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CONVERGENCE ANALYSIS OF ITERATIVE SOLVERS IN

INEXACT RAYLEIGH QUOTIENT ITERATION∗
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Abstract. We present a detailed convergence analysis of preconditioned MINRES for approx-
imately solving the linear systems that arise when Rayleigh Quotient Iteration is used to compute
the lowest eigenpair of a symmetric positive definite matrix. We provide insight into the “slow start”
of MINRES iteration in both a qualitative and quantitative way, and show that the convergence
of MINRES mainly depends on how quickly the unique negative eigenvalue of the preconditioned
shifted coefficient matrix is approximated by its corresponding harmonic Ritz value. By exploring
when the negative Ritz value appears in MINRES iteration, we obtain a better understanding of the
limitation of preconditioned MINRES in this context and the virtue of a new type of preconditioner
with “tuning”. Comparison of MINRES with SYMMLQ in this context is also given. Finally we show
that tuning based on a rank-2 modification can be applied with little additional cost to guarantee
positive definiteness of the tuned preconditioner.
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1. Introduction. There has been considerable interest in recent years in devel-
oping and analyzing eigensolvers with inner-outer structure for computing eigenvalues
of matrices closest to some specified value. These algorithms usually involve at each
step (outer iteration) a shift-invert matrix-vector product implemented by solving
the shifted linear system iteratively (inner iteration). The use of inner iteration be-
comes mandatory if the matrices are too large for factorization-based exact shift-invert
matrix-vector products to be practical. Inexact inverse iteration is the most simple
algorithm of this type and the best understood one. Early papers on the convergence
of inexact inverse iteration with fixed shift include [8] and [9], where the main concern
is to choose a decreasing sequence of stopping tolerances for inner solvers to maintain
linear convergence of the outer iteration. Analysis of inexact Rayleigh Quotient Itera-
tion (RQI) in [13] and [18] shows how the inexactness of the inner solve can affect the
convergence of the outer iteration. More recent work focuses on improving the conver-
gence of inner iterations as well as the relation between the inner and outer iterations.
Reference [16] introduces some new perspectives on preconditioning in this setting,
namely, that faster convergence of inner iterations can be obtained by modifying the
right hand side of the preconditioned linear system. Refined analysis of this approach
in [1],[2] and [5] shows how different formulations of the linear system, with variable
shift and different inner stopping criteria, can affect the convergence of the inner and
outer iterations. An alternative preconditioning approach called “tuning” is analyzed
in [6] for non-symmetric eigenvalue problems and in [7] for symmetric problems. A
preconditioner with tuning is a low rank modification of an ordinary preconditioner.
Tuning forces the preconditioning operator to behave in the same way as the system
matrix on the current approximate eigenvector.

To understand the modified approaches for preconditioning mentioned above, one
needs to note that when ordinary preconditioned MINRES is used to solve the linear
system arising in RQI, the preconditioned right hand side is generally far from a
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good approximate eigenvector of the preconditioned shifted coefficient matrix, and
the convergence theory of MINRES indicates that the counts of inner iteration steps
needed to reach a prescribed relative tolerance will grow considerably as the outer
iteration proceeds. The ideas in [16] and [7] are, respectively, to modify the right
hand side, or to modify the preconditioner (tune it), so that the preconditioned right
hand side approximates the eigenvector of the preconditioned coefficient matrix; in
either case, the inner iteration counts can be greatly reduced.

In this paper, we give a detailed analysis of MINRES, both with and without
preconditioning, for the inner iteration of RQI for symmetric eigenvalue problems, and
we introduce some new approaches for preconditioning. Note that when MINRES is
applied to the linear system in RQI, as the inner iteration proceeds, 1) the residual of
the linear system decreases (convergence of inner iterations), and 2) the angle between
the MINRES iterate and the true eigenvector we are computing decreases gradually
to that between the true solution of the linear system and the eigenvector. It is
suggested in [16] that fast convergence of MINRES iteration in this setting implies
fast improvement of the eigenvector approximation by the MINRES iterate. Hence by
analyzing MINRES convergence, we know how quickly the angle between the MINRES
iterate and the true eigenvector decreases as the MINRES iteration proceeds. This
perspective has not been emphasized in the literature, and it is adopted in the paper
as the main criterion to compare the performance of different versions of MINRES for
solving the linear systems in RQI.

We study the convergence of three versions of MINRES used in RQI: unprecon-
ditioned MINRES, preconditioned MINRES with symmetric positive definite precon-
ditioner Q, and preconditioned MINRES with a tuned variant of Q. We analyze the
“slow start” of MINRES in this context, as remarked in [16], using the properties of
the harmonic Ritz values and their connection with the MINRES residual polyno-
mial. We provide new insight into the limitations of preconditioning without tuning
and show how tuning leads to a major improvement. By probing into the quality of
approximations to the true eigenvector by a sequence of Krylov subspaces, we show
that the convergence of unpreconditioned MINRES and preconditioned MINRES with
tuning depends on the angle between the current outer iterate and the true eigenvec-
tor as well as the reduced condition number of the (preconditioned) shifted coefficient
matrix. We then introduce a tuning strategy based on a rank-2 modification which
guarantees positive definiteness of the tuned preconditioner.

The paper is organized as follows. Section 2 reviews some preliminary facts for
later discussions. Section 3 gives detailed convergence analysis of the inner iteration
for the three versions of MINRES and provides some comments on the different per-
formance of MINRES and SYMMLQ in this setting. A rank-2 modification tuning is
introduced in Section 4 as an improvement of the rank-1 modification tuning of [7].
Numerical experiments supporting the analysis are given in Section 5. We summarize
the paper in Section 6.

2. Preliminaries. We want to compute the lowest eigenpair of a symmetric pos-
itive definite matrix by Rayleigh Quotient Iteration. Consider the eigenvalue problem

(2.1) Av = λv,

where A is symmetric positive definite with eigenvalues 0 < λ1 < λ2 ≤ ... ≤ λn.
Let V = [v1, v2, ..., vn] = [v1, V2] be the matrix of orthonormal eigenvectors and let
Λ = diag(λ1, λ2, ..., λn) so that V TAV = Λ. Algorithm 1 describes a typical version
of inexact Rayleigh Quotient Iteration to find a simple eigenpair.
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Algorithm 1: Inexact Rayleigh Quotient Iteration

Given x(0) with ‖x(0)‖ = 1
For i = 0,1,..., until convergence

1. Compute the Rayleigh Quotient σ(i) = x(i)TAx(i)

2. Choose τ (i) and solve (A− σ(i)I)y(i) = x(i) inexactly such that
‖x(i) − (A− σ(i)I)y(i)‖ ≤ τ (i)

3. Update x(i+1) = y(i)/‖y(i)‖
4. Test for convergence

End For

From here through the end of the paper, we drop the superscripts (i) that denote
the count of the outer iteration, because we are interested in the convergence of inner
iterations. Suppose a normalized outer iterate x is close to v1 such that

(2.2) x =

n
∑

k=1

vkck = v1 cosϕ+ u sinϕ,

where u is a unit vector orthogonal to v1; ϕ is the angle between x and v1, so that
cosϕ = c1 = vT1 x, and sinϕ = ‖[0, V2]

Tx‖ =
√

c22 + · · ·+ c2n is small.
The Rayleigh quotient associated with x is

(2.3) σ = xTAx = cTΛc = λ1 +

n
∑

k=2

(λk − λ1)c
2
k = λ1 + (λ̄− λ1) sin

2 ϕ,

where λ̄ =
∑n

i=2(
c2i

sin2 ϕ
)λi ∈ [λ2, λn] is a weighted average of λ2, ..., λn uniquely de-

termined by u. Assume that λ1 is well-separated from λ2, and ϕ is so small that
|λ1 − σ| = O(sin2 ϕ) ¿ |λ2 − σ| = O(1); hence v1 is the dominant eigenvector of
(A− σI)−1, and the cubic convergence of RQI (see [15], p. 76) is easily established.

Recall that there is a connection between the Lanczos algorithm for eigenvalues of
a symmetric matrix B and the MINRES and SYMMLQ methods for solving systems
By = b. Given the starting vector u1 = b/‖b‖, the Lanczos algorithm leads to

(2.4) BUm = UmTm + βm+1um+1e
T
m = Um+1Tm

where the tridiagonal matrix Tm = tridiag[βj , αj , βj+1] (1 ≤ j ≤ m) comes from
the well-known three-term recurrence formula. Our analysis mainly results from the
convergence of the leftmost harmonic Ritz value to the leftmost eigenvalue of B, which
depends on the approximation from the Krylov subspace range(Um) to the associated
eigenvector of B as m increases.

