INFEASIBLE-INTERIOR-POINT PRIMAL-DUAL
POTENTIAL-REDUCTION ALGORITHMS FOR LINEAR
PROGRAMMING *
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Abstract. In this paper, we propose primal-dual potential-reduction algorithms which can
start from an infeasible interior point. We first describe two such algorithms and show that both
are polynomial-time bounded. One of the algorithms decreases the Tanabe-Todd-Ye primal-dual
potential function by a constant at each iteration under the condition that the duality gap decreases
by at most the same ratio as the infeasibility. The other reduces a new potential function, which
has one more term in the Tanabe-Todd-Ye potential function, by a fixed constant at each iteration
without any other conditions on the step size. Finally, we describe modifications of these methods
(incorporating centering steps) which dramatically decrease their computational complexity. Our
algorithms also extend to the case of monotone linear complementarity problems.
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1. Introduction. The primal-dual infeasible-interior-point algorithm for linear
programming is a simple variant of the primal-dual (feasible-)interior-point algorithms
developed by Megiddo [11], Kojima, Mizuno, and Yoshise [4, 5], Monteiro and Adler
[15, 16], and Tanabe [18]. The algorithm can start from an infeasible point, while
interior-point algorithms have to start from a feasible point. When we solve a given
problem by an interior-point algorithm, we need to construct an artificial problem to
get an initial feasible point. The advantage of the infeasible-interior-point algorithm
over the interior-point algorithm is in solving the given problem directly. (This is a
very significant advantage in practice. In theory, the complexity analysis of most of
these methods still requires initial solutions which may need to have very large (big
M) components.) The algorithm has been studied by Lustig [8], Lustig, Marsten,
and Shanno [9], Marsten, Subramanian, Saltzman, Lustig, and Shanno [10], Tanabe
[19], etc., and is known to be one of the most efficient interior-point algorithms (see
for example [9, 10]). Kojima, Megiddo and Mizuno [3] demonstrated the global con-
vergence of an infeasible-interior-point algorithm. Then Zhang [22] Mizuno [12], and
Potra [17] proved polynomial-time convergence of certain infeasible-interior-point al-
gorithms. Those algorithms generate a sequence of points in a neighborhood of the
path of centers and they are classified as path-following algorithm.

In the framework of interior-point algorithms, potential functions have played
important roles in determining a step size at each iteration and in obtaining a the-
oretical upper bound on the number of iterations (see Karmarkar [2], Ye [20], Ko-
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jima, Mizuno, and Yoshise [6] etc.). Kojima, Noma, and Yoshise [7] investigated
the global convergence of infeasible-interior-point (both potential-reduction and path-
following) algorithms for monotone complementarity problems. In this paper, we pro-
pose polynomial-time primal-dual potential-reduction algorithms which start from an
infeasible interior point.

Let A be an m X n matrix, b € R™, and ¢ € R™. Consider the standard form
linear program

(P) Minimize cTz

subject to Ax =b, x >0,
and its dual

(D) Maximize b’y
subject to ATy+z=r¢, z>0.

We assume that the matrix A has full row rank, i.e., rank A = m. We call (z,y, 2)
an (infeasible) interior point if £ > 0 and z > 0, and a feasible interior point if in
addition A:c = b and ATy+z=c

Let (z! be an 1nter10r point and ¢ > 0 be such that (z')Tz
> o||(Az! — b A y! + 2! — ¢)||, where || - || denotes the ¢>-norm. For a constant
v > 0, we define two primal-dual potential functions:

1

d(x,z) = (n+v)ln(zTz) Zln(xlzl —nlnn,

Y(z,y,2) = (n+v+1) ln(a: z) Zlnle )—nlnn
—ln(a:Tz—aH(Aac—b,ATy+z—c)||).

The first is known as the Tanabe-Todd-Ye primal-dual potential function (used for
feasible-interior-point algorithms) and the second is defined here for an infeasible-
interior-point algorithm. If (z,y, z) is feasible, ¥(z, vy, 2) = ¢(x,z). Note that
involves the norm of a vector formed from the primal and dual infeasibilities. It
appears that this would be very sensitive to different scalings of the original problem.
However, we shall see in (6) below that each component of this vector decreases
at the same rate during the algorithms. Hence the norm measures how much each
infeasibility has been reduced.

