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REALIZATION THEORY FOR RATIONAL SYSTEMS:
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JANA NĚMCOVÁ† AND JAN H. VAN SCHUPPEN†

Abstract. In this paper we solve the problem of the existence of rational realizations of response
maps. Sufficient and necessary conditions for a response map to be realizable by a rational system
are presented. We provide also the characterization of the existence of rationally observable and
canonical rational realizations for a given response map.
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1. Introduction. The motivation to investigate realization theory of rational
systems is the use of rational systems as models of phenomena in life sciences, in
particular, in systems biology. For example, rational systems occur as models of
metabolic, genetic, and signaling networks. They can be found also in engineering,
physics, and economics. Moreover, as Bartosiewicz stated in [3], the theory of rational
systems could be simpler and more powerful, once it is developed, than the theory of
smooth systems.

The realization problem for rational systems considers a map from input functions
to output functions and asks whether there exists a finite-dimensional rational system
with an initial condition such that its input/output map is identical to the considered
map. Such a system is then called a realization of the considered input/output map. A
generalization, which is not addressed in this paper, is to regard any relation between
observed variables and ask for a realization as a rational system. Another goal of
realization theory is to characterize certain properties of realizations. One wants
to find the conditions under which the systems realizing the considered map are
observable, controllable, or minimal. The relations between realizations having these
properties are also of interest, since they can be applied in control and observer
synthesis and in system identification.

Polynomial and rational systems are a special class of nonlinear systems admitting
a more refined algebraic structure. Realization theory for discrete-time polynomial
systems was formulated by Sontag in [16]. Later, in [18], Wang and Sontag published
their results on realization theory for polynomial and rational continuous-time systems
based on the approach of formal power series in noncommuting variables and on the
relation of two characterizations of observation spaces.

Another approach to realization theory for polynomial continuous-time systems,
motivated by the results of Jakubczyk in [11] for nonlinear realizations, is introduced
by Bartosiewicz in [1, 4]. This approach is based on [16]. Furthermore, in [3], Bar-
tosiewicz introduces the concept of rational systems and deals with the problem of
immersion of smooth systems into rational systems. Since this problem is similar to
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the problem of rational realization, there is an analogy between our approach to the
realization theory for rational systems and Bartosiewicz’s results presented in [3, 4].

Compared to the realization theory for rational systems developed by Wang and
Sontag in [18], our approach is different. We apply the algebraic-geometric approach
rather than techniques based on formal power series. We solve the same problem
of existence of rational realizations (compare Theorem 5.2 in [18] and Theorem 5.16
in this paper). In addition we deal with the questions of rational observability and
algebraic reachability of rational realizations which are not treated in [18]. Another
major difference is that the realizations within the class of rational systems which we
consider do not have to be affine in the inputs as assumed by Wang and Sontag. This
is motivated by the planned application of realization theory to biochemical systems
where the inputs may enter in a rational way.

The first step, motivated by biochemical reaction networks in developing a real-
ization theory for rational positive systems is done in [17]. We leave the problem of
rational realization with the positivity constraint for further research.

The organization of the paper is as follows. Terminology, notation, and mathe-
matical preliminaries are provided in section 2. Section 3 introduces the concept of
rational systems, and section 4 introduces the classes of admissible inputs which are
considered domains for response maps. The problem of rational realization is formu-
lated, and necessary and sufficient conditions for the existence of a rational realization
of a response map are presented in section 5. Section 6 deals with canonical rational
realizations. Section 7 concludes the paper.

2. Algebraic preliminaries. In this section we introduce algebraic-geometric
framework in which we formulate the problem of rational realization. Note that the
methods of algebraic geometry are already known for control and system theory; see,
for example, [6, 8, 9]. For the basic definitions and theorems of commutative algebra
and algebraic geometry, see [5, 7, 12, 13, 19].

By a polynomial in finitely many indeterminates X1, . . . , Xn with real coeffi-
cients, we mean a sum

∑
k∈Nn c(k)

∏n
i=1X

k(i)
i where only finitely many coefficients

c(k) ∈ R are nonzero. We denote the ring of all polynomials in n variables with real
coefficients by R[X1, . . . , Xn]. Because the field R is an integral domain, so is the al-
gebra R[X1, . . . , Xn]. Therefore, we can define the field of quotients of R[X1, . . . , Xn]
as the set of fractions {p/q|p, q ∈ R[X1, . . . , Xn], q �= 0}. This field is denoted by
R(X1, . . . , Xn), and we refer to its elements as rational functions. Generally, we use
the notation Q(S) for the field of quotients of an integral domain S. For example,
Q(R[X1, . . . , Xn]) = R(X1, . . . , Xn). By R/I, for a ring R and an ideal I ⊆ R, we
denote the quotient (factor) ring of R modulo I.

Polynomial and rational functions on varieties. A real affine variety X is
an algebraic variety in R

n, i.e., there are finitely many f1, . . . , fN ∈ R[X1, . . . , Xn]
such that X = {(x1, . . . , xn) ∈ R

n|f1(x1, . . . , xn) = · · · = fN (x1, . . . , xn) = 0}. We
say that a variety is irreducible if we cannot write it as an union of two nonempty
varieties which are its strict subvarieties. Let I ⊆ R[X1, . . . , Xn] be the ideal of all
polynomials which are zero at every point of the variety X . By a polynomial on a
variety X , we mean a map p : X → R for which there exists q ∈ R[X1, . . . , Xn]
such that p = q on X . The algebra of all polynomials on X , denoted by A, is then
isomorphic to R[X1, . . . , Xn]/I. From Hilbert basis theorem and from the fact that
the ideals in the quotient ring R[X1, . . . , Xn]/I are in one-to-one correspondence with
the ideals of R[X1, . . . , Xn] containing I, every ideal in R[X1, . . . , Xn]/I is finitely
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generated. Therefore, A is a finitely generated algebra of polynomials. Since X is an
irreducible variety, A is an integral domain. Therefore, we can define the field Q of
quotients of A. The elements of Q are called rational functions on X .

On R
n we consider the Zariski topology, which is a topology where the closed sets

are defined as real affine varieties. A variety X ⊆ R
n is endowed with the related

topology, the Zariski topology on X . We refer to an open/closed/dense set in Zariski
topology as to Z-open/Z-closed/Z-dense set. More details can be found in [10, 12].

Rational vector fields. Let X be an irreducible real affine variety, let A be the
algebra of polynomials on X , and let Q denote the field of rational functions on X .

Definition 2.1. A rational vector field f on X is an R-linear map f : Q −→ Q
such that f(ϕ · ψ) = f(ϕ) · ψ + ϕ · f(ψ) for ϕ, ψ ∈ Q.

We say that the rational vector field f is defined at the point x ∈ X if f(Ox) ⊆ Ox,
where Ox = {ϕ ∈ Q|ϕ is defined at x}. The set X(f) of all points at which a rational
vector field f is defined is given as X(f) = {x ∈ X |f(Ox) ⊆ Ox}.

Definition 2.2. The trajectory of a rational vector field f from a point x0 ∈
X(f) is the map x : [0, T ) → X(f) ⊆ X such that for t ∈ [0, T ) and ϕ ∈ A

d

dt
(ϕ ◦ x)(t) = (fϕ)(x(t)) and x(0) = x0.

Note that it is sufficient to consider only the polynomials ϕ ∈ A in the definition
above, as it is proved in [3].

Theorem 2.3 (see [3], Theorem 1). For any rational vector field f and any
point x0 ∈ X(f), there exists a unique trajectory of f from x0 defined on the maximal
interval [0, T ) (T may be infinite).

Proof. The proof of this statement can be found in [2, 3].

3. Rational systems. We consider rational systems as systems on irreducible
real affine varieties with the dynamics defined by rational vector fields and with output
functions having rational components. This concept of rational systems is introduced
in [3], and we recall it in this section.

