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LUC REY-BELLETT

Abstract. In this paper we address the role of multibody interactions for the coarse-grained
approximation of stochastic lattice systems. Such interaction potentials are often not included in
coarse-graining schemes, as they can be computationally expensive. The multibody interactions are
obtained from the error expansion of the reference measure which is, in many cases, chosen as a
Gibbs measure corresponding to a local mean-field approximation. We identify the parameter € that
characterizes the level of approximation and its relation to the underlying interaction potential. The
error analysis suggests strategies to overcome the computational costs due to evaluations of multi-
body interactions by additional approximation steps with controlled errors. We present numerical
examples demonstrating that the inclusion of multibody interactions shows substantial improvement
in dynamical simulations, e.g., of rare events and metastability in phase transitions regimes.
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1. Introduction. Molecular dynamics (MD) or Monte Carlo (MC) methods
have been used to simulate microscopic systems with complex interactions in a broad
spectrum of scientific disciplines. However, one of the main hurdles in the computa-
tions with such methods are the difficulties that arise in simulating such molecular
systems for spatio-temporal scales of realistic size. In this paper we analyze a particu-
lar class of methods known as coarse-graining, a methodology that has been developed
in statistical physics for systematic reduction of degrees of freedom.

Coarse-grained models, when compared to original microscopic systems, have
fewer observables while at the same time are expected to accurately describe the
unresolved degrees of freedom through a proper inclusion of stochastic fluctuations.
For example, in polymer science a sophisticated array of methods has been developed
systematically grouping several atoms on a macromolecule creating a new, effective
chain [2, 4, 6, 23]. Such coarse-graining strategies are designed to describe the complex
microscopic short- and long-range interactions at the coarse level while making a few
ad hoc assumptions. For example, in the coarse-grained united atom models [4], the
coarse interactions between two macromolecules are assumed to be independent of the
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rest of the molecules/atoms in the polymer chain. In essence this procedure eliminates
multibody interactions of the coarse-grained potential. One of the main focus points
of this paper is to address the role of the multibody interactions in coarse-graining. In
particular, in section 6, we specifically discuss the relation between the coarse-graining
of the united atom model and the coarse-graining schemes presented here.

The approach studied in this paper is based on the coarse-graining schemes for
stochastic lattice systems such as an Ising-type model that were developed in [14].
This class of stochastic lattice processes is employed in the modeling of adsorption,
desorption, reaction, and diffusion of chemical species in application areas such as
catalysis, microporous materials, biological systems, etc. [18, 3].

The microscopic system consists of a lattice Ay with N sites. At each site x € Ay
we define an order parameter o(z). For instance, when it takes values 0 and 1, it
can describe vacant and occupied sites. The energy Hy (o) of the system, at the
configuration o = {o(z) : = € An}, is given by the Hamiltonian

1) Hylo) =3 3 Y I pol)ol) + X o),

TEAN y#T TEAN

where h denotes the external field and J defines the interparticle potential. Equilib-
rium states at the temperature T are described by the (canonical) Gibbs measure

(1.2) iy 5(do) = ——e BN Py (do)

’ ZN
where 8 = 1/kT (with the Boltzmann constant k), Zy is the partition function,
and Py(do) is the prior Bernoulli measure. In this setting the coarse-graining can
be carried out by subdividing the lattice into coarse cells and defining coarse-grained
variables using a corresponding map F,

(1.3) n(k) :=F(o)(k) = Y ola),

zeCl

on each coarse cell Cy; see section 2.2 and Figure 1. The corresponding renormalization
group map, known as the Kadanoff transform [5, 7], is defined by the formula

(1.4) e~ BHM() _ /e—ﬁHN(U)PN(dU|n)’

where H s (n) represents the exactly coarse-grained Hamiltonian and Py (do|n) is the
conditional probability of having a microscopic configuration o given a configuration
n at the coarse level. However, due to the high-dimensional integration, Hys(n) can-
not be easily calculated explicitly and hence used in numerical simulations. The main
idea in [14] is to write the exact coarse-grained Hamiltonian Hy/(n) as a perturba-

) (0)

tion around the first approximation Hamiltonian H ](\2 . The first approximation H M

suggested in [9, 10], is defined as

(1.5) HO () = / Hy (o) Py (doln).

Alternative approximations arising in the polymer science literature are discussed in
section 6. Using the approximation (1.5) we have from (1.4) that

_ _ 1 77 (0)
(1.6) Hy(n) = HYJ (n) - Blog/e’ﬁ(HN(”)’HM ) Py (doln).
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The error analysis was studied in [14], where the authors showed that under suitable
assumptions H (1) can be written as a convergent series expansion around H\? ().
Since Hys(n) scales as O(N), the expression (1.6) cannot be expanded by using a
simple Taylor expansion, but instead a cluster expansion (see, e.g., [22]) is necessary
to obtain the following series:

(L7 Hu()—HY ) =HYP0)+ -+ HP () + NOE@H), a=2,...,

which converges uniformly in 7. Furthermore, the correction terms HJ(\;) (n), ﬁl(\j) (n),
etc., are calculated explicitly. The parameter ¢ depends on the characteristics of the
coarse-graining, the potential, and the inverse temperature. We also note that since
the Hamiltonian is an extensive quantity (of order N), the error term in (1.7) is also
expected to scale with N. We shall see in section 2.4 that three-body interactions are
included in the ﬁ](\?[) (n) term.

The next step in developing a successful approximation strategy requires under-
standing the error from coarse-graining. For example, (over-)coarse-graining in poly-
mer systems may yield wrong predictions in the melt structure [1]; similarly, wrong
predictions on crystallization were observed in the coarse-graining of complex fluids
[21]. The error arising in any attempt to coarse-grain microscopic systems essentially
involves the comparison of the coarse-grained probability measures to the projection
of the microscopic measure on the coarse variables. One way to quantify the error
from coarse-graining is to estimate the relative entropy between these measures. In
information theory the relative entropy R (71 | m2) provides a measure of “information
loss” in the approximation of the probability measure m; by ms; see, e.g., [16, 14]. The
relative entropy of m with respect to m, for 7 (0) and 7 (o) two probability measures
defined on a common countable state space S, is defined as

R (m|m2) = 3 m(o) log ?EU; |
g€eS 2\

In our context, we use the relative entropy in order to assess the information compres-
sion of different coarse-graining schemes; see Scheme 2.1 in section 2.4. Furthermore,
since we are dealing with extensive systems and compressing local interactions, the
errors are also extensive quantities, and it is thus natural to measure the error per
unit volume, i.e., in terms of the relative entropy per unit volume. For example, the

relative entropy of the Gibbs measure ﬂﬁ)g associated with the Hamiltonian H ](\?) (n),

with respect to the Gibbs measure py goF~! associated with the Hamiltonian H (7))
(see Scheme 2.2), is given by

Rl o F ) ~ O ).

In this work we first identify the parameter € corresponding to the coarse-graining,
the type of interaction potential, and the inverse temperature, 3. The particle inter-
actions discussed are power laws, Coulomb, logarithmic, and combined short- and
long-range potentials which are of relevance in various lattice models. The estimates
derived on the coarse-grained methods allow us to compare the relative size and im-

portance of two-body coarse-grained interactions included in H ](\2), H ](\}) to three-body

coarse-grained interactions given by H I(VQ[).

However, implementing a higher-order coarse-graining scheme, which includes
multibody interactions, in the case of long-range potentials can be computationally
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expensive. Error estimates presented for Scheme 2.1 along with the dependence on the
small parameter e discussed in section 3 suggest that we can address the issue of the
computational complexity of three-body coarse-grained interactions in two ways: (a)
truncate and compress the three-body terms within a given tolerance (section 3.4.1),
or (b) split the interaction potential J in (1.1) into a short-range piece with possible
singularities and a smooth long-range component. The analysis in section 3 shows
that if the potential is smooth, long-range, and with appropriate decay, then the er-
ror from the two-body coarse-graining using the Hamiltonian H ](\2) is small. On the
other hand, the three-body corrections are necessary in the case of the short-range
potential with possible singularities. In such a case the 3rd-order accurate method of
Scheme 2.2 is to be applied.

