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Abstract. The area distance to a convex plane curve is an importanepbirc computer vision. In this paper
we describe a strong link between area distances and impaffpee spheres. This link makes possible a better
understanding of both theories. The concepts of the thebayfioe spheres lead to a new definition of an area
distance on the outer part of a convex plane arc. Also, basedeotheory of discrete affine spheres, we propose
fast algorithms to compute the area distances. On the otad,larea distances provide a good geometrical
understanding of improper affine spheres.
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1 Introduction

The area distance of convex plane curves is an importantepbriic computer vision. These distances can be useful in
matching two images of the same object obtained from diffigoeints of view [7]. It can also be seen as an erosion, a basic
concept of mathematical morphology ([6]).

Improper affine spheres are surface&ihwhose affine normals at all points are parallel. In this paperpoint out the
strong connection between these area distances and imm@ifipe spheres. This connection is used in the developnient o
the theory of area distances: based on the theory of affirerephwe propose a new definition of area distance on the outer
part of a convex curve and new algorithms for computing thitstances. This link is also interesting from the point awi
of the theory of improper affine spheres, since it provides@etrical interpretation of them.

Let us make this connection more precise: we first remarkttiesérea distancg to a convex plane curve satisfies the
Monge-Ampeére differential equatiafet(D?(f)) = —1 with boundary conditiong = 0 andV(f) = 0 (see [8]). We show
in this paper that the graph ¢fis an indefinite improper affine sphere, with strictly pastPick invariant. On the other
hand, we show also that, at least locally, any indefinite appr affine sphere is an area distance.

For the outer part of the convex curve, we propose to defingemlzmsed distance by the Monge-Ampeére differential
equationdet(D?(f)) = +1 with boundary conditiong = 0 andV (f) = 0. Then the graph of is a definite improper affine
sphere, also with strictly positive Pick invariant. We cidies in this paper the case of an initial analytic curve. lis tase,
it is possible to find explicitly a solution to the Monge-Arme equation, and also to describe its geometrical pregserti

Consider now a convex polygon as a discretization of the@oourve. By following the asymptotic lines, we propose a
fast evolution algorithm that computes exactly the aretadie. We also show that this exact area distance definesratdis
indefinite improper affine sphere, as defined in [5]. We rentlak the method proposed in this paper differs completely
from that of [9], since the latter considers curves definddhiplicit form. For the outer part of the polygon, we also posp
a fast evolution algorithm that computes a new distances §haph of this new distance has the remarkable property of
being a discrete definite improper affine sphere, as defing.in

In this context, there is a natural duality between pointe@inner and the outer part of the convex curve. An intengsti
factis that, although this duality is not area preservingraserves the measufé/3dzdy, whereJ denotes the Pick invariant
of the corresponding graph. From the discrete point of viei,nteresting to observe that a mesh with planar crosstei
inner part of the curve changes smoothly along the curve teshrwith planar quadrilaterals in the outer part.

This paper is organized as follows: In section 2, we reviesvithsic concepts related to improper affine spheres, both
smooth and discrete. In section 3, we review the definitioaref distance in the inner part of a curve and show its strong
link with indefinite improper affine spheres. In section 4, pvepose the new definition of area distance in the outer part o
the curve, show that its graph is an definite improper affifeespand describe the duality between the inner and the outer
area distances.

Notation. For three vectorX, Y andZ in the space, denote hy(, Y, Z] the determinant of th& x 3 matrix whose columns
are the vectors(, Y andZ. For two vectorsX andY in the plane, denote bjX, Y] the determinant of the x 2 matrix
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whose columns are the vectaksandY . Also, denote byX ! the transpose of the matriX and by R the ninety degrees
rotation in the anti-clockwise direction. Observe thétY] = —X*- R-Y.

2 Improper affine spheres

2.1 Basics

For a surface5S parameterized by(u,v) = (z(u,v),y(u,v), z(u,v)) let L = [qu, ¢v, quu), M = [qu, Gv, Guv] @NAN =

[9u, Gv, quv]. We say thalS is non-degenerate EN — M? # 0. For a non-degenerate surface, the Blaschke metric is given

by
Ldu? + 2M dudv + N dv?

¢= |LN — M2[1/4

It is definite or indefinite according tbN — M?2 being positive or negative. In the definite case, the affirenabis defined
as¢ = £A(q), while in the indefinite case = —3A(q), whereA(q) denotes the laplacian of each coordinate with respect
to the Blaschke metric.

An improper affine spher§ is a surface whose affine normals at all points are parallelskéll assume that the affine
normals are parallel to the-axis. Under this hypothesi$ is locally the graph of a function = f(x,y). The following
proposition is well-known (see [1]).

Proposition 1 S is an indefinite improper affine sphere if and onlylift(D?(f)) = —c, and a definite improper affine
sphere if and only iflet(D?(f)) = ¢, wherec is a positive constant. In both cases, the affine normal istzont and equal
to (0,0, ¢).