We consider an input space U to be an arbitrary set U ⊆ R
m. As an output

space, we consider R
r. By a slight modification of [3, Definition 2], we define rational

systems as follows.
Definition 3.1. A rational system Σ with an input space U and an output space

R
r is a quadruple Σ = (X, f, h, x0), where

(i) X is an irreducible real affine variety;
(ii) f = {fα|α ∈ U} is a family of rational vector fields on X;
(iii) h : X → R

r is an output map with rational components, i.e., hi ∈ Q for
i = 1, . . . , r;

(iv) x0 ∈ X is an initial state such that all hi, i = 1, . . . , r and all fα, α ∈ U are
defined at x0.

The states at which all components of the output function h are defined and at
which at least one of the rational vector fields fα, α ∈ U is defined is a Z-dense open
subset of X ; see [3]. If U is a finite set, then the set of points at which all components
of h and all vector fields fα, α ∈ U are defined is also a Z-dense open subset of X .

As the space of input functions, we consider the set Upc of piecewise-constant
functions u : [0,∞] → U . Let u ∈ Upc; then u = (α1, t1) . . . (αnu , tnu) means that for
t ∈ (

∑i
j=0 tj ,

∑i+1
j=0 tj ], the input u(t) = αi+1 ∈ U for i = 0, 1, . . . , nu − 1, t0 = 0, and

u(0) = α1. Every input u ∈ Upc has a time domain [0, Tu], where Tu =
∑nu

j=1 tj . If u =
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(α1, t1) . . . (αn, tn), v = (β1, s1) . . . (βk, sk) ∈ Upc, then (u)(v) ∈ Upc is an input which
we get by concatenating v to u, i.e., (u)(v) = (α1, t1) . . . (αn, tn)(β1, s1) . . . (βk, sk).
To express that the input u was applied only on time domain [0, t] ⊆ [0, Tu], we write
a subindex [0, t] to u like u[0,t]. The empty input e is such input that Te = 0.

Consider a rational system Σ = (X, f, h, x0). The trajectory of the system Σ
corresponding to a constant input u = (α, Tu) ∈ Upc is the trajectory of the ratio-
nal vector field fα from x0, i.e., it is the map x(·;x0, u) : [0, Tu] → X for which
d
dt (ϕ ◦ x)(t;x0, u) = (fαϕ)(x(t;x0, u)) and x(0;x0, u) = x0 for t ∈ [0, Tu] and for
ϕ ∈ A. Note that a trajectory of a vector field on a closed interval is defined as
in Definition 2.2; see [4]. The trajectory of the system Σ corresponding to an input
u = (α1, t1) . . . (αnu , tnu) ∈ Upc with Tu =

∑nu

j=1 tj is the map x(·;x0, u) : [0, Tu] → X

such that x(0;x0, u) = x0, and x(t;x0, u) = xαi (t−
∑i−1

j=0 tj) for t ∈ [
∑i−1

j=0 tj ,
∑i

j=0 tj ],
t0 = 0, i = 1, . . . , nu, where xαi : [0, ti] → X is a trajectory of a vector field fαi from
the initial state x(

∑i−1
j=0 tj ;x0, u) = xαi−1 (ti−1) for i = 2, . . . , nu and from the initial

state x0 for i = 1. Since a trajectory of a rational system Σ does not need to exist
for every input u ∈ Upc (see [3]), we define the set of admissible inputs for Σ.

Definition 3.2. Let Σ = (X, f, h, x0) be a rational system. We define the set of
admissible inputs Upc(Σ) for the system Σ as a subset of the set of piecewise-constant
inputs Upc for which there exist a trajectory of Σ.

Note that for every u ∈ Upc(Σ) it holds that u[0,t] ∈ Upc(Σ) for every t ∈ [0, Tu].
We conclude the convention that a trajectory of a rational system Σ with an initial
state x0 ∈ X is for the empty input e equal to x0, i.e., x(0;x0, e) = x0. The set of
admissible inputs Upc(Σ) may contain only the empty input e.

Remark 3.3. Every input of Upc has finitely many switching time-points. This
property is needed for the proof of irreducibility of the smallest variety containing a
reachable set of a rational system (see Proposition 5.5), which is used in the proof
of Theorem 6.1. It is also a necessary condition for proving that the set of functions
analytic at the switching time-points of such inputs is an integral domain (see Theo-
rem 4.4). This is the crucial property of a class of functions for which there exists a
rational realization.

4. Admissible inputs. Let U ⊆ R
m be an input space. We define the sets of

admissible inputs for rational systems with the values in U . These sets of inputs are
the sets on which the response maps studied with respect to the realization problem
for rational systems are defined.

Definition 4.1. A set Ũpc ⊆ Upc of input functions with the values in an input
space U ⊆ R

m is called a set of admissible inputs if
(i) ∀u ∈ Ũpc ∀t ∈ [0, Tu] : u[0,t] ∈ Ũpc,
(ii) ∀u ∈ Ũpc ∀α ∈ U ∃t > 0 : (u)(α, t) ∈ Ũpc,
(iii) ∀u = (α1, t1) . . . (αk, tk) ∈ Ũpc ∃δ > 0 ∀ti ∈ [0, ti + δ], i = 1, . . . , k :

u = (α1, t1) . . . (αk, tk) ∈ Ũpc.

Definition 4.2. Consider a set Ũpc of admissible inputs with the values in
U ⊆ R

m. Let u ∈ Ũpc. We denote the derivation of a real function ϕ : Ũpc → R at
the switching time-point Tu of the input (u)(α, t) ∈ Ũpc, where t > 0 is sufficiently
small and α ∈ U as

(Dαϕ)(u) =
d

dt
ϕ((u)(α, t))|t=0+.
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Let ϕ : Ũpc → R be a real function, and let u = (α1, t1) . . . (αk, tk) ∈ Ũpc for a set
Ũpc of admissible inputs. Consider the function ϕ̂u(t) = ϕ(u[0,t]) defined for t ∈ [0, Tu].
If t ∈ [

∑n
i=0 ti,

∑n+1
i=0 ti], n = 0, . . . , k−1, then ϕ̂u(t) = ϕ((α1, t1) . . . (αn, t−

∑n
i=0 ti)).

The derivation (Dαϕ)(u) is well defined if the function ϕ̂(u)(α,t)(t̂) = ϕ((u)(α, t̂)),
t̂ ∈ [Tu, Tu + t] is differentiable at Tu+.

We say that the map ϕ : Ũpc → R is smooth if the derivations Dα1 . . . Dαiϕ are
well defined on Ũpc for every i ∈ N and αj ∈ U, j = 1, . . . , i. To simplify the notation,
the derivation Dα1 . . . Dαiϕ can be rewritten as Dαϕ, where α = (α1, . . . , αi).

Definition 4.3. Consider a set Ũpc of admissible inputs with the values in
U ⊆ R

m. We say that a function ϕ : Ũpc → R is analytic at the switching time-
points of the inputs from Ũpc if for every input u = (u1, t1) . . . (uk, tk) ∈ Ũpc the
function

ϕu1,...,uk
(t1, . . . , tk) = ϕ((u1, t1) . . . (uk, tk))

is analytic, i.e., we can write ϕu1,...,uk
in the form of convergent formal power series

in k indeterminates. We denote the set of real functions ϕ : Ũpc → R which are
analytic at the switching time-points of the inputs from Ũpc by A(Ũpc → R). We refer
to the elements of A(Ũpc → R) as to the analytic functions on Ũpc.