Sections 2 through 4 of this paper construct two infeasible-interior-point algo-
rithms, namely Algorithms I and II, which start from the initial point (x!,y!,z?)
and generate a sequence {(x*,y*, 2*)} of interior points. Algorithms I and II de-
crease the potential functions ¢ and v at each iteration, respectively. The step size «
at the kth iterate (x*, y*, 2F) of Algorithm I is determined such that ¢ decreases at
least a constant value and an extra condition holds, while Algorithm IT does not need
any such condition. So Algorithm I is a constrained potential-reduction algorithm,
while Algorithm II is a pure potential-reduction algorithm. In the worst case, the
decrease in the potential functions at each iteration is only (n~2), and this leads
to a complexity bound of O(n?®L) iterations, where L is related to the initialization
and the termination criterion of the algorithms. Then Section 5 describes variants
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that require only O(nL) iterations by adding centering steps when the current iterate
lies outside a wide neighborhood of the path of centers. The centering steps keep
the “duality gap” and the infeasibilities fixed while decreasing the potential functions
¢ and 7. Finally, Section 6 contains a discussion of why the complexity bounds of
these infeasible-interior-point methods are so much higher than those for feasible-
interior-point algorithms, and shows how the algorithms also extend to monotone
linear complementarity problems. We chose to confine ourselves to the more familiar
setting of linear programming for the main development.

2. A comnstrained potential-reduction algorithm. The path of centers con-
sists of the solutions (x,y, z) to the system of equations

Ax —-b
(1) ATy4+2—-c | =0
Xz — pe

for all u > 0. Here X := diag(x) denotes the n x n diagonal matrix containing the
coordinates of a vector £ € R" and e := (1,...,1) € R™. At each iteration, we assign
the value (z*)? 2% /(n+v) to the parameter u, and then compute the Newton direction
(Az, Ay, Az) at (z*, y*, 2F) for the system (1) of equations; that is, (Az, Ay, Az)
is the unique solution of the system of linear equations

A 0 o0 Az Azk —b
(2) o AT T Ay | =—| ATyt 42k ¢ |,
zF¢ o Xx* Az XFk2k — e

where X* := diag(«*) and Z* := diag(z").
Let p be a positive constant for which we want to find the optimal solutions x*
of (P) and (y*, z*) of (D), if they exist, such that

[(@*, 2%)loo < p.

Algorithm I
Step 1: Choose vy € (0,1] and a positive constant § (which may depend on
n and v). Set (', y!, z') :=op(e,0,€). Let k := 1.
Step 2: If (x*)T 2% < € then stop.
Step 3: Let p := (z*)T2%/(n + v). Compute the solution (Axz, Ay, Az) at
(x*,y*, z*) of the system (2) of equations.
Step 4: Find a step size « such that

(3) o(x* + alAx, 2F +aAz) < o(zF, 2F) -6,
4) (% + aAx)T (¥ +aAz) > (1-a)(zF)T2E

If we cannot find such a step size then stop.

Step 5: Let (xFtl yFtl 2k+l) .= (2 y* 2F) + a(Ax, Ay, Az). Increase k

by 1 and go to Step 2.
The direction (Az, Ay, Az) is, except for the choice of y, the same as in the earlier
primal-dual infeasible-interior-point algorithms. If the current iterate is feasible, our
choice of p yields the direction that is the projected scaled steepest descent direction
for the potential function ¢ (or ) [6].
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Since ¢(z, 2) > vIn(xz? 2) and the potential function decreases by a constant 6 at
each iteration, Algorithm I terminates in O(vL/§) iterations provided that ¢(z!, z!) =
O(vL) and In(1/e) = O(L). If L > lnn and lnp = O(L) then ¢(z', 2!) = O(vL). In
the next section, we show that if there are optimal solutions z* of (P) and (y*, z*)
of (D) such that ||(a: 2*)||oo < p, then there exists a step size o which satisfies (3)
and (4) for § := ~3/ (300(n +v)?). (Condition (4) is what makes this a constrained
potential-reduction algorithm.) Hence we have the following result.

THEOREM 1. Let L > Inn (L may be the input size of problem (P)) and vo €
(0,1]. Suppose thatlnp = O(L), In(1/e) = O(L), v > v/n, and & := 73 /(300(n+v)?).
Then Algorithm I terminates in O(v(n + v)2L) iterations. If the algorithm stops in
Step 2, we get an approximate solution; otherwise (if it stops in Step 4) there are no
optimal solutions «* of (P) and (y*,z*) of (D) such that ||[(z*, 2*)||lcc < p-

3. Analysis of Algorithm I. Theorem 1 follows from the following four lem-
mas. The first gives a bound on the decrease in ¢.