In the caseS is the graph off, we shall writeg(u, v) = (p(u,v), f(p(u,v))). The coefficients of the Blaschke metric
can be calculated by the following lemma, whose proof isa@gitforward calculation:

Lemma 2
L = [pu, po]| D*(f) (Pu Pu)
M = [puypv]DQ(f)(puapv)
N = [puypv]DQ(f)(pvapv)

2.2 Asymptotic and isothermal directions

For an indefinite Blaschke metric, one can find parameters) such thatL = N = 0. These parameters are called
asymptotic parametei@nd the corresponding tangent vectors are cafganptotic directionsLines whose tangent vectors
are asymptotic directions are callagymptotic linesLemma 2 shows that the projections of the asymptotic doestin the
(x,y)-plane vanish the quadratic for®?(f), and we shall also call them asymptotic directions.
Using asymptotic parameters, the structure equationsibeco

Quu = U:b Qu + f%

Quv = %qu + %qy

Quv = _w§

wherea, = b, = 0 andw = [qu, g, £]. By @ good choice of the asymptotic parameters, we can mal®lb constants.
The Pick invariant is given by = 5—2 (see [4] and [5]). The equations for the planar component are

Puu = :Tupu + %pv
DPov = Zpu + %pv
Puv = Oa

with w = [py,py] = — fuw. From these equations one obtaips, p,.] = a and[p,, p,w] = —b. So, if the Pick invariant
does not vanish, the planar asymptotic lines are convex.

For a definite Blaschke metric, one can consider also asyiogiarameters, but they are complex ([4]). Consider
complex parameters = s + it andz = s — it such thatl.(z,z) = N(z,%z) = 0 andiM(z,z) = Q2. Then, in terms of
andt, L(s,t) = N(s,t) = 4Q% andM (s, t) = 0 ([2]). We call such coordinatdésothermal



In order to differentiate from the indefinite case, we shak eapital letterd, Q, F, 2, A, B and J to describe the
structure equations, as follows:
{ sz = ggl_zz z %QE

QE _%Qz + %QE
QzE = _Qg

whereQ) = —i[Q.,Q=,¢], A = i[Q., Q..,&] and B = —i[Q=, Q==, &]. By a good choice of the isothermal parameters,
we can maked and B constants. The Pick invariant is given by= ‘g‘l—? (see [2] and [5]). The equations for the planar
~a P+ EPs

components are
Pzz
Pz
{ Pzg O, Fzg =-0

with Q = —i[P,, P7]. Also A = i[P,, P..] and B = —i[P;, Pz].

Q Ap
o P.— 5Pz

2.3 Discrete improper affine spheres.

In [2], definitions of discrete proper affine spheres are psegl, both in the indefinite and in the definite case. In [5],
these definitions are generalized to discrete impropereaffipheres, indefinite and definite. We describe now thess latt
definitions, with a slight modification in the definite casesridte by~ the set of integers.

Definition 1 A mapgq : Z? — R3 is a discrete indefinite improper affine sphere if it has tHefang properties:
1' For any(ivj) € Z2’ the pOIntSI(’Lv.])v Q(’L + 17j)7 Q(’L - 17j)7 q(la.] - 1)5 q(la.] + 1) are CO-planal’.

2. There exists a directighin R3 such that, for anyi, j) € Z2, the vectoi (i, j) +q(i+1,j+1)—q(i+1,5)—q(i,5+1)
is parallel to¢.

Definition 2 A mapQ : Z? — R? is a discrete definite improper affine sphere if it has theofeihg properties:
1. Forany(i,j) € Z2, the pointsQ(i, ), Q(i + 1,75),Q(i,7 + 1),Q(i + 1,j + 1) are co-planar.

2. There exists a directiofiin R? such that, for any(i, j) € Z2, the vectorQ(i,j + 1) + Q(i,7 — 1) + Q(i — 1,5) +
QG+ 1,7) —4Q(i,7) is parallel to€.

3 Inner Area distances

In this section we review some properties of area distanndsshow the connection between area distances and affine
spheres. We show that the graph of an area distance is annitglé@fproper affine sphere and that, at least locally, any
indefinite improper affine sphere is the graph of an areartistaf some convex plane curve.

Moreover, we show that the area distance of polygons defs@ate indefinite improper affine spheres and how this
fact can be applied to construct a very fast algorithm for gotimg area distances.

3.1 Definition and properties of the area distance

Consider a smooth convex curgein the plane without parallel tangent lings.can have2, 1 or 0 endpoints. Denote b
the plane region whose boundary(isand the curve(s) obtained fro@ by a similarity of ratio% based at each endpoint of
C (see figure 1).

A chordis a line segment connectidgoints ofC. For a poinp € D, consider chordspassing through that, together
with C, bound regiond);. Denote byl(p) the chord such that the area of the corresponding refjgy is minimum. The
area distance functiofi(p) is then defined as half of the area bf,,). Sometimes we shall call this functiémner area
distance since in section 4 we shall define another area distance.