Let ϕ be an analytic function on Ũpc. Then for every (u)(α, 0)(v) ∈ Ũpc

ϕ((u)(α, 0)(v)) = ϕ((u)(v)).(4.1)

Theorem 4.4. The set A(Ũpc → R) of analytic functions on a set Ũpc of admis-
sible inputs with the values in U ⊆ R

m is an integral domain.
Proof. To prove that A(Ũpc → R) is an integral domain, we prove that for

f, g ∈ A(Ũpc → R) it holds that if fg = 0 on Ũpc, then f = 0 on Ũpc or g = 0 on Ũpc.
Consider f, g ∈ A(Ũpc → R) such that fg = 0. Then fg(u) = 0 for every

u ∈ Ũpc. Let u ∈ Ũpc be an arbitrary input. Because f(u), g(u) ∈ R and because R is
an integral domain, the equality fg(u) = f(u)g(u) = 0 implies that either f(u) = 0
or g(u) = 0.

To complete the proof we have to prove that it is not possible that there exist
u, v ∈ Ũpc such that f(u) = g(v) = 0 and f(v), g(u) �= 0. Let us assume for a
contradiction that there exist such u = (α1, t

u
1 ) . . . (αk, t

u
k), v = (β1, t

v
1) . . . (βl, t

v
l ) ∈

Ũpc. Since u, v ∈ Ũpc, we derive from Definition 4.1(ii) that

∃ tv′
i ∈ [0, tvi ], i = 1, . . . , l : w = (α1, t

u
1 ) . . . (αk, t

u
k)(β1, t

v′
1 ) . . . (βl, t

v′
l ) ∈ Ũpc.

From Definition 4.1(iii), there exists δ > 0 such that w′ = (α1, t
u′
1 ) . . . (αk, t

u′
k )(β1, t

v′′
1 )

. . . (βl, t
v′′
l ) ∈ Ũpc for every tu

′
i ∈ [0, tui + δ), i = 1, . . . , k, and for every tv

′′
j ∈ [0, tv

′
j +

δ), j = 1, . . . , l. Because fg = 0 on Ũpc, it follows that 0 = f(w′)g(w′), and thus 0 =
fα1,...,αk,β1,...,βl

(tu
′

1 , . . . , t
u′
k , t

v′′
1 , . . . , tv

′′
k )gα1,...,αk,β1,...,βl

(tu
′

1 , . . . , t
u′
k , t

v′′
1 , . . . , tv

′′
k ) for tu

′
i

∈ [0, tui + δ), tv
′′

j ∈ [0, tv
′

j + δ), i = 1, . . . , k, j = 1, . . . , l. Hence,

fα1,...,αk,β1,...,βl
gα1,...,αk,β1,...,βl

= 0 on
∏

i=1,...,k

[0, tui + δ) ×
∏

j=1,...,l

[0, tv
′

i + δ).(4.2)

Because f, g ∈ A(Ũpc → R), it holds that fα1,...,αk,β1,...,βl
and gα1,...,αk,β1,...,βl

are
convergent formal power series in k+l indeterminates for all α1, . . . , αk, β1, . . . , βl ∈ U ,
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and k, l ∈ N. Since
∏

i=1,...,k[0, tui + δ) ×∏j=1,...,l[0, t
v′
i + δ) is an open connected set

in R
k+l, from (4.2) and from the fact that a ring of convergent formal power series

over R in finitely many indeterminates is an integral domain (this follows from [20,
Volume 2, Chapter 7, Theorem 1]), we derive that either

fα1,...,αk,β1,...,βl
= 0 on

∏
i=1,...,k

[0, tui + δ) ×
∏

j=1,...,l

[0, tv
′

j + δ)(4.3)

or

gα1,...,αk,β1,...,βl
= 0 on

∏
i=1,...,k

[0, tui + δ) ×
∏

j=1,...,l

[0, tv
′

j + δ).(4.4)

By assuming that either (4.3) or (4.4) holds, we come to a contradiction. This com-
pletes the proof.

Let us assume that (4.3) holds. Therefore, for τi ∈ [0, tui + δ), τ ′j ∈ [0, tv
′

j + δ), i =
1, . . . , k, j = 1, . . . , l, we get that fα1,...,αk,β1,...,βl

(τ1, . . . , τk, τ ′1, . . . , τ
′
l ) = 0. Because

fα1,...,αk,β1,...,βl
(0, . . . , 0, τ ′1, . . . , τ

′
l ) = fβ1,...,βl

(τ ′1, . . . , τ
′
l ), we derive that fβ1,...,βl

(τ ′1,
. . . , τ ′l ) = 0 for τ ′j ∈ [0, tv

′
j + δ), j = 1, . . . , l. Further, because v ∈ Ũpc, from Definition

4.1(iii) it follows that

∃ε > 0 ∀tj ∈ [0, tvj + ε), j = 1, . . . , l : (β1, t1) . . . (βl, tl) ∈ Ũpc.

Thus, fβ1,...,βl
can be represented as a convergent formal power series in l indetermi-

nates with a convergence domain containing
∏

j=1,...,l[0, t
v
j + ε). Since fβ1,...,βl

= 0
on
∏

j=1,...,l[0, t
v′
j + δ), then fβ1,...,βl

= 0 also on
∏

j=1,...,l[0, t
v
j + ε). Therefore,

fβ1,...,βl
(tv1 , . . . , t

v
l ) = f(v) = 0, which contradicts the assumption f(v) �= 0.

Let us assume that (4.4) holds. Then gα1,...,αk,β1,...,βl
(τ1, . . . , τk, τ ′1, . . . , τ ′l ) =

0 ∀ τi ∈ [0, tui + δ), τ ′j ∈ [0, tv
′

j + δ), i = 1, . . . , k, j = 1, . . . , l, and thus especially for
τi = tui , i = 1, . . . , k, and τ ′j = 0, j = 1, . . . , l. Therefore,

0 = gα1,...,αk,β1,...,βl
(t1, . . . , tk, 0, . . . , 0) = gα1,...,αk

(t1, . . . , tk) = g(u),

which contradicts the assumption g(u) �= 0.
Corollary 4.5. Because the set A(Ũpc → R) is an integral domain, we can

define the field Q(Ũpc → R) of the quotients of elements of A(Ũpc → R).

5. Rational realizations.

Response maps. In this paper we work with response maps rather than with
input/output (I/O) maps, since it is technically more convenient. The I/O maps are
considered to be the maps between the spaces of input and output functions (functions
of time) mapping an input to an output. We call a map which describes the outputs
immediately after applying finite parts of the inputs a response map.

Definition 5.1. Let Ũpc be a set of admissible inputs. A map p : Ũpc → R
r

is called a response map if its components pi : Ũpc → R, i = 1, . . . , r, are such that
pi ∈ A(Ũpc → R).

We posted extra assumptions on response maps in the definition above because
to solve the problem of realization of a response map by a rational system, we use
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the objects like observation algebra and observation field of a response map; see
Definition 5.9. These assumptions are necessary for well definedness of these objects.

Problem formulation. A rational system which for each input gives us the
same output as a response map p is called a rational realization of p (a rational
system realizing p). The realization problem for rational systems can be understood
as the problem of finding such a rational system for a given map. Formally we state
the problem of realization of a response map by a rational system as follows: Let
Ũpc be a set of admissible inputs. Consider a response map p : Ũpc → R

r. The
realization problem for rational systems consists of determining a rational system
Σ = (X, f, h, x0) such that

p(u) = h(x(Tu;x0, u)) ∀ u ∈ Ũpc and Ũpc ⊆ Upc(Σ).

Properties of rational realizations. Note that the solution of a rational sys-
tem Σ = (X, f, h, x0) corresponding to an input u ∈ Ũpc is a piecewise-analytic map
such that the intervals on which the solution is analytic are determined by the switch-
ing time-points of the input u.

Definition 5.2. Let Σ = (X, f, h, x0) be a rational realization of a response map
p : Ũpc → R

r, where Ũpc is a set of admissible inputs. Let A denote the algebra of
polynomial functions on X. We define the input-to-state map τ : Ũpc → X as the
map τ(u) = x(Tu;x0, u) for u ∈ Ũpc. The map τ∗ determined by τ is defined as
τ∗ : A→ A(Ũpc → R) such that τ∗(ϕ) = ϕ ◦ τ ∀ ϕ ∈ A.