LEMMA 2. (Kojima, Mizuno, and Yoshise [6]) For any n-vectors x > 0, z > 0,
Az, Az, and a > 0 such that |aX 'Az|e < 7 and ||aZ7 ' Az||e < T for a
constant T € (0,1), we have

T
d(x +alAz,z+alAz) < ¢(z,z)+ (T;—;z —(x2zZ)™* ) (ZAz + X Az)a
Az"Az | X 'Az|?+ ]2 Az
(5) + ((n+v) T + T

The next result is important in analyzing the linear term above, with v := X272,
LEMMA 3. (Lemma 2.5 in Kojima, Mizuno, and Yoshise [6]) For any n-vector
v>0andv>./n,

Hv—le— v‘> V3 ,

~ 2vmin

vTo

where V := diag(v) and vpip := min; v;.
Note that v = y/n is fixed in [6], but the proof is valid for any v > /n.
Let o be the step size at the kth iteration of Algorithm I. We define a sequence

{6%} by

6':=1 and Ot! .= (1 —ak)ek for k=1,2,3,---.
As shown in [3], we have
(6) (AzF —b, ATy + 2% —¢) = 0F(Az' —b, ATy + 2! — ¢).

The following result is used to bound the second-order term in (5). The parameter
~1 is introduced to allow this lemma to be used in the analysis of Algorithm IT also.

LEMMA 4. (based on Mizuno [12]) Letyq € (0,1], 1 € (0,1], and p > 0. Suppose
that

(iB 7y zl) = ’Yop(e,O,e),
(AzF —b, ATyF +2F —¢) = 0¥(Ax' —b, ATy +2' — o),
(7) ( k)Tzk > Ok’yl(:El)Tzl.
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If there exist optimal solutions x* of (P) and (y*, 2*) of (D) such that ||(x*, 2*)||cc < p
then we have

ENT .k
D Aef < o @VE
Y71 Umin

where D := (X*¥)V/2(Z*)=1/2 and vpp, := min, \/xsz

2
Proof: Assume that there exist optimal solutions * of (P) and (y*, z*) of (D) such

that [|(z*, 2*)||cc < p. Then we have

(8) (@Fx' + (1 — %)z — 2F)T (72" + (1 - 6%)2* — 2%) =0,

which implies

(OFz'+(1-0")z*) "2 (0% 2" +(1-6%)2*) Tz = (0" ' +(1-0")a*)T (0* 2" +(1-6%)2*)+(z*) T 2".

By using this equality, z! = 2! = yope, z* < pe, z* < pe, and z}z} = 0 for each i,
we have

O (ool (@, 2l = 65 ((z")Ta" + (")T2F)

(0% + (1 — %)) 2% + (021 + (1 — 0F)2*) T2k
(0F 2 + (1 — ")) T (6F 21 + (1 — 6F)2*) + (=F) T 2*
nek,‘me 4+ (:Ek)Tzk,

A

IN

where the last inequality follows from the fact that for each i one of ¥z} + (1 — %)z
and szil—i—(l 6F)z is at most @¥pp and the other is at most p. From (7), (z*)T 2% >

0%y, (21)T 2" = nh*y2~,p?. Hence we have
2
) 0 yopll(x*, 2*) I < (a*)T 2",
Y071

From (2) and (6), we get

A 0 0 Az + 65 (z! — z*)

o AT I Ay + 0 (y — y*)

Zk 0 Xk Az+0k(z1_z*)

0

(10) = - 0

XF2k — e — 08 ZF(x! — x*) — 0F X (21 — 2%)
Then we have via a straightforward computation (see also Mizuno [12])

D 'Az = —6"QD '(z'-2")+6*(I-Q)D(z' - z*)
(11) —(I- Q)X 22X 2" — pee),

where Q := DAT(AD?A”T)~'AD. Since Q and I — Q are orthogonal projections,
we have

ID~7 Az < DT (&t — &)l + 05(ID(=! - =) + [(XFZ27) 2 (X 2R ~ pe)l.
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From the definition of p, —pe < x' — 2* < pe and —pe < 2! — 2* < pe. Thus we
have

ID7'Az|| < 6*p| D" e|| + 6 p|| De|| + [|(X*Z*)7 /2 (X 2" — pe)|

< Ol (XEZE) TN+ Nk ) + | D (@h )2 — p(akzf)-1/2)2

i=1
n
(12) < 200p|[(XFZ8) Tk, 20) + | (@) T2F = 2np+ Y p2(akb) L
i=1
By using vomip, = min; \/2kzE, u = (2%)T2*%/(n + v), and (from (9))
2
13 :1:'“,z’c < mk,zk < = (z* Tzk,
(13) II( )< IC ) < 73719’“/)( )
we see
- 1 2 n n((xk)T z*k)2

D7 'Az| < 26* (@M T2F [ (a?) T2k — 22— (ak) T2k 4 —— 2 = 7
| I < Py — 7gwekp( ) (z*) par Gl (4 ) (omn)?