In an earlier paper [14] we primarily dealt with coarse-graining of stochastic lattice
systems at equilibrium. A distinct focus of the numerical simulations in this paper is
on the role of the multibody coarse-grained interactions in approximating the coarse-
grained dynamics. It was observed in [9] that for long-range interactions the 2nd-order
coarse-graining scheme was able to accurately capture dynamics related behavior of
coarse observables at certain parameter regimes. However, when studying dynami-
cal properties, e.g., mean times to phase transition, the error from coarse-graining
increased substantially especially as the level of coarse-graining increased [11]. The
numerical experiments in section 5 show that the inclusion of multibody interactions
is critical for accurately reproducing dynamical properties involving rare events such
as switching times.

The paper is organized as follows. In section 2 we present the microscopic model
and motivate different coarse-graining schemes. In section 3 we focus on error quan-
tification by identifying the parameter € in the coarse-grained approximation. We also
discuss the relative size and importance of the multibody interactions using estimates
derived for specific potentials. In section 4 we give a description of the kinetic MC
dynamics and algorithms used for generating the microscopic and the coarse-grained
processes. In section 5 we present simulations with different coarse-graining schemes
using the Arrhenius spin-flip dynamics. Finally, in section 6, we present a discussion
on the relation of analyzed schemes to coarse-graining schemes used for macromolec-
ular systems.

2. Equilibrium. In this section we present the coarse-graining at equilibrium
for an Ising-type system. We discuss the microscopic model defined by the Hamilto-
nian Hy (o) (1.1) and the corresponding Gibbs measure un g (1.2), followed by the
coarse-graining procedure and the exact coarse-grained Hamiltonian, Hys(n). Using
formal calculations we motivate the derivation of the first approximation H ](\2) (n) and

a cluster expansion of Hys(n) (1.7) around the first approximation HI(\?[) (n). Finally,
we present the numerical schemes for coarse-graining with the corresponding error
estimates.

2.1. Microscopic models. The domain of the microscopic system Ay includes
N sites and is a subset of the rescaled square lattice (%Z)d with lattice constant 1/n.
In order to simplify our presentation we will mainly consider the example Ay :=
(1Z)* N Tq, where T4 := [0,1)% is the d-dimensional torus, and the number of lattice
sites N = n? is fixed but arbitrary and finite. Although here we consider a periodic
domain, other boundary conditions can be accommodated easily. The spin (or order
parameter) o(z) takes values in {0, 1} at each lattice site © € Ay. A spin configuration

o = {o(x)}zeny is an element of the configuration space Sy := {0, 1}*~. The energy
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of the configuration o is given by the Hamiltonian Hy (o), defined in (1.1).

The strength of the potential is measured by || J || = X2, o [/ (2)]; i.e., we assume
that the two-body potential is summable in the thermodynamic limit N — oo. In
section 3 we discuss several examples of potentials categorized in a way relevant for
the numerical treatment of coarse-graining approximations.

*
.

3£ 3
T asSToOTT

q

m

e/o|ol[o]e]eo]oc]o]e
ele[e[c|e|e[e|e[oTe
e cjle|e|e|le[o]|ee|e
ele[c]|e|e|e[e|0]e]e
e|/eeeoeeo|e|e
elo/o|olelelo|o|o|e]| | ™
e|e|e/o|e|e|e|e|0]e
e Ole|/e|e|e[C]e]e]e®
ele[oc|e|e|e[e[oc]e|e
o|eo|eo oe|eo/e|e|al
Coarse cells block spin 7(k) = Z,ec, o(x)

Fic. 1. Schematic of microscopic and coarse-grained lattices and dynamics in two dimensions.

2.2. Coarse-grained models. The coarse-graining procedure consists of three
main steps:

(a) Coarse graining of the configuration space. We partition the torus Ty into
M = m? cells: For k = (ky,...,kq) € Z¢ with 0 < k; < m — 1, we define C =
[%, %) X - X [%, %) and we have ’1}1’01 = U C. We identify each cell C}, with 3

lattice point of the coarse lattice Ay = (EZ)d N Ty. Each coarse cell contains ¢ =

points of the microscopic lattice points with N = n? = (mgq)? = MQ. We will refer
to @ as the level of coarse-graining (@ = 1 corresponds to no coarse-graining). We
define a distance function between the coarse cells Cy and Cj:

d 2
1
T\kfl| = E <Z(k‘z—lz)2> 5 k‘, lEZd WlthOSk‘z,lZ Sm—l.

i=1
We assign a new spin value 7(k) for the cell Cj according to the rule
n(k) :=F(o)(k) = Y o(x).
zeCl

The spin n(k) takes values in {0,1,2,...,Q}, and the configuration space for the
coarse-grained system is Spr = {0,1,2,...,Q}*. The coarse and the fine lattices are
depicted in Figure 1.
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(b) Coarse-graining of the prior distribution. The prior distribution Py on Sy
induces a new prior distribution on Sy; given by Py (n) = Py(o : F(o) = 7).
The conditional probability Py (do|n), defined in (1.4), plays a crucial role in the
definition of a coarse-grained Hamiltonian. Since n(k) depends only on the spins o(z),
x € Cy, the probability Py (do|n) factorizes over the coarse cells. We have the following
expectations, assuming in each case that all spin sites z,y,z’,y" € Cj are different
and that n(k) = n:

= o\x = Q
@) B =Bl = 5.
_ ng o nln—1)
22 B = Elo(@ol)n] = Ji—h,
— Blo (o (o) ] — 0= D0 —2)
23) Bl =Bl oWl = g3
@4)  Eun) = Elo@o(e)ow)o(y)ln = 1= D=2 =3)

QQ-1)(Q-2)(Q-3)
These expectations are used in defining the coarse-graining schemes, which we present
in section 2.4.

(c) Coarse-graining of the Hamiltonian. We want to construct a new Hamiltonian
Hyr(n) at the coarse level. A natural definition of such a Hamiltonian at a coarse level,
which we refer to as the ezact coarse-grained Hamiltonian Hys(n), is given by (1.4).
Even for moderately large values of N the exact computation of Hys(n) using (1.4)
is, in general, impractical. Therefore we want to have a systematic way of calculating
explicit approximations of the coarse-grained Hamiltonian Hj; to any given degree
of accuracy. The main idea is to express Hjy; as a perturbation of an approximation
HY (n): i.c., we write the ezact coarse-graining Hy; as

(2.5) Hy —HY () = Hy () + -+ HY () + NO(#t),

where € is a parameter depending on the characteristics of the coarse-graining that
will be precisely identified in section 3. In the next subsection, we formally answer
the following questions:

1. How and why do we choose the first approximation HJ(\S) (n)?

2. Once we have ﬁl(\?[) (1), how good is it and how do we measure the error?
3. Can we derive higher-order coarse-graining schemes by calculating the higher-
order terms in (2.5)?

2.3. Formal calculations. Suppose we have already chosen H}@)(n); then we

. . . . (0
can rewrite the exact coarse-graining as a perturbation of H 1(\/[) (n) as
e~ BN — o=BHLY (ME[e~A(HN () =H1P (m) |
or, equivalently, in terms of the Hamiltonian
_ _ 1 _ o— 7O
(2:6) Haa () = Hp (1) = =5 log Ble /(N ()= (D]
Now if we formally expand the exponential in the second term in (2.6), then we obtain

_ VB 1
(2.7) Ele™ PN Hr (D) |n) = 1 + B[-BAH|n) + §E[(—ﬂAH)2I77] +
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where AH = Hy (o) — HJ(\S) (n). We have from (2.7) that a natural choice for H(O)( )
that is expected to minimize the error should be such that

(2.8) E[AH|] =0.

Hence the first approximation ﬁl(\?[) of the coarse-grained Hamiltonian Hy; is given
by the formula

(2.9) A (n) = E[Hyl1).

Thus, using (2.1) and (2.2), we have

k 1#£k
where
J(k,1) = i? S J—y) fork#l,
Q z€Cr,yeC
T(k, k) = J(0) = ﬁ S J@-y) fork=L.

z,y€Cx,y#z

Now that we have defined H](\g) (n), we proceed to express the ezact coarse-grained
Hamiltonian Hys(n) as a perturbation of this first approximation. If F(o) = 7, then

we can write the difference Hy () — H\Y (n) as

Hy(o) = HP () =3 Aud(o), where

k I£k
(2.10) AwJ(0) = —% S =y = T D)o@)oly).