To simplify further reference, we state some properties of the map τ∗ in Proposi-
tion 5.3. The proof of this proposition is omitted because it directly follows from the
definition of τ∗.

Proposition 5.3. Let Σ = (X, f, h, x0) be a rational realization of a response
map p : Ũpc → R

r, where Ũpc is a set of admissible inputs. Let A be the algebra
of polynomials on X, let ϕ1, . . . , ϕk ∈ A, k < ∞ be such that A = R[ϕ1, . . . , ϕk],
and let Q denote the field of rational functions on X. Then the map τ∗ : A →
A(Ũpc → R) defined in Definition 5.2 is a homomorphism, and τ∗(R[ϕ1, . . . , ϕk]) =
R[τ∗ϕ1, . . . , τ

∗ϕk]. Moreover, the map τ̂∗ : A/Ker τ∗ → R[τ∗ϕ1, . . . , τ
∗ϕk], defined

as τ̂∗([ϕ]) = τ∗ϕ for every ϕ ∈ A, is an isomorphism. The map τ̂∗ can be extended
to an isomorphism of the fields Q(A/Ker τ∗) and R(τ∗ϕ1, . . . , τ

∗ϕk).
The definitions of algebraic reachability (Definition 5.4) and rational observability

(Definition 5.6) of rational realizations are based on [3, Definition 3,4].
Definition 5.4. Let Σ = (X, f, h, x0) be a rational realization of a response map

p : Ũpc → R
r, where Ũpc is a set of admissible inputs. The rational system Σ is said

to be algebraically reachable (from the initial state) x0 if the reachable set

R(x0) = {x(Tu;x0, u) ∈ X |u ∈ Ũpc ⊆ Upc(Σ)}

is Z-dense in X.
Proposition 5.5. Let Σ = (X, f, h, x0) be a rational system as in Definition 5.4.

Then the closure Z-cl(R(x0)) of the reachable set R(x0) in Zariski topology on X is
an irreducible variety.

Proof. The Zariski closure of the reachable set R(x0) is the smallest variety
in X containing R(x0), which is given as Z-cl(R(x0)) = {x ∈ X |ϕ(x) = 0 ∀ ϕ ∈
A such that ϕ = 0 on R(x0)}. Therefore, by considering τ : Ũpc → X and τ∗ : A →



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE EXISTENCE OF RATIONAL REALIZATIONS 2847

A(Ũpc → R) defined in Definition 5.2, we derive that

Z-cl(R(x0)) = {x ∈ X |ϕ(x) = 0 ∀ ϕ ∈ A such that ϕ ◦ τ = 0 on Ũpc}
= {x ∈ X |ϕ(x) = 0 ∀ ϕ ∈ A such that τ∗ϕ = 0}
= {x ∈ X |ϕ(x) = 0 ∀ ϕ ∈ Ker τ∗}.

Because τ∗ is a homomorphism and thus τ∗(A) is a subalgebra of A(Ũpc → R) and
because A(Ũpc → R) is an integral domain, τ∗(A) is an integral domain. From
Proposition 5.3, the map τ̂∗ : A/Ker τ∗ → τ∗(A) is an isomorphism. This implies,
since τ∗(A) is an integral domain, that Ker τ∗ is a prime ideal.

According to [7, Chapter 5.1, Proposition 4], an affine variety V is irreducible if
and only if the ideal of polynomials which vanish on V is a prime ideal. Because, the
variety Z-cl(R(x0)) is determined by the polynomial ideal Ker τ∗ and because Ker τ∗

is a prime ideal, the variety Z-cl(R(x0)) is irreducible.
Definition 5.6. Let Σ = (X, f = {fα|α ∈ U}, h, x0) be a rational system, and

let Q denote the field of rational functions on X. The observation algebra Aobs(Σ) of
Σ is the smallest subalgebra of the field Q containing all components hi, i = 1, . . . , r,
of h and closed with respect to the derivations given by rational vector fields fα, α ∈ U .
The observation field Qobs(Σ) of the system Σ is the field of quotients of Aobs(Σ). The
rational system Σ is called rationally observable if Qobs(Σ) = Q.

The observation algebra of a rational system is an integral domain because it
is a subalgebra of an integral domain. Therefore, the observation field of a rational
system is well defined. The observation field Qobs(Σ) is also closed with respect to
the derivations given by rational vector fields fα, α ∈ U .

Proposition 5.7 (see [3], Proposition 1). For a rational system Σ, Qobs(Σ) is a
finitely generated field extension of R, i.e., there exist ϕ1, . . . , ϕk ∈ Qobs(Σ) such that
Qobs(Σ) = R(ϕ1, . . . , ϕk).

Definition 5.8. We call a rational realization of a response map canonical if it
is both rationally observable and algebraically reachable.

In realization theory one is given a response map and is supposed to find a system
within a certain class of systems which corresponds to this map. This map is therefore
representing the unknown system. For this reason, it is also useful to define objects
as observation algebra and observation field for response maps.

Definition 5.9. Let Ũpc be a set of admissible inputs, and let p : Ũpc → R
r be a

response map. The observation algebra Aobs(p) of p is the smallest subalgebra of the
algebra A(Ũpc → R) which contains the components pi, i = 1, . . . , r of p, and which is
closed with respect to the derivations Dα, α ∈ U . The observation field Qobs(p) of p
is the field of quotients of Aobs(p).

Note that the observation field Qobs(p) of p is well defined only if Aobs(p) is an
integral domain. This is the case for response maps because the components of a
response map are the elements of A(Ũpc → R) for a set Ũpc of admissible inputs
and because A(Ũpc → R), and thus also Q(Ũpc → R) is an integral domain. For
well definedness of the observation algebra of p, it is sufficient to assume that the
components of p are smooth (with respect to Dα derivations).

Existence of rational realizations. We provide sufficient and necessary con-
ditions for a response map to be realizable by a rational system. The realizability of
response maps by a polynomial system is treated in [4, Theorem 2]. The proof of that
theorem and the proof of Proposition 5.14 have the same structure. The following
lemma can be found in [4] where it is stated for polynomial systems.
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Lemma 5.10. Let Σ = (X, f, h, x0) be a rational realization of a response map
p : Ũpc → R

r, where Ũpc is a set of admissible inputs, and let τ : Ũpc → X be as in
Definition 5.2. Then for any ϕ from the algebra A of polynomials on X and for any
α ∈ U where U is the set of values of the inputs of Ũpc, it holds that Dα(ϕ ◦ τ) =
(fαϕ) ◦ τ .

Proof. Let u ∈ Ũpc, and let α ∈ U . Because Ũpc ⊆ Upc(Σ), the trajectories of the
rational system Σ corresponding to the input (u)(α, s) with sufficiently small s > 0
and to all restrictions of (u)(α, s) to shorter time domains are well defined. From
Definition 4.2 we get that for arbitrary ϕ ∈ A

Dα(ϕ ◦ τ)(u) =
d

ds
(ϕ ◦ τ)((u)(α, s))|s=0+ =

d

ds
ϕ(τ((u)(α, s)))|s=0+ .

By the definition of an input-to-state map τ , τ((u)(α, s)) = x(Tu + s;x0, (u)(α, s)).
Further, according to Definition 2.2,

Dα(ϕ ◦ τ)(u) = (fαϕ)(x(Tu + s;x0, (u)(α, s)))|s=0+.

Finally, by the continuity of rational function fαϕ along the trajectory of Σ determined
by the input (u)(α, s) and by the properties of a trajectory, we get that Dα(ϕ◦τ)(u) =
(fαϕ)(τ(u)).

Proposition 5.11. Let p : Ũpc → R
r be a response map realizable by a rational

system Σ = (X, f, h, x0). Let τ : Ũpc → X be as in Definition 5.2. Then the map
τ∗ext : Aobs(Σ) → Aobs(p) defined as τ∗extϕ = ϕ ◦ τ for every ϕ ∈ Aobs(Σ) is a well-
defined surjective homomorphism, i.e., τ∗ext(Aobs(Σ)) = Aobs(p).

