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Abstract. The area distance to a convex plane curve is an important concept in computer vision. In this paper
we describe a strong link between area distances and improper affine spheres. This link makes possible a better
understanding of both theories. The concepts of the theory of affine spheres lead to a new definition of an area
distance on the outer part of a convex plane arc. Also, based on the theory of discrete affine spheres, we propose
fast algorithms to compute the area distances. On the other hand, area distances provide a good geometrical
understanding of improper affine spheres.
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1 Introduction

The area distance of convex plane curves is an important concept in computer vision. These distances can be useful in
matching two images of the same object obtained from different points of view [7]. It can also be seen as an erosion, a basic
concept of mathematical morphology ([6]).

Improper affine spheres are surfaces inR3 whose affine normals at all points are parallel. In this paper, we point out the
strong connection between these area distances and improper affine spheres. This connection is used in the development of
the theory of area distances: based on the theory of affine spheres, we propose a new definition of area distance on the outer
part of a convex curve and new algorithms for computing thesedistances. This link is also interesting from the point of view
of the theory of improper affine spheres, since it provides a geometrical interpretation of them.

Let us make this connection more precise: we first remark thatthe area distancef to a convex plane curve satisfies the
Monge-Ampère differential equationdet(D2(f)) = −1 with boundary conditionsf = 0 and∇(f) = 0 (see [8]). We show
in this paper that the graph off is an indefinite improper affine sphere, with strictly positive Pick invariant. On the other
hand, we show also that, at least locally, any indefinite improper affine sphere is an area distance.

For the outer part of the convex curve, we propose to define an area based distance by the Monge-Ampère differential
equationdet(D2(f)) = +1 with boundary conditionsf = 0 and∇(f) = 0. Then the graph off is a definite improper affine
sphere, also with strictly positive Pick invariant. We consider in this paper the case of an initial analytic curve. In this case,
it is possible to find explicitly a solution to the Monge-Amp`ere equation, and also to describe its geometrical properties.

Consider now a convex polygon as a discretization of the convex curve. By following the asymptotic lines, we propose a
fast evolution algorithm that computes exactly the area distance. We also show that this exact area distance defines a discrete
indefinite improper affine sphere, as defined in [5]. We remarkthat the method proposed in this paper differs completely
from that of [9], since the latter considers curves defined inimplicit form. For the outer part of the polygon, we also propose
a fast evolution algorithm that computes a new distance. This graph of this new distance has the remarkable property of
being a discrete definite improper affine sphere, as defined in[5].

In this context, there is a natural duality between points inthe inner and the outer part of the convex curve. An interesting
fact is that, although this duality is not area preserving, it preserves the measureJ1/3dxdy, whereJ denotes the Pick invariant
of the corresponding graph. From the discrete point of view,it is interesting to observe that a mesh with planar crosses in the
inner part of the curve changes smoothly along the curve to a mesh with planar quadrilaterals in the outer part.

This paper is organized as follows: In section 2, we review the basic concepts related to improper affine spheres, both
smooth and discrete. In section 3, we review the definition ofarea distance in the inner part of a curve and show its strong
link with indefinite improper affine spheres. In section 4, wepropose the new definition of area distance in the outer part of
the curve, show that its graph is an definite improper affine sphere and describe the duality between the inner and the outer
area distances.

Notation. For three vectorsX,Y andZ in the space, denote by[X,Y, Z] the determinant of the3×3 matrix whose columns
are the vectorsX,Y andZ. For two vectorsX andY in the plane, denote by[X,Y ] the determinant of the2 × 2 matrix
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whose columns are the vectorsX andY . Also, denote byXt the transpose of the matrixX and byR the ninety degrees
rotation in the anti-clockwise direction. Observe that[X,Y ] = −Xt · R · Y .

2 Improper affine spheres

2.1 Basics

For a surfaceS parameterized byq(u, v) = (x(u, v), y(u, v), z(u, v)) let L = [qu, qv, quu], M = [qu, qv, quv] andN =
[qu, qv, qvv]. We say thatS is non-degenerate ifLN −M2 6= 0. For a non-degenerate surface, the Blaschke metric is given
by

φ =
Ldu2 + 2Mdudv +Ndv2

|LN −M2|1/4
.

It is definite or indefinite according toLN −M2 being positive or negative. In the definite case, the affine normal is defined
asξ = 1

2∆(q), while in the indefinite caseξ = − 1
2∆(q), where∆(q) denotes the laplacian of each coordinate with respect

to the Blaschke metric.
An improper affine sphereS is a surface whose affine normals at all points are parallel. We shall assume that the affine

normals are parallel to thez-axis. Under this hypothesisS is locally the graph of a functionz = f(x, y). The following
proposition is well-known (see [1]).

Proposition 1 S is an indefinite improper affine sphere if and only ifdet(D2(f)) = −c, and a definite improper affine
sphere if and only ifdet(D2(f)) = c, wherec is a positive constant. In both cases, the affine normal is constant and equal
to (0, 0, c).

In the caseS is the graph off , we shall writeq(u, v) = (p(u, v), f(p(u, v))). The coefficients of the Blaschke metric
can be calculated by the following lemma, whose proof is a straightforward calculation:

Lemma 2






L = [pu, pv]D
2(f)(pu, pu)

M = [pu, pv]D
2(f)(pu, pv)

N = [pu, pv]D
2(f)(pv, pv)

.