The expectation in the second term in (2.7) becomes

(2.11)  E[e PHN@=HT )] = E[eX w1 —AAI (@) = E | [[e 2 @ly|.
kol

Formally, the Taylor expansion of the logarithm enables us to write the right-hand
term of (2.6) as

1
5logBle ~(HN (@)~ () | — log / He—mww) Py (don)

log/H <1+Z (—=BARJ(0))P )Hﬁk(da)

k
(2.12) = HP ) +HD () +

Note that the difference AH = Hy (o) — HJ(\S) (n) is an extensive quantity, and hence it
is not necessarily small. It is in fact of order Ne; hence all of the preceding expansions
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should be understood as formal. A rigorous treatment relies on the method of cluster
expansions that has been developed in the statistical mechanics literature [22]. Cluster
expansions represent a tool which allows for expanding such quantities rigorously in
convergent power series using the independence properties of product measures. The
crucial fact here is that the conditional measure Py(do|n) factorizes over the coarse
cells. In the next section we present the coarse-graining schemes derived using cluster
expansions. We refer the reader to [14] for a detailed theoretical description and
analysis of this procedure.

2.4. Coarse-graining schemes. Before we proceed to the statement of nu-
merical schemes we first introduce some notation as suggested by the calculations in
section 2.3. To calculate the higher-order corrections requires the expansion of the
terms in (2.12) which involve the following quantities:

(2.13) dh= Y U@ —y) = J(k, D)%,

(2.14) = Z (J(x —y) = J(k,D))(J(z —y") = T (K, 1)),
(215) i ko = Z (J(x —y) — J(k1, k2))(J(y — 2) — J(ka, k3)) .

zECkl
yeC’;c2 ,zeck3

If k1 = ko, then we also impose that for x,y € Ck, we have y # x. Note also that
these quantities have various symmetries: for example, j3 = j2 or j}, = ji_, = jl,
for some function j', and similarly j7 depends only on [k — I|; moreover, jZ , . =
jﬁl—k2,k3—k2-

As suggested by (2.6) and (2.11), we can define as € a parameter that is propor-
tional to |Hy (o) — HI(\?[) (n)] and also dependent on the inverse temperature (3:

(2.16) €= %maax |Hn (o) — HY (n)].

Next, we present 2nd- and 3rd-order schemes in terms of their respective accuracy in
relative entropy.

SCHEME 2.1 (2nd-order, two-body CG interactions). The 2nd-order coarse-
graining algorithm has the following characteristics:

1. The Hamiltonian Hz(v?); given by (2.9), is written as

HD ) =3 AP 15 k), n(0) + > AL (ks n(k)),
k

kAl
where
A (k1 (k) n(1)) = — 5. (k, D)D),
A (5 (k) =~ 570, 0m(k) (k) — 1) + ().

2. The Gibbs measure ﬂg\g)ﬂ is given by ﬂg\g)ﬂ(dn) = 2(10) e HYY Py (dn).
’ ’ M

3. The relative entropy error is

1 _ _
SR sl 0 FTh) ~ O(E).
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SCHEME 2.2 (3rd-order, multibody CG interactions). The 3rd-order coarse-
graining algorithm has the following characteristics:
1. The Hamiltonian Hz(v(}) + ﬁ](vl[) + ﬁ](\?[) with the correction terms is

a2y () = 3" A (k15 (k). +ZA1) key n(k
k<l
where
A (e, (k). ) = 2 (i L () B (1)) — B (k) s ()
— Ex(n(k)) E2(n(1)) + Bx (n(k)) Ex (n(1))]
+ 371 [=2B2(n(k)) B2 (n(1)) + B2 (n(k)) Ex (n(1))
+ Ex(n(k)) B> (n()])
AL G (k) = 2 (452, [~ Ea(n(k) + Bxn()
+ 243 [Ea(n(k) + Ea(n(k)) — 2E3(n(k)))
and
HP () =3~ AP (ks 1, ks (k). m(0), m(k))
k£l
+ > AP Lomi k), (1), n(m)),
k<l<m
where
A (ks k), 1), m(R)) = =5 (3 [~ Bsn(K)) B (n(D)) + Bal(k) B (1)

+ Ex(n(k))E2(n(1)) = Es(n(D) Ex(n(k)) 1),

A (k1 ms k), (1), m(m)) = B (jfim [E1(n(k)) Ex ((m)) (1 = B2 (n(1)))]
+ Jimi [E1((R) E1 (n(1)) (1 = Ea(n(m)))]
+ ot [E1(0(m) E1 (n(1)) (1 = B2 (n(k)))]).
The terms E; are defined in (2.1)~(2.4) and the quantities jy, jis Ji, oy 07
defined in (2.13)—(2.15).
2. The Gibbs measure is u( ) gdn) = 2}2) e’(HJ(\?*HI(\/lI)*Hz(\;))PM(dn),

3. The relative entropy error is

—R(u slin,g o F7) ~ O(e%).

We choose the definition of corrections in such a way that HJ(\S) (n) consists of
only two-body interactions, as does H](\}) (n), whereas ﬁ](\?[) (n) includes three-body
interactions. Note that Aéz) is essentially a three-body interaction term even though
it involves only two coarse cells. This follows from the graphs in the cluster expansion;
see [14, section 2].

The multibody interactions given by ﬁl(\j) (n) in Scheme 2.2 are also temperature
dependent, and hence they are expected to be more important in low temperature
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regimes rather than in high temperature regimes. We show in the next section the
precise dependence of the correction terms on temperature. Temperature dependence
of the corrections has been seen in coarse-graining of polymer chains (see section 6),
where most of the schemes do not include the multibody interactions.

The multibody interactions such as the three-body interactions in Scheme 2.2
can be computationally expensive [14]. Hence it is important to understand when the
multibody interactions are needed. For example, we show in section 3.2.1 that when
coarse-graining smooth long-range potentials with decay the Scheme 2.1 is an accurate
approximation and does not require including the multibody interactions. Further-
more, strategies to decrease the computational cost of implementing the multibody
interactions are discussed in sections 3.4.1 and 3.4.2.

3. Error quantification and multibody interactions. In this section we
analyze the dependence of the coarse-graining error on the detailed characteristics of
the interaction potential J. We represent the error as a sum of the error from short-
range interactions between coarse cells and the error from long-range interactions of
the coarse cells. Considering the coarse-graining error in this way will allow us to
control and estimate exactly the error from each piece of the potential based on its
behavior.

First, we associate a cutoff distance r. with a given potential and use this quantity
to classify the interactions either as short- or long-range. Thus the error is broken into
two pieces as given by the following simple estimate. If F(o) = 7, then we have

(3.1) ezg‘HN(a)—ﬁg?(n)} <ester,

where e; and e; are the error bounds from coarse-graining short- and long-range
interactions, respectively:

652%2 Z D s 612%2 Z Dy,

B {l:r_y<re} B A{l:irp_y>re}

and the total variation of the potential .J is

D= Y. |J@—y)—J(k1).
z€Cy ,yeC)
TF#yY
Thus the choice of the cutoff radius r. should be such that the coarse-graining error
€ = es + ¢; is minimized. To accomplish this, as es; and e; are both controlled by
Dy, k,l=1,...,m, we observe (with a minor abuse of notation) that

3.2) Dy ~ a Vaeyd(x — Jk#1 and Dy ~ VaeuJ(x —1)|.
(3.2) Dy zeg;,zjiea| vl (@ —y)l,k# 1 kk Z€C§ECk| (@ —y)|

Ay

Hence controlling norms of the gradient of .J will determine if Scheme 2.1 is adequate,
i.e., € € 1, or if higher-order terms are necessary: in many typical potentials, V ,.J is
large when |2 — y| is small, while it remains bounded and decays as |z —y| grows. This
observation suggests that a suitable coarse-graining strategy would be to employ a
higher-order scheme for the error e5 and to use the simple and inexpensive Scheme 2.1
for e;. We clarify these comments below and in section 3.4 by presenting examples of
specific potentials which are of relevance to various applied fields. We identify the error
in terms of the parameter € in (2.16) as suggested by (3.1). The detailed calculations
are rather straightforward and are omitted.
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3.1. Finite-range interactions. A spin at site x interacts with its neighbors
which are at most L lattice points away from z. It will be useful to consider the range
of the interaction L as a parameter of the model. Then the potential J(z — y) can be
taken to have the form

(33) Ja—y) =7V (Sl —vl), wyein,

where the function V : (0,1] — R has a compact support in [0, 1]. The factor 1/L? in
(3.3) is a normalization which ensures that the strength of the potential J is essentially
independent of L and || J|| ~ [ |V (r)|dr.