Any p € D is the mean point of the extremities of the chéfg). This important property was proved first in [6] (see
also [7]). Another important property is th&t(f)(p) is orthogonal to the chorldp), with half of the length of it (see figure
2). The third important property is thdtt(D?(f)(p)) = —1, for anyp € D. This last property was first proved in [8]. The
next lemma and proposition describe thiatter properties with more details.



C

(a) Domain for a curve with 2 (b) Domain for a curve with 1 (c) Domain for a curve without
endpoints. endpoint. endpoints.

Figure 1: Domains for the inner area distance function.

Cwv)

C(u)
fp) = area/2

Figure 2: Gradient of the area distance.

Lemma 3 Denote byC'(u(p)) andC(v(p)) the extremities of the choidp). Considering: andwv as functions op, we have
_ QRC/(U) o QRC/(U)
V(W) =~ ot V) = ey

Proof. Since2p = C(u(p)) + C(v(p)), 21 = C'(u)V(u)* + C'(v)V (v)! wherel is the identity2 x 2 matrix. Multiplying
by C’(v)! R, one obtains the first formula. The second one is analogous.

Proposition 4 The area distancg of a convex are satisfies the following formulas:
1. The gradient of is given byV(f) = R(3(C(v) — C(u))).

2. C'(u) andC’ (v) satisfy the equation®?(f)(C" (u), C"(u)) = 0, D2(f)(C"(v), C"(v)) = 0 andD2(f)(C" (u), C" (v)) =
[C"(u),C"(v)].

3. det(D?(f)) = —1.

Proof.
1. By Green's theorem, one can writg(p) = [[C(s) — p, C'(s)]ds. Using the rules for differentiating integrals, one
obtains
AV(f)(p) = [Cv) —p, C'(0)IV(v) = [C(u) = p, C"(u)]V (u) +/ RC'(s)ds,
_ ) —Ccw. '), C) - Cw),Cw) o
W) =R Gy g O+ o O @)+ ROE) - Cw)
Since, for anyw, one can writay = %%C’(u) + [c[,c(;()%(}’(v), we conclude that
V()(p) = R (C(0) ~ Cw))



2. Differentiating one obtains
2D*(f) = R(C"(u)V(u)' = C"(v)V(v)"),

and so
1

PO = fow,ow)

(RC'(u)C'(v)'R + RC'(v)C'(u)'R) .

One concludes that
C'(u)' D*(f)C"(u) = C"(v)' D*(f)C"(v) = 0

and
C'(u)'D*(f)C'(v) = C'(v)' D*(f)C' (u) = [C" (u),C" (v)].

3. Since we have assumed that there are no parallel tangeoggrty 2 guarantees that(f) is non-degenerate. Now
C'(u)tD*(f)C'(u) = 0 implies thatD?(f)C’(u) = ARC’(u), for someX # 0. And sinceC’(v)!D?(f)C’(u) =
[C'(u),C"(v)], A = 1. SOD?(f)C'(u) = RC'(u) and similarlyD?(f)C’(v) = —RC'(v). HencelD?(f)C'(u), D*(f)C'(v)] =
[RC'(u), —RC'(v)] = —[C"(u), C'(v)], which implies thatlet(D?(f)) = —1.

3.2 Areadistances as improper affine spheres
3.2.1 Consequences of proposition 4

Proposition 4 implies that the graph of the area distghttea smooth convex ar€ is an indefinite improper affine sphere.
Also, the parameterization
1 1
a(u,v) = (5(C) + C), F(5(Cu) + C))).
is asymptotic. Henc€”(u) andC’ (v) are asymptotic directions and the asymptotic lines areimdtromC by similarities
of ratio1/2. Direct calculations show that(u, v) = 1[C’(v), C’(u)]. Finally, f(p) represents the area of the region bounded

by the two asymptotic lines that startzand the curve” itself (see figure 3).

If the parameterization of the curg is by affine arc length, thea = b = —i. In this case the Pick invariant is

j = 4[C’(v),C’(u)]73. Thus it vanishes only at poingssuch that at least one of the endpoints of minimal chigrd
belongs to a line segment of the original cuWe In particular, if the curve is strictly convex, the Pick amant never
vanishes.

3.2.2 Some explicit formulas for calculatingf.

By the first item of proposition 4, formulag, = fyx, + fyy. andf, = fzx, + fyy, imply that

1 aw-z() o
fuu,v) = 4| yw)—y@) v (uw) ‘

_ 1z —z(v) 2 (v)
fv (’LL, U) - 4 Y (U) -y ('U) y/ (1}) ’

It is also interesting to consider coordinatest) defined by2s = « + v and2t = u — v. In these coordinates, since
gs = gu + gv @andgs = g, — g, We have

L -l @D+l

fs(s,t) = il yls+t)—y(s—1) y’(s+t)+y'(s—t)} .
_ L a(s+t)—a(s—t) @ (s+t)—a/(s—1)

fi(s,t) = 4| y(s+t)—y(s—1t) y’(s—i—t)—y/(s—t)‘ ?