2.2 Asymptotic and isothermal directions

For an indefinite Blaschke metric, one can find parameters(u, v) such thatL = N = 0. These parameters are called
asymptotic parametersand the corresponding tangent vectors are calledasymptotic directions. Lines whose tangent vectors
are asymptotic directions are calledasymptotic lines. Lemma 2 shows that the projections of the asymptotic directions in the
(x, y)-plane vanish the quadratic formD2(f), and we shall also call them asymptotic directions.

Using asymptotic parameters, the structure equations become






quu = ωu

ω qu + a
ω qv

qvv = b
ω qu + ωv

ω qv
quv = −ωξ

whereav = bu = 0 andω = [qu, qv, ξ]. By a good choice of the asymptotic parameters, we can makea andb constants.
The Pick invariant is given byj = ab

ω3 (see [4] and [5]). The equations for the planar component are







puu = ωu

ω pu + a
ωpv

pvv = b
ωpu + ωv

ω pv
puv = 0,

with ω = [pu, pv] = −fuv. From these equations one obtains[pu, puu] = a and[pv, pvv] = −b. So, if the Pick invariant
does not vanish, the planar asymptotic lines are convex.

For a definite Blaschke metric, one can consider also asymptotic parameters, but they are complex ([4]). Consider
complex parametersz = s + it andz = s − it such thatL(z, z) = N(z, z) = 0 andiM(z, z) = Ω2. Then, in terms ofs
andt, L(s, t) = N(s, t) = 4Ω2 andM(s, t) = 0 ([2]). We call such coordinatesisothermal.
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In order to differentiate from the indefinite case, we shall use capital lettersP,Q, F,Ω, A,B andJ to describe the
structure equations, as follows:







Qzz = Ωz

Ω Qz −
A
ΩQz

Qzz = −B
ΩQz +

Ωz

Ω Qz

Qzz = −Ωξ

whereΩ = −i[Qz, Qz, ξ], A = i[Qz, Qzz, ξ] andB = −i[Qz, Qzz, ξ]. By a good choice of the isothermal parameters,
we can makeA andB constants. The Pick invariant is given byJ = AB

Ω3 (see [2] and [5]). The equations for the planar
components are







Pzz = Ωz

Ω Pz −
A
ΩPz

Pzz = −B
ΩPz +

Ωz

Ω Pz

Pzz = 0, Fzz = −Ω

with Ω = −i[Pz, Pz]. AlsoA = i[Pz, Pzz] andB = −i[Pz, Pzz].

2.3 Discrete improper affine spheres.

In [2], definitions of discrete proper affine spheres are proposed, both in the indefinite and in the definite case. In [5],
these definitions are generalized to discrete improper affine spheres, indefinite and definite. We describe now these latter
definitions, with a slight modification in the definite case. Denote byZ the set of integers.

Definition 1 A mapq : Z2 → R3 is a discrete indefinite improper affine sphere if it has the following properties:

1. For any(i, j) ∈ Z2, the pointsq(i, j), q(i + 1, j), q(i− 1, j), q(i, j − 1), q(i, j + 1) are co-planar.

2. There exists a directionξ inR3 such that, for any(i, j) ∈ Z2, the vectorq(i, j)+q(i+1, j+1)−q(i+1, j)−q(i, j+1)
is parallel toξ.

Definition 2 A mapQ : Z2 → R3 is a discrete definite improper affine sphere if it has the following properties:

1. For any(i, j) ∈ Z2, the pointsQ(i, j), Q(i+ 1, j), Q(i, j + 1), Q(i+ 1, j + 1) are co-planar.

2. There exists a directionξ in R3 such that, for any(i, j) ∈ Z2, the vectorQ(i, j + 1) + Q(i, j − 1) + Q(i − 1, j) +
Q(i+ 1, j)− 4Q(i, j) is parallel toξ.

3 Inner Area distances

In this section we review some properties of area distances and show the connection between area distances and affine
spheres. We show that the graph of an area distance is an indefinite improper affine sphere and that, at least locally, any
indefinite improper affine sphere is the graph of an area distance of some convex plane curve.

Moreover, we show that the area distance of polygons define discrete indefinite improper affine spheres and how this
fact can be applied to construct a very fast algorithm for computing area distances.

3.1 Definition and properties of the area distance

Consider a smooth convex curveC in the plane without parallel tangent lines.C can have2, 1 or 0 endpoints. Denote byD
the plane region whose boundary isC and the curve(s) obtained fromC by a similarity of ratio1

2 based at each endpoint of
C (see figure 1).

A chord is a line segment connecting2 points ofC. For a pointp ∈ D, consider chordsl passing throughp that, together
with C, bound regionsDl. Denote byl(p) the chord such that the area of the corresponding regionDl(p) is minimum. The
area distance functionf(p) is then defined as half of the area ofDl(p). Sometimes we shall call this functioninner area
distance, since in section 4 we shall define another area distance.

Any p ∈ D is the mean point of the extremities of the chordl(p). This important property was proved first in [6] (see
also [7]). Another important property is that∇(f)(p) is orthogonal to the chordl(p), with half of the length of it (see figure
2). The third important property is thatdet(D2(f)(p)) = −1, for anyp ∈ D. This last property was first proved in [8]. The
next lemma and proposition describe the2 latter properties with more details.
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(a) Domain for a curve with 2
endpoints.

(b) Domain for a curve with 1
endpoint.

(c) Domain for a curve without
endpoints.

Figure 1: Domains for the inner area distance function.

Figure 2: Gradient of the area distance.