An example is the piecewise constant potential which is widely used as a bench-
mark in simulations. Note that even though we present this discussion in dimension
d = 1, it can be extended to higher dimensions. Suppose that V(r) = £ for |r| < 1
and is equal to zero otherwise. We define J by (3.3) with the interaction radius L,
ie, J(x —y) = ;—2 when nlz — y| < L, z,y € An. Assume that the coarse-graining
level is ¢; then it follows, by simple counting, that the error € is given by

Ll (do, o Jo (2g—1 q—2
(34) 62[35(@((1 _1)+f< ¢ Ty ))

Similarly, for general potentials of the type (3.3) it is easy to show that [14]

7 q
(3.5) [Tz —y) = (kD] < 275 V' [l

thus a similar error representation to (3.4) is true.

The parameter ¢ in (3.4) implies that Scheme 2.1 is expected to work well when
+ < 1; otherwise Scheme 2.2 would be more suitable. Indeed in Figures 6 and 7 we
demonstrate the influence of the multibody interactions included in Scheme 2.2 in the
case when £ ~ O(1).

3.2. Kac-type interactions. In this case we assume that a spin interacts with
all spins, i.e., L = n in the above case of finite-range interactions, and the potential
is given by

(3.6) Ja—y) =V (r—y), wychy.

In this class of examples we are particularly interested in the role of the singularity
and the decay of the potential. For this reason we consider two classes of examples.

3.2.1. Power—law-type potentials. Assume that J is given by (3.6) and V €
C1(0, 00) satisfies

!
(3.7) [V (r)] < et [V'(r)] < ) for r > re.
Then we have
(3.8) T < X1 Wk, 1 such that rj_y >
. _ S r Te .
B =~ N(’f’|k_”)a , L Su |k—1]

And if x € Cf and y € Cj, then

. 2Kavd 1
(39 Wwy) kDl < g GRS ¥ k, 1 such that rjx_y > 7e.
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Note the improved decay in (3.9); this fact will be used in a crucial way in section 3.4.1.
Based on the above estimates we obtain

1
(310) ezes+el§es+CﬂE7

where e, and e; represent the error made by coarse-graining of the short-range and
long-range interactions given by (3.1). The estimate suggests that if the coarse grid
is such that both e; and eg are small (i.e., m is large enough), then Scheme 2.1
will perform well; see Figures 2 and 3. Furthermore, it also suggests that using a
potential-splitting method when ¢; < 1 and e; ~ O(1) can provide a satisfactory
approximation; see section 3.4.2 below.

3.2.2. Potentials with locally integrable gradient. We assume that the
potential V' satisfies the condition 7='V'(r) € L}, (0,00). Such potentials include
Coulomb interactions in particle simulations where the interactions are inversely
proportional to the distance in R? [22]. Another example is the description of two-
dimensional turbulence where the interactions are proportional to the logarithm of
the distance between two vortices located at the sites x and y, respectively [24].

Assuming that .J is given by (3.3), V(r) € C*(0,00), and r?~1V'(r) € L} ., we
have for z € Cy and y € C;

_ 1 B
(3.11) (@ y) = T DI < IV N v g v

m

and consequently the parameter € is bounded by
¢ d—1y7
(3.12) e< f|lr Vi),

Hence € is small, provided that we have corresponding conditions on the coarse-grained
grid size % and the radial norm of V”. In this case Scheme 2.1 is expected to perform
well. We can also obtain bounds similar to (3.11) in L*°, for k # [, similarly to (3.5).

Beyond the aforementioned examples, we will also discuss in section 5 simulations
with competing short- and long-range potentials. This class of interactions is common
both in lattice and off-lattice models, e.g., in epitaxial growth processes and in poly-
mers. A typical potential of this kind arising in off-lattice models is the Lennard-Jones
interaction.

3.3. Applicability to other models. The error analysis in the previous exam-
ples allows us to derive suitable conditions under which the coarse-graining schemes
work well, and conversely it suggests when they are not expected to perform ade-
quately. For instance, (3.4) or (3.5) implies that the schemes perform well for long-
range interactions (L >> 1), even when the temperature 7" is not necessarily high. In
contrast, for short-range potentials, e.g., L = 1, the coarse-graining schemes provide a
good numerical approximation only at relatively high temperatures. The same issues
related to the coarse-graining of short-range interactions arise in (3.10). These diffi-
culties are intuitively obvious, for instance, in systems that exhibit microstructure at
the smallest scales such as the nearest neighbor antiferromagnetic Ising model, where
(1.3) is expected to be a particularly poor approximation of the microscopic model.
We refer the reader to [14] (Figures 1 and 2) and [12] (Figures 4 and 5) for several
related simulations demonstrating these shortcomings.

Nevertheless, coarse-graining schemes can be used even in these systems by fol-
lowing a different, hierarchical approach. In [12] we used a posteriori error estimates
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(obtained through the cluster expansions), in order to adaptively construct phase
diagrams of antiferromagnetic systems, as well as of model systems with combined
short- and long-range interactions proposed in [8]. These two examples were selected
as numerical benchmarks because their phase diagrams are known analytically and
since coarse-graining was not expected to work outright. For example, in the antifer-
romagnetic case the a posteriori error estimates can determine on-the-fly a region of
external fields where it is possible to simulate cheaply and accurately with a progres-
sively higher level of coarse-graining g as we increase the external field. On the other
hand, at lower external fields microstructure is typical and the coarse-graining based
on (1.3) yields a high a posteriori error; in this case the hierarchy of coarse-grained
resolutions ¢ adaptively adjusts to a full microscopic simulation ¢ = 1 [12]. Overall the
coarse-graining schemes permit us to construct numerically the phase diagram in a
computationally efficient manner, which necessitates the use of microscopic simulation
in only a part of the parameter domain.

Finally, based on a closer inspection of the coarse-graining strategy outlined in
section 2.2, it is expected that lattice systems with more general order parameters,
e.g., Potts and Heisenberg models, will have similar coarse-graining error estimates
and cluster expansions with analogous limitations to the ones encountered in the Ising
systems. On the other hand, the coarse-graining of off-lattice systems has some unique
challenges and is discussed separately in section 6.

3.4. Efficient implementation of multibody interactions. To address the
computational complexity associated with implementing Scheme 2.2, we employ the
error estimates in the previous subsections in order to show that multibody interac-
tions can be compressed following two different and complementary strategies.

3.4.1. Compression through truncations. From the computational point of
view, calculating the three-body corrections, i.e., H](VQI) (n), can be quite expensive,
depending on the number of nonzero terms in j7, . In this direction, we recall that
in analogy to (3.2) we have
(3.13)

1 2 42
Ikt Jips Jam ~ | _ax  VoyJ(@—y)l,  max —|VayJ@—y)l, k#Lm.

These bounds imply that for large rjy |, 7z, the terms j,il, j,%l, j,%lm decay faster
than J(k,1), J(k,m) (see the example in section 3.2.1); hence they can be suitably
truncated within a given tolerance.

3.4.2. Compression through potential-splitting. Another approach to fur-
ther increase the computational efficiency of the schemes presented in section 2.4 is
to decompose the coarse-graining of the interaction potential based on the size of the
error in (3.1). Indeed these estimates suggest a natural way to split the potential into
a short-range piece with possible singularities and a locally integrable (or smooth)
long-range decaying component such as the ones considered, for instance, in (3.10):

J(x,y) = Js(x,y) + Jl(xay)'

In this way the computational expense of Scheme 2.2 can be decreased by imple-
menting this higher-order scheme for the short-range piece Jg(z,y) alone, while using
the inexpensive 2nd-order Scheme 2.1 for the long-range piece J;(z,y). The latter is
sufficient, provided that m is large enough; see, for instance, (3.10) or (3.12). This
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approach is also suitable in the case when the interactions are combinations of possi-
bly competing short- and long-range interactions. We refer the reader to the example
considered in section 5.2 as well as in the simulations depicted in Figure 4.

