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Abstract

Using pointwise semigroup techniques of Zumbrun–Howard and
Mascia–Zumbrun, we obtain sharp global pointwise Green function
bounds for noncharacteristic boundary layers of arbitrary amplitude.
These estimates allow us to analyze linearized and nonlinearized sta-
bility of noncharacteristic boundary layers of one-dimensional systems
of conservation laws, showing that both are equivalent to a numerically
checkable Evans function condition. Our results extend to the large-
amplitude case results obtained for small amplitudes by Matsumura,
Nishihara and others using energy estimates.

1 Introduction

Boundary layers appear in many physical settings, such as gas dynamics,
MHD, and rotating fluids; see, for example, the physical discussion in [SGKO].
In this paper, we study the stability of boundary layers assuming that the
boundary layer solution is noncharacteristic which means that signals are
transmitted into or out of but not along the boundary. Specifically, we on-
sider a boundary layer, or stationary solution,

(1.1) u = ū(x), lim
z→+∞

ū(z) = u+, ū(0) = u0

∗Indiana University, Bloomington,; syarahma@indiana.edu:
†Indiana University Department of Mathematics; kzumbrun@indiana.edu:

1

http://arxiv.org/abs/0801.4899v1


of a system of conservation laws on the quarter-plane

(1.2) ut + f(u)x = (B(u)ux)x, x, t > 0,

u, f ∈ Rn, B ∈ Rn×n, with initial data u(x, 0) = g(x) and Dirichlet boundary
condition

(1.3) u(0, t) = h(t).

A fundamental question is whether or not such boundary layer solutions are
stable in the sense of PDE, i.e., whether or not a sufficiently small pertur-
bation of ū remains close to ū, or converges time-asymptotically to ū, under
the evolution of (1.2).

Long-time stability of boundary layers has been considered for scalar
equations in [LN, LY] and for the equations of isentropic gas dynamics in
[MN, KNZ]. The latter results, obtained by energy estimates, apply to ar-
bitrary amplitude layers of “expansive inflow” type analogous to rarefaction
waves, but only to small-amplitude layers of “compressive inflow or outflow”
layers analogous to shock waves or “expansive outflow” type. For general
symmetric hyperbolic-parabolic systems, stability of small-amplitude non-
characteristic boundary layers has been shown in multi-dimensions for strictly
parabolic systems in [GG], and in one dimension for partially parabolic (“real
viscosity”) systems in [R1]. Here, in the spirit of results obtained for shock
waves in [ZH, MZ3, MZ4], we show for general strictly parabolic systems of
conservation laws that linearized and nonlinear stability are equivalent to a
generalized spectral stability condition phrased in terms of the Evans func-
tion associated with the linearized equations about the wave, independent of
the amplitude of the boundary layer in question.

The Evans condition is readily checkable numerically, and in some cases
analytically; see [Br1, Br2, BrZ, BDG, HuZ, BHRZ, HLZ]. In particular,
stability of small-amplitude uniformly noncharacteristic boundary layers has
been shown for general hyperbolic–parabolic systems in multi-dimensions in
[GMWZ1] using elementary Evans function arguments (convergence to the
constant layer). An exhaustive numerical study for isentropic gas layers
in one dimension has been carried out in [CHNZ], with the conclusion of
stability for arbitrary amplitudes.

Our method of analysis is by pointwise Green function methods like those
used in [ZH, MZ3, MZ4], and especially [HZ], to analyze the stability of
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viscous shock layers. Similar results have been obtained for the related small-
viscosity-limit problem in [GR, MeZ, GMWZ2]. In particular, we point to
the analysis of Grenier and Rousset [GR] as using pointwise Green function
estimates very similar to those that we use here, though adapted for different
purposes.

1.1 Equations and assumptions

Consider a viscous boundary layer, a standing-wave solution (1.1) of a gen-
eral parabolic system of conservation laws (1.2). Assume, similarly as in the
treatment of the viscous shock case in [HZ]:

(H0) f, B ∈ C3.

(H1) Reσ(B) > 0.

(H2) σ(f ′(u+)) real, distinct, and nonzero.

(H3) Reσ(−ikf ′(u+)− k2B(u+)) < −θk2 for all real k, some θ > 0.

(H4) Solution ū is unique.

Here, (H2)(iii) corresponds to noncharacteristicity.

1.2 Linearized stability and the Evans function

After linearizing 1.2 about the stationary solution ū, we obtain the linearized
equation

(1.4) ut = Lu := −(Au)x + (Bux)x, A, B ∈ C2,

where

(1.5) B := B(ū)

and

(1.6) Au := dF (ū)u− dB(ū)(u, ūx).

Definition 1.1. The boundary layer ū is said to be linearly asymptotically
stable, if u(·, t) approaches 0 as t → ∞, for any solution u of (1.4) with
initial data bounded in in some specified norm.
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We define the following stability criterion, where D(λ) described below,
denotes the Evans function associated with the linearized operator L about
the layer, an analytic function analogous to the characteristic polynomial of
a finite-dimensional operator, whose zeroes away from the essential spectrum
agree in location and multiplicity with the eigenvalues of L:

(1.7) There exist no zeroes of D(·) in the nonstable half-plane Reλ ≥ 0.

As discussed, e.g., in [R2], under assumptions (H0)–(H4), this is equivalent
to strong spectral stability, σ(L) ⊂ {Reλ < 0}, (ii) transversality of ū as a
solution of the connection problem in the associated standing-wave ODE,
and hyperbolic stability of an associated boundary value problem obtained by
formal matched asymptotics. Here and elsewhere σ denotes spectrum of a
linearized operator or matrix.

Our first main result is as follows.

Theorem 1.2. Assuming (H0)–(H4), linearized asymptotic L1 ∩ Lp → Lp

stability, p > 1, is equivalent to (1.7).