We will use a major theorem from [14], which characterizes the MINRES iterate
and establishes a connection between the residual polynomial and the harmonic Ritz
values. Our analysis builds on this theorem and the interlacing property of Ritz and
harmonic Ritz values. For convenience, we use Matlab notation w(1) to denote the
first entry of the vector w.

Theorem 2.1. Suppose MINRES is applied to solve the system By = b. At the
m-th MINRES iteration step with the corresponding Lanczos decomposition in (2.4),
the MINRES iterate is

(2.5) ym = UmM
−2
m Tme1β1,

where M2
m = T

T

mTm, β1 = ‖b‖. The residual of the linear system is

(2.6) rm = b−Bym = Um+1ww(1)β1, ‖rm‖ = |w(1)|β1
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where ‖w‖ = 1, wTTm = 0T ,

(2.7) |w(1)| = βm+1|fm(1)|/(1 + β2
m+1‖fm‖2)1/2,

and fm = T−1
m em. Moreover, the residual can be written as

(2.8) rm = χm(B)b/χm(0)

where χ(λ) =
∏m
i=1(λ− ξ

(m)
i ) = det[λIm − T−1

m M2
m] is the residual polynomial whose

roots are the harmonic Ritz values ξ
(m)
i , defined as eigenvalues of the pencil M 2

m −
ξTm. It can be shown that BUmM

−1
m has orthonormal columns and 1/ξ

(m)
i are the

eigenvalues of Hm = (BUmM
−1
m )TB−1(BUmM

−1
m ) =M−T

m TmM
−1
m .

3. Convergence of MINRES in inexact RQI. In this section, we analyze
the convergence of the three versions of MINRES for solving the linear system in
RQI. We consider in turn unpreconditioned MINRES, preconditioned MINRES with
an ordinary symmetric positive definite preconditioner Q (without tuning), and pre-
conditioned MINRES with a tuned variant of Q.

The analysis is based on properties of harmonic Ritz values. To fix notation in the
following subsections, we use θ for Ritz values, ξ for harmonic Ritz values, quantities
with hat for the preconditioned system without tuning and those with tilde for the
preconditioned system with tuning. B and b are respectively the shifted system matrix
and right hand side of the (preconditioned) system in step 2 of algorithm 1.

3.1. Unpreconditioned MINRES. It is observed in [16] that the convergence
of unpreconditioned MINRES for (A− σI)y = x can be very slow when the Rayleigh
quotient σ is close to λ1, i.e., when ϕ = ∠(x, v1) is small enough. That is, the residual
norm ‖rm‖ = ‖x− (A−σI)ym‖ is still close to 1 for quite large m. It is shown that as
a result, ∠(ym, v1) (the angle between the MINRES iterate and the true eigenvector)
also decreases quite slowly. This slow start phenomenon is described in the theorem
below. To make the exposition smooth, we defer the proof to Appendix A.

Theorem 3.1. Suppose unpreconditioned MINRES is used to solve (A−σI)y = x
in RQI, where x = v1 cosϕ + u sinϕ (see (2.2)). Assume that u has components of
m eigenvectors of A so that MINRES will not give the exact solution at the first m
steps. For any such fixed u, limϕ→0 ‖rk‖ = 1 for any k ≤ m. Moreover, for any given
k ≤ m, if ϕ is small enough1, then 1− ‖rk‖ = O(sin2 ϕ).

Remark. This residual norm estimate shows qualitatively that the slow start of
the inner iteration is more pronounced as the outer iterate x becomes closer to the
true eigenvector v1. For any given k ≤ m, the theorem shows that ‖rk‖ tends to be
closer to 1 as ϕ becomes smaller.

In the context of using MINRES in RQI to compute (λ1, v1), we are more inter-
ested in how quickly ∠(ym, v1) decrease with m. Theorem 4.1 of [16] establishes the
fact that ∠(ym, v1) decreases quickly only if MINRES converges rapidly. We restate
the theorem with our notation, and expand on the result by showing that the leftmost

harmonic Ritz value ξ
(m)
1 plays a critical role in the behavior of ∠(ym, v1).

Theorem 3.2. Let (µi, vi) be the eigenpairs of the shifted matrix B = A − σI,
with eigenvalues ordered as 0 < |µ1| < |µ2| ≤ ... ≤ |µn|. Let x be a unit norm
approximation to v1 with small ϕ = ∠(x, v1). Let ym be the MINRES approximate

1How small is small enough depends on k; for bigger k, this threshold tends to be smaller
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solution in Km(B, x) and rm = x−Bym = pm(B)x be the associated linear residual.
If |pm(µ1)| < 1, then

(3.1) tan∠(ym, v1) ≤
|µ1|
|µ2|

1

|1− pm(µ1)|

(

1 +
(‖rm‖2 − |pm(µ1)|2 cos2 ϕ)1/2

sinϕ

)

tanϕ

or approximately,

(3.2) tan∠(ym, v1) ≤
|ξ(m)

1 |
|µ2|

(1 + max
2≤i≤n

|pm(µi)|) tanϕ

Proof. The result (3.1) is established in [16]. For (3.2), first recall that as ϕ
is small, B = A − σI has the unique negative eigenvalue µ1 = λ1 − σ = O(sin2 ϕ)
and the smallest positive eigenvalue µ2 = λ2 − σ = O(1). Recall also the interlacing

property mentioned in [14], that the Ritz values {θ(m)
k } interlace the harmonic Ritz

values {ξ(m)
k } ∪ {0}. Since det[T2] = −β2

2 = θ
(2)
1 θ

(2)
2 < 0, we have ξ

(2)
1 < θ

(2)
1 <

0 < θ
(2)
2 < ξ

(2)
2 . To analyze the convergence of MINRES, recall from Theorem 2.1

that the harmonic Ritz values ξ
(m)
k are zeros of the residual polynomial pm(B) =

χm(B)/χm(0). That is,

(3.3) pm(µ) =
m
∏

k=1

(1− µ/ξ(m)
k ).

Therefore, the residual vector can be represented as

rm = pm(B)x = pm(B)

n
∑

i=1

civi =

n
∑

i=1

pm(µi)civi(3.4)

= pm(µ1) cosϕ v1 + sinϕ
n
∑

i=2

(ci/ sinϕ)pm(µi)vi

= cosϕ

m
∏

k=1

(1− µ1/ξ
(m)
k )v1 + sinϕ

n
∑

i=2

ωi

m
∏

k=1

(1− µi/ξ(m)
k )vi,

where µi = λi − σ and ωi = ci/ sinϕ is such that
∑n

i=2 ω
2
i = 1 . As sinϕ is small

and cosϕ ≈ 1, it is clear that to make ‖rm‖ small, pm(µ1) =
∏m
k=1(1 − µ1/ξ

(m)
k ),

the product of m factors, has to be small. This condition is satisfied if and only if

the first factor (1− µ1/ξ
(m)
1 ) is small, because the product of the second through the

m-th factor is slightly bigger than 1. In fact, as µ1 < 0 and ξ
(m)
k > 0 (k = 2, ..., n),

(3.5) 1 <

m
∏

k=2

(1− µ1/ξ
(m)
k ) ≈ 1−

m
∑

k=2

µ1/ξ
(m)
k < 1 + (m− 1)|µ1|/µ2 = 1+O(sin2 ϕ).

Here we use the first order approximation of the product based on the facts that

µ1/µ2 = O(sin2 ϕ) ¿ 1 and, from the interlacing property, that ξ
(m)
2 approximates

µ2 from above as m increases.
To get the new bound in (3.2), we need to estimate ‖rm‖2− |pm(µ1)|2 cos2 ϕ and

|1− pm(µ1)| in (3.1). Since {vi} are orthonormal, we know from (3.4) that

(3.6) ‖rm‖2−|pm(µ1)|2 cos2 ϕ = sin2 ϕ

n
∑

i=2

(

ci
sinϕ

)2

pm(µi)
2 ≤ sin2 ϕ max

2≤i≤n
pm(µi)

2,
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where the inequality comes from the relation
∑n

i=2 (ci/ sinϕ)
2 = 1. The estimation

of |1− pm(µ1)| can be simplified using (3.5):

(3.7) |1− pm(µ1)| = |1−
m
∏

k=1

(1− µ1/ξ
(m)
k )| ≈ |1− (1− µ1/ξ

(m)
1 )| = |µ1/ξ

(m)
1 |.