3.3 Examples
In this subsection we give explicit examples of area basstduice function of convex smooth curves.

Example 1 Consider the parabola parameterized ©y(r) = (r, g) Integrating(fu, fo) = 2((u — v)?,—(u — v)?) one

obtainsf (u,v) = i(u —v)3. Thus a parameterization of the affine sphere in asymptotedinates is given by

utv w2402 1

o, 0) = (5 (= o))
withu > v. Andw(u, v) = 1(u — v). In (s,¢) coordinates,
52 —|—t2 t3
t) = -
a(s,t) = (s, —5— 3

andw(s, t) = 3t.

Example 2 Consider the circle parameterized bYr) = (cos(r), sin(r)). Although this curve admits parallel tangents, the
above calculations work well, except at the center of theleirintegrating( f.,, f,) = 1(— cos (u — v) + 1, cos (u — v) — 1)
one obtainsf (u,v) = 4(u — v — sin (u — v)). Thus a parameterization in asymptotic coordinates isnyive

q(u,v) = (= (cos(u) + cos(v)), %(sin(u) + sin(v)), i(u — v —sin(u —v)))

N | =

with u > v. Andw(u, v) = 1 sin(u — v). In (s, ) coordinates,

(2t — sin(2t)))

R

q(s,t) = (cos(s) cos(t), sin(s) cos(t),

andw(s,t) = Lsin(2t).

Example 3 Consider the hyperbola parameterized®yr) = (exp(r), exp(—r)). Integrating(f., fu) = $(—2+ exp(u —

v) +exp(v — u),2 — exp(u — v) — exp(v — u)) one obtainsf (u,v) = (v —u) + 1 (exp(u — v) — exp(v — u)). Thus the

asymptotic parameterization is
1 1
q(u,v) = o (exp(u) + exp(v), exp(—u) + exp(~v), (v — u) + S (exp (u — v) — exp (v — u))).

with v > v. Andw(u,v) = 7 (exp(u — v) — exp(v — u)). In (s, t) coordinates,

1
1
q(s,t) = %(exp(s +1t)+exp(s —t),exp(—(s+1t)) +exp(t —s), -2t + %(exp (2t) — exp (—2t))).

andw(s,t) = I (exp(2t) — exp(—2t)).

Example 4 Consider the cubic parameterized bY(r) = (r,73). Although this is not a convex curve, the above cal-
culations can be done. Integrating the vector figltl, f,) = +(2u® — 3u?v + v3,u® — 3uv? + 20v®) one obtains

flu,v) =1 (u- ) (u 4 v). Thus the asymptotic parameterization is

1 1
q(u,v) = 5((u + v),u3 + 03, 1 (u— v)?’ (u+v)).

with u > v. Andw(u, v) = 2(u? — v?). In (s, t) coordinates,
q(s,t) = (s,8(3t* + 5%),2t%s)

andw(s,t) = 3st.



Example 5 Consider the curve parameterized 6yr) = (r,r*). Integrating the vector fieldf., f,) = (3u* — 4u®v +
vt 4v3u — 3v* — u*) one obtainsf (u,v) = i(% — % — u*v + wv*). Thus the asymptotic parameterization is

1 1,3u®  30°
q(u,v) = §(u—|—v,u4+v4,—(i—i—u4v—|—uv4)).

with u > v. Andw(u,v) = u — v, In (s, t) coordinates,
4t°
q(s,t) = (s,t* + s* + 6522, 4135% + ?)
andw(s,t) = 2t% + 6ts>.

3.4 Local characterization of indefinite improper affine spleres

In this subsection, we show that locally, and up to a constamy indefinite improper affine sphere with non-zero Pick
invariant is the graph of the area distance of a smooth cqplagre curve”'. More precisely, we have the following theorem:

Theorem 5 Let U be an open domain in th@:, v)-plane whose closur& is contained in the domain of the asymptotic
parameterization of an indefinite improper affine sphg€reAssume that, restricted 13, S is the graph of a functiotf (p).
Then there exists a convex cuWen the plane and a constaiif such thatf + K is the area distance af.

3.4.1 Some properties of indefinite improper affine spheres

Consider an indefinite improper affine sphere with strictgifive Pick invarianf. Assume, w.l.0.g., that the affine normal
is¢ = (0,0, 1) and consider that is the graph of a functiorf.

Lemma 6 The following properties hold (see figure 3):
1. We have thab?(f)(p.) = Rp. andD?(f)(p,) = —Rp..

2. Letmi(p) =p+ RV(f)(p) andm2(p) = p — RV(f)(p). Thenrmy(p) is constant along an asymptotic lime= v, and
m2(p) is constant along an asymptotic line= w.

Proof.

1. SinceD?(f) is non-degenerate atief (/) (pu, pu) = 0, D*(f)pu = ARpu, for some\ # 0. And sinceD?(f)(pu, pv) =
w(u,v) = [pu, pu], A = 1. A similar reasoning shows th&?(f)(p,) = —Rp..