Theorem 1.2 is obtained as a consequence of the following detailed, point-
wise bounds on the Green function G(x, t; y) of the linearized evolution equa-
tions (1.4) with homogeneous boundary conditions (more properly speaking,
a distribution), defined by:

(i) (∂t − Lx)G = 0 in the distributional sense, for all x, y, t > 0;
(ii) G(x, t; y) → δ(x− y) as t→ 0;
(iii) G(0, t; y) ≡ 0, for all y, t > 0.

Denote by

(1.8) a+1 < a+2 < · · · < a+n

the eigenvalues of of the limiting convection matrix A+ := df(u+).

Then, our second main result is as follows.

Theorem 1.3. Assuming (H0)–(H4) and stability condition (1.7),

(1.9)

|∂γx∂αyG(x, t; y)| ≤ Ce−η(|x−y|+t)

+ C(t−|α|/2 + |α|e−η|y| + |γ|e−η|x|)
(

n
∑

k=1

t−1/2e−(x−y−a−
k
t)2/Mt

+
∑

a+
k
<0, a+j >0

χ{|a+
k
t|≥|y|}t

−1/2e−(x−a+j (t−|y/a+
k
|))2/Mt

)

,
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0 ≤ |α|, |γ| ≤ 1, for some η, C, M > 0, where x+ denotes the posi-
tive/negative part of x, indicator function χ{|a−

k
t|≥|y|} is 1 for |a−k t| ≥ |y|

and 0 otherwise.

1.3 Nonlinear stability

Definition 1.4. The boundary layer ū is said to be nonlinearly asymptotically
stable if ũ(·, t) exists for all t ≥ 0 and approaches ū as t → ∞, for any
solution ũ of (1.2) with initial data sufficiently close in some norm to the
original layer ū.

Denoting by

(1.10) a+1 < a+2 < · · · < a+n

the eigenvalues of of the limiting convection matrix A+ := df(u+), define

(1.11) θ(x, t) :=
∑

a+
j
>0

(1 + t)−1/2e−|x−a+j t|2/Lt,

(1.12)
ψ1(x, t) := χ(x, t)

∑

a+j >0

(1 + |x|+ t)−1/2(1 + |x− a+j t|)−1/2,

and

(1.13) ψ2(x, t) := (1− χ(x, t))(1 + |x− a+n t|+ t1/2)−3/2,

where χ(x, t) = 1 for x ∈ [0, a+n t] and χ(x, t) = 0 otherwise and L > 0 is a
sufficiently large constant. For simplicity, take B identically constant. Then,
our third and final main result is as follows.

Theorem 1.5. Assuming (H0)–(H4), B ≡ constant, and the linear stability
condition (1.7), the profile ū is nonlinearly asymptotically stable with respect
to perturbations g, h in initial and boundary data satisfying

|g(x)| ≤ E0(1 + |x|)−3/2, |h(t)| ≤ E0(1 + |t|)−3/2, |h′(t)| ≤ E0(1 + |t|)−1

for E0 sufficiently small. More precisely,

(1.14) |ũ(x, t)− ū(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),

where ũ denotes the solution of (1.2) with initial data g̃ = ū+g and boundary
data h̃ = u0 + h.
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Remark 1.6. Pointwise bound (1.14) yields as a corollary the sharp Lp decay
rate

(1.15) |ũ(x, t)− ū(x)|Lp ≤ CE0(1 + t)−
1
2
(1− 1

p
), 1 ≤ p ≤ ∞.

1.4 Discussion and open problems

The case of boundary layers is quite analogous to the undercompressive shock
case; in particular, pointwise estimates as in [HZ] appear to be necessary
to close the one-dimensional analysis by a linearized semigroup approach
suitable for large-amplitude layers. (On the other hand, small-amplitude
stability has been established using energy estimates in, e.g., [MN, GG].) A
new feature of the present analysis as compared to those of [HZ, HR, HRZ]
is the admission of perturbations in boundary as well as initial data. Open
problems are extensions to systems with physical (partial) or quasilinear
viscosity and to multi-dimensional boundary layers.

2 The Evans Function

Before starting the analysis, we review the basic Evans function methods and
gap/conjugation lemma.

2.1 The gap/conjugation lemma

Consider a family of first order ODE systems on the half-line:

(2.1)
W ′ = A(x, λ)W, λ ∈ Ω and x > 0,

B(λ)W = 0, λ ∈ Ω and x = 0.

These systems of ODEs should be considered as a generalized eigenvalue
equation, with λ representing frequency. We assume that the boundary ma-
trix B is analytic in λ and that the coefficient matrix A is analytic in λ as
a function from Ω into L∞(x), CK in x, and approaches exponentially to a
limit A+(λ) as x→ ∞, with uniform exponentially decay estimates

(2.2) |(∂/∂x)k(A− A+)| ≤ C1e
−θ|x|/C2, for x > 0, 0 ≤ k ≤ K,
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Cj, θ > 0, on compact subsets of Ω. Now we can state a refinement of the
“Gap Lemma” of [GZ, KS], relating solutions of the variable-coefficient ODE
to the solutions of its constant-coefficient limiting equations

(2.3) Z ′ = A+(λ)Z

as x→ +∞.

Lemma 2.1 (Conjugation Lemma [MeZ]). Under assumption (2.2), there
exists locally to any given λ0 ∈ Ω a linear transformation P+(x, λ) = I +
Θ+(x, λ) on x ≥ 0, Φ+ analytic in λ as functions from Ω to L∞[0,+∞),
such that:

(i) |P+| and their inverses are uniformly bounded, with

(2.4) |(∂/∂λ)j(∂/∂x)kΘ+| ≤ C(j)C1C2e
−θ|x|/C2 for x > 0, 0 ≤ k ≤ K +1,

j ≥ 0, where 0 < θ < 1 is an arbitrary fixed parameter, and C > 0 and the
size of the neighborhood of definition depend only on θ, j, the modulus of the
entries of A at λ0, and the modulus of continuity of A on some neighborhood
of λ0 ∈ Ω.

(ii) The change of coordinates W := P+Z reduces (2.1) on x ≥ 0 to the
asymptotic constant-coefficient equations (2.3). Equivalently, solutions of
(2.1) may be conveniently factorized as

(2.5) W = (I +Θ+)Z+,

where Z+ are solutions of the constant-coefficient equations, and Θ+ satisfy
bounds.