4. Coarse-grained stochastic dynamics. In this section we extend our anal-
ysis in order to construct efficient and accurate coarse-graining methods for the ap-
proximation of not only the equilibrium invariant measure px,g but also for the ap-
proximation of the measure on the path space. We start with a brief description of the
microscopic and the coarse-grained lattice dynamics. We refer the reader to Figure 1
for a schematic description of the dynamics.

4.1. Microscopic MC algorithms. The sampling algorithm for the micro-
scopic lattice system is given in terms of a continuous-time jump Markov process
{0t }1>0. The generator of this stochastic process Ly is given by

(4.1) (Lnf)lo) = Y elz,0) (f(e") = f(0))

TEAN

for a bounded test function f € L*°(Sy). Here ¢(z, o) denotes the rate of the process
and o represents the configuration after a flip at z.

In general, for sampling the equilibrium Gibbs measure a wide class of Metropolis-
type algorithms is available. The kinetic Monte Carlo (KMC) methods [3] represent
a class of such methods that are also suitable for simulating nonequilibrium pro-
cesses. An example of dynamics widely used for simulations of interacting particles
on a lattice is known as Arrhenius dynamics. The rates are usually derived from the
transition-state theory or obtained from MD simulations. The Arrhenius spin-flip rate
is defined as

(4.2) c(z,0) = dyo(z) + do(1 — o(x))e PV @)

where U(z, o) is the potential which is given by

(4.3) Uwo)= Y Jx-yoly).

yEANYFT

It can be easily verified that the Arrhenius rate defined in (4.2) satisfies the detailed
balance condition

(4.4) c(z,0)e PO = ¢(z,0)e PHE")

which in turn guarantees that the invariant measure of this Markov process is the
Gibbs measure (1.2).

4.2. Coarse-grained MC algorithms. Given the Markov process ({o¢}i>0, £)
with the generator £ we obtain a coarse-grained process {F(o¢)}¢>0. The fact that the
process {F(o¢)}i>0, in general, is not a Markov process poses a significant difficulty
mathematically and computationally in studying this process. One way to overcome
this difficulty in computations is by deriving an approximating coarse-grained Markov
process ({n:}+>0, £¢) which can be easily implemented once its generator is given
explicitly.

For the purpose of sampling the coarse-grained Gibbs measure given by ﬂg\% 5(M)
we consider a Markov birth-death process with the generator

(45) Lég() =Y alkn) lgn+d) — gl + Y calk,n)lg(n— k) — g(n)],

k€A keAn
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where the rates ¢,(k,n), ca(k,n) correspond to adding a particle (birth) and removing
a particle (death) from the coarse cell.

In the case of nonequilibrium dynamics like the Arrhenius dynamics the strategy
is to derive the rates ¢,(k,n), ¢q4(k,n) which have the same form as the microscopic
rates for Arrhenius dynamics given by (4.2). Deriving the rates in this way allows us
not only to approximate the measure pun g(o) but also gives an approximation of the
measure on the path space. The approximate rates were derived in [9, 10] and are
given by

(4.6) Calk,m) = dolg —n(k)),  calk,n) = don(k)e P n)

The new interaction potential U (n) represents an approximation of the original
interaction potential U(c) and is defined as

(4.7) U (k,n) Z J(1, k)n(l) 4+ J(0,0)(n(k) —1).

We note that by definition U(°)(k,7) satisfies the following condition:
0O (k) = Hyy (n) — Hy (n = ).

As shown in [9] this property is sufficient for the detailed balance condition with
respect to the coarse-grained measure ﬂg\? 5 in Scheme 2.1 to hold. In other words we

have
Ea(k,’r]) e_ﬁgz(\({))(n) — Ed(k7n+ 5k> e_BH§\9[>(77+5k) .

In [11] an error estimate between the time-dependent probability, fim,q5(t), and
the exact projection on the coarse variables of the microscopic probability, pnx g ©
F~1(t), was obtained. The error is calculated on arbitrary coarse observable ¢, which
necessitates the use of a weak convergence framework. More specifically, in [11] the
2nd-order accuracy of the process (4.6) in terms of the parameter e in (2.16) was
established:

(4.8) [E[y(For)] - Ely(nr)]| < Cre*,  te[0,T],

where the constant C'7 is independent of the system-size N. Similar estimates were
also obtained in [16], where the time-dependent error estimate was given in terms of
the relative entropy. We also refer the reader to [15] for a coarse-grained Langevin-type
approximation to KMC and related time-dependent estimates in the weak topology.

The strategy that was used to derive the approximating process ({n:}>0, L)
suggests a straightforward extension to obtain higher-order approximations of the
microscopic dynamics. Such dynamics are defined in the terms of higher-order coarse
rates c( )(k n), (a)(k,n) and they need to satisfy the detailed balance for NM)g
in order to ensure a similar behavior to the dynamics (4.6). For such higher-order
Arrhenius dynamics we define the new coarse-grained rates as

(49) & (k) =dola—n(k), & (kn) = don(k)e PO U W)

where o = 1,2, . ... The detailed balance condition is then in the form
(4.10)
& (k) e BN +-+T D) — &) oy 45y eBEL (n+)++ T (+60))
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The new interaction potential U (n) + - - + U(® (5) represents the higher-order
approximation of the original interaction U (o). In order to satisfy the detailed balance
condition (4.4) for the higher-order coarse-grained Gibbs measure we define higher-
order coarse potentials by

(4.11) T () = H () = H (1 = ),

where a = 0,1,.... Note that just as in (4.7) calculating U(®(n) involves a local
difference and does not require calculating the complete Hamiltonian. Specifically for
Scheme 2.2 the higher-order potentials are given by

OO ) = 7 (A, 1 m) = AL (k1 i — 1)

leAps
1#k

+ A (B ) — A (B e — 1),

U (k) = > [AQQ)(k,Lk; M) — AP (K, L ks e — 1, e — 1)}

leAps
I#k

(412) + Z [Ag)(kalama 77ka7llv77m) - AL(SQ)(kvlvm? Nk — 17771a7lm)} .

I<m

Note that these calculations can also be simplified by truncating as in section 3.4.1
or by splitting the potential as in section 3.4.2.

Finally, we remark on the time-dependent error analysis for the new process de-
fined in terms of the rates (4.9). These new rates are perturbations of (4.6); hence
similar time-dependent estimates to [16, 11] hold. In fact, in analogy to these results,
e.g., (4.8), we would expect that the (weak topology) estimate between the time-
dependent probability ufi)% 3
the microscopic probability py,g0F () could be of order Or(e*T1). However, we do
not have a proof of this conjecture at the present time. Nevertheless, the comparative
simulations in Figures 6, 7, and 8 and Table 2 based on (4.9) suggest a higher-order
accuracy than the dynamics based on the rates (4.6).

(t) and the exact projection on the coarse variables of

5. Computational algorithms and numerical experiments. The 2nd-order
coarse-grained algorithm as described in Scheme 2.1 has been extensively studied in
previous works, e.g., [10, 9, 11]; there it has been demonstrated, both rigorously and
computationally, that it performs well in high temperature regimes or when long-range
interactions are involved, in the latter case even when phase transitions are present.
However, coarse-grained Monte Carlo (CGMC) simulations for lattice systems with
short- or intermediate-range potentials using Scheme 2.1 do not accurately capture
hysteresis and critical behavior [9]. In earlier benchmark simulations using the 3rd-
order coarse-graining Scheme 2.2 for piecewise constant potentials (see section 3.1),
it was shown that such an error was substantially reduced [14, 12].

In the simulations discussed here we present numerical experiments based on
spin-flip Arrhenius dynamics, using more realistic potentials such as the ones in sec-
tions 3.2.1 and 3.2.2. In particular, we emphasize simulations involving dynamics,
rare events, and complex critical behavior not addressed in our earlier work. Further-
more, based on the error analysis of section 3 we assess numerically the importance
of multibody interactions. Finally, numerical results show the effectiveness of the
potential-splitting method, discussed in section 3.4.2.
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Fic. 2. Comparison of different fully resolved (MC) simulations with coarse-grained q = 10,
coarse-grained q = 100, and coarse-grained q = 100 with corrections. The potential here is the
decaying potential (5.1) with a = 0.8. We observe that corrections due to three-body terms have
minimal impact, as Scheme 2.1 is already performing well for less singular potentials.