2. Just observe that, + RD?(f)p, = 0 andp, — RD?(f)p, = 0.

flp)=area

Figure 3: The projections; andrs.



3.4.2 Proof of theorem 5

Let7; andr, be the projections defined in lemma 6. We have &at= 71 (U) andCy = 75(U) are compact arcs. Itis not
difficult to obtain a smooth convex af¢; such that the concatenatiéhof Cy, C3 andC5 is smooth nd convex. Denote by
g the area distance function associated'to

One can easily see that= 1 (71 (p) + m2(p)) andV(f)(p) = 3R(m2(p) — m1(p)), foranyp € U. SoV(g)(p) =
V(f)(p), for anyp € U. This implies thatf — g is constant, which proves the theorem.

3.5 Area distances to polygons
3.5.1 Asymptotic grids 2d and 3d

Let C be a convex polygon with vertices, 0 < ¢ < N — 1. Denote its sides by the vectd$; = ¢;11 — ¢; and assume
that[L;, L;] > 0, forany;j > . Assuming;j > ¢, define the following grig (4, j) on the plane by

Ci—i-Cj

p(i,j) = 5

Note that
p(i+1,4)=p(i,j) = - =2L;=p(i+1,j+1) —p(i,j+1),
so the grid is formed by parallelograms whose areas will @t by

(see figure 4). Define also

fa) = > au= > [Le L.

i<k<I<j-—1 i<k<I<j—1

Note thatf (i,j) =0if j=iorj =i+ 1.

pad) Da.5) P(S.S)

(a) Points and parallelograms. (b) Areas defined by the parallel-
ograms.

Figure 4: Planar mesh of a discrete inner distance.

Proposition 7 The mapy (¢, j) = (p (¢,5) , f (¢, 7)) is a discrete indefinite improper affine sphere.
Proof.

1. Let
j-1

L:ZLk

k=i



Then, sincgL;, L;) = [L;, L;] = 0:

j—1

q(i,j) —q(i—1,j) = <LZ—1,—Z[L1-1,LZ]> = (Li-1, [L, Lia])

=1

j—1

Q(i+17j)_Q(ivj) = <Li5_ Z [Lile]> = (le[Lle])
I=it+1

j—1

q (za] + 1) - q(iaj) = (Ljv [Lk’Lj]> = (Lj’ [LvLj])

k=i

so whatever linear dependence is satisfied hy;, L; and L; will also be satisfied by the coordinates of the three
above vectors. This shows thati + 1, 7) is in the same plane as(i — 1, ), ¢ (i,j — 1) andgq (4, 7). Similarly, one
can show that (i + 1, j + 1) is also in this plane (see figure 5).

2. From the equations above, note that

q(i+1,j4+1)—q(,j+1) = <Li, lZLkLlD

j—1
q(i+1,j)—q(i,j) = <Lial Lk,LiD
k=i

and hence these vectors are all parallel toztais.

Subtracting,

Figure 5: The four line segments in bold are co-planar.

3.5.2 Fast algorithm

Now, if we define the level of a point to be= j — i we can actually obtain our grid in levels starting from théygon. At
level0, p (i,7) = ¢; and f (i,i) = 0. Atlevel 1, p (i, + 1) = 1 (c; + ci41) and f (i,i + 1) = 0. Atlevel (j — i) + 1,

p(i,j+1)=p@,j)+p(i+1,j+1)—p(i+1,7)
fOj+1)=f6,5)+f@+1,7+1)—=f(@+1,5)+ [Li, L]

This gives us a fast algorithm to calculate all the grid p=ith each parallelogram, we can calculate the exact distanc
by a bilinear interpolation. In figure 6, one can see the tesuhis algorithm applied to a polygon inscribed in an edép



(@) A discrete improper affine (b) Planar cross in bold.
sphere.

Figure 6: The inner area distance of a polygon inscribed iincéec

4 OQuter area distances

In this section, we consider the question of extending tea distance to a neighborhoébf C' in the outer part of. The
idea is to solve the Monge-Ampeére differential equation

det(D*F)(P)=+1,P€ FE
VF(P)=0,PeC
FP)=0,PeC
and define the area distancefaby F'(P). It is clear that the graph df defines an improper definite affine sphere.
In this section, we shall first describe a solution to thishbem in the case of an analytic curve. Then we prove some
properties of this solution, including a relation with thee@a distance irD. Finally, we indicate how to obtain a discrete
definite improper affine sphere as an outer area distanceafgqn.

4.1 Definite improper affine spheres from analytic curves

Assume that the parameterizatioitr) = (z(r), y(r)) is analytic so that we can evaluate its coordinates for cernplues
of the parameter; = s + it, andz = s — it. SinceC is analytic and real on the real line, the expressit(z,z) =

%(C(z) + C(z)) is real. It represents the planar coordinates of the defimipeoper affine sphere defined below.