Proof. As described in [MZ3], for j = k = 0 this is a straightforward corollary
of the gap lemma as stated in [Z.3], applied to the “lifted” matrix-valued ODE

P ′ = A+P − PA+ (A− A+)P

for the conjugating matrices P+. The x-derivative bounds 0 < k ≤ K + 1
then follow from the ODE and its firstK derivatives. Finally, the λ-derivative
bounds follow from standard interior estimates for analytic functions.

Definition 2.2. Following [AGJ], we define the domain of consistent split-
ting for the ODE system W ′ = A(x, λ)W as the (open) set of λ such that the
limiting matrix A+ is hyperbolic (has no center subspace) and the boundary
matrix B is full rank, with dimS+ = rankB.

7



Lemma 2.3. On any simply connected subset of the domain of consistent
splitting, there exist analytic bases {v1, . . . , vk}+ and {vk+1, . . . , vN}+ for the
subspaces S+ and U+ defined in Definition 2.2.

Proof. By spectral separation of U+, S+, the associated (group) eigenprojec-
tions are analytic. The existence of analytic bases then follows by a standard
result of Kato; see [Kat], pp. 99–102.

Corollary 2.4. By the Conjugation Lemma , on the domain of consistent
splitting, the stable manifold of solutions decaying as x→ +∞ of (2.1) is

(2.6) S+ := span {P+v
+
1 , . . . , P+v

+
k },

where W j
+ := P+v

+
j are analytic in λ and CK+1 in x for A ∈ CK .

2.2 Definition of the Evans Function

On any simply connected subset of the domain of consistent splitting, let
W+

1 , . . . ,W
+
k = P+v

+
1 , . . . , P+v

+
k be the analytic basis described in Corol-

lary 2.4 of the subspace S+ of solutions W of (2.1) satisfying the boundary
condition W → 0 at +∞. Then, the Evans function for the ODE systems
W ′ = A(x, λ)W associated with this choice of limiting bases is defined as the
k × k Gramian determinant

(2.7)

D(λ) := det
(

BW+
1 , . . . ,BW

+
k

)

|x=0,λ

= det
(

BP+v
+
1 , . . . ,BP+v

+
k

)

|x=0,λ
.

Remark 2.5. Note that D is independent of the choice of P+ as, by unique-
ness of stable manifolds, the exterior products (minors) P+v

+
1 ∧ · · · ∧ P+v

+
k

are uniquely determined by their behavior as x→ +∞.

Proposition 2.6. Both the Evans function and the subspace S+ are analytic
on the entire simply connected subset of the domain of consistent splitting on
which they are defined. Moreover, for λ within this region, equation (2.1)
admits a nontrivial solution W ∈ L2(x > 0) if and only if D(λ) = 0.
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Proof. Analyticity follows by uniqueness, and local analyticity of P+, v
+
k .

Noting that the first P+v
+
j are a basis for the stable manifold of (2.1) at

x→ +∞, we find that the determinant of BP+v
+
j vanishes if and only if B(λ)

has nontrivial kernel on S+(λ, 0), whence the second assertion follows.

Remark 2.7. In this case that the ODE system describes an eigenvalue
equation associated with an ordinary differential operator L, Proposition 2.6
implies that eigenvalues of L agree in location with zeroes of D. (Indeed, they
agree also in multiplicity; see [GJ1, GJ2]; Lemma 6.1, [ZH]; or Proposition
6.15 of [MZ3].)

When kerB has an analytic basis v0k+1, . . . , v
0
N−k, for example, in the

commonly occurring case, as here, that B ≡ constant, we have the following
useful alternative formulation. This is the version that we will use in our
analysis of the Green function and Resolvent kernel.

Proposition 2.8. Let v0k+1, . . . , v
0
N−k be an analytic basis of kerB, normal-

ized so that det
(

B∗, v0k+1, . . . v
0
N

)

≡ 1. Then, the solutions W 0
j of (2.1) de-

termined by initial data W 0
j (λ, 0) = v0j are analytic in λ and CK+1 in x,

and

(2.8) D(λ) := det
(

W+
1 , . . . ,W

+
k ,W

0
k+1, . . . ,W

0
N

)

|x=0,λ
.

Proof. Analyticity/smoothness follow by analytic/smooth dependence on ini-
tial data/parameters. By the chosen normalization, and standard properties

of Grammian determinants, D(λ) = det
(

W+
1 , . . . ,W

+
k , v

0
k+1, . . . , v

0
N

)

|x=0,λ
,

yielding (2.8).

3 Construction of the Resolvent kernel

In this section we construct the explicit form of the resolvent kernel, which
is nothing more than the Green function Gλ(x, y) associated with the elliptic
operator (L− λI), where

(3.1) (L− λI)Gλ(., y) = δyI, Gλ(0, y) ≡ 0.

Let Λ be the region of consistent splitting for L. It is an established fact
(see [He]) that the resolvent (L− λI)−1 and the Green function Gλ(x, y) are
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meromorphic in λ on Λ, with isolated poles of finite order. Gλ in fact admits
a meromorphic extension to a sector

(3.2) Ωθ = {λ : Re(λ) ≥ −θ1 − θ2|Im(λ)|}, θ1, θ2 > 0.

Writing the associated eigenvalue equation in the form of a first-order
system (2.1), we obtain

(3.3) W ′ = A(λ, x)W, BW (0) = 0,

where

W =

(

w
w′

)

∈ C
2n, A =

(

0 I
λB−1 + A′B−1 AB−1 − B′B−1

)

and B ≡ constant is the rank-n projection onto the first coordinate w of W ,
with kernel spanned by the constant basis v0n+j = en+j, j = 1, . . . , n and ej
the jth standard basis element.