Lemma 3 Denote byC(u(p)) andC(v(p)) the extremities of the chordl(p). Consideringu andv as functions ofp, we have

∇(u) = − 2RC′(v)
[C′(u),C′(v)] and∇(v) = 2RC′(u)

[C′(u),C′(v)] .

Proof. Since2p = C(u(p)) +C(v(p)), 2I = C′(u)∇(u)t +C′(v)∇(v)t whereI is the identity2× 2 matrix. Multiplying
byC′(v)tR, one obtains the first formula. The second one is analogous.

Proposition 4 The area distancef of a convex arcC satisfies the following formulas:

1. The gradient off is given by∇(f) = R(12 (C(v) − C(u))).

2. C′(u) andC′(v) satisfy the equationsD2(f)(C′(u), C′(u)) = 0,D2(f)(C′(v), C′(v)) = 0 andD2(f)(C′(u), C′(v)) =
[C′(u), C′(v)].

3. det(D2(f)) = −1.

Proof.

1. By Green’s theorem, one can write4f(p) =
∫ v

u
[C(s) − p, C′(s)]ds. Using the rules for differentiating integrals, one

obtains

4∇(f)(p) = [C(v) − p, C′(v)]∇(v)− [C(u)− p, C′(u)]∇(u) +

∫ v

u

RC′(s)ds,

4∇(f)(p) = R(
[C(v) − C(u), C′(v)]

[C′(u), C′(v)]
C′(u) +

[C(v) − C(u), C′(u)]

[C′(v), C′(u)]
C′(v)) +R(C(v) − C(u)).

Since, for anyw, one can writew = [C′(v),w]
[C′(v),C′(u)]C

′(u) + [C′(u),w]
[C′(u),C′(v)]C

′(v), we conclude that

∇(f)(p) = R(
1

2
(C(v) − C(u))).
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2. Differentiating one obtains

2D2(f) = R(C′(u)∇(u)t − C′(v)∇(v)t),

and so

D2(f) =
1

[C′(u), C′(v)]

(

RC′(u)C′(v)tR+RC′(v)C′(u)tR
)

.

One concludes that

C′(u)tD2(f)C′(u) = C′(v)tD2(f)C′(v) = 0

and

C′(u)tD2(f)C′(v) = C′(v)tD2(f)C′(u) = [C′(u), C′(v)].

3. Since we have assumed that there are no parallel tangents,property 2 guarantees thatD2(f) is non-degenerate. Now
C′(u)tD2(f)C′(u) = 0 implies thatD2(f)C′(u) = λRC′(u), for someλ 6= 0. And sinceC′(v)tD2(f)C′(u) =
[C′(u), C′(v)], λ = 1. SoD2(f)C′(u) = RC′(u) and similarlyD2(f)C′(v) = −RC′(v). Hence[D2(f)C′(u), D2(f)C′(v)] =
[RC′(u),−RC′(v)] = −[C′(u), C′(v)], which implies thatdet(D2(f)) = −1.

3.2 Area distances as improper affine spheres

3.2.1 Consequences of proposition 4

Proposition 4 implies that the graph of the area distancef to a smooth convex arcC is an indefinite improper affine sphere.
Also, the parameterization

q(u, v) = (
1

2
(C(u) + C(v)), f(

1

2
(C(u) + C(v)))).

is asymptotic. HenceC′(u) andC′(v) are asymptotic directions and the asymptotic lines are obtained fromC by similarities
of ratio1/2. Direct calculations show thatω(u, v) = 1

4 [C
′(v), C′(u)]. Finally,f(p) represents the area of the region bounded

by the two asymptotic lines that start atp and the curveC itself (see figure 3).

If the parameterization of the curveC is by affine arc length, thena = b = − 1
4 . In this case the Pick invariant is

j = 4[C′(v), C′(u)]−3. Thus it vanishes only at pointsp such that at least one of the endpoints of minimal chordl(p)
belongs to a line segment of the original curveC. In particular, if the curve is strictly convex, the Pick invariant never
vanishes.

3.2.2 Some explicit formulas for calculatingf .

By the first item of proposition 4, formulasfu = fxxu + fyyu andfv = fxxv + fyyv imply that

fu (u, v) =
1

4

∣

∣

∣

∣

x (u)− x (v) x′ (u)
y (u)− y (v) y′ (u)

∣

∣

∣

∣

fv (u, v) =
1

4

∣

∣

∣

∣

x (u)− x (v) x′ (v)
y (u)− y (v) y′ (v)

∣

∣

∣

∣

It is also interesting to consider coordinates(s, t) defined by2s = u + v and2t = u − v. In these coordinates, since
gs = gu + gv andgt = gu − gv, we have

fs (s, t) =
1

4

∣

∣

∣

∣

x (s+ t)− x (s− t) x′ (s+ t) + x′ (s− t)
y (s+ t)− y (s− t) y′ (s+ t) + y′ (s− t)

∣

∣

∣

∣

(1)

ft (s, t) =
1

4

∣

∣

∣

∣

x (s+ t)− x (s− t) x′ (s+ t)− x′ (s− t)
y (s+ t)− y (s− t) y′ (s+ t)− y′ (s− t)

∣

∣

∣

∣

(2)
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3.3 Examples

In this subsection we give explicit examples of area based distance function of convex smooth curves.