= 24 + <1 -2 > (v:Ti")Q +— Gy

Yem n+v) (F)'zk * (n+v)? Vimin
5 ({l’:k)TZk
(4
Y071 Umin

The other inequality follows from a similar analysis of

DAz = —-6*I-Q)D(z'-2")+6*QD '(z! — z*)
(15) —Q(X*ZF) 12 (XEZk — pe).

O

Note that if (4) holds until the (k — 1)th iteration, then we have (7) for v; = 1 by the
definition of 6*. This also shows that if Algorithm I stops in Step 2, the infeasibility
of  and (y, z) has been reduced at least as much as the duality gap, so we do have
approximate solutions. Indeed, we have almost optimal solutions to a nearby linear
programming problem and its dual.

Finally, the lemma below completes the proof of Theorem 1.

4_ 2
LEMMA 5. Letv > +/n, v € (0,1], 11 € (0,1], and é := W, and suppose
(7) holds. If there exist optimal solutions x* of (P) and (y*,z*) of (D) such that

@, 2%l < p then we have (3) and (4) for

o= 737%”?’11,”
" 100(n + v)(xk)T 2k

at the kth iteration.
Proof: Let v := (X*ZF)1/2¢ and D := (X*)/2(Z*)=1/2. Then if 7 satisfies the
hypotheses of Lemma 2, we have

(¥ + aAz, 2 + aAz) — ¢(x*, 2%)
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T
(n + Ye— V_Qe> V(D 'Az + DAz)a

Az"Az |VTIDT'Az|?2+||VT'DAZ|?)
(16) + ((n +v) vTy + 21 —1) “

By the third equality in (2) with u = vTv/(n + v), we have

T
D 'Az+ DAz = — (v - 20 V_le) .
From this equality, we also have, from
1 T 1 -1 2 -1 2
17 (D "Az)" (DAz) = Z{“D Az + DAz||* — ||D *Ax — DAZz||*},
2

T

VU _
v—!

n+v

1
(18) AzTAz < 2v-

By Lemma 4, we see that

laX~'Az| < o|V7H|D™ Az
< yévi2,. 1 5 vTv
B 100(77’ + V)UTU Umin 73'71 Umin
< 1/20, and similarly
laZ'Az|| < 1/20.

These inequalities imply that we have (16) for 7 := 1/20. Using the above results and
Lemmas 3 and 4 in (16), we obtain

o(x* + aAx, 2F + aAz) — p(xF, 2F)

T 2

n+v Vv 1/ &
vTo n+v
(Ao m 2y 1 vty + v DA ) o
4 vTow n+v 19
vTw n+v 2 « 10
9)— e (1-5) e+ IV 2D Ax|? + [ DAZ|)a?
q0)- 22 vt Tl (1= ) ot IV 20D Al + DA P
vTv 3 399 20 1 25 [vTw\® ,
S R0t e s a
n+v 4Umin 400 19 Voin Yo 1 VUmin
< _2 Wi 1w
= T300(n+v)? ' 380 (n+v)?
< -

Hence we have (3). The inequality (4) follows from

(@* + aAz)T(2F +alAz) = (2F)T2F — ((@¥)T2F —n(@)T2F/(n + v))a + AzT Aza?
E\T k 9 E\T k)2
> (l—a)(wk)Tzk—l-n(x ) ol o — 452 ((w l Z )
n+v YoM Vrmnin

> (1—a)(z*)T2k,
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4. A pure potential-reduction algorithm. We now consider a potential-
reduction algorithm that does not impose the explicit constraint (4) on the step size.
Algorithm II
Step 1: Choose vy € (0,1] and a positive constant § (which may depend on
n and v). Set (z!,y', 2') :=y0p(e, 0,€). Let k := 1.
Step 2: If (2*)T 2% < € then stop.
Step 3: Let u := (z*)T2*/(n+v). Compute the unique solution (Axz, Ay, Az)
at (¥, y*, 2*) of the system (2) of equations.
Step 4: Find a step size « such that

(20) Y(zF + oAz, y*F + oAy, 2* + aAz) <k, b, 2F) - 6.

If we cannot find such a step size then stop
Step 5: Let (zFtl yFtl 2k+1) .= (2 y* 2F) + a(Ax, Ay, Az). Increase k
by 1 and go to Step 2.

The performance of this method is summarized in the following result.

THEOREM 6. Let L > lun, vy € (0,1] and y1 € (0,1). Suppose that Inp = O(L),
In(1/e) = O(L), v > v/n, 0 := (2" T2 /||(Az' =b, z' —c)||, and 6 := v3~2/(300(n+
v)?). Then Algorithm II terminates in O(v(n+v)2L) iterations. If the algorithm stops
in Step 2, we get an approxzimate solution; otherwise (if it stops in Step 4) there are
no optimal solutions «* of (P) and (y*,z*) of (D) such that ||(z*, 2*)|lcc < p-

The proof of this result is like that of Theorem 1. The lemma below shows that it
will stop in the required number of iterations.