Denote by

(3.4) Φ0 =
(

φ0
1(x;λ) · · · φ0

n(x;λ)
)

=
(

W 0
1 · · · W 0

n

)

and
(3.5)
Φ+ =

(

φ+
1 (x;λ) · · · φ+

n (x;λ)
)

=
(

W+
n+1 · · · W+

2n

)

=
(

P+v
+
1 · · · P+v

+
k

)

the matrices whose columns span the subspaces of solutions of (2.1) decaying
at x = 0,+∞ respectively, denoting (analytically chosen) complementary
subspaces by

(3.6) Ψ0 =
(

ψ0
1(x;λ) · · · ψ0

n(x;λ)
)

=
(

W 0
n+1 · · · W 0

2n

)

and

(3.7) Ψ+ =
(

ψ+
1 (x;λ) · · · ψ+

n (x;λ)
)

=
(

W+
1 · · · W+

n

)

.

As described in the previous subsection, eigenfunctions decaying at both
0,+∞ occur precisely when the subspaces spanΦ0 and spanΦ+ intersect,
i.e., at zeros of the Evans function defined in (2.8):

(3.8) DL(λ) := det(Φ0,Φ+)|x=0 =
(

φ0
1 ∧ · · · ∧ φ0

n ∧ φ+
1 ∧ · · · ∧ φ+

n

)

|x=0
.
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Lemma 3.1 ([GZ, ZH]). For θ1, θ2 > 0 sufficiently small, DL is locally
analytic on sector Ωθ as defined in (3.2).

Proof. Direct calculation showing that the domain Λ of consistent splitting
is contained in Ωθ −B(0, r) for r > 0 arbitrary and θ sufficiently small, with
v+j extending analytically to B(0, r).

Lemma 3.2. Let Hλ(x, y) denote the Green function for the adjoint operator
(L− λI)∗ on the half-plane x ≥ 0. Then Gλ(x, y) = H∗

λ(x, y). In particular,
for x 6= y, the matrix z = Gλ(x, .) satisfies

(3.9) (z′B)′ = −z′A+ zλ.

Proof. Standard duality argument; see [ZH] for operators on the whole line.

Considering (3.9) as an ODE system for the vector Z = (z, z′), it becomes

(3.10) Z ′ = ZÃ(λ, x),

where

(3.11) Ã =

(

0 λB−1 − A′B−1

I −AB−1 − B′B−1

)

.

Lemma 3.3 ([ZH]). Z is a solution of (3.11) if and only if ZSW ≡ constant

for any solution W of (2.1), where S =

(

−A B
−B 0

)

.

Proof. Direct computation/comparison with 0 of (ZSW )′; see [ZH].

Using Lemma 3.3, we can define dual bases W̃ 0
j and W̃+

j by the relations

(3.12) W̃ 0,+
j SW 0,+

k = δjk.

Likewise, Ã0,+ can be defined as

(3.13) Ã0,+ =

(

0 λB−1
0,+

I −A0,+B
−1
0,+

)

.

We define also the dual subspaces

(3.14) Φ̃0 =
(

φ̃0
1(x;λ) · · · φ̃0

n(x;λ)
)

=
(

W̃ 0
n+1 · · · W̃ 0

2n

)

,
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(3.15) Φ̃+ =
(

φ̃+
1 (x;λ) · · · φ̃+

n (x;λ)
)

=
(

W̃+
1 · · · W̃+

n

)

,

(3.16) Ψ̃0 =
(

ψ̃0
1(x;λ) · · · ψ̃+

n (x;λ)
)

=
(

W̃ 0
1 · · · W̃ 0

n

)

,

(3.17) Ψ̃+ =
(

ψ̃+
1 (x;λ) · · · ψ̃0

n(x;λ)
)

=
(

W̃+
n+1 · · · W̃+

2n

)

.

With these preparations, the construction of the Resolvent kernel goes
exactly as in the construction performed in [ZH, MZ3] on the whole line.

Lemma 3.4. We have the the representation

(3.18)

(

Gλ Gλy

Gλx
Gλxy

)

=

{

Φ+(λ, x)M+(λ)Ψ̃0(λ, y) for x > y,

Φ0(λ, x)M0(λ)Ψ̃+(λ, y) for x < y,

where M0,+ are to be determined.

Proof. See [ZH] Lemma 4.6.

Using Lemma 3.4, we find the explicit coordinate-free representation for
x > y:

(3.19)

(

Gλ Gλy

Gλx
Gλxy

)

= F z→xΠ+(z)S−1(z)Π̃0(z)F̃ z→y,

where

(3.20) Π+(y) = (Φ+(y), 0)(Φ+(y),Φ−(y))−1,

(3.21) Π̃0(y) =

(

Ψ̃0(y)

Ψ̃+(y)

)−1(
Ψ̃0(y)
0

)

,

(3.22) F z→x = (Φ+(x),Φ0(x))(Φ+(z),Φ0(z))−1,

(3.23) F̃ z→y =

(

Ψ̃0(z)
Φ+(z)

)(

Ψ0(y)
Ψ+(y)

)−1

,

and similarly for x < y.
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Corollary 3.5. The resolvent kernel may be expressed as

(3.24) Gλ(x, y) =

{

(In, 0)Φ
+(x;λ)M+(λ)Ψ̃0∗(y;λ)(In, 0)

tr x > y,

−(In, 0)Φ
0(x;λ)M0(λ)Ψ̃+∗(y;λ)(In, 0)

tr x < y,

where

(3.25) M(λ) := diag(M+(λ),M0(λ)) = Φ−1(z;λ)S̄−1(z)Ψ̃−1∗(z;λ).

4 Low-frequency bounds

Our goal in this section is the estimation of the resolvent kernel in the critical
regime |λ| → 0, i.e., the large time behavior of the Green function G, or global
behavior in space and time. We are basically following the same treatment as
that carried out for viscous shock waves of strictly parabolic conservation laws
in [ZH, MZ3]; we refer to those references for details. In the low frequency
case the behavior is essentially governed by the equation

(4.1) Ut = L+U := −A+Ux +B+Uxx

Proposition 4.1. Assuming (H0)-(H4), let K be the order of the pole of Gλ

at λ = 0 and r be sufficiently small that there are no other poles in B(0, r).
Then for λ ∈ Ωθ such that |λ| ≤ r and for x > y > 0 we have

(4.2)

(

Gλ Gλy

Gλx
Gλxy

)

=
∑

j,k

djk(λ)φ
+
j (x)ψ̃

+
k (y) +

∑

j,k

(λ)φ+
k (x)φ̃

+
k (y),

where djk(λ) = O(λ−K) and ejk(λ) = O(λ1−K) are scalar meromorphic func-
tions, moreover K ≤ order of vanishing of the Evans function D(λ) at λ = 0.