Example 1 Consider the parabola parameterized byC (r) =
(

r, r
2

2

)

. Integrating(fu, fv) = 1
8 ((u − v)2,−(u − v)2) one

obtainsf(u, v) = 1
24 (u− v)3. Thus a parameterization of the affine sphere in asymptotic coordinates is given by

q(u, v) = (
u+ v

2
,
u2 + v2

4
,
1

24
(u− v)3)

with u > v. Andω(u, v) = 1
4 (u− v). In (s, t) coordinates,

q(s, t) = (s,
s2 + t2

2
,
t3

3
)

andω(s, t) = 1
2 t.

Example 2 Consider the circle parameterized byC(r) = (cos(r), sin(r)). Although this curve admits parallel tangents, the
above calculations work well, except at the center of the circle. Integrating(fu, fv) = 1

4 (− cos (u− v)+1, cos (u− v)−1)
one obtainsf(u, v) = 1

4 (u− v − sin (u− v)). Thus a parameterization in asymptotic coordinates is given by

q(u, v) = (
1

2
(cos(u) + cos(v)),

1

2
(sin(u) + sin(v)),

1

4
(u − v − sin(u − v)))

with u > v. Andω(u, v) = 1
4 sin(u− v). In (s, t) coordinates,

q(s, t) = (cos(s) cos(t), sin(s) cos(t),
1

4
(2t− sin(2t)))

andω(s, t) = 1
4sin(2t).

Example 3 Consider the hyperbola parameterized byC(r) = (exp(r), exp(−r)). Integrating(fu, fv) = 1
4 (−2+ exp(u−

v) + exp(v − u), 2− exp(u− v)− exp(v − u)) one obtainsf(u, v) = 1
2 (v − u) + 1

4 (exp(u− v)− exp(v − u)). Thus the
asymptotic parameterization is

q(u, v) =
1

2
(exp(u) + exp(v), exp(−u) + exp(−v), (v − u) +

1

2
(exp (u− v)− exp (v − u))).

with u > v. Andω(u, v) = 1
4 (exp(u− v)− exp(v − u)). In (s, t) coordinates,

q(s, t) =
1

2
(exp(s+ t) + exp(s− t), exp(−(s+ t)) + exp(t− s),−2t+

1

2
(exp (2t)− exp (−2t))).

andω(s, t) = 1
4 (exp(2t)− exp(−2t)).

Example 4 Consider the cubic parameterized byC(r) = (r, r3). Although this is not a convex curve, the above cal-
culations can be done. Integrating the vector field(fu, fv) = 1

4 (2u
3 − 3u2v + v3, u3 − 3uv2 + 2v3) one obtains

f(u, v) = 1
8 (u− v)

3
(u+ v). Thus the asymptotic parameterization is

q(u, v) =
1

2
((u + v), u3 + v3,

1

4
(u− v)

3
(u+ v)).

with u > v. Andω(u, v) = 3
4 (u

2 − v2). In (s, t) coordinates,

q(s, t) = (s, s(3t2 + s2), 2t3s)

andω(s, t) = 3st.
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Example 5 Consider the curve parameterized byC(r) = (r, r4). Integrating the vector field(fu, fv) = 1
4 (3u

4 − 4u3v +

v4, 4v3u− 3v4 − u4) one obtainsf(u, v) = 1
4 (

3u5

5 − 3v5

5 − u4v + uv4). Thus the asymptotic parameterization is

q(u, v) =
1

2
(u+ v, u4 + v4,

1

2
(
3u5

5
−

3v5

5
− u4v + uv4)).

with u > v. Andω(u, v) = u3 − v3. In (s, t) coordinates,

q(s, t) = (s, t4 + s4 + 6s2t2, 4t3s2 +
4t5

5
)

andω(s, t) = 2t3 + 6ts2.

3.4 Local characterization of indefinite improper affine spheres

In this subsection, we show that locally, and up to a constant, any indefinite improper affine sphere with non-zero Pick
invariant is the graph of the area distance of a smooth convexplane curveC. More precisely, we have the following theorem:

Theorem 5 Let U be an open domain in the(u, v)-plane whose closureU is contained in the domain of the asymptotic
parameterization of an indefinite improper affine sphereS. Assume that, restricted toU , S is the graph of a functionf(p).
Then there exists a convex curveC in the plane and a constantK such thatf +K is the area distance ofC.

3.4.1 Some properties of indefinite improper affine spheres

Consider an indefinite improper affine sphere with strictly positive Pick invariantj. Assume, w.l.o.g., that the affine normal
is ξ = (0, 0, 1) and consider thatS is the graph of a functionf .

Lemma 6 The following properties hold (see figure 3):

1. We have thatD2(f)(pu) = Rpu andD2(f)(pv) = −Rpv.

2. Letπ1(p) = p+R∇(f)(p) andπ2(p) = p−R∇(f)(p). Thenπ1(p) is constant along an asymptotic linev = v0 and
π2(p) is constant along an asymptotic lineu = u0.

Proof.

1. SinceD2(f) is non-degenerateandD2(f)(pu, pu) = 0,D2(f)pu = λRpu, for someλ 6= 0. And sinceD2(f)(pu, pv) =
ω(u, v) = [pu, pv], λ = 1. A similar reasoning shows thatD2(f)(pv) = −Rpv.

2. Just observe thatpu +RD2(f)pu = 0 andpv −RD2(f)pv = 0.

Figure 3: The projectionsπ1 andπ2.
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3.4.2 Proof of theorem 5

Let π1 andπ2 be the projections defined in lemma 6. We have thatC1 = π1(U) andC2 = π2(U) are compact arcs. It is not
difficult to obtain a smooth convex arcC3 such that the concatenationC of C1, C3 andC2 is smooth nd convex. Denote by
g the area distance function associated toC.