LEMMA 7. Under the assumptions of Theorem 6, ¥ (x',y',2') = O(vL). If
Y(z,y,2) <vine then 27z <e.

Proof: It follows from

Yyl 2') = Vln(nvgpQ)—ln(l—%)

-z

T
b(x,y,z) = vin(@Tz) Z] (x22> 1n<1_0||(Aw b,f; y+z—c

zTz/n
> vin(z’z). O

To complete the proof of the theorem, we need to show that if there are optimal
solutions z* of (P) and (y*, z*) of (D) such that ||(z*, 2*)||cc < p, then there exists
a step size a which satisfies (20) for § = y3~v#/(300(n + )?). We use Lemma 5. Note
that (7) holds automatically since 1 (x¥, y*, 2¥) is finite, using (6) and the definition
of 0. Hence we only need the following result.

LEmwMmaA 8. If

d(z* + oAz, 2F +aAz) < oz, 2F) -6,
(x* + aAz)T (2F +aAz) > (1-a)(zF)T2E,

then

Y(z* + aAx, yF + oAy, 2 +aAz) < p(ab, ot 2k -6

Proof: By (2) we have that

(A(z*+aAz)—b, AT (y* +aAy)+(zF+aAz)—c) = (1-a)(AzF—b, ATy +2F —c).

)
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Thus we get

Y(z* + oAz, y* + aAy, 28 + aAz)

1—a)o|(Azk — b, ATy + 2F — ¢
k A k A -1 1_( ’
o(z" + aAz, 2" + aAz) —In (@ + aBAD)T (F + abz)

IN

ko by s _o|l(Az* —b, ATyk + 2k — o)
o(x®,z")—6—1In (1 @)

= w(wkaykazk)_é- O

5. An O(nL)-iteration variant . Algorithms I and II require O(n2°L) itera-
tions. Mizuno [12] proposed an O(nL)-iteration variant of the infeasible-interior-point
path following algorithm. We can also construct O(nL)-iteration variants of Algo-
rithms I and II. In this section, we only show the variant of Algorithm IT. Although
the O(nL)-iteration variant in [12] generates a sequence of infeasible interior points
in a neighborhood of the path of centers, our variant does not confine the sequence
to such a neighborhood.

Algorithm III

Step 1: Choose o and X in (0,1] and positive constants §; and 8. Set
(z',yt, 2zt ;== vop(e,0,e). Let k:=1.

Step 2: If (x*)T 2% < e then stop.

Step 3: If

(21) v2 . =minzFk > N®)T2F/n

then
Step A: Let p := (2F)T2%/(n + v). Compute the unique solution
(Azx, Ay, Az) at (z* y*, 2F) of the system (2) of equations. Find a
step size a such that

(22) ¢(@" + oAz, y* + oAy, 2 +aAz) <yt Yk, 2F) - 6.

If we cannot find such a step size then stop.

else
Step B: Compute the unique solution (Az, Ay, Az) of the system of
equations
A 0 0 Az 0
23) o AT T Ay | =- 0
VAR D Az Xk2k — ((&*)T 2% /n)e

Find a step size a such that
(24) 1/)(:1:'c +aAz, y* + aAy, 2F + alAz) < 1/)(:vk, yk,zk) — 6.

Step 4: Let (xFtl yFtl 25+1) .= (zF y* 2F) + a(Ax, Ay, Az). Increase k
by 1 and go to Step 2.
Note that (Axz, Ay, Az) in Step B is a centering step as in [14]; because of the zeroes
in the right-hand side vector in (23), this step maintains the current infeasibilities as
well as the “duality gap” =’ z.



10 S. MIZUNO, M. KOJIMA, AND M. TODD

The performance of this method is summarized in the following result.

THEOREM 9. Let L > lun, v9 € (0,1] and v1, X € (0,1). Suppose that lnp =
O(L), In(1/e) = O(L), v > n, 0 := v ()T 2L /||(Az! — b, 2t — ¢)||, 61 := .001A24342,
and &3 := (1 — X)2/4. Then Algorithm III terminates in O(vL) iterations in Steps 2
or A. If the algorithm stops in Step 2, we get an approzimate solution; otherwise (if
it stops in Step A) there are no optimal solutions x* of (P) and (y*,z*) of (D) such
that ||(z*, 2*)ll < p.

Since 61 and 4y are constants independent of the input data, the number of
iterations is bounded by O(vL) (see Lemma 7). As shown in Section 3, we can get
an approximate solution if the algorithm stops in Step 2. To complete the proof, we
need to show that

(i) if (21) holds, there is a step size o which satisfies (22), or there are no optimal

solutions * of (P) and (y*, 2*) of (D) such that ||(z*, 2*)|lcc < o,

(ii) if (21) does not hold, there is a step size o which satisfies (24).