Proof. See [ZH] Proposition 7.1 for the first statement and theorem 6.3 for
the second statement linking order K of the pole to multiplicity of the zero
of the Evans Function.

Lemma 4.2. Assuming (H0)-(H4), for |λ| sufficiently small, the eigenvalue
equation (L+ − λ)W = 0 associated with the limiting, constant-coefficient

operator L+ has a basis of 2n solutions W̄+
j = eµ

+
j (λ)xVj(λ) where µ+

j and
V +
j are analytic in λ, consisting of n fast modes

(4.3)
µ+
j = γ+j +O(λ),

V +
j = S+

j +O(λ),
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where γ+j , S
+
j are eigenvalues and associated right eigenvectors of B−1

+ A+,
and n slow modes

(4.4)
µ+
r+j(λ) := −λ/a+j + λ2β+

j /a
+3

j +O(λ3),

V +
r+j(λ) := r+j +O(λ),

where a+j , l
+
j , r

+
j are eigenvalues and left and right eigenvectors of A+ :=

dF (u+) , and β+
j := l+j B+r

+
j > 0 with B+ := B(u+). The same is true for

the adjoint eigenvalue equation

(L+ − λ)∗Z = 0,

i.e, it has a basis of solutions

¯̃W+
j = e−µ+

j
(λ)xṼj(λ)

with

(4.5) Ṽ +
j (λ) = T̃+

j +O(λ),

(4.6) Ṽ +
r+j(λ) = l+j +O(λ),

Ṽ + analytic in λ.

Proof. See [MZ3].

Proposition 4.3. Assume (H0)-(H4) and (1.7), then, for r > 0 sufficiently
small, the Resolvent kernel Gλ associated with the linearized evolution equa-
tion

(4.7) Ut = L+U := −A+Ux +B+Uxx

satisfies, for 0 ≤ y ≤ x:
(4.8)

|∂γx∂αyGλ(x, t; y)| ≤ C(|λ|γ + e−θ|x|)(|λ|α + e−θ|y|)
(

∑

a+
k
>0

∣

∣e(−λ/a+
k
+λ2β+

k
/a+

k

3
)(x−y)

∣

∣

+
∑

a+
k
<0, a+j >0

∣

∣e(−λ/a+j +λ2β+
j /a+j

3
)x+(λ/a+

k
−λ2β+

k
/a+

k

3
)y
∣

∣

)

,

0 ≤ |α|, |γ| ≤ 1, θ > 0, with similar bounds for 0 ≤ x ≤ y. Moreover, each
term in the summation on the righthand side of (4.8) bounds a separately
analytic function.
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Proof. By 1.8 D does not vanish on Re(λ) ≥ 0, hence, by continuity, on
|λ| ≤ r. Thus, according to (4.2), all |djk(λ)| are uniformly bounded on
|λ| ≤ r, and so it is enough to find estimates for fast and slow modes φ+

j , φ̃
+
j ,

ψ+
j and ψ̃+

j . By using (3.5) we find:

(4.9)

(

φ+
j

∂xφ
+
j

)

= eµj (λ)xP+

(

Vj
µjVj

)

= eµj(λ)x(I +Θ)

(

Vj
µjVj

)

and similarly for φ̃+
j , ψ

+
j and ψ̃+

j . Now using (2.4) and the fact, by (4.4),

that eµj(λ)x is of order e−|θx| for fast modes and order e−λ/a+j +λ2β+
j /a+

3

j +O(λ3)

for slow modes, substituting this and corresponding dual estimates in (4.9)
and grouping terms, we obtain the result.

5 High frequency bounds

To analyze the high frequency behavior of the Green function of the boundary
layer, we first establish some bounds for the projection terms in the Green
function, using the symmetric formula

(5.1)

(

Gλ(x, y) ∂yGλ(x, y)
∂xGλ(x, y) ∂x∂yGλ(x, y)

)

=

{

Fy→xΠ+(x)S−1(y) if x > y,

F̃x→yΠ̃+(x)S−1(x) if x < y.

By setting x̄ = |λ 1
2 |x, λ̄ = λ

|λ| , B̄(x̄) = B( x̄

λ
1
2
), w̄(x̄) = w( x

λ
1
2
) in the

eigenvalue equation Lw = λw associated with (1.4) we obtain

(5.2) W̄ ′ = B̄W̄ +O(|λ− 1
2 |)W̄

where

(5.3) B =

(

0 I
λ̄B̄ 0

)

and B
′ = O(|λ− 1

2 |) and |λ̄| = 1. Since B(λ, x̄) varies within a compact set,

then there are C1 eigenprojections P0 and P+ with property |P ′
+| = O(|λ− 1

2 |)
and |P ′

0| = O(|λ− 1
2 |) taking W̄ onto the stable and unstable subspace. By

using the two new coordinates Y+ = P+W̄ and Y0 = P0W̄ , we obtain

(5.4)

(

Y+
Y0

)′
=

(

A+ 0
0 A0

)(

Y+
Y0

)

+O(|λ− 1
2 |)

(

y
y

)

.
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Equivalently, we can find continuous invertible transformations Q+, Q0 such
that E+ = Q+A+Q

−1
+ and E0 = Q0A0Q

−1
0 where

(5.5) Re(E) :=
1

2
(E+ + E∗

+) < −β− 1
2 I.

in the sense of quadratic forms.
Again by coordinate change Z+ = Q+Y+, Z0 = Q0Y0 we find

(5.6)

(

z+
z0

)′
=

(

E+ 0
0 E0

)(

z+
z0

)

+O(|λ− 1
2 |)

(

z
z

)

where

(5.7)
|w̄|
C

≤ |z| ≤ C|w̄|.