One can easily see thatp = 1
2 (π1(p) + π2(p)) and∇(f)(p) = 1

2R(π2(p) − π1(p)), for anyp ∈ U . So∇(g)(p) =

∇(f)(p), for anyp ∈ U . This implies thatf − g is constant, which proves the theorem.

3.5 Area distances to polygons

3.5.1 Asymptotic grids 2d and 3d

Let C be a convex polygon with verticesci, 0 ≤ i ≤ N − 1. Denote its sides by the vectors2Li = ci+1 − ci and assume
that[Li, Lj] > 0, for anyj > i. Assumingj ≥ i, define the following gridp (i, j) on the plane by

p (i, j) =
ci + cj

2
.

Note that

p (i+ 1, j)− p (i, j) =
ci+1 − ci

2
= 2Li = p (i+ 1, j + 1)− p (i, j + 1) ,

so the grid is formed by parallelograms whose areas will be denoted by

aij = [p (i+ 1, j)− p (i, j) , p (i, j + 1)− p (i, j)] = [Li, Lj] .

(see figure 4). Define also

f (i, j) =
∑

i≤k<l≤j−1

ak,l =
∑

i≤k<l≤j−1

[Lk, Ll] .

Note thatf (i, j) = 0 if j = i or j = i+ 1.

(a) Points and parallelograms. (b) Areas defined by the parallel-
ograms.

Figure 4: Planar mesh of a discrete inner distance.

Proposition 7 The mapq (i, j) = (p (i, j) , f (i, j)) is a discrete indefinite improper affine sphere.

Proof.

1. Let

L =

j−1
∑

k=i

Lk

8



Then, since[Li, Li] = [Lj, Lj ] = 0:

q (i, j)− q (i− 1, j) =

(

Li−1,−

j−1
∑

l=i

[Li−1, Ll]

)

= (Li−1, [L,Li−1])

q (i+ 1, j)− q (i, j) =

(

Li,−

j−1
∑

l=i+1

[Li, Ll]

)

= (Li, [L,Li])

q (i, j + 1)− q (i, j) =

(

Lj,

j−1
∑

k=i

[Lk, Lj ]

)

= (Lj , [L,Lj])

so whatever linear dependence is satisfied byLi−1, Li andLj will also be satisfied by thez coordinates of the three
above vectors. This shows thatq (i+ 1, j) is in the same plane asq (i− 1, j), q (i, j − 1) andq (i, j). Similarly, one
can show thatq (i+ 1, j + 1) is also in this plane (see figure 5).

2. From the equations above, note that

q (i+ 1, j + 1)− q (i, j + 1) =

(

Li,

[

j
∑

k=i

Lk, Li

])

q (i+ 1, j)− q (i, j) =

(

Li,

[

j−1
∑

k=i

Lk, Li

])

Subtracting,
q (i+ 1, j + 1)− q (i, j + 1)− q (i+ 1, j) + q (i, j) = (0, [Lj , Li]) = (0,−aij)

and hence these vectors are all parallel to thez-axis.

Figure 5: The four line segments in bold are co-planar.

3.5.2 Fast algorithm

Now, if we define the level of a point to bek = j − i we can actually obtain our grid in levels starting from the polygon. At
level0, p (i, i) = ci andf (i, i) = 0. At level1, p (i, i+ 1) = 1

2 (ci + ci+1) andf (i, i+ 1) = 0. At level (j − i) + 1,

p (i, j + 1) = p (i, j) + p (i+ 1, j + 1)− p (i+ 1, j)

f (i, j + 1) = f (i, j) + f (i+ 1, j + 1)− f (i+ 1, j) + [Li, Lj]

This gives us a fast algorithm to calculate all the grid points. In each parallelogram, we can calculate the exact distance
by a bilinear interpolation. In figure 6, one can see the result of this algorithm applied to a polygon inscribed in an ellipse.

9



(a) A discrete improper affine
sphere.

(b) Planar cross in bold.

Figure 6: The inner area distance of a polygon inscribed in a circle.

4 Outer area distances

In this section, we consider the question of extending the area distance to a neighborhoodE of C in the outer part ofC. The
idea is to solve the Monge-Ampère differential equation







det(D2F )(P ) = +1, P ∈ E
∇F (P ) = 0, P ∈ C
F (P ) = 0, P ∈ C

and define the area distance atP byF (P ). It is clear that the graph ofF defines an improper definite affine sphere.
In this section, we shall first describe a solution to this problem in the case of an analytic curve. Then we prove some

properties of this solution, including a relation with the area distance inD. Finally, we indicate how to obtain a discrete
definite improper affine sphere as an outer area distance of a polygon.

4.1 Definite improper affine spheres from analytic curves

Assume that the parameterizationC(r) = (x(r), y(r)) is analytic so that we can evaluate its coordinates for complex values
of the parameter,z = s + it, andz = s − it. SinceC is analytic and real on the real line, the expressionP (z, z) =
1
2 (C(z) + C(z)) is real. It represents the planar coordinates of the definiteimproper affine sphere defined below.

Lemma 8 Consider the inner area functionf in coordinates(s, t), and letF (s, t) = if(s, it). ThenF (s, t) is real and
∇(F ) = iR(C(z)−C(z)

2 ).