(i) follows from the Lemmas 8 and 11 below. Lemma 10 is used in the proof of Lemma
11. (ii) follows from Lemma 12.
LEMMA 10. For any n-vector v > 0 and any v > 0,

Proof: It follows from

,1_n+1/2_ 1, 9 v 9
Ve = —rol? = IV e ol + |l

vTv
> /o7 O

LEMMA 11. Letv >n, v € (0,1], 71 € (0,1], and &1 := .001A%~3~3, and suppose
(7) and (21) hold. If there exist optimal solutions x* of (P) and (y*, z*) of (D) such
that ||(z*, 2%)||leo < p then we have (8) and (4) for

oo 001
" 100(n +v)

at the kth iteration.
Proof: Asin the proof of Lemma 5, we have (19) for o = A2934%/100(n +v). Using
Lemma 10, v > n, and v2,;, > AT v/n, we see that

o(z* + oAz, 2F + aAz) — ¢(x*, 2F)

vy V2 «Q 10
- — (11—~ —|IV2|(|IDtAz|]? + | DAz|]*)a?
T (1= 7)o+ IV IUD Al + [DAZ]P)a
_ 399 20 1 2% (v"w 2a2
n + v 400 1902, v47?

Umin
V2 20 25 /n\?2
< - = 2 (2) 2
- n+z/a+19'y§'yf ()\) @
< 000Nt Ly Ly W
- ) vo’yl(n—kz/)Q 380 7071(n+v)2
< 4.

The inequality (4) follows from the same analysis as in the proof of Lemma 5. O
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LEMMA 12. (Theorem 6 in Mizuno and Nagasawa [18]) Let v > 0 and 6y :=
(1 —X)?/4, and suppose that (21) does not hold. Then we have (24) for

Ak
14+ VArpk

o =

at the kth iteration, where \j, := min, (m,f)l;izzkk/n and pr ==Y ; 4 (M - 1).

zk 2k
The result above is proved in [13] for the potential function ¢ with v = /n, but it is
valid for the potential function v with any v > 0 since the duality gap and infeasibility
do not change in Step B.

6. Concluding remarks. In this final section we contrast Algorithms I and II,
discuss the results obtained, and briefly consider other possible primal-dual potential
functions for the infeasible case. We also describe an extension to monotone linear
complementarity problems.

(A) Getting information on infeasibility.
‘We note that vy and p appear in the algorithms only through their product and the
dependence of § on vp. Suppose that we start Algorithm I, IT or ITI with (z', y!, 21) =
po(e, 0, e) for some pg > 0, and that we perform at each iteration a line search to
achieve the largest decrease in ¢ subject to satisfying (4) (largest decrease in ).

If there are optimal solutions z* of (P) and (y*, 2*) of (D) such that ||(z*, 2*)||cc <
po/7o for some g € (0, 1], it follows from the inequality (9) in the proof of Lemma 4
that

2(wk)Tzk

o* 0 z*, 2* 1 <
poll(z", z%)|l po—

Hence if this inequality is violated, then we can conclude that there are no optimal
solutions z* of (P) and (y*, 2*) of (D) such that |[(z*, z*)||cc < po/7v0. Here yo can
be varied during one run of the algorithm.

(B) Comparison between Algorithms I and II.
In Algorithm I, we put an explicit bound on « via (4), in order to ensure that

Axk — AT k k _
(25) (:I:k)Tzk > ”( T b, Ty +z c)” 1)Tz1
I(Az! —b, A"y + 2! — o)

for all k. Inequalities of this kind were first used by Kojima, Megiddo and Mizuno [3].
In fact, (4) can be relaxed as long as (25) holds at each iteration; if (4) held strictly
at some previous iteration, (25) may hold even if (4) does not. Algorithms IT and
IIT dispense with this explicit constraint by adding a barrier term to ¢. If ¢ is as in
Theorem 6, then ? is only finite if

k_ T,k k _
(26) (wk)Tzk > ||(A:l: b, ATy +z C)H (:l:l)Tzl.
[(Az! — b, A" y' + 2! — )|

For 71 < 1, this is a weaker condition than (25), but the complexity bounds include

a factor ;2.
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In contrast, the homogeneous self-dual infeasible-interior-point algorithm of Ye,
Todd and Mizuno [21] maintains

T k Tk |(Az* — b)) 7 4 T, 1
czt-b'y" < Azl —b)] (ccz=by +1)
in the present notation. Here, 7% is the value of the homogenizing variable at the kth
iteration; 7! = 1. Hence in [21] the “duality gap” decreases faster than the infeasi-
bility, whereas in the current paper as well as [3, 22, 12] the “total complementarity”
decreases at most as fast as the infeasibility. (Note that, with infeasible iterates,
cTx? — b''y* may not equal (z*)7 z*, and may even be negative.)