From this we find by energy estimate that

(5.8) (|z+|2)′ < −2β− 1
2 |z+|2

and hence

(5.9)
|z+(x)|
|z+(y)|

≤ e−β̃− 1
2 |(x−y)|

for any solutionz+ decaying at ∞, where β̃ < β and thus

(5.10)
|z(x)|
|z(y)|

≤ e−β− 1
2 |(x−y)|

for x > y, provided that |λ| is sufficiently large. From this we obtain

(5.11)
|W̄ (x)|
|W̄ (y)| ≤ C2e−β− 1

2 |(x−y)|

where C is as in (5.7). Applying a symmetric argument for the adjoint
equation, we obtain the following lemma.

Lemma 5.1. On the manifolds Φ+ and Ψ̃+ defined in (3.5) and (3.17), for
λ sufficiently large, within the sector Ωθ = {λ : Re(λ) ≥ −θ1 − θ2|Im(λ)|},
θ1, θ2 > 0, we have in rescaled coordinates x̄, for some uniform C > 0,

(5.12) |Fy→x|, |F̃x→y| ≤ Ce−
|y−x|

C

for x > y and x < y respectively.
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Lemma 5.2. In rescaled coordinates x̄, λ̄, for the projection terms Π+(y)
and Π̃+(x), the projection along Φ0 onto Φ+, for λ sufficiently large,

(5.13) |Π+(y)|, |Π̃+(x)| < C

for some uniform C > 0.

Proof. Choosing the coordinates

(

W1

W2

)

∈ C2n where W j =

(

W j
1

W j
2

)

, we show

for small enough ǫ and fixed c > 0 such that
|W j

2 |
|W j

1 |
≤ cǫ and

|W j
1 |

|W j
2 |
< c the

projection along E = span (W 1...W n) onto F = span (W n+1...W 2n)

(5.14) Π := (w1...w2n)(On, In)(w
1...w2n)−1

satisfies

(5.15) |Π| ≤ C2(c, ǫ)

To show this without loss of generality we assume that

(5.16) (wn+1...w2n) =

(

In
O(ǫ)

)

(w1...wn) =

(

O(1)
In

)

.

Now it is sufficient to show that

(5.17) |(w1, ..., w2n)| ≤ C2(c, ǫ).

But, this amounts to showing that

(5.18)
∣

∣

∣

(

M In
In O

)

+O(ǫ))−1
∣

∣

∣
≤ C,

which amounts to showing that

(5.19)
∣

∣

∣

(

M In
In O

)−1
∣

∣

∣
≤ C2(c),

where |M | ≤ c. But, this is easy to show because
(

M In
In O

)−1

=

(

In −M
O In

)

,

and so
∣

∣

∣

(

M In
In O

)−1
∣

∣

∣
≤ 1 + |M | ≤ C.
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Proposition 5.3. Assume (H0)-(H4) and (1.7). Then, for R > 0 suffi-
ciently large, the Resolvent kernel Gλ associated with the linearized evolution
equation (4.7) satisfies, for c, C > 0 and 0 ≤ |α|, |γ| ≤ 1:

(5.20) |∂γx∂αyGλ(x, y)| ≤ C|λ|( |α|+|γ|−1
2

)e−
√
λ

|y−x|
c

Proof. Recalling the coordinate-free representation (5.1) and combining with
(5.12) and (5.13), we find that the Green function Ḡλ̄ in rescaled coordinates
x̄, λ̄ satisfies

(5.21) |∂γx∂αy Ḡλ̄(x̄, ȳ)| ≤ Ce−
|y−x|

C ,

whence (5.20) follows in the original coordinates.

Remark 5.4. The argument of Lemma 5.2 is the key new ingredient in the
resolvent estimates for the boundary layer case as compared to the analysis on
the whole line carried out for viscous shock layers in [ZH], making essential
use of compatibility of the boundary condition with high-frequency behavior.
On the whole line, there is no such requirement and high-frequency stability
is automatic.

6 Pointwise Green function bounds

With the pointwise bounds established on the resolvent kernel Gλ, we obtain
pointwise bounds on the Green function through the inverse Laplace trans-
form formula by a simplified version of the stationary-phase arguments used
in [ZH] for the shock case, repeated here for completeness.

Proof of Theorem 1.3. By sectoriality of L, we have the inverse Laplace trans-
form representation (see [ZH]):

(6.1) G(t; x, y) =

∫

Γ

eλtGλ(x, y)dλ.

Let θ1 > 0, θ2 > 0 be chosen sufficiently small, in particular so small as
to satisfy the hypotheses of all previous assertions. By assumption (1.7),
the large-|λ| bounds on the Resolvent kernel, and analyticity of the Evans
function DL(λ), it follows that Gλ has finitely many poles in Ωθ (correspond-
ing to roots of DL), each with strictly negative real part. Choosing θ1, θ2

18



still smaller, if necessary, we can thus arrange that Gλ is analytic on Ωθ. It
follows from Cauchy’s Theorem that

(6.2) G(x, t; y) =

∫

Γ

eλtGλ(x, y) dλ,

for any contour Γ that can be expressed as Γ = ∂(Ωθ \ S) for S ⊂ C open.

Case I. |x−y|/t large. We first treat the trivial case that |x−y|/t ≥ S,
S sufficiently large, the regime in which standard short-time parabolic theory
applies. Set

(6.3) ᾱ :=
|x− y|
2βt

, R := βᾱ2,

where β is as in (5.5), and consider again the representation of G, that is

(6.4) G(x, t; y) =

∫

Γ1∪Γ2

eλtGλ(x, y) dλ,

where Γ1 := ∂B(0, R)∩Ω̄θ and Γ2 := ∂Ωθ\B(0, R). Note that the intersection
of Γ with the real axis is λmin = R = βᾱ2.