Proof. Note that τ∗ext is defined in the same way as τ∗ but on a different domain;
see Definition 5.2. Obviously, τ∗ext is a homomorphism. We prove that τ∗ext is well
defined and that it is surjective.

By Definitions 5.6 and 5.9, the observation algebras of a system Σ and of a map p
are generated by hi, fα1 . . . fαjhi and pi, Dα1 . . . Dαjpi, respectively, such that j ∈ N,
α1, . . . , αj ∈ U , and i = 1, . . . , r. Since τ∗ext is a homomorphism, we prove that
τ∗ext(Aobs(Σ)) = Aobs(p) by proving that the generators of Aobs(Σ) and Aobs(p) are
mapped to each other by τ∗ext. To prove that τ∗ext is well defined, it is sufficient to
prove that τ∗ext is well defined for the generators of the algebra Aobs(Σ).

Since Σ is a rational realization of p, we know that p = h ◦ τ and that p is well
defined. Because h ∈ Aobs(Σ), p = τ∗exth which implies that τ∗ext is well defined at
h. Let hnum, hden ∈ A be such that h = hnum

hden
. For a rational vector field fα ∈ f , it

holds that

(fαh) ◦ τ =
(
fα
hnum

hden

)
◦ τ =

(fαhnum ◦ τ)(hden ◦ τ) − (fαhden ◦ τ)(hnum ◦ τ)
(hden ◦ τ)2 ,

and further, by Lemma 5.10, that

(fαh) ◦ τ =
Dα(hnum ◦ τ)(hden ◦ τ) −Dα(hden ◦ τ)(hnum ◦ τ)

(hden ◦ τ)2 .

Therefore, τ∗ext(fαh) = (fαh) ◦ τ = Dα(hnum

hden
◦ τ) = Dα(h ◦ τ) = Dα(p). As p is a

response map, the derivations Dα of p are well defined, and consequently τ∗ext is well
defined at fαh ∈ Aobs(Σ) ⊆ Q.

In the next proposition we state necessary conditions for a response map to be
realizable by a rational system.
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Proposition 5.12. Let p : Ũpc → R
r be a response map realizable by a rational

system Σ = (X, f, h, x0). Let τ∗ext : Aobs(Σ) → Aobs(p) be as in Proposition 5.11.
Then

(i) Qobs(p) = τ̂∗(Q(Aobs(Σ)/Ker τ∗ext)), where τ̂∗ : Aobs(Σ)/Ker τ∗ext → Aobs(p)
is an isomorphism derived from the map τ∗ext : Aobs(Σ) → Aobs(p);

(ii) Qobs(p) is finitely generated.
Proof. (i) According to Proposition 5.11, the map τ∗ext : Aobs(Σ) → Aobs(p) is a

surjective homomorphism which is not necessarily injective. Then the map

τ̂∗ : Aobs(Σ)/Ker τ∗ext → Aobs(p)

defined as τ̂∗([ϕ]) = τ∗ext(ϕ) for every ϕ ∈ Aobs(Σ), is an isomorphism. Since the
algebras Aobs(Σ)/Ker τ∗ext and Aobs(p) are integral domains, we can construct the
fields of fractions of Aobs(Σ)/Ker τ∗ext and Aobs(p). We extend the isomorphism τ̂∗
of the algebras Aobs(Σ)/Ker τ∗ext and Aobs(p) to the isomorphism τ̂∗ of the fields
Q(Aobs(Σ)/Ker τ∗ext) and Qobs(p). Then Qobs(p) = τ̂∗(Q(Aobs(Σ)/Ker τ∗ext)).

(ii) The field Q(Aobs(Σ)/Ker τ∗ext) is a field isomorphic to a subfield F of Qobs(Σ).
From [5, Chapter V, section 14.7, Corollary 3], it follows that ifG is a finitely generated
field containing R, then every subfield F of G containing R is finitely generated. Then,
since F ⊆ Qobs(Σ) ⊆ Q and Q is a finite field extension of R, it follows that F is also
finitely generated. Because a field isomorphic to a finitely generated field is finitely
generated, there exist ϕ1, . . . , ϕk ∈ Q(Aobs(Σ)/Ker τ∗ext) such that

Q(Aobs(Σ)/Ker τ∗ext) = R(ϕ1, . . . , ϕk).(5.1)

From (i) of Proposition 5.12, Qobs(p) = τ̂∗(Q(Aobs(Σ)/Ker τ∗ext)), where τ̂∗ is an
isomorphism. Then, by (5.1), Qobs(p) = τ̂∗(R(ϕ1, . . . , ϕk)) = R(τ̂∗ϕ1, . . . , τ̂∗ϕk).
Thus Qobs(p) is finitely generated.

In the following proposition we prove that the generators of the observation field
Qobs(p) of a response map p can be chosen from A(Ũpc → R). This allows us to
reformulate the necessary condition for a response map p to be realizable by a rational
system which is stated as the condition (ii) in the proposition above in the following
way: Qobs(p) is finitely generated by the elements from A(Ũpc → R).

Proposition 5.13. Let p : Ũpc → R
r be a response map. The observation

field Qobs(p) is finitely generated if and only if it is finitely generated by the elements
from A(Ũpc → R), i.e., there exist finitely many ϕ1, . . . , ϕk ∈ A(Ũpc → R) such that
Qobs(p) = R(ϕ1, . . . , ϕk).

Proof. (⇐) Let Qobs(p) be finitely generated by the elements from A(Ũpc → R).
Then it is obviously finitely generated.

(⇒) Let Qobs(p) be finitely generated. There exist ϕ1, . . . , ϕk ∈ Qobs(p) such that
Qobs(p) = R(ϕ1, . . . , ϕk). As ϕi ∈ Qobs(p), i = 1, . . . , k, we know that ϕi = ϕi,num

ϕi,den

where ϕi,num, ϕi,den ∈ Aobs(p) for i = 1, . . . , k. We define the field

F = R(ϕ1,num, ϕ1,den, . . . , ϕk,num, ϕk,den).

Because ϕi,num, ϕi,den ∈ Aobs(p) for i = 1, . . . , k, and because Aobs(p) is a subalgebra
of A(Ũpc → R), it follows that

ϕi,num, ϕi,den ∈ A(Ũpc → R) for i = 1, . . . , k, and(5.2)

R[ϕ1,num, ϕ1,den, . . . , ϕk,num, ϕk,den] ⊆ Aobs(p).(5.3)
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By (5.2), the field F is generated by the elements from A(Ũpc → R). From the
definition of F it is obvious that F ⊇ Qobs(p), and from (5.3) we get by taking the
quotients that F ⊆ Qobs(p). Therefore, Qobs(p) = F , and thus the field Qobs(p) is
finitely generated by the elements from A(Ũpc → R).

In the following proposition we specify sufficient conditions for a response map to
be realizable by a rational system.

Proposition 5.14. Let p : Ũpc → R
r be a response map. If there exists a field

F ⊆ Q(Ũpc → R) such that
(i) F is finitely generated by the elements from A(Ũpc → R),
(ii) F is closed with respect to Dα derivations, i.e.,

∀i ∈ N, ∀αj ∈ U, j = 1, . . . , i : Dα1 . . .DαiF ⊆ F,

(iii) Qobs(p) ⊆ F ,
then p has a rational realization.