Lemma 8 Consider the inner area functiofi in coordinates(s, t), and letF'(s,t) = if(s,it). ThenF(s,t) is real and
V(F) = ,’R(W)_

Proof. From formulas (1) and (2), we can write

_ i az(x)—z(®) 2 (2)+2 ()

Fy (Svt) ] y(g)—y(f) y’(Z)-H/(E) ’ (3)
L _1e@-e) )7 ()

Bt = ~11 v =v@ v (5 -v @ ‘ “

We conclude thaf'(s, t) satisfiesFy, = F,zs + F,ys andF;, = Fyx; + Fyy,, whereF, = —%(y(z) —y(z)) andF, =
%(w(z) —x(Z)). ThusV(F) = iR(W). Observe also that, sin€g(z) is analytic and real on the real lin¥,(F') =
51R(C(z) — C(%)) isreal. SoF is also real.

Proposition 9 The parameterizatiof)(s,t) = (P(s + it,s — it), F'(s,t)) is isothermal and defines an improper definite
affine spheres. The surface does not depend on the choice of the analytameterization of the curv€. Also€)(s,t) =
—iw(s,it), A(s,t) = ia(s,it) and B(s,t) = —ib(s, —it). Hence the Pick invariant does not vanish for strictly conve
curvesC'.
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Proof. SinceV(F) =iR(3)(C(z) — C(z)), the same proof of proposition 4, item (3), with z) in place of(u, v) implies
thatdet(D?(F)) = +1 and thatQ(s, t) is an isothermal parameterization of a definite impropenaféiphere. If we begin
with a different analytic parameterizati@n(:)(z)), denote byF; the corresponding function. From the above formulas,
we haveV(F1)(z) = V(F)(¥(2))y'(z), which implies thatF (z) = F(1(z)). Thus the surface is independent of the
parameterization.

Since()(z,7z) = £[C'(z),C'(z)] = i[P., P5], we obtain{)(s,t) = $[P;, Ps]. On the other handy(s,t) = %[ps,pi].
ThusQ(s,t) = —iw(s, it).

Finally, A(s, t) = £[C"(s +it), C"(s + it)] = ia(s,it) andB(s, t) = —%[C’(s — it), C" (s — it)] = —ib(s, —it).

4.2 Examples

Given a curve”, assume that we can find a parameterizafign) = (z(s), y(s)), with 2(z) andy(z) analytic functions.

Example 6 Consider the parabol&’(r) = (r, %) of example 1. Sinc& (z,z) = £ andY (s,t) = szz, we obtain

X(s,t) = sandY (s,t) = <51 Also,F(s,t) = if(s,it) = &. So

2 _ 42 43
Qs = (5 =52
t > 0, defines a definite improper affine sphere. The area elem¢me dflaschke metric i€(s, t) = —iw(s, it) = £.

Example 7 Consider the circleC(r) = (cos(r),sin(r)) of example 2. Sinc& (z,z) = %;COS(E) andY(z,z) =
M, we obtainX (s,t) = cos(s) cosh(t) andY (s,t) = sin(s) cosh(t). AlsoF'(s,t) = if(s,it) = l(% —t).

2
Hence

Q(s,t) = (cos(s) cosh(t), sin(s) cosh(t), %(sm};(%) —t))
t > 0, defines a definite improper affine sphere. The area elemetfitedBlaschke metric i§)(s,t) = —iw(s,it) =

sinh(t) cosh(t)
—

Example 8 Consider the hyperbol@(r) = (exp(r), exp(—r)) of example 3. Sinc¥ (z,z) = M andY (z,z) =
P2 en(Z) e obtainX (s, t) = exp(s) cos(t) andY (s, t) = exp(—s) cos(t). Also,F(s,t) = if(s,it) = t — 3221,
Hence
sin(2t))

2

Q(s,t) = (exp(s) cos(t), exp(—s) cos(t),t —
with ¢ > 0, defines a definite improper affine sphere. The area elemdin¢ &laschke metric is given )(s, t) = %

Example 9 Consider the cubi€(r) = (r,r*) of example 4. Sinc& (z,z) = (2 +z) andY (z,2) = 3(z° +2°), we
obtain X (s,t) = s, Y(s,t) = s® — 3st2. AlsoF'(s,t) = if(s,it) = 2t3s. Hence

Q(s,t) = (s,8° — 3st?,2t%s)
t > 0, defines a definite improper affine sphere. The area eleméin¢ &laschke metric i€(s,t) = —iw(s, it) = 3st.

Example 10 Consider the curve(r) = (r,r*) of example 5. Sinc& (z,z) = == andY (z,%) = 24“2“24, we obtain
X(s,t) = sandY (s,t) = s* — 6s%? + t1. AISOF (s,t) = if(s,it) = 4s*t®> — 21°. Hence

s,t) = (s, s — 6522 + 4, 453 — é1%5
Qls,) = ( -

t > 0, defines a definite improper affine sphere. The area elemém &laschke metric (s, t) = —iw(s, t) = 65t —2¢3.
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4.3 Isothermal tangent lines to the curve
4.3.1 Another change of variables

Consider new coordinatés, v) defined bys + ¢ = v ands — t = v.