By the large |λ| estimates of Proposition 5.3, we have for all λ ∈ Γ1 ∪ Γ2

that

|Gλ(x, y)| ≤ C
e−

√
|λ| |y−x|

c

√

|λ|
.

Further, we have
(6.5)
Reλ ≤ R(1− ηω2), λ ∈ Γ1, Reλ ≤ Reλ0 − η(|Imλ| − |Imλ0|), λ ∈ Γ2

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the
two points of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ.
Combining these estimates, we obtain

(6.6)

|
∫

Γ1

eλtGλdλ| ≤
∫

Γ1

C|λ|− 1
2 eReλt−β− 1

2 |λ|−
1
2 |x−y| dλ

≤ Ce−βᾱ2t

∫ +L

−L

R− 1
2 e−βRηω2tRdω ≤ Ct−

1
2 e−βᾱ2t.

19



Likewise,

(6.7)

|
∫

Γ2

eλtGλdλ| ≤
∫

Γ2

C|λ|− 1
2 CeReλt−β− 1

2 |λ|−
1
2 |x−y|dλ

≤ CeRe(λ0)t−|β|−
1
2 |λ0|−

1
2 |x−y|

∫

Γ2

|λ|− 1
2 e(Reλ−Reλ0)t |dλ|

≤ Ce−βᾱ2t

∫

Γ2

|Imλ|− 1
2 e−η|Imλ−Imλ0|t |d Imλ|

≤ Ct−
1
2 e−βᾱ2t.

Combining these last two estimates, we have

(6.8) |G(x, t; y)| ≤ Ct−
1
2 e

−βᾱ2t
2 e

−(x−y)2

8βt ≤ Ct−
1
2 e−ηte

−(x−y)2

8βt ,

for η > 0 independent of ᾱ. Observing that |x−at|
2t

≤ |x−y|
t

≤ 2|x−at|
t

for any

bounded a, for |x−y|
t

sufficiently large, we find that this contribution may be

absorbed in any summand t
−1
2 e

−(x−y−a
+
k
t)2

Mt .

Case II. |x − y|/t bounded. We now turn to the critical case that |x −
y|/t ≤ S. A few remarks are in order at the outset. Our goal is to bound
|G| by terms of form Ct−1/2e−ᾱ2t/M , where ᾱ := (x − a+j (t − |y/a+k |)/2t or
ᾱ := (x− y − a+k t)/2t are now uniformly bounded, by

(6.9) |x− y|/2t+max
j

{|a+j |}/2 ≤ S/2 + max |a+j |/2.

Thus, in particular, contributions of order t−1/2e−ηt, η > 0, can be ab-
sorbed in any summand t−1/2e−(x−y−a+

k
t)2/Mt) if we take M sufficiently large.

Likewise, for Gx and Gy, contributions of order t
−1e−ηt can be absorbed. We

will use this observation repeatedly.
In contrast to the previous case of large characteristic speed |x−y|/t ≥ S,

we are not trying to show rapid time-exponential decay. Rather, we are trying
to show that the rate of exponential decay of the solution does not degrade
too rapidly as ᾱ → 0: precisely, that it vanishes to order ᾱ2 and no more.
Thus, the crucial part of our analysis will be for small ᾱ. All other situations
can be estimated crudely as described just above.

Let r be sufficiently small that the small-|λ| bounds hold on B(0, r). Next,
choose θ1 and θ2 still smaller than before, if necessary, so that Ωθ\B(0, r) ⊂ Λ.
This implies that ∂Ωθ ∩B(0, r) 6= ∅, giving the configuration pictured in the
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Figure. Similarly as in the previous case, define Γ = Γ1 ∪Γ2, where Γ1 is the
portion of the circle ∂B(0, r) contained in Ω̄θ, and Γ2 is the portion of ∂Ωθ

outside B(0, r).

(6.10) G(x, t; y) =

∫

Γ1

eλtGλ(x, y) dλ+

∫

Γ2

eλtGλ(x, y) dλ,

we separately estimate the terms
∫

Γ1
and

∫

Γ2
.

Large- and medium-λ estimates. The
∫

Γ2
term is straightforward. The

points λ0, λ
∗
0 where Γ1 meets Γ2 satisfy Re(λ0) = −η < 0. Moreover, com-

bining the results low frequency case, we have the bound |Gλ| ≤ C|λ|− 1
2 for

λ ∈ Γ2. Thus, we have

(6.11)
|
∫

Γ2

eλtGλdλ| ≤ Ce−Reλ0t

∫

Γ2

|Imλ|− 1
2 e−η|Imλ−Imλ0|t |d Imλ|

≤ Ct−
1
2 e−ηt.

This contribution can be absorbed as described above. An analogous com-
putation using |Gλx

|, |Gλx
| ≤ C|λ|−1 shows that the Γ2 contribution to Gx

and Gy is O(t−1e−ηt), and can likewise be absorbed.

Small |λ| estimates. It remains to estimate the critical term
∫

Γ1
eλtGλdλ.

This we will estimate in different ways, depending on the size of t.

Bounded time. For t bounded, we can use the medium-λ bounds |Gλ|,
|Gλx

|, |Gλy
| ≤ C to obtain |

∫

Γ1
eλtGλdλ| ≤ C2|Γ1|. This contribution is or-

der Ce−ηt for bounded time, hence can be absorbed.

Large time. For t large, we must instead estimate
∫

Γ1
eλtGλdλ using the

small-|λ| expansions. First, observe that, all coefficient functions djk(λ) are
uniformly bounded (since |λ| is bounded in this case).