5.1. Kac potentials with singularities. In this set of simulations we use ex-
amples of different long-range potentials as in (3.6), where the function V has an
algebraic decay (see inset in Figure 2):

(5.1) Vir)= if |r| > 0;

K
[

and the constant K is such that the total mass is kept fixed:

J 1Y i i1
EZN;V(N):KN 2w

We compute isotherms similarly to the natural parameter continuation, i.e., we trace
the total coverage N ! Yo An o(x), while changing the external field h, first upon
increasing the field h from low values and then decreasing it from high values. In
particular, we look at the two exponent cases, « = 0.8 and a = 1.5, for which we
study their respective hysteresis behaviors. In the numerical tests presented here we
demonstrate that the corrections derived improve this behavior even in the case of
high coarse-graining ratio ¢. The sampling of the equilibrium measure is done by using
microscopic and coarse-grained Arrhenius dynamics discussed in section 4.

It is observed in the numerical experiments that the multibody terms which are
given by jZ, are more important for higher values of «; this observation is in agree-
ment with the estimates in (3.13) and (3.9), where higher values of « yield larger
errors for Scheme 2.1, if k, I, m are suitably close together. For example, in the case
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Fic. 3. Comparison of different fully resolved (MC) simulations with coarse-grained q = 10,
coarse-grained q = 50, coarse-grained q = 50 with corrections, and coarse-grained q = 200 with
corrections. The potential here is the decaying potential (5.1) with o« = 1.5. The results from the
3rd-order Scheme 2.2 with ¢ = 50 are identical to the results from the 2nd-order Scheme 2.1 with
q = 10.

when a = 0.8 (see Figure 2), the 2nd-order coarse-graining Scheme 2.1 provides very
good approximation even for high levels of coarse-graining (large ¢), whereas, in the
case o = 1.5 (see Figure 3), the 2nd-order coarse-graining Scheme 2.1 is not sufficient.
For larger values of ¢ the 3rd-order Scheme 2.2 appears to be a much better approxi-
mation than the 2nd-order coarse-graining Scheme 2.1 as ¢ increases. Notice that the
results from the 3rd-order Scheme 2.2 with ¢ = 50 are identical to the results from the
2nd-order Scheme 2.1 with ¢ = 10. Not shown here, the results for a = 1.5 obtained
by the 3rd-order Scheme 2.2 with ¢ = 200 were much better when compared to the
results from the 2nd-order Scheme 2.1 with ¢ = 50.

5.2. Competing short-/long-range interactions and potential-splitting.
In this example we consider a combination of short-range, repulsive, and long-range at-
tractive interactions. These types of potentials arise in numerous applications modeled
by lattice or off-lattice systems in fields, such as epitaxial growth or macromolecular
systems. The potential used in the tests is given by

1( « > lr—yl<a
3 — — PR - = &,
(5.2) J(x—y) = o=yl lz =yl x,y € A,

2
KN< @ a 2), |z —y| > a,
-yl Jr—y

where K is such that % = Zi\/:/lz J (i) is fixed and a = % . This interaction resembles
an off-lattice Lennard-Jones potential, where the parameter a regulates the length of
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Fic. 4. Comparison of hysteresis using the potential (5.2) of the microscopic process (MC)
with the coarse-grained process q = 8, the coarse-grained process q = 8 with corrections using the
full potential, and the coarse-grained process q = 8 with corrections using the split potential for
BJo = 5.0. We note that with corrections the antiferromagentic behavior is accurately predicted,
while the double hysteresis width is not estimated properly. The inset shows the potential given by
(5.2).

the short-range repulsive particle interactions (here it is three neighbors). However, in
the lattice case we insert in the long-range piece a rescaling by Ky (where Kn — o0
as N — 00), in order to keep the total strength of the interaction Jy fixed as the lattice
size N — oo, ensuring a nontrivial thermodynamic limit. In fact, in our microscopic
simulations we have also tested for finite-size effects by simulating for various lattice
sizes N. Then, the microscopic system (¢ = 1) exhibits, at low temperature (see
Figure 5), a complex hysteresis diagram with a double hysteresis separated by an
antiferromagnetic region.

The coarse-graining Scheme 2.1 fails to capture this behavior, while Scheme 2.2
does a much better job resolving the antiferromagnetic region. Furthermore, it predicts
qualitatively the double hysteresis, albeit in a shifted location. In Figure 5 we present
the hysteresis using the potential given by (5.2) for the microscopic process, the coarse-
grained process with ¢ = 8, and the coarse-grained process with ¢ = 8 and corrections.
We remark that similar results hold for ¢ = 16, while for ¢ = 32 the system is
(over-)coarse-grained, especially the repulsive short-range interactions. This behavior
is expected according to the estimates in sections 3.2.1 and 3.4.2.

Implementing the 3rd-order scheme requires dense matrix-vector multiplication in
the evaluations of U(?); for example, 52, is a matrix of size 128 x 128 in the example
presented. To overcome this problem, as we discussed in section 3.4.2 we break up the
potential into a short-range piece and a smooth long-range piece with r. = 16. This
is possible since the smoothness of the long-range piece implies that the error from
coarse-graining is small; see (3.2). In Figure 4 we present the hysteresis diagram using
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the potential-splitting and applying Scheme 2.2 just for the short-range piece and
Scheme 2.1 for the long-range piece. It is observed that the predictions of hysteresis
using potential-splitting are essentially identical to the results from simulations when
using the full potential.

This last example demonstrates that appropriately decomposing the potential can
provide an efficient way of including the multibody terms and reduce the computa-
tional complexity of the multibody terms. A CPU time comparison between direct
numerical simulations (¢ = 1) and the different coarse-graining schemes and their
implementations is shown in Table 1. The case shown here is the calculation of the
hysteresis diagram, Figure 4. The potential-splitting ends up reducing the computa-
tional cost of Scheme 2.2 to the level of the much less accurate Scheme 2.1.

TABLE 1
CPU cost comparisons of different CG algorithms for (5.2).

N = 1000, 8Jg = 6.0

Process CPU (secs)
q =1 (no coarse-graining) 322192.06
q=38 5232.62
q = 8¢ (no splitting) 69473.09
q = 8¢ (splitting) 6900.72

In Figure 5 we depict the hysteresis results in the same setup as in Figure 4
except at higher temperatures. We observe that the accuracy of Scheme 2.1 as well as
Scheme 2.2 is better at higher temperatures. This is expected because the multibody
interactions are proportional to 32, which results in smaller, and hence unnecessary,
corrections at higher temperatures.

In conclusion, we observe by comparing Figures 4 and 5 that at low temperatures,
even Scheme 2.2 can be insufficient to predict quantitatively the hysteresis diagram.
Another perspective, also based on the decomposition in section 3.4.2, is presented in
the forthcoming [13], which is designed specifically for systems with combined short-
and long-range interactions such as (5.2). The principal idea there is to build a better
initial guess than (1.5) for the cluster expansion (1.7). For this purpose we introduce a
different prior Py which already includes multibody coarse cell correlations, associated
with the short-range interactions.

5.3. Multibody terms and autocorrelations. In Figure 6 we show the im-
pact of the corrections on the dynamics and the fluctuations of the coarse-grained
process {n;} by comparing autocorrelations of the microscopic and coarse-grained
simulations. The potential used here is piecewise constant with an interaction radius
L = 100, as discussed in section 3.1. The temperature is such that 5.Jy = 4.35. We
choose this value of 3, as it is close to the mean field critical temperature for such
long-range systems. Thus there is enough noise in the system to generate short jumps
between the metastable states; see the inset of Figure 6.