Lemma 10 Fix a point P(ug, vg), ug > v and consider the line® (u,vg), vo < u < wup and P(up,v), vo < v < up.
These lines touches tangentially the curve at the pditts), vo) and P(ug, ug), respectively.

Proof. Straightforward calculations shows that

P, = i(u i) () + (1 —0)C'(3))
and )
Py= (1= )C(E) + (1 +0)C(3).

Thus, atP(u, uo), P, = <) Similarly, atP(vo, vo), P, = <),

We shall call the above lines tlisothermal tangent linedt is interesting to observe that in the case of a parablodese
isothermal tangent lines are in fact straight lines (seeg#@6). Also, in examples 6, 7, 8 and 9, the isothermal liteasiag
at a pointP(ug, vg) do not meetC before the tangency poinf3(ug, uo) and P(vg, vo). We shall refer to this property as
non-crossing isothermal tangents. Example 10 does notth&/property, i.e., the isothermal tangent lines m@&dtefore
they arrive at the tangency points.

4.3.2 Geometric interpretation of F' as an outer area distance

We shall assume from now on that the tangent isothermalsaremssing. Considering coordinatest), we can define

a bijection between the inner and the outer part€'pby corresponding the poinis = p(s,t) and P = P(s,ti). This
correspondence can be defined more geometrically as follew® < D, consider the asymptotic lines that passes through
p and denote by’ (u) andC(v) the points where they touch tangentially Consider then the tangent isothermal line&in
that touch tangentiallg’ at C(u) andC(v). The intersection of these lines#s(see figure 7).

v

C(u)
Figure 7: The correspondence betwgend P.

For a pointP = P(ug,vo), denote byA(P) the region bounded by the isothermal tangent lines and thepthe curve
C(r) with vy < r < ug (see figure). Next lemma shows that the areal @P) is F(P)/2. This property justify the name
outer area distance for the functiéh

Lemma 11 Assume that the isothermal tangent lines starting?at P(ug,vo) are non-crossing. Then the area &{P) is
F(P)/2.

Proof. Straightforward calculations shows tH#,, P,] = £. Thus the area ofi(P) is given by half of the integral of2
over the trianglel"(ug, vo) Whose vertices ar@ug, v ), (ug, uo) and(vo, vo). The corresponding inner regiafp) has area
equal to the integral ab over the same triangle. And we know that this area is equA{9. Thus

F(P)=if(p) = 1/ w(u, v)dudv = / Q(u, v)dudv
T (uo,v0) T (ug,v0)

and so the area of(P) is F(P)/2.
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4.3.3 Relation between the indefinite and definite affine sphes
Proposition 12 Letb € D and B C E be corresponding regions. Then

/ j1/3 _ / J1/3
q(b) Q(B)

where the integrals are taken with respect to the Berwalas8hke metric.

Proof. Remember thaf = abw 3 andJ = ABQ~3. We can assume w.l.0.g. that the cutvés parameterized by affine
arc-length. They = J = 1/16. Up to these constants, the above integrals correspone taréas, in théu, v)-plane, of

the regions that represelaind B, respectively. Since, ifw, v) coordinates, both regions are the same, the proposition is
proved.

4.4 Discrete outer area distances to polygons

Assume tha€ is a polygon with vertice®; = (z;,v;), 1 < i < N. In order to mimic the continuous case, we must consider
thatz andy are functions of a variable € Z and then extend these functions to discrete complex andlytctions.

There are several definitions of discrete analytic funatidife shall adopt a classical one (see [3], ch.5). Congider
Z% — Randh : (Z?)* — R, where(Z?)* denotes the dual latticg.andh are complex conjugatesgfu+1,v) —g(u,v) =
hu+1/2,v+1/2) = h(u+1/2,v—1/2) andg(u,v+1) — g(u,v) = —=(h(u+1/2,v+1/2) — h(u—1/2,v+1/2)), for
any(u,v) € Z2. These equations are called discrete Cauchy-Riemannieqsigdnd we say that+ ik is discrete analytic.

Using the above definition, we can extenéndy to discrete analytic function& + ¢h; andY + ¢hs. In fact, these
functions are uniquely defined if we consider thatu + 1/2,1/2) = —h;(u + 1/2,-1/2), j = 1,2. This condition is
natural for any analytic function that is real on the reaglin

As in the continuous case, we must fifidu, v), (u, v) € Z? such thatha, —h1) = V(F). We write

F(u+1,v) — F(u,v) = ha(u+1/2,v+1/2) - (X (u+1,v) — X (u,v)) —h1(u+1/2,v+1/2) - (Y (u+1,v) = Y (u,v))
and
F(u,v+1)— F(u,v) = ho(u+1/2,v+1/2)- (X (u,v+1) — X(u,v)) —hi(u+1/2,v+1/2) - (Y(u,v+1) — Y (u,v))

and, using the discrete Cauchy-Riemann equations, wenobtai

_ hi(u+1/2,v—=1/2) hi(u+1/2,v+1/2)
Flutlo)=Fluv) = _’ ha(u+1/2,0—1/2) hy(u+1/2,0+1/2) ’ ®)
o hu—=1/2,v+1/2) hi(u+1/2,v+1/2)
Flu,v+1) = Fu,0) = ‘ h;(u—1/2,v+1/2) h;(u+1/2,v+1/2) ‘ 6)

In order to simplify notations, we shall denote byhe vector(h, h2).
Lemma 13 There existd” : Z? — R satisfying equations (5) and (6).