The new bound (3.2) is easily established from the above two estimates and (3.1).

Remark. Note that max2≤i≤n |pm(µi)| in (3.2) might not have significant effect
on the behavior of ∠(ym, v1) when m is not too large. Intuitively, if B has a wide
spectrum (which is often the case if it is unpreconditioned), max2≤i≤n |pm(µi)| does
not decrease considerably for small and moderate m since many eigenvalues µi cannot

indeed be approximated by any harmonic Ritz value ξ
(m)
k ; it becomes small only when

m is large enough so that each eigenvalue µi is well-approximated by some harmonic

Ritz value. Therefore, ∠(ym, v1) decreases with m mainly due to the fact that ξ
(m)
1

approximates µ1 < 0 from below (|ξ(m)
1 | decreases to |µ1|). That is, the convergence

of MINRES for By = x and the decrease of ∠(ym, v1) both depend on how quickly

ξ
(m)
1 approximates µ1, or equivalently, how quickly 1− µ1/ξ

(m)
1 decreases to 0.

To explore this point, we need to use the relation between Ritz values and the
reciprocals of harmonic Ritz values. It is shown in Section 5 of [14] that for a Lanczos
decomposition in (2.4), the reciprocals of the harmonic Ritz values of B are Ritz
values of B−1 from an orthonormal basis of range(BUm). Hence the convergence

of ξ(m) to µ1 depends on the convergence of the extreme Ritz value 1/ξ
(m)
1 of B−1

to the corresponding eigenvalue 1/µ1, which in turn depends on the convergence
of angles between the Krylov subspace range(BUm) and the eigenvector v1 of B−1

associated with 1/µ1. Since the columns of BUm form a basis of BKm(B, x), when
∠(v1, BKm(B, x)) is small, the eigenvalue 1/µ1 of B−1 can be well-approximated by

the extreme Ritz value of B−1, namely 1/ξ
(m)
1 , obtained from an orthonormal basis

of BKm(B, x) = Km(B,Bx).
The following two lemmas from Chapter 4 of [19] show the quality of the approx-

imation from BKm(B, x) to v1, and hence lead to our main theorem, which describes

how quickly ξ
(m)
1 approximates µ1 as MINRES iteration proceeds.

Lemma 3.3. Suppose B is symmetric and has an orthonormal system of eigen-
pairs (µi, vi), with its eigenvalues ordered so that µ1 < µ2 ≤ · · · ≤ µn. Then

(3.8) tan∠(v1,Kk(B, u)) ≤
tan∠(v1, u)

ck−1(1 + 2η)
, where η =

µ1 − µn
µn − µ2

< −1.

Here ck(1 + 2η) = (1 + 2
√

η + η2)k + (1 + 2
√

η + η2)−k is the k-th order Chebyshev
polynomial of the first kind for |1 + 2η| > 1.

Lemma 3.4. Let (λ, v) be an eigenpair of a symmetric matrix C. Suppose Uϕ is
a set of orthonormal column vectors for which ϕ = ∠(v, range(Uϕ)) is small. Then
the Rayleigh quotient Hϕ = UT

ϕCUϕ has an eigenvalue λϕ such that |λ−λϕ| ≤ ‖Eϕ‖,
where ‖Eϕ‖ ≤ sinϕ√

1−sin2 ϕ
‖C‖ = tanϕ‖C‖.

Let u = Bx in Lemma 3.3 and C = B−1 in Lemma 3.4. Recalling that µ1 is
the eigenvalue of B closest to zero so that ‖B−1‖ = 1/|µ1|, we immediately have the
following main theorem.
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Theorem 3.5. Suppose unpreconditioned MINRES is used to solve By = x in

Rayleigh Quotient Iteration where B = A− σI and x is defined in (2.2). Let ξ
(m)
1 be

the leftmost (also the unique negative) harmonic Ritz value. Then

(3.9)
1

ξ
(m)
1

− 1

µ1
≤ 1

|µ1|
tan∠(v1, Bx)

ck−1(1 + 2η)
, i.e., 1− µ1

ξ
(m)
1

≤ tan∠(v1, Bx)

ck−1(1 + 2η)
.

This theorem shows that unpreconditioned MINRES converges quickly for the
linear system in RQI if tan∠(v1, Bx) is small and/or ck−1(1 + 2η) increases with
k rapidly. In fact, the numerator provides insight into the slow start of MINRES
iteration. Note that Bx = (A− σI)∑n

i=1 civi = (λ1 − σ) cosϕv1 +
∑i=n

i=2 (λi − σ)civi,
and hence

tan∠(v1, Bx) =
‖[(λ2 − σ)c2, ..., (λn − σ)cn]‖

|(λ1 − σ) cosϕ|
(3.10)

≤ (λn − σ) sinϕ
O(sin2 ϕ cosϕ)

= O

(

1

sinϕ cosϕ

)

.

Therefore, for fixed η, as the outer iteration proceeds and x becomes closer to v1 (ϕ
becomes smaller), (3.9) and (3.10) indicate that more MINRES iterations are needed

to make ξ
(m)
1 close to µ1 and 1−µ1/ξ

(m)
1 considerably smaller than 1. Hence, it takes

longer to see an obvious reduction of the dominant component v1 in rm so that ‖rm‖
is reduced considerably.

To see how rapidly the denominator ck−1(1 + 2η) increases with k, one can see

from Lemma 3.3 that the Chebyshev polynomial behaves like (1 + 2
√

η + η2)k−1

asymptotically. Hence we define (1 + 2
√

η + η2)−1 as the asymptotic convergence
factor (between 0 and 1). Note that as η < −1, bigger |η| corresponds to smaller

asymptotic convergence factor, which implies faster convergence of ξ
(m)
1 to µ1, and

hence indicates that MINRES converges more quickly. One caveat mentioned in
Chapter 4 in [19] is that the bound of angles in (3.8) might be unfavorable when
the algebraically smallest eigenvalues of B are clustered together so that |η| could be
very close to 1, whereas the actual convergence of the angles might be much faster.
Nonetheless, bigger |η| is still a reliable predictor of faster convergence of the harmonic
Ritz values. In fact, η is closely related to the reduced condition number κ = µn/µ2

of the coefficient matrix since |η| = |µ1−µn

µn−µ2
| = 1 + µ2−µ1

µn−µ2
, and

(3.11) 1 +
1

κ− 1
= 1 +

µ2

µn − µ2
< |η| < 1 +

2µ2

µn − µ2
= 1 +

2

κ− 1
.

Hence smaller κ corresponds to bigger |η| and smaller asymptotic convergence factor,

and is helpful to make 1 − µ1/ξ
(1)
m decrease to 0 more rapidly. This agrees with the

result in [7] that smaller κ tends to make MINRES converge more quickly.
We end this subsection with a comment on the assumption in Theorem 3.2 that

pm(µ1) < 1, which might not always be true for small m. However, this has minimal
impact on our convergence analysis. Appendix B gives some details on this.

3.2. Preconditioned MINRES with no tuning. It is observed in [16] and
[6] that solving (A−σI)y = x by MINRES with a symmetric positive definite precon-
ditioner is considerably slower than one might expect based on performance of such
preconditioners in the usual setting of linear system solution.
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More specifically, let Q ≈ A be some symmetric positive definite preconditioner
of A, for example, an incomplete Cholesky factorization. We then need to solve

(3.12) B̂ŷ ≡ L−1(A− σI)L−T ŷ = L−1x,

where ŷ = LT y and LLT = Q. Let µ̂1 < 0 be the eigenvalue of B̂ closest to zero and
v̂1 be the corresponding eigenvector.

It follows from (3.3) that a necessary condition of MINRES convergence for the
preconditioned system is that for any nonnegligible eigenvector component in the right
hand side, the corresponding eigenvalue must be well-approximated by some harmonic
Ritz value. Though the right hand side L−1x is not close to v̂1, it usually still has a
large component of v̂1. Therefore, it is possible to eliminate the component of v̂1 in

r̂m (hence making ‖r̂m‖ small enough) only if the leftmost harmonic Ritz value ξ̂
(m)
1

approximates µ̂1 < 0 well enough. However, the following theorem suggests that the
number of MINRES steps required for this good approximation to appear tends to
increase as the outer iteration proceeds with B̂ becoming more singular.