(C) Complexity Bounds.
Our bound on the number of iterations for Algorithms I and II is O(n?L) (when
v = /n), while Zhang [22] and Mizuno [12] obtain O(n?L) (Mizuno has a variant
with O(nL)) and Potra [17] achieves O(n'-°L); in contrast, feasible-interior-point
algorithms typically have bounds of O(n-°L) iterations [5, 6, 15, 16]. Let us examine
why the complexity is so much larger in our case, and why it decreases for Algorithm
II1.

Since the analysis for Algorithm II is based on that for Algorithm I, we consider
only the latter. We also assume v < 3n. Using the arguments of Lemmas 2 and 5, we
have for any 0 < a < 1 satisfying

la(X*)Az| <7, la(Z) Az <7
for some 7 € (0, 1),
A¢p = é(z* + oAz, 2F +aAz) — ¢z, 2%)
:j—vV”Vﬂe - nv;-vy
1

2 — IV 3|(|IDtAz|? + || DAZ|*)a?
(27) +2(1_T)IIV Il z||” + | DAz||*)a

IN

3
'U||210t

(cf. (19)). In our analysis, we bounded the second-order term above using Lemma 4;
using also Lemma 3 to bound the first-order term, we get

2
T
Ap o< 2 (—ﬁ) e

4\ 2 n—+v
1 5 50 (vTw)?
28 2 2
. A=) T o

The linear term in (28) would allow a constant decrease in ¢ by choosing a constant
«, but unfortunately the quadratic term is much too large. Indeed, the right-hand
side of (28) is minimized by

9(1 — 1) 1 Vi 1
800 vIv  n(n+v)

a =

Notice that nv2,;, = vTv for v a multiple of e, i.e., when (z*, y*, 2¥) is on the central

path, and then o = O(n"2) and hence A¢ = O(n"2). Our choice for @ in Lemma 5
approximates this “optimal” value.
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Now let us see how this analysis changes when the iterate is feasible. Note that

|ID7'Az|? + |[DAz||> = ||[D'Az+ DAz|> -2Az" Az
TN 2
(29) - ( v ) Ve - “E0)2 — 22" Az,
n+v viv

The last equality follows from the final equation of (2). In the feasible case, AzT Azis
zero, and, for ||[V"'e - 2tro|| = O(v,,;,), the resulting second-order term is smaller
than in (28) by a factor of about n?. We can thus choose a much larger value for o;

indeed,

T(n + V)Umin

= vTo||V e - —,{;‘T",’l’,vﬂ

for 7 := /3/9 satisfies all our requirements and yields A¢ < —1/16.

The equations in (29) show that ||[D™'Az|?> 4+ ||[DAz|?> is much larger than
|ID7'Az + DAz|?> when Az Az is large and negative. (It cannot be large and
positive by (18), but this doesn’t help us; (17) provides no lower bound.) But from
(11) and (15), we obtain

Az"Az = (D'Az)T(DAz)
("7 (@ ~2*)" D@D (@' — &) - (6)%(=' — #*)" DI - @)D(s" - =)
+0F(xt — ) ' D 'Q(v — uV le) + 65 (2 — 2T D(I — Q)(v — pV " 'e).

The first two terms are negative, while the last two are of indeterminate sign. It is
not hard to see that

(019)2(:131 _ .’B*)TD_lQD_l(wl _ .’E*) — (in _ CII*)TD_lQD_l(.’Bk _ 93*)
QD™ (=" — )|,

and this can be seen to be the square of the distance from D 'z* to the affine set
{z : ADz = b}. Similarly,

(6%)?(2' = 2*)"D(I - Q)D(z" - =) (2 = 2)TD(I - Q)D(z" - z*)

(I - Q)D(z* - 2")|I?

is the square of the distance from Dz* to the affine set {z : DATy+2z = Dc for some y}.
The last two terms are bounded by ||Q D™ (z* —z*)||||lv—pV ~'e|| and ||(I-Q)D(z* -
2*)|||lv — uV " e||. If v is a multiple of e ((x*, y*, z*) is on the central path), then
lv — uV 'e|| is bounded by \/(2F)Tzk. Hence if the infeasibility is large compared
to the duality gap, Az’ Az will be large and negative, the second order term in (27)
will be large, and only a small decrease in ¢ can be guaranteed. This also explains
why we need to balance carefully the infeasibility and the duality gap, as in (25)-(26).