Proof. One has to show that the discrete derivaiivEw(v) of the right hand of (5) with respect tois equal to the discrete
derivativeD F'v(u) of the right hand of (6) with respect to We have

DFu(w)=[ h(u+1/2,v—1/2)+ h(u+1/2,v+3/2) h(u+1/2,v+1/2) ]

and
DFv(u) =] h(u+1/2,v4+1/2) h(u—1/2,v4+1/2)+ h(u+3/2,v+1/2) ]

ThusDFv(u) — DFu(v) is given by
[ Alu+1/2,v+1/2) h(u—1/2,v+1/2)+h(u+3/2,v+1/2) +h(u+1/2,v—1/2)+ h(u+1/2,v+ 3/2) ]

which is equal to zero, sinde, andh, are discrete harmonic.
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We shall denoteP = (X,Y) and@ = (X,Y,F). Also, define the co-normal vector by = (—hg,h1,1) =
(—=V(F),1). We can write

Qu+1,v) — Qu,v) = vu+1/2,v+1/2) xv(u+1/2,v—1/2) (7)
Qu,v+1)—Qu,v) = —v(u+1/2,v+1/2)xv(u—1/2,v+1/2). (8)

It follows directly from these equations that the quadrasgihose vertices a@(u, v), Q(u + 1,v), Q(u,v + 1) and
Q(u+1,v+1) are planar. In fact, each edge is orthogonalte+ 1/2, v+ 1/2). ThusQ(u, v) defines a conjugate net (see
definition in [3]). Denote by\(g) = g(u+ 1,v) + g(u,v+1) + g(u —1,v) + g(u,v — 1) — 4g(u, v) the discrete laplacian
of g. Itis clear thatA(Q) is parallel to thez-axis. This follows directly from the fact thaf andY are discrete harmonic,
i.e., A(X)=A() =0. ThusQ(u, v) defines a discrete definite improper affine sphere.

We can also calculatA(F"). Denote the vectorB(u + 1,v) — P(u,v), P(u,v + 1) — P(u,v), P(u — 1,v) — P(u,v)
andP(u,v — 1) — P(u,v) by v1,ve,v3 andvy, respectively. Sincé(u, v) is discrete harmoniay; + vy + vs + v4 = 0.
And the aread(u, v) of the quadrangle whose vertices d&éu + 1, v), P(u,v + 1), P(u — 1,v) andP(u,v — 1) is given
by [Ug, UQ] + [’Ul, U4].

Lemma 14
A(F)(u,v) = A(u,v)

Proof. We take as reference the vecto= h(u + 1/2,v+ 1/2). Then

h(u—1/2,v+1/2) = h+wvy
h(u+1/2,v—1/2) = h—n
h(u—1/2,v—1/2) = h+wvy+uvs

= h—’Ul—U4

So
Flu+1,v) — F(u,v) = —=[h—wv1,h] =]v1,h]
F(u,v+1)— F(u,v) = [h+va,h]=[ve,h]
Fu—1,v) — F(u,v) = [h+vy+wv3,h+ v = [v3, h] + [v3,v2]
F(u,v—1) — F(u,v) —[h —v1 — g, h — v1] = [vg, h] + [v1, v4]

We conclude that
Fu+1,v) + F(u—1,v) — 2F (u,v) = [v3,v2] + [v1,v4] = A(u,v),

thus proving the lemma.

Figure 8: Outer area distance of a polygon inscribed in deciabserve the planar quadrilateral in bold.

One can see in figure 8 the outer area distance to a polygorhieddn a circle. In our discrete construction, it is
worthwhile to observe an asymptotic net and a conjugate eeting along a curve. Unfortunately we were not able to give
a geometric interpretation of the functidhin the discrete case as we have done in the continuous case.
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5 Conclusions

We have shown a very close connection between area basadatisa widely used conceptin computer vision, and improper
affine spheres. Both theories may take benefit from this ottiore

From the point of view of the theory of area based distan¢gs link allow us to propose a new area based distance
outside a convex region and to develop fast algorithms formaing the inner areas.

From the point of view of the theory of improper affine sphethe approach give a very geometrical description of
these surfaces, both in the smooth and in the discrete case.
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(a) Polygon inscribed in a cir- (b) A closer look.
cle: (u, v) coordinates inside and
(s, t) outside.

(c) Polygon inscribed in a (d) A closer look.
circle:(u, v) coordinates inside
and(u, v) outside.
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(e) Polygon inscribed in a (f) A closer look.
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Figure 9: Internal asymptotic and external isothermaldiaEpolygons.
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