In the autocorrelation comparisons for the different coarse-graining schemes, we
study the stationary time series of the total coverage X(t) = > 5, 0t(z); the
autocorrelation of the time series {X;} as a function of the lag 7 is defined as

E[(Xiqr — ) (Xi — )]

v(h) = E{(X, — )7] ,

where v = E[X;] and {X;} is assumed to be a stationary time series. Figure 6 demon-
strates that for systems with long-range interactions the multibody terms in the
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Fi1c. 5. Comparison of hysteresis for the potential (5.2) at higher temperatures than Figure 4: we
compare the microscopic process (MC) with the coarse-grained process ¢ = 8 and the coarse-grained
process q = 8 with corrections for 3Jo = 1.0. The inset is the comparison for 3Jo = 2.0; we note
that Scheme 2.2 is more appropriate at lower temperatures.

higher-order coarse-graining schemes are important for approximating the correct
dynamical behavior and the random fluctuations of the microscopic process.

5.4. Switching times and phase transitions. We use the coarse-graining
schemes described and analyzed in the previous sections for efficient simulations in the
spin systems that undergo phase transitions. Within the context of spin-flip dynamics
a typical example is nucleation of spatial regions of a new phase or a transition
from one phase (all spins equal to zero) to another (all spins equal to one). In such
simulations the emphasis is on the pathwise properties of the coarse-grained process so
that the switching mechanism is simulated efficiently while approximation errors are
controlled. We compare simulations on the microscopic level with those performed on
different levels of coarse-graining hierarchy parametrized by q. A quantity of interest
that is calculated is the mean time 7r = E[rr], which is defined as the time until
the coverage reaches a predetermined threshold C'T in its phase transition regime.
The random exit time is defined as 7 = inf{t > 0] ¢ > CT}. We estimate the
microscopic probability distributions p, and coarse-grained p? from the simulations.
We record a phase transition at the time 7p when the total coverage X; defined in
the previous section exceeds the threshold value C™ = 0.9. The potential used in the
simulations is a piecewise potential with the interaction radius L = 100 and 8Jy = 6.0.
Note that §Jy = 6, which is above the critical value of §.Jy = 4.0, corresponds
to a bistable regime where two phases can coexist. Random fluctuations allow for
transitions between the two equilibrium states. In Table 2 we look at a relative error
of the mean exit time 7 = E[rr| for different levels of coarse-graining, and we observe
that the relative error from Scheme 2.1 increases with the size of the coarse-graining. In
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Fic. 6. Autocorrelation of the time series for the cases fully resolved ¢ = 1 (MC), coarse-
grained g = 100, and coarse-grained with corrections ¢ = 100. The potential is piecewise constant
with interaction range L = 100 and BJo = 4.35. A typical time series is shown in the inset.

TABLE 2
Approzimation of ¥r , ||p% — prllp1, and the relative error. Measurements based on averaging
over 10000 independent realizations for each q.

N = 1000, B8Jp = 6.0, h = 0.4406
CGMC without corrections

L q T loT — p-l[1 Rel. err.
100 1 486.9 0 0
100 10 491.7 0.0022 1.16%
100 20 503.9 0.0025 3.68%
100 25 511.7 0.0032 5.27%
100 50 584.1 0.0074 20.17%
100 100 980.9 0.0246 101.82%

CGMC with corrections

L q T o — prllz1 Rel err.
100 50 480.8 0.0025 1.08%
100 100 479.0 0.0028 1.45%

Table 2 we also present the results from the simulations using Scheme 2.2 and observe
that even at high levels of coarse-graining in the 3rd-order scheme the relative error of
the mean exit time is very small. In Figure 7 we plot approximations of the probability
density functions (PDFs) of 7p and compare them to the microscopic PDF for different
values of coarse-graining ¢ and the respective corrections. We observe that including
the multibody interactions improves the approximation of the PDF substantially. In
Table 3 and Figure 8 we present results from simulations that were carried out under
the same conditions but at a different (lower) temperature. The results for the higher-
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4 o skiaa
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Non-dim time

F1G. 7. PDF: comparisons between different coarse-graining levels q. The estimated mean times
for each PDF are shown in the legend. All PDFs are comprised of 10000 samples, and the histogram
is approximated by 200 bins. The potential is a piecewise constant potential with the interaction
range L = 100 and BJy = 5.0.

order scheme qualitatively show an improvement. However, the error increases in the
case of lower temperature. This is expected because ¢, defined in (3.4), depends on
the inverse temperature (.

TABLE 3
Approzimation of 71 , ||p% — prllp1, and the relative error. Measurements based on averaging
over 10000 independent realizations for each q.

N = 1000, 8Jp = 8.0, h = 0.38375
CGMC without corrections

L q T o — prll1 Rel. err.
100 1 367.9 0 0
100 10 379.4 0.0032 3.13%
100 20 398.3 0.0038 8.25%
100 25 416.1 0.0046 13.09%
100 50 569.4 0.0131 54.78%
100 100  1482.23 0.0416 302.9%

CGMC with corrections
L q T llo? — prllz1 Rel. err.
100 50 335.9 0.0042 8.68%
100 100 290.6 0.0072 21.00%

6. Connections to coarse-graining of polymer chains: The McCoy—
Curro scheme. So far we have studied coarse-graining of lattice systems with a
focus on understanding the error from coarse-graining and developing a methodol-
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35 |

I
o ——MC, E[  ]=367.89
®  2nd-order CGMC q=10, E[ © ]=379.3864
- 2nd-order CGMC g=100, E[ 1 ]=1482.23
@ 3rd—order CGMC g=100, E[ t |=290.64

Non-dim time

F1G. 8. PDF: comparisons between different coarse-graining levels q. The estimated mean times
for each PDF are shown in the legend. All PDFs are comprised of 10000 samples, and the histogram
is approximated by 200 bins. The potential is a piecewise constant potential with the interaction
range L = 100 and BJo = 8.0. Note that the external field h is lower so that it induces faster phase
transitions.

ogy that enables deriving higher-order schemes when required. Next we proceed to
explore the connections and implications of these methodologies to coarse-graining
of macromolecular systems. Coarse-graining of macromolecular systems has attracted
considerable attention in polymer science and engineering [17, 20]. Key challenges
include the presence of complex short- and long-range interactions similar to (3.6), as
well as the off-lattice nature of the models. In this section we discuss the connection
and extension of the analytical and computational strategies for coarse-graining lat-
tice systems presented in this paper as well as in [9, 14, 12] to more complex off-lattice
macromolecular systems, specifically coarse-graining of polymer systems.

6.1. McCoy—Curro scheme for off-lattice systems. We present a coarse-
graining procedure for the united atom (UA) model, which is known in the polymer
science coarse-graining literature as the McCoy—Curro scheme [2, 4, 6, 23]. This scheme
was first developed for the coarse-graining of small molecules in [19] and later extended
to polymers in [4]. The interactions in the system consist of bonded interactions (Hp),
which are short-range interactions between neighboring atoms in an individual poly-
mer chain. They are defined by the potential U, which is a function of the bond
length r, the bond angle O, and the torsion angle ®, i.e., H, = > Uy(r,0,P). An-
other contribution to the Hamiltonian is from nonbonded interactions (H,;), which
represent long-range interactions between atoms of different chains and are typically
modeled with a Lennard-Jones two-body potential U,,;. The Hamiltonian also includes
total kinetic energy (Hpin) of the system, Coulomb interactions (H.qy) associated
with charged macromolecules, and terms which describe the interactions associated
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with walls (Hyai). The entire UA model consists of n macromolecules in a fixed
volume at the inverse temperature (3, and each macromolecule consists of m atoms.
Hence the system consists of N = nm microscopic particles at positions denoted by
X = (z1,...,2n), where x; € R? is the position of the ith atom. The Hamiltonian of
the system is given by

(6.1) HN(X) = Hb(X) + Hnb(X) + Hcoul(X) + Hwa”(X) + Hkm(X) .

The corresponding canonical Gibbs measure is given by
1
(6.2) u(dX) = Ee—ﬁHMX) [[dz:, z= / e PN T das

The coarse-graining of this system is carried out by grouping [ of the UAs together by
creating chains consisting of a total of M = N/l “superatoms.” The positions of the
CG particles are denoted by the coarse variables Q = (q1,...,qun), where ¢; € R? is
the position of the center of mass of the ith superatom. Similarly to the lattice case the
first task consists in deriving the coarse-grained Hamiltonian and the corresponding
coarse-grained interaction potentials. The exactly coarse-grained Hamiltonian H;(Q)
is defined as in the lattice case (see (1.4)):

(6.3) i@ | PN gx
{XeX|FX=Q}

where F denotes the projection of the microscopic variable to the coarse variable.