Proof. From formulas (1) and (2), we can write

Fs (s, t) =
i

4

∣

∣

∣

∣

x (z)− x (z) x′ (z) + x′ (z)
y (z)− y (z) y′ (z) + y′ (z)

∣

∣

∣

∣

(3)

Ft (s, t) = −
1

4

∣

∣

∣

∣

x (z)− x (z) x′ (z)− x′ (z)
y (z)− y (z) y′ (z)− y′ (z)

∣

∣

∣

∣

(4)

We conclude thatF (s, t) satisfiesFs = Fxxs + Fyys andFt = Fxxt + Fyyt, whereFx = − i
2 (y(z) − y(z)) andFy =

i
2 (x(z) − x(z)). Thus∇(F ) = iR(C(z)−C(z)

2 ). Observe also that, sinceC(z) is analytic and real on the real line,∇(F ) =
1
2 iR(C(z)− C(z)) is real. SoF is also real.

Proposition 9 The parameterizationQ(s, t) = (P (s + it, s − it), F (s, t)) is isothermal and defines an improper definite
affine sphereS. The surface does not depend on the choice of the analytic parameterization of the curveC. AlsoΩ(s, t) =
−iω(s, it), A(s, t) = ia(s, it) andB(s, t) = −ib(s,−it). Hence the Pick invariant does not vanish for strictly convex
curvesC.
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Proof. Since∇(F ) = iR(12 )(C(z)−C(z)), the same proof of proposition 4, item (3), with(z, z) in place of(u, v) implies
thatdet(D2(F )) = +1 and thatQ(s, t) is an isothermal parameterization of a definite improper affine sphere. If we begin
with a different analytic parameterizationC(ψ(z)), denote byF1 the corresponding function. From the above formulas,
we have∇(F1)(z) = ∇(F )(ψ(z))ψ′(z), which implies thatF1(z) = F (ψ(z)). Thus the surface is independent of the
parameterization.

SinceΩ(z, z) = i
4 [C

′(z), C′(z)] = i[Pz , Pz], we obtainΩ(s, t) = 1
2 [Pt, Ps]. On the other hand,ω(s, t) = 1

2 [ps, pt].
ThusΩ(s, t) = −iω(s, it).

Finally,A(s, t) = i
4 [C

′(s+ it), C′′(s+ it)] = ia(s, it) andB(s, t) = − i
4 [C

′(s− it), C′′(s− it)] = −ib(s,−it).

4.2 Examples

Given a curveC, assume that we can find a parameterizationC(s) = (x(s), y(s)), with x(z) andy(z) analytic functions.

Example 6 Consider the parabolaC(r) = (r, r
2

2 ) of example 1. SinceX(z, z) = z+z
2 andY (s, t) = z2+z2

4 , we obtain

X(s, t) = s andY (s, t) = s2−t2

2 . Also,F (s, t) = if(s, it) = t3

3 . So

Q(s, t) = (s,
s2 − t2

2
,
t3

3
)

t > 0, defines a definite improper affine sphere. The area element ofthe Blaschke metric isΩ(s, t) = −iω(s, it) = t
2 .

Example 7 Consider the circleC(r) = (cos(r), sin(r)) of example 2. SinceX(z, z) = cos(z)+cos(z)
2 and Y (z, z) =

sin(z)+sin(z)
2 , we obtainX(s, t) = cos(s) cosh(t) andY (s, t) = sin(s) cosh(t). AlsoF (s, t) = if(s, it) = 1

2 (
sinh(2t)

2 − t).
Hence

Q(s, t) = (cos(s) cosh(t), sin(s) cosh(t),
1

2
(
sinh(2t)

2
− t))

t > 0, defines a definite improper affine sphere. The area element ofthe Blaschke metric isΩ(s, t) = −iω(s, it) =
sinh(t) cosh(t)

2 .

Example 8 Consider the hyperbolaC(r) = (exp(r), exp(−r)) of example 3. SinceX(z, z) = exp(z)+exp(z)
2 andY (z, z) =

exp(−z)+exp(−z)
2 , we obtainX(s, t) = exp(s) cos(t) andY (s, t) = exp(−s) cos(t). Also,F (s, t) = if(s, it) = t− sin(2t)

2 .
Hence

Q(s, t) = (exp(s) cos(t), exp(−s) cos(t), t−
sin(2t)

2
)

with t > 0, defines a definite improper affine sphere. The area element ofthe Blaschke metric is given byΩ(s, t) = sin(2t)
2 .

Example 9 Consider the cubicC(r) = (r, r3) of example 4. SinceX(z, z) = 1
2 (z + z) andY (z, z) = 1

2 (z
3 + z3), we

obtainX(s, t) = s, Y (s, t) = s3 − 3st2. AlsoF (s, t) = if(s, it) = 2t3s. Hence

Q(s, t) = (s, s3 − 3st2, 2t3s)

t > 0, defines a definite improper affine sphere. The area element ofthe Blaschke metric isΩ(s, t) = −iω(s, it) = 3st.

Example 10 Consider the curveC(r) = (r, r4) of example 5. SinceX(z, z) = z+z
2 and Y (z, z) = z4+z4

2 , we obtain
X(s, t) = s andY (s, t) = s4 − 6s2t2 + t4. AlsoF (s, t) = if(s, it) = 4s2t3 − 4

5 t
5. Hence

Q(s, t) = (s, s4 − 6s2t2 + t4, 4s2t3 −
4

5
t5)

t > 0, defines a definite improper affine sphere. The area element ofthe Blaschke metric isΩ(s, t) = −iω(s, t) = 6s2t−2t3.
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4.3 Isothermal tangent lines to the curve

4.3.1 Another change of variables

Consider new coordinates(u, v) defined bys+ t = u ands− t = v.