Proof. Consider a response map p : Ũpc → R
r. We assume that there exists a

field F ⊆ Q(Ũpc → R) satisfying (i)–(iii) of Proposition 5.14. Let ϕ1, . . . , ϕk : Ũpc →
R ∈ A(Ũpc → R) be such that F = R(ϕ1, . . . , ϕk). Since F is closed with respect
to Dα derivations, for any α = (α1, . . . , αj) such that α1, . . . , αj ∈ U, j ∈ N, and for
every ϕi, i = 1, . . . , k, there exists vα

i ∈ R(X1, . . . , Xk) such that

Dαϕi = vα
i (ϕ1, . . . , ϕk).(5.4)

Since Qobs(p) ⊆ F , the components of the map p = (p1, . . . , pr) are elements of F ,
and thus for every pj , j = 1, . . . , r, there exists wj ∈ R(X1, . . . , Xk) such that

pj = wj(ϕ1, . . . , ϕk).(5.5)

We prove that a rational system Σ = (X, f, h, x0), where

X = R
k,

fα =
k∑

i=1

vα
i

∂

∂xi
, α ∈ U,

hj(x1, . . . , xk) = wj(x1, . . . , xk), j = 1 . . . r,
x0 = (ϕ1(e), . . . , ϕk(e)), e is the empty input

is a rational system realizing p. Let us define Ψ(t) = (ϕ1, . . . , ϕk)(u[0,t]) for u ∈ Ũpc,
t ∈ [0, Tu]. It is well defined because ϕi ∈ A(Ũpc → R), i = 1, . . . , k, are defined
for every u ∈ Ũpc and because u[0,t] ∈ Ũpc if u ∈ Ũpc and t ∈ [0, Tu]. Especially,
Ψ(0) = (ϕ1, . . . , ϕk)(u[0,0]) is well defined because u[0,0] = e ∈ Ũpc and the functions
ϕ1, . . . , ϕk ∈ A(Ũpc → R) are defined properly at e. Consider a constant input
u = (α, Tu) ∈ Ũpc. Note that from Definition 4.1(i), (ii), there exists ε > 0 such that
for every t, τ ≥ 0 such that t+ τ ∈ [0, Tu + ε], it holds that u′ = (α, t + τ) ∈ Ũpc. If
t + τ ≤ Tu, then u′ = u[0,t+τ ], and if Tu < t + τ , then u = u′[0,Tu]. In both cases we
refer to the corresponding inputs as to the inputs u[0,t+τ ], t+ τ ∈ [0, Tu + ε]. Then,

Ψ(0) = (ϕ1, . . . , ϕk)(u[0,0]) = (ϕ1(e), . . . , ϕk(e)) = x0 and
d

dt
Ψ(t) =

d

dτ
Ψ(t+ τ)|τ=0+ =

d

dτ
(ϕ1(u[0,t+τ ]), . . . , ϕk(u[0,t+τ ]))|τ=0+.
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Because (u[0,t])(α, τ) = u[0,t+τ ] and because Dαϕ(u[0,t]) = d
dτ ϕ((u[0,t])(α, τ))|τ=0+,

the derivation d
dtΨ(t) equals (Dαϕ1(u[0,t]), . . . , Dαϕk(u[0,t])). Furthermore, due to

(5.4), d
dtΨ(t) = (vα

1 (ϕ1, . . . , ϕk)(u[0,t]), . . . , vα
k (ϕ1, . . . , ϕk)(u[0,t])). Finally, as Ψ(t) =

(ϕ1, . . . , ϕk)(u[0,t]), we get that

d

dt
Ψ(t) = (vα

1 (Ψ(t)), . . . , vα
k (Ψ(t))) and Ψ(0) = x0.

Hence Ψ(t) = x(t;x0, u[0,t]) for a constant input u ∈ Ũpc and for t ∈ [0, Tu]. This also
proves that for u = (α1, t1) . . . (αj , tj) ∈ Ũpc and for t ∈ [0, t1], we have Ψ(t) =
x(t;x0, u[0,t]). If we consider u = (α1, t1) . . . (αj , tj) ∈ Ũpc and if we take t ∈
[t1, t1 + t2] instead of t ∈ [0, t1], we get that Ψ(t1) = x(t1;x0, u[0,t1]) and d

dtΨ(t) =
(vα2

1 (Ψ(t)), . . . , vα2
k (Ψ(t))) for t ∈ [t1, t1+t2] with the same reasoning as before. For t ∈

[t1, t1 + t2], we have that Ψ(t) = x(t; Ψ(t1), u[t1,t1+t]) = x(t;x(t1;x0, u[0,t1]), u[t1,t1+t]).
In the analogous way, we study the cases for t ∈ [t1 + t2, t1 + t2 + t3], . . . , t ∈
[t1 + · · ·+ ti−1, t1 + · · ·+ ti], . . . . Finally, Ψ(t) = x(t;x0, u[0,t]) for an arbitrary u ∈ Ũpc

and t ∈ [0, Tu]. Thus the trajectories of Σ are described by Ψ.
To prove that the rational system Σ is a realization of the response map p, we

have to prove that p(u) = h(x(Tu;x0, u)) for every u ∈ Ũpc. Consider an arbitrary
u ∈ Ũpc. Due to (5.5),

p(u) = (p1, . . . , pr)(u) = (w1(ϕ1, . . . , ϕk), . . . , wr(ϕ1, . . . , ϕk))(u).

Further, by the definitions of hj , j = 1, . . . , r, and Ψ, it follows that

p(u) = (h1(ϕ1, . . . , ϕk), . . . , hr(ϕ1, . . . , ϕk))(u) = (h1(Ψ(Tu)), . . . , hr(Ψ(Tu))).

Finally, since Ψ(Tu) = x(Tu;x0, u) for u ∈ Ũpc, we derive that p(u) = h(x(Tu;x0, u))
for u ∈ Ũpc.

Remark 5.15. Proposition 5.14 can be stated as an equivalence. The proof of the
other implication is the same as the sufficiency proof of Theorem 5.16.

The main theorem of this section, solving the problem of the existence of rational
realizations for response maps, is based on the three propositions above.

Theorem 5.16 (existence of rational realizations). A response map p : Ũpc → R
r

has a rational realization if and only if Qobs(p) is finitely generated.
Proof. (⇒) See part (ii) of Proposition 5.12 for this statement and the proof.
(⇐) From Proposition 5.14, the existence of a field F ⊆ Q(Ũpc → R) finitely

generated by the elements from A(Ũpc → R), containing Qobs(p), and closed with
respect to Dα derivations implies the rational realizability of p. Since we assume that
Qobs(p) is finitely generated, it follows from Proposition 5.13 and Definition 5.9 that
Qobs(p) has those properties. By following the steps of the proof of Proposition 5.14
for F = Qobs(p), we construct a rational realization of p.

Example. This example is motivated by an example stated in [4]. The procedure
to construct a rational system realizing a given response map is following the steps
made in the proof of Proposition 5.14.

Let Ũpc be a set of admissible inputs with the values in R. We determine a
rational system Σ realizing a map p : Ũpc → R defined as p(u) = exp(

∫ Tu

0
u(s)

(1+s)2 ds).

By u(s), we denote the value of an input u ∈ Ũpc at a time s ∈ [0, Tu].
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First, we compute Dα derivations of p. Consider α1, α2 ∈ R, and u ∈ Ũpc. For
t1, t2 > 0 sufficiently small (u)(α1, t1)(α2, t2) ∈ Ũpc. Then

(Dα1p)(u) =
d

dτ
p((u)(α1, τ))|τ=0+

=

[
d

dτ
exp

(∫ Tu

0

u(s)
(1 + s)2

ds+
∫ Tu+τ

Tu

α1

(1 + s)2
ds

)]
τ=0+

= 0 + p(u)α1

[
exp

(∫ Tu+τ

Tu

α1

(1 + s)2
ds

)]
τ=0+

[
d

dτ

∫ Tu+τ

Tu

1
(1 + s)2

ds

]
τ=0+

= α1p(u)
1

(1 + Tu)2
,

(Dα2Dα1p)(u)

= Dα2

(
α1p(u)

1
(1 + Tu)2

)
= α1

1
(1 + Tu)2

Dα2p(u) + α1p(u)Dα2

1
(1 + Tu)2

=
α1α2

(1 + Tu)4
p(u) + α1p(u)

[
d

dτ

1
(1 + Tu + τ)2

]
τ=0+

=
α1α2p(u)
(1 + Tu)4

+
−2α1p(u)
(1 + Tu)3

.