Theorem 3.6. Consider the preconditioned system B̂ŷ ≡ L−1(A − σI)L−T ŷ =
L−1x arising in RQI. Let the eigenvalues of B̂ be ordered as µ̂1 < µ̂2 ≤ ... ≤ µ̂n,
and let the m-step Lanczos decomposition be B̂Ûm = ÛmT̂m + β̂j+1ûj+1e

T
j . Then a

necessary condition for T̂m to be indefinite is satisfied if

(3.13) m ≥ log(
√

µ̂n/|µ̂1| tan∠(v̂1, L
−1x))

log(1 + 2
√

η̂ + η̂2)
+ 1, where η̂ =

µ̂1 − µ̂n
µ̂n − µ̂2

.

Proof. Recall that the eigenvalues of B = A − σI satisfy µ1 < 0 < µ2, and
by the Sylvester inertia law for B̂ = L−1BL−T , we have µ̂1 < 0 < µ̂2. Using the
eigendecompositions B̂ = V̂ diag(µ̂1, ..., µ̂n)V̂

T and T̂m = ŜmΘ̂mŜ
T
m = ÛT

mB̂Ûm, [14]
shows that

(3.14) Θ̂m = (ÛmŜm)T B̂(ÛmŜm) = ŴT
mdiag(µ̂1, ..., µ̂n)Ŵm

where Ŵm = V̂ T ÛmŜm has orthonormal columns. In other words, the Ritz value θ̂ is
a weighted average of the eigenvalues µ̂i.

To see the condition for T̂m being indefinite, we need to explore if v̂1 can be well-

represented in Ŵm so that µ̂1 < 0 can be well-approximated by θ̂
(m)
1 . Consider any,

say, the i-th, column of ÛmŜm: ti = ÛmŜm(:, i) = v̂1 cosψ + û sinψ ∈ range(Ûm),
where ψ ≥ ∠(v̂1, range(Ûm)) (recall that ∠(v̂1, range(Ûm)) is the smallest angle be-
tween v̂1 and any vector in range(Ûm)), û ∈ span{v̂2, ..., v̂n} and ‖û‖ = 1. Then the
Ritz value

θ̂
(m)
i = (V̂ T ti)

Tdiag(µ̂1, ..., µ̂n)(V̂
T ti) (1 ≤ i ≤ m)(3.15)

= (cosψe1 + sinψe⊥1 )
Tdiag(µ̂1, ..., µ̂n)(cosψe1 + sinψe⊥1 )

= µ̂1 cos
2 ψ + µ̂∗ sin2 ψ,

where e1 = [1, 0, ..., 0]T , ‖e⊥1 ‖ = 1, and µ̂∗ = (e⊥1 )
Tdiag(µ̂1, ..., µ̂n)(e

⊥
1 ) ∈ [µ̂2, µ̂n].

Hence all Ritz values are positive if and only if tan2 ψ > |µ̂1|/µ̂∗. It follows that, since
ψ ≥ ∠(v̂1, range(Ûm)), T̂m is positive definite if tan2 ∠(v̂1, range(Ûm)) > |µ̂1|/µ̂∗.

Therefore a necessary condition to make T̂m indefinite (hence θ
(m)
1 < 0) is that

tan2 ∠(v̂1, range(Ûm)) < |µ̂1|/µ̂∗. By Lemma 3.2, since

(3.16) tan∠(v̂1, range(Ûm)) <
tan∠(v̂1, L

−1x)

cm−1(1 + 2η̂)
<

tan∠(v̂1, L
−1x)

(1 + 2
√

η̂ + η̂2)m−1
,
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the necessary condition holds if the last term in the above inequality is smaller than
√

|µ̂1|/µ̂n. The conclusion follows by taking the logarithm of both sides.

Remark. This theorem simply suggests that during the initial steps of precon-

ditioned MINRES, the leftmost harmonic Ritz value ξ̂
(m)
1 will not approximate the

negative eigenvalue µ̂1 of B̂, and therefore ‖r̂m‖ will not be greatly reduced. In fact,

as T̂m is positive definite for small m, it follows that ξ̂
(m)
1 > µ̂2 > 0, by the property

of harmonic Ritz values. Therefore (3.4) implies that the component v̂1 in r̂m is in-

deed magnified, since all factors of
∏m
k=1(1− µ̂1/ξ̂

(m)
k ) are bigger than 1. It is hence

impossible for MINRES to perform well during these iterations.

In addition, the number of the “bad” MINRES steps tends to grow as the outer
iterate becomes closer to the true eigenvector. In fact, it is shown in [1] (Theorem 9.1)
that µ̂1 = (λ1−σ)/‖Lv1‖2+O((λ1−σ)2) = O(sin2 ϕ). Since in general ∠(v̂1, L

−1x) =

O(1), the bound of m given in the above theorem is like log | C
sinϕ |/ log(1+2

√

η̂ + η̂2),
which increases as the outer iteration proceeds. This estimate of the number of bad
MINRES steps clearly shows a major limitation of preconditioned MINRES without
tuning when it is used in the setting of RQI. This insight is supported by numerical
experiments in section 5.

3.3. Preconditioned MINRES with tuning. One way suggested in [16] to
address the fact that preconditioning does not do as well as expected in this set-
ting is to replace the preconditioned system L−1(A− σI)L−T ŷ = L−1x by L−1(A−
σI)L−T ŷ = LTx. This idea comes from the fact that the aim is not to accurately
solve the original preconditioned system, but to make the eigenvalue residual associ-
ated with MINRES iterate decrease more quickly. The authors show that the modified
right hand side LTx is close to the eigenvector of the system matrix corresponding
to the negative eigenvalue and MINRES convergence can be considerably improved.
One needs to notice that the recovered MINRES iterate ym in this case converges to
(A − σI)−1LLTx instead of (A − σI)−1x. Though (A − σI)−1LLTx is not as good
as (A− σI)−1x to approximate v1, it is in practice still better than x. This strategy
works because ym approximates (A−σI)−1LLTx so fast that for small and moderate
m, it is a better approximation to v1 than its counterpart obtained from the standard
use of preconditioned MINRES for (A − σI)−1x, though the latter would win when
m is large enough.

However, this method is not RQI iteration, and the cubic convergence of the outer
iteration is lost. An alternative approach introduced in [7], known as “tuning”, entails
a rank-1 modification of the Cholesky factor L of the symmetric positive definite
preconditioner Q = LLT so that the tuned preconditioner Q = LLT satisfies Qx = Ax
(the construction of L is discussed in Section 4 below). The preconditioned system
with tuning is thus

(3.17) L−1(A− σI)L−T ỹ = L−1x,

leaving the RQI structure unchanged. It is shown in [7] that sin ϕ̃ ≡ sin∠(ṽ1,L−1x) =

O(sinϕ), so that θ̃
(m)
1 and ξ̃

(m)
1 are negative at the very beginning of the MINRES

iterations, as in the unpreconditioned case. Compared to preconditioned MINRES

with no tuning, the overhead of performing “bad” MINRES iterations in which ξ̂
(m)
1 >

0 is avoided with the tuned preconditioner, and convergence of MINRES is hence much
faster. Moreover, the cubic convergence of the outer iteration is preserved, since the
linear system is not changed by tuning.
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The convergence analysis of unpreconditioned MINRES directly applies to (3.17).

The convergence basically depends on how quickly ξ̃
(m)
1 approaches µ̃1 from below.

We have the following bound just like (3.9):

(3.18) 1− µ̃1

ξ̃
(1)
m

≤ tan∠(ṽ1, B̃L−1x)

ck−1(1 + 2η̃)
, where η̃ =

µ̃1 − µ̃n
µ̃n − µ̃2

< −1.

We can see that preconditioned MINRES with tuning converges much more quickly
than unpreconditioned MINRES because the asymptotic convergence factor of the
former is considerably smaller than that of the latter. See section 5 for comparisons
of the two quantities. Note that by definition, η of the unpreconditioned MINRES is
a constant that only depends on the eigenvalues of A, whereas η̂ and η̃ may change as
the outer iteration proceeds; in our experience, these changes in the preconditioned
eigenvalues tend to be small.