We remark that, if the 2-norm of (z*, z*) is much smaller than its 1-norm (as
when, for instance, it is close to a multiple of (e, e)), then the first inequality in (13),
and hence the bound (14) on ||[D™'Az| and similarly that on ||DAz||, could be
improved by a factor close to v/n. Then « could be chosen to give a reduction in ¢ of
order n~! rather than n=2.

Finally, Lemma 10 allows us to obtain a better bound on the first term in (27)
when the current iterate is approximately centered, and in this case the second-order
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term is smaller and thus a greater decrease in ¢ (and %) can be achieved by choosing
a larger value for «. This is the basis for Step A in Algorithm III. Lemma 12 proves
that a constant decrease in ¢ (and ) can also be achieved when the current iterate
is far from centered, by using a simple centering step.

(D) Some other potential functions.
There are two other primal-dual potential functions that could be used in the infeasible
case. The first is

V'(z,y,2) = (n+v)In(@lz+k||(Az — b, ATy + 2 — ¢)||) Zln(w z;) —nlnn,

and was suggested for a pure potential-reduction method by Kojima, Noma, and
Yoshise [7] in the context of the monotone complementarity problem. The second is

V" (x,y, 2) := (n+v)In(max{z" 2, k|| (Az — b, ATy +z—¢)||}) Zlnxzz —nlnn,

Both can be reduced by an amount sufficient to establish a polynomial time bound if
we add a restriction like (4) on the step size, so that (25) holds for all k. However,
in this case there seems to be no reason to choose these more complicated functions
over the simpler ¢. If we relax the constraint, Kojima, Noma, and Yoshise [7] show
that v’ can always be reduced by some amount, but provide no bound (indeed, it
seems hard to do so, even in the case of linear programming). Similar difficulties
arise with ¢''. It seems to be very hard to obtain a guaranteed decrease in such a
potential function when the duality gap =7z is much smaller than the infeasibility
|(Az — b, ATy + 2z — ¢)||. We also mention a modified primal-dual potential function
given by Kaliski and Ye [1] for a monotone linear complementarity problem with a
restriction that some prescribed variables are zero. Their algorithm with the use of
the modified potential function solves a combined Phase I-Phase IT primal-dual linear
program in O(nL) iterations.

(E) Extension to monotone linear complementarity problems.
Consider a linear complementarity problem with a positive semi-definite matrix M
and a vector ¢: Find a pair (x, z) > 0 such that 2 = Mz + q and 7z = 0. We can
easily adapt Algorithms I, IT and IIT to the problem. Major changes are:

e Eliminate y', y*, y**! and Ay.

e Replace the system (2) of equations by

-M I Az \ 2k — Mk — ¢
zF  x* Az )~ XFkzk —pe )
e Replace the system (23) of equations by
M I Az \ _ 0
VAN & Az ) XFk2k — (¥ T2k /n)e |-
e Replace the potential function ¥ by
Y(x,z) = (n+v+1)n(zlz) Zlnxzz —nlnn

—In(axTz — 0|z - Mm —ql))-



POTENTIAL-REDUCTION ALGORITHMS FOR LP 15

Then we have results similar to Theorems 1,6, and 9, whose proofs are basically the
same as in the linear programming case except for Lemma 4. In the proof of Lemma
4, we have

(OFzt + (1 - 0F)z* — )T (0521 + (1 - 6%)2* — 2F) > 0,

-M I Az +0F(@' —x*) | _ 0
VA ¢ Az+ 608zt —2*) |~ XFk2k — e — 05 ZF(x' — x*) — 0F XF (2

instead of (8) and (10), respectively. It is well known in interior-point methods for
LCP (and easy to show) that for any n-dimensional vector p, the solution of the

system
-M I Az’ (0
zk  xk Az ] T\ p
satisfies
ID" A = |D(AZ —(XF)'p)|| < I(X*FZ5)7p|,
IDAZ'| D~ (A’ — (Z5)'p)l| < [I(X*2%)~p],

where D = (X*)1/2(Z")=1/2_ Let (Ax), Az)), (Axh, Az}), and (Axy, Az}) be
the solution of the system above when p is —(X*2* — pe), 0¥ Z*(x' — x*), and
6k X* (2" — z*) respectively. Then we have

|D~ Az |ID~Y Az + Axh + Az — 65 (! — x*))||
D™ (Az) + Axy)|| + || DAz

0D (@' — )| + 08| D(=" — 27| + |(X*ZF) 72 (X 2R — pe))|

IAIA

and similarly
DAz < 6¢*|D7H(a" —a")|| +6*|D(z" - 2")|| + |(X*2*) 2 (X*2F — pe).

Thus we can prove the lemma following the same arguments as before.
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