THEOREM 4.6. Suppose Y is a Banach space and f Y - (-oc, +:)] is a convex

function with weakly compact level sets, whose domain is densely spanning. Then Y is WCG.
Proof. Choose any c in (inf f, +x) and define L := {y Y f(Y) <- o}. By Lemma

4.1, span(dom f) c span L, so the weakly compact, convex set L is densely spanning, as
required.

Suppose we wished to select an objective function for solving sequences of moment
problems that would guarantee convergence in I1 I1 of estimates to an unknown density.
To ensure convergence using our methods to even a dense subset of the possible nonnegative,
essentially bounded, unknown densities, we would require a strongly convex functional on

L(S, #) whose domain is dense in the positive cone. The above result demonstrates that
this is impossible, since Lo (S, #) is not WCG unless (S, #) decomposes into a finite number
of atoms. To see this, note that in any other case L (S, #) contains a copy of ll as a subspace.
Since any subspace of an Asplund space is Asplund, and l is not Asplund, L1 (S, #) is not an
Asplund space, and hence its dual, Lo(S, #), is not WCG [19].

By contrast, if we choose

eu, u >_ O,

then using I as the objective functional will ensure convergence in II II to any nonnegative,
essentially bounded, unknown density for every p < +ec, provided (S, #) is finite (see [5]).
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THEOREM 4.7. Suppose Y is a Banach space. Then there is a strongly rotundfunction
on Y with dense domain ifand only ifY is WCG..

Proof. By the Davis-Figiel-Johnson-Pekzynski factorization theorem (see, for example,
[9]), ifY is WCG there is a reflexive Banach space X and a continuous linear map T X Y
with dense range. By Corollary 4.3 there is an everywhere finite strongly rotund function

f on X. The function 9 of Theorem 4.4 is then strongly rotund on Y and has domain

T(dom f), which is dense. The converse follows by Theorem 4.6. l
We end with examples of weak-star (weak*) strongly rotund functions: strictly convex

functions f Y* (-oc, +oc] on a dual space Y* whose level sets are weak*-compact and
such that 0n 0 weak* and f(On) - f(O) implies II0n 011. 0.

Let I" be any nonempty set. Then c0(F) is WCG [8, p. 143], and so has an equivalent
norm II1" III whose dual norm I11" II1. on 11 (1-’) is strictly convex [8, p. 167]. The standard
norm I1" II1 on ll(I’) has the weak* Kadec property, by Theorem 13.47 in [12]: if :on z
weak* and Ilxn II1 - Ilxlll, then Ilxn xll --+ 0.

Now define a new norm on/I(F) by Ix] := IIIxlll, / IlXlllo This norm is strictly convex,
since ]llo I, is, and it has weak*-compact level sets, since both II1" II I, and I1o II1 are dual norms
and have weak*-compact balls. If we now define f ll (r) -- by f(x) 1/21xl 2, then it is
clear that f is strictly convex with weak*-compact level sets. To see that it is actually weak*
strongly rotund, suppose xn - x weak* and f(xn) f(x). By weak* lower-semicontinuity,
limllx[[, > Ilxll, while limlllx,[l[, >_ IIIxlll,, so

limllCCrlll lim(ll- II1111,) -Il- limllllll, Il- II1111, -IIlll,

Thus, I111, - IIll,, so I1 11, - 0 as required.
Notice that f l(r) I is given by f*(z) glz 2,, where i. 1, is the dual norm.

Thus, f* is certainly not Fr6chet differentiable everywhere, since this would imply that I" I,
was Fr6chet and so Ii (I) would have to be reflexive [8, p. 34], which fails whenever r is
infinite.

In general, whenever X is a separable Banach space with a separable dual, X can be
renormed (by I1" II, say) in such a way that the dual norm I1" II, is strictly convex and has the
weak* Kadec property [14]. It then follows that 112, is weak* strongly rotund.
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