Lemma 10 Fix a pointP (u0, v0), u0 > v0 and consider the linesP (u, v0), v0 ≤ u ≤ u0 andP (u0, v), v0 ≤ v ≤ u0.
These lines touches tangentially the curve at the pointsP (v0, v0) andP (u0, u0), respectively.

Proof. Straightforward calculations shows that

Pu =
1

4
((1 + i)C′(z) + (1 − i)C′(z))

and

Pv =
1

4
((1 − i)C′(z) + (1 + i)C′(z)) .

Thus, atP (u0, u0), Pv = C′(u0)
2 . Similarly, atP (v0, v0), Pu = C′(v0)

2 .

We shall call the above lines theisothermal tangent lines. It is interesting to observe that in the case of a parabola, these
isothermal tangent lines are in fact straight lines (see example 6). Also, in examples 6, 7, 8 and 9, the isothermal lines starting
at a pointP (u0, v0) do not meetC before the tangency pointsP (u0, u0) andP (v0, v0). We shall refer to this property as
non-crossing isothermal tangents. Example 10 does not havethis property, i.e., the isothermal tangent lines meetC before
they arrive at the tangency points.

4.3.2 Geometric interpretation ofF as an outer area distance

We shall assume from now on that the tangent isothermals are non-crossing. Considering coordinates(s, t), we can define
a bijection between the inner and the outer parts ofC, by corresponding the pointsp = p(s, t) andP = P (s, ti). This
correspondence can be defined more geometrically as follows: Forp ∈ D, consider the asymptotic lines that passes through
p and denote byC(u) andC(v) the points where they touch tangentiallyC. Consider then the tangent isothermal lines inE
that touch tangentiallyC atC(u) andC(v). The intersection of these lines isP (see figure 7).

Figure 7: The correspondence betweenp andP .

For a pointP = P (u0, v0), denote byA(P ) the region bounded by the isothermal tangent lines and the part of the curve
C(r) with v0 ≤ r ≤ u0 (see figure). Next lemma shows that the area ofA(P ) is F (P )/2. This property justify the name
outer area distance for the functionF .

Lemma 11 Assume that the isothermal tangent lines starting atP = P (u0, v0) are non-crossing. Then the area ofA(P ) is
F (P )/2.

Proof. Straightforward calculations shows that[Pu, Pv] =
Ω
2 . Thus the area ofA(P ) is given by half of the integral ofΩ

over the triangleT (u0, v0) whose vertices are(u0, v0), (u0, u0) and(v0, v0). The corresponding inner regiona(p) has area
equal to the integral ofω over the same triangle. And we know that this area is equal tof(p). Thus

F (P ) = if(p) = i

∫

T (u0,v0)

ω(u, v)dudv =

∫

T (u0,v0)

Ω(u, v)dudv

and so the area ofA(P ) is F (P )/2.
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4.3.3 Relation between the indefinite and definite affine spheres

Proposition 12 Let b ⊂ D andB ⊂ E be corresponding regions. Then
∫

q(b)

j1/3 =

∫

Q(B)

J1/3

where the integrals are taken with respect to the Berwald-Blaschke metric.

Proof. Remember thatj = abω−3 andJ = ABΩ−3. We can assume w.l.o.g. that the curveC is parameterized by affine
arc-length. Thenj = J = 1/16. Up to these constants, the above integrals correspond to the areas, in the(u, v)-plane, of
the regions that representb andB, respectively. Since, in(u, v) coordinates, both regions are the same, the proposition is
proved.

4.4 Discrete outer area distances to polygons

Assume thatC is a polygon with verticesPi = (xi, yi), 1 ≤ i ≤ N . In order to mimic the continuous case, we must consider
thatx andy are functions of a variableu ∈ Z and then extend these functions to discrete complex analytic functions.

There are several definitions of discrete analytic functions. We shall adopt a classical one (see [3], ch.5). Considerg :
Z2 → R andh : (Z2)∗ → R, where(Z2)∗ denotes the dual lattice.g andh are complex conjugates ifg(u+1, v)−g(u, v) =
h(u+1/2, v+1/2)− h(u+1/2, v− 1/2) andg(u, v+1)− g(u, v) = −(h(u+1/2, v+1/2)− h(u− 1/2, v+1/2)), for
any(u, v) ∈ Z2. These equations are called discrete Cauchy-Riemann equations, and we say thatg+ ih is discrete analytic.

Using the above definition, we can extendx andy to discrete analytic functionsX + ih1 andY + ih2. In fact, these
functions are uniquely defined if we consider thathj(u + 1/2, 1/2) = −hj(u + 1/2,−1/2), j = 1, 2. This condition is
natural for any analytic function that is real on the real line.

As in the continuous case, we must findF (u, v), (u, v) ∈ Z2 such that(h2,−h1) = ∇(F ). We write

F (u+1, v)−F (u, v) = h2(u+1/2, v+1/2) · (X(u+1, v)−X(u, v))− h1(u+1/2, v+1/2) · (Y (u+1, v)− Y (u, v))

and

F (u, v+1)−F (u, v) = h2(u+1/2, v+1/2) · (X(u, v+1)−X(u, v))− h1(u+1/2, v+1/2) · (Y (u, v+1)− Y (u, v))

and, using the discrete Cauchy-Riemann equations, we obtain

F (u + 1, v)− F (u, v) = −

∣

∣

∣

∣

h1(u+ 1/2, v − 1/2) h1(u+ 1/2, v + 1/2)
h2(u+ 1/2, v − 1/2) h2(u+ 1/2, v + 1/2)

∣

∣

∣

∣

(5)

F (u, v + 1)− F (u, v) =

∣

∣

∣

∣

h1(u− 1/2, v + 1/2) h1(u + 1/2, v + 1/2)
h2(u− 1/2, v + 1/2) h2(u + 1/2, v + 1/2)

∣

∣

∣

∣

(6)

In order to simplify notations, we shall denote byh the vector(h1, h2).