Similar to unpreconditioned MINRES in this context, preconditioned MINRES
with tuning also has a slow start if the outer iterate x is close to v1. In Appendix A
we show that the relative linear residual ‖r̃m‖/‖L−1x‖ = 1 − O(sin2 ϕ̃) holds in the
same way as for the unpreconditioned MINRES solve. However, since the asymptotic
convergence factor of preconditioned MINRES with tuning is smaller, the slow start
is less pronounced than that of unpreconditioned MINRES.

Remark. As stated before, we are interested in how quickly ∠(ym, v1) decreases
as the MINRES iteration proceeds, where ym = L−T ŷm (or L−T ŷm) for the precondi-
tioned MINRES without (or with) tuning. By analyzing the convergence of MINRES
for the preconditioned systems (3.12) and (3.17), we also have some idea about how
rapidly the recovered linear residual ‖rm‖ = ‖Lr̂m‖ ≤ ‖L‖‖r̂m‖ (or ‖L‖‖r̃m‖) of the
original linear system decreases withm. In light of Theorem 3.2, we can hence roughly
estimate how quickly ∠(ym, v1) decreases in the three versions of MINRES iteration
simply by comparing the convergence speed of each MINRES solve.

3.4. Comparison of SYMMLQ and MINRES used in RQI. To solve the
linear systems arising in RQI, a natural alternative to MINRES is SYMMLQ. With
extensive numerical tests, Dul in [3] claimed that MINRES improves eigenvector ap-
proximation to some prescribed level in considerably fewer iterations than SYMMLQ.
Rigorous analysis and comparison of the two methods is not seen in the literature. In
this subsection, we provide some comments on the difference between MINRES and
SYMMLQ in this context.

Our experience is that MINRES is better than SYMMLQ in general, but the
advantage may vary considerably depending on the preconditioned problem. In one
of our sample problems with appropriate tuned preconditioner, there is little difference
between the two methods, but for ill-conditioned problems without a preconditioner,
as shown in [3], SYMMLQ might not even be able to improve the eigenvalue residual
in a reasonable number of iterations.

To compare the MINRES iterate yMR
m and SYMMLQ iterate ySLm , we see that

the MINRES linear residual for By = x is x− ByMR
m = pMR

m (B)x (by the definition
of the MINRES residual polynomial pm), so that

yMR
m = B−1(I − pMR

m (B))x = (I − pMR
m (B))(B−1x) = (I − pMR

m (B))
n
∑

i=1

bivi

=

n
∑

i=1

(1− pMR
m (µi))bivi =

n
∑

i=1

(1−
m
∏

j=1

(1− µi/ξ(m)
j ))bivi,(3.19)
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where B−1x =
∑n

i=1 bivi is the true solution. Similarly for SYMMLQ, we have

(3.20) ySLm =

n
∑

i=1

(1− pSLm (µi))bivi =

n
∑

i=1

(

1−
m
∏

j=1

(1− µi/θ(m)
j ))bivi.

The above expressions show clearly that the difference between the MINRES
and SYMMLQ iterates as approximations to v1 simply results from the different
quality of approximation to the extreme eigenvalue µ1 and the interior eigenvalues
µi by harmonic Ritz and Ritz values. Since ∠(ym, v1) largely depends on the ratio
of the magnitudes of eigenvectors corresponding to interior eigenvalues to that of v1

contained in ym, we speculate that the reason for ∠(yMR
m , v1) < ∠(ySLm , v1) is that

harmonic Ritz values tend to be better approximations to the interior eigenvalues,

though µ1 is better approximated by the Ritz value θ
(m)
1 (see [11], [14] and [17]).

Reference [3] also shows that the curve of eigenvalue residuals of MINRES iter-
ates is generally smooth, whereas that of SYMMLQ iterates tends to be oscillatory.
This phenomenon can be explained qualitatively by the fact the interior eigenvalues
are susceptible to being impersonated by non-converged Ritz values. That is, an in-
terior eigenvalue µk can be well-approximated by some Ritz value at the m-th step
of the Lanczos process when the angle between the eigenvector vk and the current
Krylov subspace range(Um) is not small [19]. At the m-th SYMMLQ step, a small
number of interior eigenvalues µk might be impersonated by some “incorrect” Ritz

value θ
(m)
j(k) (the subscript j(k) is a function of k; 1 < j(k) < m) so that 1− µk/θ(m)

j(k)

is fairly small, and hence 1 −∏m
j=1(1 − µk/θ

(m)
j ) decreases dramatically. But in the

next SYMMLQ step the impersonation may disappear and this quantity recovers
its magnitude in the step before impersonation. This causes ∠(ySLm , v1) to fluctu-
ate considerably. MINRES does not have this problem, however: a harmonic Ritz
value would not well approximate an eigenvalue unless the corresponding eigenvec-

tor is well-represented in range(Um). As a result, 1 − ∏m
j=1(1 − µk/ξ

(m)
j ) will not

fluctuate greatly as m increases, and the decreasing curve of eigenvalue residuals is
smoother. We use this observation in Section 5 to develop stopping criteria for the
inner iterations.

4. Preconditioner with tuning based on a rank-2 modification. The sym-
metric preconditioner with tuning defined in [7] is based on a rank-1 modification
of the Cholesky factor L of the ordinary symmetric positive definite preconditioner
Q = LLT . We restate Lemma 3.2 from [7] to construct the tuned Cholesky factor.

Lemma 4.1. Suppose Q = LLT ≈ A is a symmetric positive definite precondi-
tioner of A. Let x be an approximation of v1 and define w = Ax − Qx. The tuned
Cholesky factor L is defined as L = L + αw(L−1w)T , where α is the real solution of
(L−1w)T (L−1w)α2 + 2α− 1

wT x
= 0.

The tuned preconditioner Q = LLT can also be defined equivalently as a sym-
metric rank-1 modification of Q. In fact,

Q = LLT = (L+ αw(L−1w)T )(L+ αw(L−1w)T )T(4.1)

= LLT + 2αwwT + ((L−1w)T (L−1w))α2wwT = Q+
wwT

wTx

= Q+
(Ax−Qx)(Ax−Qx)T

(Ax−Qx)Tx ,

such that Qx = Ax. This definition has the advantage enabling Q to be defined for
preconditioners not specified by Cholesky factors.
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The tuned preconditioner Q is appropriate for MINRES only if it is positive
definite. It is shown in [7] that two conditions must be satisfied to guarantee positive
definiteness, namely

(4.2) (Ax−Qx)Tx 6= 0, and 1 +
(Ax−Qx)TQ−1(Ax−Qx)

(Ax−Qx)Tx ≥ 0.

In practice, however, it is possible that (Ax − Qx)Tx is 0 or small enough to cause
numerical problems. Moreover, it is shown in [7] that in cases where (Ax−Qx)Tx < 0,
the second condition above is satisfied only if ‖A − Q‖ is very small. The latter
requirement is difficult to enforce except in cases where the Cholesky factor is very
dense; for example, Q can be the incomplete Cholesky preconditioner with very small
drop tolerance.

Positive definiteness of a tuned preconditioner can be enforced with less stringent
constraints by using a rank-2 modification of Q. This approach is used to construct
approximate Hessians for quasi-Newton methods in optimization ([12], Ch 11). In
particular, we can use the BFGS modification

(4.3) Q = Q− (Qx)(Qx)T

(Qx)Tx
+

(Ax)(Ax)T

(Ax)Tx
.

It is easy to see that Qx = Ax. Lemma 11.5 in [12] shows that if the denominator of
the last term in (4.3) is positive (which is the case here), Q is positive definite.

A tuned preconditioner based on the rank-2 modification is slightly more ex-
pensive to apply than the that based on the rank-1 modification. One should try
the rank-1 modification and turn to the rank-2 version only when the former is not
positive definite, i.e., when there is no real solution to the equation in Lemma 4.1.

5. Numerical Experiments. We compare unpreconditioned MINRES, precon-
ditioned MINRES without tuning, and preconditioned MINRES with tuning for solv-
ing the linear system in RQI, in numerical experiments on three benchmark eigenvalue
problems from MatrixMarket [10]. The first problem nos5.mtx is a real symmetric
positive definite matrix of order 468 coming from finite element approximation to a
biharmonic operator that describes beam bending in a building. The second consists
of two matrices K = bcsstk08.mtx and M = bcsstm08.mtx of order 1074 that define
a generalized symmetric positive definite eigenvalue problem Kx = λMx used for
dynamic modeling of a structure. This generalized problem can be easily transformed
to the standard problem M−1/2KM−1/2(M1/2x) = λ(M1/2x) where the coefficient
matrix can be formed directly because M is a positive definite diagonal matrix. The
last one is a generalized symmetric positive semi-definite problem of order 2003 from
fluid flows defined by symmetric positive definite K = bcsstk13.mtx and symmetric
positive semi-definite M = bcsstm13.mtx with rank 1241. The first two examples are
used to show the differences among the three versions of MINRES. The third problem
is used to suggest that tuning might be used for more complex eigenvalue problems
not covered by the analysis in this paper.