We can compute the derivations (Dαi . . . Dα1p)(u) for any i ∈ N, αj ∈ R, j ∈ 1, . . . , i.
If we define ϕ1(u) = p(u) and ϕ2(u) = 1 + Tu, then for any i ∈ N and αj ∈ R, j ∈
1, . . . , i, it holds that (Dαi . . . Dα1p)(u) ∈ R(ϕ1(u), ϕ2(u)). Therefore, by Defini-
tion 5.9, Qobs(p) ⊆ R(ϕ1, ϕ2), and consequently Qobs(p) is finitely generated. Hence,
according to Theorem 5.16, there exists a rational system realizing p.

We construct a rational system Σ = (X, f, h, x0) realizing p by following the
proof of Proposition 5.14. Let us consider the field F = R(ϕ1, ϕ2). It is finitely
generated, containsQobs(p), and is closed with respect to Dα derivations. The number
of generators of F equals 2, which implies that the state-space X can be taken as R

2.
To determine a family of rational vector fields f = {fα|α ∈ R}, we compute

vα
1 (ϕ1, ϕ2) = Dαϕ1 = Dαp = αϕ1

1
ϕ2

2

and vα
2 (ϕ1, ϕ2) = Dαϕ2 = 1.

The last equality Dαϕ2 = 1 holds because Dαϕ2(u) =
[

d
dτ ϕ2((u)(α, τ))

]
τ=0+

=[
d
dτ (1 + Tu + τ)

]
τ=0+

= [1]τ=0+ = 1 for any u ∈ Ũpc. The output map h is deter-
mined by a map w such that w(ϕ1, ϕ2) = p = ϕ1, and the initial point x0 is given
as x0 = (ϕ1(e), ϕ2(e)), where e is the empty input. Finally, the rational realization
Σ = (X, f, h, x0) of p is given as

X = R
2,

fα(x1, x2) = vα
1 (x1, x2)

∂

∂x1
+ vα

2 (x1, x2)
∂

∂x2
= α

x1

x2
2

∂

∂x1
+

∂

∂x2
, α ∈ R,

h(x1, x2) = w(x1, x2) = x1,

x0 = (ϕ1(e), ϕ2(e)) = (1, 1).

6. Canonical rational realizations. The systems which we call canonical are
called minimal by Bartosiewicz in [4]. Therefore, [4, Theorem 3] describing the con-
ditions under which a map has a minimal polynomial realization corresponds to our
Theorem 6.1 considering rational systems. The proofs are analogous.
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Theorem 6.1. Let p : Ũpc → R
r be a response map. The following statements

are equivalent:
(i) p has an rationally observable rational realization,
(ii) p has a canonical rational realization,
(iii) Qobs(p) is finitely generated.
Proof. (i) ⇒(ii) Let p : Ũpc → R

r be a response map. Consider a rational system
Σ = (X, f, h, x0) realizing p, which is rationally observable. Then Σ is canonical if it
is algebraically reachable from the initial state x0, i.e., if Z-cl(R(x0)) = X . Let us
denote X ′ = Z-cl(R(x0)). From Proposition 5.5, the variety X ′ is an irreducible real
affine variety. If X ′ = X , then the proof is complete. Let us assume that X ′ �= X .

Because X ′ is an irreducible real affine variety, we can consider X ′ to be a state-
space of a rational system Σ′. Let I be an ideal of polynomials of A which vanish on
X ′. Then the quotient ring A/I can be identified with A′, the algebra of polynomials
on X ′. We denote the corresponding bijection by Ψ : A/I → A′. This is a one-to-
one and onto mapping, which preserves sums and products. If we consider ϕ′ ∈ A′

and ϕ ∈ A such that Ψ([ϕ]) = ϕ′, it holds that ϕ �X′= ϕ′. More details can be
found in [7, Chapter 5.2]. There exist polynomials ϕ′

1, . . . , ϕ
′
k from A′ such that

A′ = R[ϕ′
1, . . . , ϕ

′
k]. Moreover, A′ is an integral domain, and we can define the field

Q′ of rational functions on X ′ by Q′ = R(ϕ′
1, . . . , ϕ

′
k).

We define the rational system Σ′ = (X ′, f ′, h′, x′0) by considering the state-space
X ′ and by deriving the family f ′ of rational vector fields, an output function h′, and
an initial state x′0 from the rational system Σ. As the initial state x′0 of Σ′, we consider
x′0 = x0 ∈ Z-cl(R(x0)) = X ′. The output function h′ of Σ′ is defined as

h′ = (h′1, . . . , h
′
r) =

(
h′1,num

h′1,den

, . . . ,
h′r,num

h′r,den

)

=
(

Ψ([h1,num])
Ψ([h1,den])

, . . . ,
Ψ([hr,num])
Ψ([hr,den])

)
=
(
h1,num �X′

h1,den �X′
, . . . ,

hr,num �X′

hr,den �X′

)
= (h1 �X′ , . . . , hr �X′) = h �X′ ,

where h′i,num, h
′
i,den ∈ A′ and hi,num, hi,den ∈ A for i = 1, . . . , r, are such that h′i =

h′
i,num

h′
i,den

and hi = hi,num

hi,den
. The output function h′ is defined on a Z-dense subset of

X ′ because X ′ is irreducible and because hi,den(x0) �= 0 for i = 1, . . . , r, and thus
hi,den /∈ I for i = 1, . . . , r. We define the relation between the rational vector fields
f ′ = {f ′

α : Q′ → Q′|α ∈ U} and the rational vector fields f = {fα : Q→ Q|α ∈ U} as

f ′
α

Ψ([qnum])
Ψ([qden])

=
Ψ([(fαq)num])
Ψ([(fαq)den])

for q = qnum

qden
∈ Q, where qnum, qden ∈ A and qden /∈ I. Note that we assumed

that (fαq)num, (fαq)den ∈ A are such that fαq = (fαq)num

(fαq)den
for a considered q ∈ Q.

Since for ϕ ∈ A such that Ψ([ϕ]) = ϕ′ it is true that ϕ �X′= ϕ′, it follows that for
q = qnum

qden
∈ Q, we have that f ′

α
Ψ([qnum])
Ψ([qden]) = (fαq)num�X′

(fαq)den�X′ = (fαq) �X′ , and finally if

q′ = Ψ([qnum])
Ψ([qden]) , qden /∈ I,

f ′
αq

′ = (fαq) �X′ .

The well-definedness of the rational vector fields f ′
α, α ∈ U follows from the fact

that (fα
qnum

qden
) �X′ is independent on the choice of representants qnum, qden ∈ A of
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classes [qnum], [qden] ∈ A/I. To verify this, we consider arbitrary ϕ1, ϕ2 ∈ I. Thus
ϕ1 and ϕ2 are identically zero on X ′, and therefore (qnum + ϕ1) �X′= qnum and
(qden + ϕ2) �X′= qden. Moreover, as ϕ1 = 0 on X ′, ϕ1 is identically zero on the
trajectories of the system Σ′, and therefore ϕ1◦τ = 0 on Ũpc. Then alsoDα(ϕ1◦τ) = 0
on Ũpc, and, by Lemma 5.10, (fαϕ1) ◦ τ = 0 on Ũpc. Therefore, fαϕ1 = 0 on
X ′, and hence (fαϕ1) �X′= 0. Analogically, (fαϕ2) �X′= 0. Finally, as fα is an
R-linear map,

(
fα

qnum+ϕ1
qden+ϕ2

)
�X′=

(
(fαqnum+fαϕ1)(qden+ϕ2)−(fαqden+fαϕ2)(qnum+ϕ1)

(qden+ϕ2)2

)
�X′=

(
(fαqnum)qden−(fαqden)qnum

q2
den

)
�X′ =

(
fα

qnum

qden

)
�X′ .