For the sake of simplicity we focus on the case where only bonded and nonbonded
interactions are present in the Hamiltonian, i.e., Hy(X) = Hp(X) + H,p(X). From
the expression (6.3) we have

= Lliog - BUHX) +Han(X)) gy
B (XeX|FX=Q}

(6.4) Hu(Q)

Although (6.4) is not additive, the following approximation is made:

where Hy,, H,;, are the coarse-grained bonded and nonbonded Hamiltonians H; and
H,,;, respectively, both to be calculated in the following step. Since (3 is proportional
to the inverse temperature, the approximation for (6.4) is expected to hold only at
higher temperatures. In the second step, we assume Hy, = >. Uy, and H,p = > Upyp,
respectively, where Uy, and U, are the corresponding coarse-grained potentials. It is
assumed that Uy (r, ©, ®) can be further simplified and can be written as Uy(r, 0, ®) =
Ur + Ub@ + U;D . Similarly, it is assumed that the long-range term U, depends only
on binary interactions between coarse-grained particles and is given by the average of
the interactions between two isolated molecules at positions ¢;, g5,

_ 1 .
(6.6) Unb(lgi — g5l) = =3 1og/ e=Bu X |
p {X:FX=(qi.q;)}

where the Ha{niltonian FInb is the detailed description of two isolated molecules. In
other words, Uys(|¢; — ¢;|) is a two-body coarse-grained interaction.
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These simplifying assumptions allow for the breakup of the intractable computa-
tional evaluation of (6.4). For instance, (6.6) is calculated through atomistic simula-
tions, performed on only two isolated oligomers by sampling the phase space. Thus
we can obtain the PDF between the coarse-grained particles at a given distance, and
the effective bonded coarse-grained potential U,,; is subsequently calculated by taking
a logarithm, similarly to (6.4). All of these calculations need to be repeated whenever
the parameters N, V, and T are changed.

On the other hand, from a numerical analysis perspective, the aforementioned
assumptions are nothing but numerical approximations of (6.4). When compared to
direct numerical simulations, this coarse-graining approach yields good results in some
regimes; however, deviations can also be observed both in the structure and dynam-
ics [1, 6]. Differences could be attributed to the simplifying set of assumptions that
are necessary for the derivation of coarse-grained potentials such as (6.6). For ex-
ample, as discussed earlier in this section, this error is expected to be small in rela-
tively higher temperatures, when the approximation (6.5) is justified, but this is not
necessarily true at lower temperatures. A detailed understanding of the parameter
regimes where the approximations are valid is still lacking for the macromolecular
case. Nonetheless, our error analysis for lattice systems directly addresses this issue in
terms of Schemes 2.1 and 2.2. Next we discuss the connection of such schemes to the
McCoy—Curro methodology.

6.2. McCoy—Curro scheme on the lattice. In order to better understand
the McCoy—Curro scheme, we present it in the context of lattice systems, drawing
some analogies between the coarse-graining of polymer chains and coarse-graining
in lattice systems. An important fact that is highlighted in section 3 is the role of
the multibody interactions when studying complex interactions which are absent in
the present coarse-graining methods applied to macromolecular systems (see (6.6)).
According to the McCoy—Curro scheme the coarse-grained Hamiltonian is given by

(6.7) MOy = — 3 TMOC (g, k1)),
k,lEAA[

and, in analogy to (6.6),
_ 1
(6.8) OMC e, k= 1)) = — 5 1og (B [0 gy, ] )

where the Hamiltonian between two isolated coarse cells is defined as

(6.9) Heyo()=—5 3 J—yool).
z€Cy,yeC

If we rewrite the UMCC (i, my, |k —1|) defined in (6.8) in terms J(k, 1), then we obtain

_ 1. 1 - .
UMEC (o, |k — 1)) = §J(/€J)77k m— Blog(IE[e BAT@) e, my])
1. 1
= J (k. )y —  log (/ e PRI Pdo|ny, m)>~
g {o:F (o) =(mesm) }
(6.10)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/28/12 to 128.119.169.61. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MULTIBODY INTERACTIONS IN COARSE-GRAINING 1013

Equation (6.10) is similar to (2.6); however, it is not defined on the entire lattice.
Expanding as in section 2.3, we obtain

HCC() == Y G nem + 3 5 1og(Ble A7) )
k,l€An k,l
UL % log[1 + E[(~BA Tk ()] + -]
k,1€ANM k,l

Tk, D+ gE[(AJkl(g))2] .
M k,l

Il
]

k,

r7(0
(6.11) =H"

= -

€
(n) + HY () + - - - ( higher-order two-body interactions).

From the calculations above it follows that the McCoy—Curro scheme is asymptotically
identical to a scheme using HY,(n) and H},(n) given in section 2.4. However, the
three-body terms given by H3z,(n) in Scheme 2.2 are absent. As we have seen in
sections 3 and 5, including the three-body interactions is crucial to obtain higher
accuracy, especially in low temperature regimes.

It should also be noted that from the computational point of view the schemes
in section 2.4 are much more efficient than the McCoy—Curro scheme. Implementing
the McCoy—Curro scheme requires calculating U (n, mi, |k — 1]), using (6.8) over
all possible ranges of ng,n;, |k — l|, and repeating all of the calculations for each
temperature (.

In Figure 9 we present the results for the simulations ignoring the three-body
terms, i.e., using only HY,(n) and H},(n). The setup of the simulation is the same as
in section 5.2. It is observed that using only HY,(n) and H},(n) the scheme fails to
capture both antiferromagnetic behavior and the double hysteresis exhibited by the
microscopic process. This observation further emphasizes the importance of multibody
interactions for deriving higher-order coarse-graining schemes.

7. Conclusion. A main premise of this paper as well as its precursor [14] is
to view coarse-graining as a numerical approximation of coarse observables, which
otherwise would have to be calculated exactly, using computationally intractable mi-
croscopic simulations. As expected, these approximations should produce numerical
error that needs to be assessed and controlled. In [14] we derived such coarse-graining
schemes as truncations of cluster expansions of the renormalization map around an
initial coarse-graining approximation, e.g., (1.5) in the context of this paper. The
higher-order terms in these expansions contain multibody interactions, given in terms
of explicit formulae, e.g., Scheme 2.2. Coarse-graining schemes in the applied sciences
literature include only two-body terms between coarse variables, as multibody terms
are hard to evaluate computationally, even if an analytical formula is known, as in
[14]. On the other hand, it is also understood that such terms can be crucial especially
at lower temperatures.

Here we study these two related issues. We focus our attention on lattice systems
as a paradigm for coarse-graining of an extended stochastic system; however, our
general approach is expected to be applicable to other examples of coarse-graining such
as in macromolecular systems. First, we study the relative importance of multibody
versus two-body coarse-grained interactions and their dependence on the details of
the particle-particle interaction potential, the temperature, and other parameters.
Second, we derive strategies for the efficient implementation of multibody interactions
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F1G. 9. Comparison of the hysteresis behavior using a Lennard—Jones-type potential of the mi-
croscopic process (MC), coarse-grained process using Scheme 2.2 (HS,(n) + HL, (n) + H3,(n)), the

coarse-grained process Scheme 2.1 (H]OM (n)) , and the coarse-grained process using only H]OM (n) and

H} () for BJo =5.0. We note that with corrections using only HS;(n) and H}(n) the simulation

fails to capture the antiferromagnetic behavior and double hysteresis exhibited by the microscopic
process.

based on our error analysis, by either (a) compressing the multibody interactions by
truncating them within arbitrary tolerance, or (b) decomposing general interacting
potentials into a short-range and singular part, as well as a long-range, smooth part;
multibody terms are necessary only for the former term, but they are computationally
inexpensive due to the short-range interactions.

An alternative perspective based on the above decompositions is presented in the
forthcoming [13], designed specifically for systems with combined short- and long-
range interactions such as (5.2). As we observed in the comparison of Figures 4 and
5, even the multibody Scheme 2.2 may be insufficient to predict quantitatively, at
low temperatures, the exact hysteresis diagram. The principal idea in [13] is to build
a better initial guess than (1.5) for the cluster expansion (1.7). For this purpose we
introduce a different prior Py which already includes multibody coarse cell correlations,
associated with the short-range interactions.
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