5.1. Stopping criteria for inner iterations. Efficiency of each solver is eval-
uated by the MINRES iteration counts needed in a given outer iteration to satisfy
some stopping criterion. Note that in MINRES iteration, we can easily monitor the
SYMMLQ iterate also because it can be obtained for free [4]. We define eigresMR

m

and eigresSLm to be the eigenvalue residual associated with the MINRES iterate yMR
m

and the SYMMLQ iterate ySLm respectively, and we stop the MINRES iteration when
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the relative changes of ‖yMR
m ‖, eigresMR

m and eigresSLm are all small enough. In other
words, the stopping criterion is

(5.1) stop(‖ym‖) & stop(eigresMR
m ) & stop(eigresSLm ),

where

(5.2) stop(‖ym‖) ≡
| ‖ym−k‖ − ‖ym−k−1‖ |

‖ym−k‖
< εinner, k = 0, 1,

and stop(eigresMR
m ) and stop(eigresMR

m ) are defined similarly.
We elaborate on this strategy as follows: Our aim is to stop MINRES as soon

as ∠(ym, v1) ≈ ∠(yexact, v1) (the cubic convergence of the outer iteration is thus
preserved). The first criterion is adopted by [16], where it is shown to be roughly
equivalent to the condition stop(|1 − pm(µ1)|). This is a necessary condition for
pm(µ1)¿ 1 (say pm(µ1) is of order 10

−3 to 10−2), which in turn implies that MINRES
has started to converge. Our experience is that ∠(ym, v1) ≈ ∠(yexact, v1) usually holds
when MINRES has started to converge. The second criterion is directly connected
to the eigenvalue problem: since the right hand side is dominated by v1, we expect
∠(ym, v1) ≈ ∠(yexact, v1) once the eigenvalue residual stops decreasing. However,
with just these two criteria, MINRES might stop prematurely due to a possibly slow
approximation process. The criterion stop(eigresSLm ) helps prevent an early stop,
since, as observed in Section 3.4, eigresSLm tends to be oscillatory until ∠(ym, v1) ap-
proximates ∠(yexact, v1) well, whereas in our experience, eigresMR

m tends to stagnate
slightly before this (see Figures 5.1-5.3). Finally, we require the stopping criteria to
be satisfied for two successive steps to further ensure that MINRES does not stop
prematurely.

One could instead choose a smaller εinner and stop MINRES when the criteria are
satisfied for only one step, but this usually makes MINRES continue for quite a few
steps after ∠(ym, v1) ≈ ∠(yexact, v1). We take εinner = 0.01 for all the criteria in the
tests. The combined criteria guarantee a fair comparison of preconditioned MINRES
without and with tuning for solving the linear systems in RQI.

Note that we choose not to use the residual of the linear system, ‖x−(A−σI)ym‖,
in the stopping criteria, because as Figures 5.1–5.3 show, it is not possible to specify
an extent to which the norm of the linear residual should be decreased for all problems
when ∠(ym, v1) ≈ ∠(yexact, v1) holds.

5.2. Results and comments. We use the incomplete Cholesky preconditioner
from Matlab 7.4 with drop tolerance 0.25 for problem 1 and 2, and 0.0015 for problem
3. In each test the starting vector x(0) is chosen to be close enough to the target
eigenvector v1 so that the Rayleigh quotient σ(0) satisfies |λ1 − σ(0)| < |λ2 − σ(0)|.
The results for MINRES in the third outer iteration of RQI on these problems are
shown in Figures 5.1–5.3 and Tables 5.1–5.2.

Tables 5.1–5.2 show clearly that unpreconditioned MINRES converges slowly; as
shown in Section 3.2, this is because tan(v1, Bx) = O( 1

sinϕ cosϕ ), and the asymptotic

convergence factor is very close to 1 (i.e., the reduced condition number is big); see
(3.9) and (3.11). In fact, unpreconditioned MINRES fails to satisfy the stopping
criteria in the specified maximum number of steps. From now on, we only compare
the preconditioned MINRES without and with tuning.

It is obvious from Figure 5.1–5.2 that preconditioned MINRES with tuning sig-
nificantly outperforms the version without tuning. The cross marks on the curves
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Fig. 5.1. MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third

outer iteration on Problem 1, with drop tol 0.25. Left: preconditioned solve without tuning.

Right: preconditioned solve with rank-1 tuning.

Fig. 5.2. MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third

outer iteration on Problem 2, with drop tol 0.25. Left: preconditioned solve without tuning.

Right: preconditioned solve with rank-2 tuning.

indicate the MINRES iteration at which the stopping criteria are satisfied. It takes
more steps for preconditioned MINRES without tuning to satisfy the stopping crite-
ria than the version with tuning. The eigenvalue residual curve (dashed lines) of the
tuned MINRES iterate is well below that of the untuned one, and the norm of the
residual of the linear system (solid lines) also decreases more quickly due to tuning.
Moreover, 1) the eigenvalue residual curve decreases slowly in the first dozens of steps
of MINRES without tuning, and 2) the eigenvalue residual curve of preconditioned
MINRES without tuning starts at a value much larger than the value at which the
curve of the version with tuning starts.

Both the phenomena 1) and 2) can be explained by the fact that tuning forces
the preconditioning operator to behave like A on the current outer iterate x. The
reason for phenomenon 1) is given in Section 3.2: in the initial steps of MINRES
without tuning, the negative eigenvalue of the preconditioned coefficient matrix cannot
be approximated by any harmonic Ritz value because T̂m is positive definite, and
hence MINRES cannot perform well. Moreover, Table 5.3 shows that the number
of these “bad” MINRES steps increases as the outer iteration proceeds, as Theorem
3.6 suggests. To explain phenomenon 2), first suppose ŷ0 = 0 for the preconditioned

MINRES without tuning. It follows that ŷ1 ∈ ŷ0 + K1(B̂, b̂) is a multiple of the

preconditioned right hand side b̂ = L−1x, and the recovered iterate y1 = L−T ŷ1 is a
multiple of L−TL−1x = Q−1x, which is in general far from a good approximation of
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Non No tuning Tuning
MINRES iter 160∗ 94 68

neg Ritz shows in 2 64 1
aymptotic cvg. factor 0.9901 0.9189 0.9189
reduced cond. number 8.6172e+3 5.1497e+2 5.1509e+2

initial angle 3.6915e–3 3.6942e–1 3.9601e–5
Table 5.1

Comparison of three MINRES methods in the third outer iteration on Problem 1

Non No tuning Tuning
MINRES iter 200∗ 95 69

neg Ritz shows in 2 31 1
aymptotic cvg. factor 0.9984 0.9347 0.9347
reduced cond. number 1.5154e+6 8.2201e+2 8.2201e+2

initial angle 1.5345e–4 2.3665e–3 1.1692e–6
Table 5.2

Comparison of three MINRES methods in the third outer iteration on Problem 2

v1. Similarly for the preconditioned MINRES with tuning, y1 is a multiple of Q−1x.
Since Q and A behave in the same way on x ≈ v1, it is reasonable to expect that
Q−1x ≈ A−1x ≈ λ−1

1 v1, which is a much better approximation to v1 than Q−1x.
Tables 5.1–5.2 provide data supporting the above comparison. First, note that

there is little difference in the asymptotic convergence factor and the reduced condition
number between the preconditioned MINRES without and with tuning. The difference
comes from the last rows in the two tables: the angle between the preconditioned right
hand side and the eigenvector of the preconditioned coefficient matrix corresponding
to the unique negative eigenvalue is much bigger in the case without tuning than
it is in the case with tuning. As explained, it is this very fact that makes the first
MINRES iterate with tuning (Q−1x) a much better approximation to v1 than that
without tuning (Q−1x). Moreover, for the untuned preconditioner, T̂m is positive
definite in the first 63 steps in Problem 1 and in the first 30 steps in Problem 2.
One can see from Figures 5.1–5.2 that the eigenvalue residual curves start to decrease
quickly soon after T̂m becomes indefinite.