Consider a trajectory x′ of Σ′ from x′0 determined by the input u′ = (α, Tu′) ∈
Ũpc and a trajectory x of Σ from x0 determined by the input u = (α, Tu) ∈ Ũpc.
We assume without loss of generality that Tu = Tu′ . Then d

dt(ϕ
′ ◦ x′)(t;x′0, u′) =

(f ′
αϕ

′)(x′(t;x′0, u
′)), ϕ′(x′(0)) = x′0 for t ∈ [0, Tu], ϕ′ ∈ A′, and d

dt(ϕ ◦ x)(t;x0, u) =
(fαϕ)(x(t;x0, u)), ϕ(x(0)) = x0 for t ∈ [0, Tu], ϕ ∈ A. Since X ′ = Z-cl(R(x0)),
both trajectories x and x′ stay in X ′. Let ϕ′ ∈ A′, and let ϕ ∈ A be such that
ϕ′ = Ψ([ϕ]). Because f ′

αΨ([ϕ]) = (fαϕ) �X′ , x0 = x′0 and because ϕ = ϕ′ on X ′, it
follows that (fαϕ) �X′ (x′(t;x′0, u

′)) = (fαϕ)(x′(t;x′0, u
′)) = d

dt(ϕ ◦ x′)(t;x′0, u′), and
ϕ(x′(0)) = x′0. Therefore, by Theorem 2.3, the trajectories of the systems Σ and
Σ′ are the same. Then also the reachable sets of both systems coincide, and thus
X ′ = Z-cl(R(x0)) = Z-cl(R′(x′0)). So, Σ′ is algebraically reachable.

From the equality of trajectories of Σ and Σ′ and from the definition of the output
function h′ of Σ′, it follows that the system Σ′ is a rational realization of p. More
precisely, let u ∈ Ũpc; then

p(u) = h(x(Tu;x0, u)) (because Σ realizes p)
= (h �X′)(x(Tu;x0, u)) (because Z-cl(R(x0)) = X ′),
= (h �X′)(x′(Tu;x′0, u)) (from the equalities of the trajectories of Σ and Σ′),
= h′(x′(Tu;x′0, u)) (by the definition of h′).

Thus, the system Σ′ is an algebraically reachable rational realization of p. We
prove that Σ′ is also rationally observable. Let us compute the observation field
Qobs(Σ′) of the system Σ′. First, the observation algebra Aobs(Σ′) is the smallest
algebra containing the elements h′i, f

′
αh

′
i for i = 1, . . . , r, and α = (α1, . . . , αk) such

that k ∈ N, αj ∈ U, j = 1, . . . k. As h′i = hi �X′ and f ′
αh

′
i = fαhi �X′ for i = 1, . . . , k,

and α = (α1, . . . , αk), αj ∈ U, k ∈ N, we get that ϕ = ϕnum

ϕden
∈ Aobs(Σ), where

ϕnum, ϕden ∈ A if and only if ϕ′ = Ψ([ϕnum])
Ψ([ϕden]) ∈ Aobs(Σ′). Furthermore, since Aobs(Σ)

and Aobs(Σ′) are integral domains, ϕ = ϕnum

ϕden
∈ Qobs(Σ), ϕden /∈ I if and only if

ϕ′ = Ψ([ϕnum])
Ψ([ϕden]) ∈ Qobs(Σ′). Because the system Σ is rationally observable and because

Q(Ψ(A/I)) ∼= Q(A′), we derive that the system Σ′ is also rationally observable.
(ii) ⇒(iii) We assume that p has a canonical rational realization Σ = (X, f, h, x0).

From Theorem 5.16, Qobs(p) is finitely generated.
(iii) ⇒(i) We assume that the observation field Qobs(p) of p is finitely gen-

erated. From Proposition 5.13, Qobs(p) is finitely generated by the elements of
A(Ũpc → R). Let Qobs(p) = R(ϕ1, . . . , ϕk), where ϕi ∈ A(Ũpc → R), i = 1, . . . , k.
By the definition of observation field, Qobs(p) is closed with respect to Dα derivations
α = (α1, . . . , αi), i ∈ N, αj ∈ U, j = 1, . . . , i. To prove that there exists a rationally ob-
servable rational realization of p, we construct a rational realization Σ = (X, f, h, x0)
of p such that Qobs(Σ) = Q, where Q denotes the field of rational functions on X .
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The field F = Qobs(p) = R(ϕ1, . . . , ϕk) fulfills the conditions (i)–(iii) of Proposi-
tion 5.14. By following the proof of Proposition 5.14 with F = Qobs(p), we construct
a rational realization Σ = (X, f, h, x0) of p as

X = R
k,

fα =
k∑

i=1

vα
i (X1, . . . , Xk)

∂

∂Xi
, α ∈ U,

hj(X1, . . . , Xk) = wj(X1, . . . , Xk), j = 1 . . . r,
x0 = (ϕ1(e), . . . , ϕk(e)).

This realization is such that

pj = wj(ϕ1, . . . , ϕk), j = 1 . . . r, and
Dαϕi = vα

i (ϕ1, . . . , ϕk), i = 1 . . . k.

Because X = R
k, we get for the field Q of rational functions on X that Q =

R(X1, . . . , Xk). To consider hj and fαhj , j = 1 . . . r, is the same as to consider
pj and Dαpj but in different coordinates. Therefore, Qobs(Σ), as a field of quo-
tients of the smallest subalgebra of Q containing all hj , fαhj , where j = 1, . . . , r, α =
(α1, . . . , αk), k ∈ N, αi ∈ U, i = 1, . . . , k, equals R(X1, . . . , Xk) in analogy to the re-
lation Qobs(p) = R(ϕ1, . . . , ϕk). That means that Qobs(Σ) = R(X1, . . . , Xk) = Q,
which proves the rational observability of Σ.

Corollary 6.2. Let p be a response map. According to Theorem 5.16 and
Theorem 6.1, the following statements are equivalent:

(i) p is realizable by a rational system;
(ii) p has a rational realization which is rationally observable;
(iii) p has a rational realization which is canonical; thus both rationally observable

and algebraically reachable.

7. Concluding remarks. We have provided sufficient and necessary conditions
for a response map to be realizable by a rational system. Since the proof of Proposi-
tion 5.14 concerning sufficient conditions for the existence of a rational realization for
a given response map is constructive, it provides an algorithm for constructing a ra-
tional system realizing a response map. We proved that for a given response map the
problems of the existence of a rational/rationally observable rational/canonical ratio-
nal realization are equivalent. The proof of Theorem 6.1 stating this equivalence is
also constructive. It provides an algorithm for the construction of a canonical rational
realization from a rationally observable rational realization. Moreover, it shows that
if we consider as a field F from Proposition 5.14 the observation field of a response
map to be realized, then the algorithm for constructing a rational realization from
Proposition 5.14 gives as a result a rationally observable rational realization. Ad-
ditional results which we got by studying minimal rational realization can be found
in [15]. For some remarks on algebraic reachability of rational systems, see [14].

We work with irreducible real affine varieties for two reasons. First, irreducibility
simplifies the technical details of the proofs. Second, working with the real varieties
allows us to have a better geometric understanding of the state-spaces of rational
systems, and it is also sufficient for applications, for example, in systems biology. It
is possible to generalize the results of this paper for reducible varieties.

Algebraic framework we use can be useful from a computational point of view.
The procedures to check the properties of rational systems such as rational observ-
ability, algebraic reachability, and minimality of rational realizations are formulated
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in [15]. They can be implemented by using already existing computer algebra pack-
ages. The procedures for constructing rational realizations of desired properties are
still to be developed.

Further research is required on the realization theory for rational positive systems.
There are several issues to be overcome in that research.

Acknowledgment. The authors are very grateful to Mihály Petreczky for long
discussions, useful comments, and advice.
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