Lemma 13 There existsF : Z2 → R satisfying equations (5) and (6).

Proof. One has to show that the discrete derivativeDFu(v) of the right hand of (5) with respect tov is equal to the discrete
derivativeDFv(u) of the right hand of (6) with respect tou. We have

DFu(v) = [ h(u+ 1/2, v − 1/2) + h(u + 1/2, v + 3/2) h(u+ 1/2, v + 1/2) ]

and
DFv(u) = [ h(u+ 1/2, v + 1/2) h(u− 1/2, v + 1/2) + h(u+ 3/2, v + 1/2) ]

ThusDFv(u)−DFu(v) is given by

[ h(u + 1/2, v + 1/2) h(u − 1/2, v + 1/2) + h(u+ 3/2, v + 1/2) + h(u+ 1/2, v − 1/2) + h(u+ 1/2, v + 3/2) ]

which is equal to zero, sinceh1 andh2 are discrete harmonic.
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We shall denoteP = (X,Y ) andQ = (X,Y, F ). Also, define the co-normal vector byν = (−h2, h1, 1) =
(−∇(F ), 1). We can write

Q(u+ 1, v)−Q(u, v) = ν(u+ 1/2, v + 1/2)× ν(u+ 1/2, v − 1/2) (7)

Q(u, v + 1)−Q(u, v) = −ν(u + 1/2, v + 1/2)× ν(u − 1/2, v + 1/2). (8)

It follows directly from these equations that the quadrangles whose vertices areQ(u, v), Q(u + 1, v), Q(u, v + 1) and
Q(u+1, v+1) are planar. In fact, each edge is orthogonal toν(u+1/2, v+1/2). ThusQ(u, v) defines a conjugate net (see
definition in [3]). Denote by∆(g) = g(u+ 1, v) + g(u, v+ 1)+ g(u− 1, v) + g(u, v− 1)− 4g(u, v) the discrete laplacian
of g. It is clear that∆(Q) is parallel to thez-axis. This follows directly from the fact thatX andY are discrete harmonic,
i.e.,∆(X) = ∆(Y ) = 0. ThusQ(u, v) defines a discrete definite improper affine sphere.

We can also calculate∆(F ). Denote the vectorsP (u+ 1, v)− P (u, v), P (u, v+ 1)− P (u, v), P (u− 1, v)− P (u, v)
andP (u, v − 1) − P (u, v) by v1, v2, v3 andv4, respectively. SinceP (u, v) is discrete harmonic,v1 + v2 + v3 + v4 = 0.
And the areaA(u, v) of the quadrangle whose vertices areP (u + 1, v), P (u, v + 1), P (u − 1, v) andP (u, v − 1) is given
by [v3, v2] + [v1, v4].

Lemma 14
∆(F )(u, v) = A(u, v)

Proof. We take as reference the vectorh = h(u+ 1/2, v + 1/2). Then

h(u− 1/2, v + 1/2) = h+ v2

h(u+ 1/2, v − 1/2) = h− v1

h(u− 1/2, v − 1/2) = h+ v2 + v3

= h− v1 − v4

So

F (u+ 1, v)− F (u, v) = −[h− v1, h] = [v1, h]

F (u, v + 1)− F (u, v) = [h+ v2, h] = [v2, h]

F (u− 1, v)− F (u, v) = [h+ v2 + v3, h+ v2] = [v3, h] + [v3, v2]

F (u, v − 1)− F (u, v) = −[h− v1 − v4, h− v1] = [v4, h] + [v1, v4]

We conclude that

F (u+ 1, v) + F (u− 1, v)− 2F (u, v) = [v3, v2] + [v1, v4] = A(u, v),

thus proving the lemma.

Figure 8: Outer area distance of a polygon inscribed in a circle: observe the planar quadrilateral in bold.

One can see in figure 8 the outer area distance to a polygon inscribed in a circle. In our discrete construction, it is
worthwhile to observe an asymptotic net and a conjugate net meeting along a curve. Unfortunately we were not able to give
a geometric interpretation of the functionF in the discrete case as we have done in the continuous case.
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5 Conclusions

We have shown a very close connection between area based distance, a widely used concept in computer vision, and improper
affine spheres. Both theories may take benefit from this connection.

From the point of view of the theory of area based distances, this link allow us to propose a new area based distance
outside a convex region and to develop fast algorithms for computing the inner areas.

From the point of view of the theory of improper affine spheres, the approach give a very geometrical description of
these surfaces, both in the smooth and in the discrete case.
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(a) Polygon inscribed in a cir-
cle: (u, v) coordinates inside and
(s, t) outside.

(b) A closer look.

(c) Polygon inscribed in a
circle:(u, v) coordinates inside
and(u, v) outside.

(d) A closer look.

(e) Polygon inscribed in a
parabola.

(f) A closer look.

Figure 9: Internal asymptotic and external isothermal lines of polygons.

16