Fig. 5.3. MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third

outer iteration on Problem 3, with drop tol 0.0015. Left: preconditioned solve without tuning.

Right: preconditioned solve with rank-2 tuning.

We show by the third test that tuning can also be used for generalized eigen-
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value problems that cannot be converted into standard eigenvalue problems. Since
M = bcsstm13.mtx is singular, one has to solve (K − σM)y =Mx in Rayleigh Quo-
tient Iteration. Similar to the previous standard problems, the tuned preconditioner
Q is a rank-1 modification of the preconditioner Q ≈ K such that Qx = Kx. Our
convergence analysis of MINRES may not be applied directly, because the eigenvec-
tors are now M -orthogonal and expressions of the entries of the tridiagonal matrix
Tm become less clear. Moreover, the fact that Mx is not close to the “negative”
eigenvector of K − σM makes the Ritz value analysis more complicated. However,
Figure 5.3 and Table 5.3 show that the pattern observed in the previous two standard
eigenvalue problems still holds for this problem.

Outer Iteration 1 2 3 4
Problem 1 7 19 64
Problem 2 1 1 31 44
Problem 3 1 8 82

Table 5.3

Numbers of preconditioned MINRES iteration steps without tuning needed to have θ
(m)
1 < 0

Drop tolerance 0.05 0.07 0.1 0.25 0.3 0.35
No Tuning 51 75 82 95 111 139

Rank-1 Tuning 35 51 60 – – –
Rank-2 Tuning 36 52 59 69 77 97

Table 5.4

Number of preconditioned MINRES iteration steps needed to satisfy the stopping criterion in

the third outer iteration for Problem 2

Drop tolerance 2.5e–4 5.0e–4 7.5e–4 1.0e–3 1.25e–3 1.5e–3
No Tuning 76 84 103 112 122 133

Rank-1 Tuning 71 73 90 – – –
Rank-2 Tuning 65 73 89 99 107 115

Table 5.5

Number of preconditioned MINRES iteration steps needed to satisfy the stopping criterion in

the third outer iteration for Problem 3

Tables 5.4–5.5 show some cases when the rank-2 tuning has to be used. In prob-
lems 2 and 3, the rank-1 tuning makes the tuned preconditioner indefinite when the
drop tolerance is above some threshold, and rank-2 tuning works with any drop tol-
erance. In the three test problems, there is little performance difference between
preconditioned MINRES with the rank-1 and the rank-2 tuning. As the drop tol-
erance increases, the iteration counts of preconditioned MINRES with and without
tuning both increase, but the difference between them becomes more pronounced.

6. Conclusion. We have presented a detailed convergence analysis of three ver-
sions of MINRES to solve the linear systems in Rayleigh Quotient Iteration to find
the lowest eigenpair of a symmetric positive definite matrix. Based on insight about
the behavior of Ritz and harmonic Ritz values, our analysis includes qualitative and
quantitative understanding of slow start of MINRES iterations, the main weakness
of ordinary preconditioning without tuning in inexact RQI, the virtue of tuning, and
the advantage of MINRES over SYMMLQ.

Using the idea of the BFGS formula in quasi-Newton methods, we propose a
tuning method based on a rank-2 modification which guarantees positive definiteness
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of the symmetric tuned preconditioner. Other rank-2 modification formulas, such as
DFP in quasi-Newton methods, could also be used.

Considering the performance of the three preconditioned MINRES solves on the
last test problem, we speculate that our convergence analysis of MINRES on standard
eigenvalue problems can be extended to generalized eigenvalue problems.

Appendix A. Proof of slow start.

A.1. Unpreconditioned MINRES. (Theorem 3.1)
Proof. Note from (2.2) that sinϕ =

√

c22 + · · ·+ c2n and u =
∑n

k=2
ck√

c22+···+c
2
n

vk.

That is, u is uniquely determined by the ordered set {ck/
√

c22 + · · ·+ c2n}; one can fix
u and only change ϕ by increasing/decreasing {ck}(2 ≤ k ≤ n) by a common factor,
to see qualitatively how MINRES convergence is affected by ϕ.

One can see from (2.5) that y1 = 0 because T1 = [0]. We assume that m ≥ 2 in
the following proof.

Recall the spectral decomposition of A, the Rayleigh quotient (2.3) and Lanczos
decomposition (2.4). For any k ≤ m, we have

xT (A− σI)kx = cT (Λ− σI)kc =
n
∑

i=2

(λi − σ)kc2i + (λ1 − σ)kc21(A.1)

= sin2 ϕ

n
∑

i=2

(

(λ1 − σ) + (λi − λ1)

)k(
c2i

sin2 ϕ

)

+ (λ1 − σ)k cos2 ϕ

= sin2 ϕ

n
∑

i=2

( k
∑

j=0

Cjk(λ1 − σ)j(λi − λ1)
k−j

)(

c2i
sin2 ϕ

)

+ (λ1 − σ)k cos2 ϕ

= sin2 ϕ

k
∑

j=0

Cjk(λ1 − σ)j
( n
∑

i=2

(λi − λ1)
k−j

(

c2i
sin2 ϕ

))

+ (λ1 − σ)k cos2 ϕ.

Letting ls =
∑n

i=2(λi − λ1)
s(

c2i
sin2 ϕ

) ∈ [λ2 − λ1, λn − λ1] (which depends only on {λi}
and u, but not on ϕ) be a weighted average of {(λi − λ1)

s}(0 ≤ s ≤ k), and using
λ1 − σ = (λ1 − λ̄) sin2 ϕ, we then have

xT (A− σI)kx =

k
∑

j=0

Cjklk−j(λ1 − λ̄)j sin2j+2 ϕ+ (λ1 − λ̄)k sin2k ϕ cos2 ϕ(A.2)

= lk sin
2 ϕ+C1

klk−1(λ1 − λ̄) sin4 ϕ+ · · ·+Ck−1
k l1(λ1 − λ̄)k−1 sin2k ϕ

+(λ1 − λ̄)k sin2k+2 ϕ+ (λ1 − λ̄)k sin2k ϕ cos2 ϕ

= sin2 ϕ

(

lk + · · ·+
(

Ck−1
k l1(λ1 − λ̄)k−1 + (λ1 − λ̄)k

)

sin2k−2 ϕ

)

= qk−1(sin
2 ϕ) sin2 ϕ,

where qk−1 is a polynomial of degree k − 1 whose coefficients depend on {λi} and u;
in particular, lk, the constant term of qk−1, is independent of ϕ.

We can thus find the first few entries of Tm in closed form. For example,

(A.3) α1 = xT (A− σI)x = σ − σ = 0,
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β2 = ‖(A− σI)x− α1x‖ =
√

xT (A− σI)2x =

√

q1(sin
2 ϕ) sin2 ϕ(A.4)

=

√

q1(sin
2 ϕ) sinϕ =

√

l2 sinϕ+O(sin3 ϕ),

α2 = uT2 (A− σI)u2 =

(

(A− σI)x
β2

)T

(A− σI)
(

(A− σI)x
β2

)

(A.5)

=
xT (A− σI)3x

β2
2

=
q2(sin

2 ϕ) sin2 ϕ

q1(sin
2 ϕ) sin2 ϕ

=
q2(sin

2 ϕ)

q1(sin
2 ϕ)

,

and

β3 = |(A− σI)u2 − β2x− α2u2‖ =
∥

∥

∥

∥

(A− σI)2x
β2

− β2x−
α2(A− σI)x

β2

∥

∥

∥

∥

(A.6)

=

√

xT (A− σI)4x
β2

2

+ β2
2 + α2

2 − 2β2
2 − 2α2

2 + 2α2α1

=

√

xT (A− σI)4x
xT (A− σI)2x −

(

xT (A− σI)3x
xT (A− σI)2x

)2

− xT (A− σI)2x

=

√

q3(sin
2 ϕ)

q1(sin
2 ϕ)

−
(

q2(sin
2 ϕ)

q1(sin
2 ϕ)

)2

− q1(sin2 ϕ) sin2 ϕ

One can similarly evaluate α3 and β4, though the expressions for other entries
become much more complicated. Note that as the coefficients of qk−1 are uniquely
determined by u, for any fixed u, all the entries in Tm are functions of sin2 ϕ only.
(Obviously, if x consists of m+1 eigenvectors of A, then (A−σI)Um+1 = Um+1Tm+1

with βm+2 = 0, and ‖rm+1‖ = 0. This is why we restrict our analysis to how ‖rk‖
(1 ≤ k ≤ m) is affected as ϕ goes to zero.)

To show that limϕ→0 ‖rk‖ = 1 for all k with 1 ≤ k ≤ m, we only need to establish
the result for k = m, since the MINRES residual norm decreases monotonically. In
light of Theorem 2.1, the key point is to show that fm(1) is the unique dominant
entry in fm = T−1

m em. In fact, the entries of fm can be evaluated by Cramer’s rule
as follows:

|fm(1)| = |det[em, Tm(1 : m, 2 : m)]|
|det[Tm]| =

∏m
k=2 βk

β2
2det[Tm(3 : m, 3 : m)]

(A.7)

=
1

β2

∏m
k=3 βk

|det[Tm(3 : m, 3 : m)]| ,

and therefore

(A.8)
1

|fm(1)|2 = β2
2

( |det[Tm(3 : m, 3 : m)]|
∏m
k=3 βk

)2

,

where Tm(i : m, j : m) is the submatrix of Tm consisting of its ith through mth rows
and j th through mth columns.

We now show that 1
|fm(1)|2 = O(sin2 ϕ) and hence limϕ→0

1
|fm(1)|2 = 0. Simple

observation from (A.2) shows that limϕ→0 qk−1(sin
2 ϕ) = lk (the constant term of the
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polynomial), and thus the limit of α2 and β3 are l3/l2 and
√

l4l2 − l23/l2 respectively.
We can show by induction that all αk and βk have some nonzero limit (independent
of ϕ) except for α1 = 0 and β2 ≈

√
l2 sinϕ. Since all βk (3 ≤ k ≤ m) and all entries

in det[Tm(3 : m, 3 : m)]| have a nonzero limit as ϕ→ 0, the term in (A.8) multiplying
β2

2 also has a nonzero limit. Recalling from (A.4) that β2
2 = q1(sin

2 ϕ) sin2 ϕ, we have
1

|fm(1)|2 = O(sin2 ϕ) and limϕ→0
1

|fm(1)|2 = 0.

Note that β2 in the second column of Tm is the only nonzero entry of the first
row, and hence fm(2) = 0. Then

|fm(3)| = |det[Tm(1 : m, 1 : 2), em, Tm(1 : m, 4 : m)]|
|det[Tm]|(A.9)

=
β2

2

∏m
k=4 βk

β2
2 |det[Tm(3 : m, 3 : m)]| =

∏m
k=4 βk

|det[Tm(3 : m, 3 : m)]| ,

Therefore, |fm(3)| has a nonzero limit as ϕ → 0, and limϕ→0
fm(3)2

fm(1)2 = 0. One can

show in the same way that limϕ→0
fm(k)2

fm(1)2 = 0 (4 ≤ k ≤ m). Using (2.7), we have

1

|w(1)|2 =
1 + β2

m+1‖fm‖2
β2
m+1|fm(1)|2 =

1

β2
m+1|fm(1)|2 + 1 +

m
∑

k=2

fm(k)2

fm(1)2
(A.10)

= 1 +O(sin2 ϕ)

The assertion follows immediately from (2.6).

A.2. Preconditioned MINRES with tuning. We can use the same reasoning
to show that limϕ→0 ‖r̃m‖/‖L−1x‖ = 1 for preconditioned MINRES with tuning.

Let B̃Ũm = ŨmT̃m+ β̃j+1ũj+1e
T
j be the m-step Lanczos decomposition. The first

Lanczos vector ũ1 = L−1x/‖L−1x‖ = ṽ1 cos ϕ̃ + ũ sin ϕ̃, where ũ ⊥ ṽ1 and ‖ũ‖ = 1.
Since the smallest eigenvalue of B̃ is µ̃1 = O(sin2 ϕ̃) (by Theorem 9.1 of [1]), we have
the first entry of T̃m as follows:

α̃1 = ũT1 B̃ũ1 = (ṽ1 cos ϕ̃+ ũ sin ϕ̃)T B̃(ṽ1 cos ϕ̃+ ũ sin ϕ̃)(A.11)

= µ̃1 cos
2 ϕ̃+ ¯̃µ sin2 ϕ̃ = O(sin2 ϕ̃),

where ¯̃µ ∈ [µ̃2, µ̃n]. In light of (A.4) and (A.5), we can show easily that β̃2 = O(sin ϕ̃),
α̃2, β̃3 and all other entries have a nonzero limit as ϕ̃ goes to zero (where we recall
from the comment right after (3.17) that sin ϕ̃ = O(sinϕ). Analysis of f̃m = T̃−1

m em
is similar to that of fm, as follows:

|f̃m(1)| = |det[em, T̃m(1 : m, 2 : m)]|
|det[T̃m]|

(A.12)

=

∏m
k=2 β̃k

|α̃1det[T̃m(2 : m, 2 : m)]− β̃2
2det[T̃m(3 : m, 3 : m)]|

=
O(sin ϕ̃)

O(sin2 ϕ̃)
= O

(

1

sin ϕ̃

)
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|f̃m(2)| = |det[T̃m(1 : m, 1), em, T̃m(1 : m, 3 : m)]|
|det[T̃m]|

(A.13)

=
|α̃1|

∏m
k=3 β̃k

|α̃1det[T̃m(2 : m, 2 : m)]− β̃2
2det[T̃m(3 : m, 3 : m)]|

=
O(sin2 ϕ̃)

O(sin2 ϕ̃)
= O(1)

One can show other entries of f̃m also have a nonzero limit, and hence f̃m(k)/f̃m(1) =
O(sin ϕ̃)(2 ≤ k ≤ n). Exactly the same reasoning as in Appendix A.1 shows that
limϕ̃→0 1/|w̃(1)|2 = 1 and the relative linear residual limϕ̃→0 ‖r̃m‖/‖L−1x‖ = 1. Sim-
ilar to the unpreconditioned solve, if ϕ̃ is small enough, then 1 − ‖r̃m‖/‖L−1x‖ =
O(sin2 ϕ̃).

Appendix B. Assumption of Theorem 3.2. In fact,

pm(µ1) =
m
∏

k=1

(1− µ1/ξ
(m)
k ) ≈ (1− µ1/ξ

(m)
1 )(1−

m
∑

k=2

µ1/ξ
(m)
k )

= 1−
m
∑

k=2

µ1/ξ
(m)
k − (µ1/ξ

(m)
1 )(1−

m
∑

k=2

µ1/ξ
(m)
k ),(B.1)

which is smaller than 1 if and only if

(B.2) ξ
(m)
1 > −

(

1−∑m
k=2 µ1/ξ

(m)
k

∑m
k=2 1/ξ

(m)
k

)

.

On the other hand, we can find the closed form of ξ
(2)
1 and ξ

(2)
2 by the definition

of harmonic Ritz values. We do this by solving the generalized eigenvalue problem
M2

2w = ξT2w, where, by Theorem 2.1,

(B.3) M2
2 = T̄T2 T̄2 =

[

α2
1 + β2

2 β2(α1 + α2)
β2(α1 + α2) β2

2 + α2
2 + β2

3

]

, T2 =

[

α1 β2

β2 α2

]

.

We solve the equivalent problem T−1
2 M2w = ξw with α1 = 0 and find that

(B.4) ξ
(2)
1 =

α2 −
√

α2
2 + 4β2

2 + 4β2
3

2
=
α2 −

√

α2
2 + 4β2

3 +O(sin2 ϕ)

2
,

where β2, α2 and β3 are given in (A.4) through (A.6). Note that this is a negative

number bounded below independent of ϕ, and ξ
(m)
1 increases with m to approximate

µ1 from below. Therefore, in the first few MINRES iterations, pm(µ1) > 1 if

(B.5)
α2 −

√

α2
2 + 4β2

2 + 4β2
3

2
< −

(

1−∑m
k=2 µ1/ξ

(m)
k

∑m
k=2 1/ξ

(m)
k

)

.

For some problems, pm(µ1) > 1 holds in the initial MINRES iteration steps, but it
will not take many iterations in practice before pm(µ1) < 1 so that Theorem 3.2 can
be applied and the bound in (3.2) becomes informative.
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