Expanding G =
∫

Γ
eλtGλ(x, y)dλ as

(

G Gx

Gy Gxy

)

=

∫

Γ

eλt
(

Gλ Gλx

Gλy
Gλxy

)

dλ

we estimate the
∫

Γ1
contributions to G, Gx and Gy simultaneously.
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Case II(i). (0 < y < x). By our low-frequency estimates, we have

(6.12)

∫

Γ

eλt
(

Gλ Gλx

Gλy
Gλxy

)

dλ =

∫

Γ

∑

j,k

eλtφ+
j (x)djkψ̃

+
k (y)dλ

+

∫

Γ

∑

j,k

eλtψ+
k (x)ψ̃

+
k (y)dλ,

where each djk is analytic, hence bounded. We estimate separately each of
the terms

∫

Γ1

eλtφ+
j (x)djkψ̃

+
k (y)dλ

on the righthand side of (6.12). Estimates for terms
∫

Γ

∑

j,k

eλtψ+
k (x)ψ̃

+
k (y)dλ

go similarly.

Case II(ia). First, consider the critical case a+j > 0, a+k < 0 . For this
case,

|φ+
j(x)djkψ̃

+
k (y)| ≤ CeRe(ρ+j x−ν+

k
y),

where
{

ν+k (λ) = −λ/a+k + λ2β+
k /(a

+
k )

3 +O(λ3)

ρ+j (λ) = −λ/a+j + λ2β+
j /(a

+
j )

3 +O(λ3).

Set

ᾱ =
a+k x/a

+
j − y − a+k t

2t
, p :=

β+
j a

+
k x/(a

+
j )

3 − β+
k y/(a

+
k )

2

t
> 0.

Define Γ′
1a to be the portion contained in Ωθ of the hyperbola

(6.13)
Re(ρ+j x− ν+k y) +O(λ3)(|x|+ |y|)

= (1/a+k )Re[λ(−a+k x/a+j + y) + λ2(xβ+
j a

+
k /(a

+
j )

3 − yβ−
k /(a

+
k )

2)]

≡ constant

= (1/a−k )[(λmin(−a−k x/a+j + y) + λ2min(xβ
+
j a

+
k /(a

+
j )

3 − yβ+
k /(a

+
k )

2)],

where

(6.14) λmin :=

{

ᾱ
p

if | ᾱ
p
| ≤ ǫ

±ǫ if ᾱ
p
≷ ǫ
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Denoting by λ1, λ
∗
1, the intersections of this hyperbola with ∂Ωθ , define

Γ′
1b

to be the union of λ1λ0 and λ∗0λ
∗
1, and define Γ′

1 = Γ′
1a ∪ Γ′

1b
. Note that

λ = ᾱ/p minimizes the left hand side of (6.13) for λ real. Note also that that
p is bounded for ᾱ sufficiently small, since ᾱ ≤ ǫ implies that

(|a+k x/a+j |+ |y|)/t ≤ 2|a+k |+ 2ǫ

i.e. (|x|+ |y|)/t is controlled by ᾱ.
With these definitions, we readily obtain that

(6.15)
Re(λt + ρ+j x− ν+k y) ≤ −(t/a−k )(ᾱ

2/4p)− ηIm(λ)2t

≤ −ᾱ2t/M − ηIm(λ)2t,

for λ ∈ Γ′
1a (note: here, we have used the crucial fact that ᾱ controls (|x| +

|y|)/t, in bounding the error term O(λ3)(|x|+ |y|)/t arising from expansion
Likewise, we obtain for any q that

(6.16)

∫

Γ′
1a

|λ|qeRe(λt+ρ+j x−ν−
k
y)dλ ≤ Ct−

1
2
− q

2 e−ᾱ2t/M ,

for suitably large C, M > 0 (depending on q). Observing that

ᾱ = (a+k /a
+
j )(x− a+j (t− |y/a+k |))/2t,

we find that the contribution of (6.16) can be absorbed in the described
bounds for t ≥ |y/a−k |. At the same time, we find that ᾱ ≥ x > 0 for
t ≤ |y/a+k |, whence

ᾱ ≥ (x− y − a+j t)/Mt + |x|/M,

for some ǫ > 0 sufficiently small and M > 0 sufficiently large.
This gives

e−ᾱ2/p ≤ e−(x−y−a+
k
t)2/Mte−η|x|

provided |x|/t > a+j , a contribution which can again be absorbed. On the
other hand, if t ≤ |x/a+j |, we can use the dual estimate

(6.17)
ᾱ = (−y − a+k (t− |x/a+j |))/2t
≥ (x− y − a+k t)/Mt + |y|/M,
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together with |y| ≥ |a−k t|, to obtain

e−ᾱ2/p ≤ e−(x−y−a+j t)2/Mte−η|y|,

a contribution that can likewise be absorbed.
Case II(ib). In case a+j < 0 or a+k > 0, terms |ϕ+

j | ≤ Ce−η|x| and

|ψ̃+
j | ≤ Ce−η|y| are strictly smaller than those already treated in Case II(ia),

so may be absorbed in previous terms.

Case II(ii) (0 < x < y). The case 0 < x < y can be treated very similarly
to the previous one; see [ZH] for details. This completes the proof of Case
II, and the theorem.

7 Nonlinear Analysis

Introducing the perturbation variable

(7.1) u(x, t) := ũ(x, t)− ū(x),

we obtain

(7.2) ut − Lu = Q(u)x,

where the second-order Taylor remainder satisfies

(7.3) Q(u) := f(ū+ u)− f(ū)− df(ū)u = O(|u|2)

so long as |u| remains bounded.

Lemma 7.1 (Integral formulation). Under the assumptions of Theorem 1.5,
there exists a classical solution of (7.2) for 0 < t ≤ T , T > 0, continuous in
L∞(x) at t = 0, extending for all t > 0 such that u(·, t) remains sufficiently
small in L1 ∩ L∞, given by

(7.4)

u(x, t) =

∫ ∞

0

G(x, t; y)g(y) dy+

∫ t

0

Gy(x, t− s; 0)Bh(s) ds

−
∫ t

0

∫ ∞

0

Gy(x, t− s; y)Q(u)(y, s) dy ds.
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Proof. From Lemma (3.2) and the inverse Laplace representation (6.1) we
find that G(x, t − s; y) considered as a function of y, s satisfies the adjoint
equation

(7.5) (∂s − Ly)
∗G∗(x, t− ·; ·) = 0,

or

(7.6) −Gs − (GA)y +GAy = (GyB)y.

Likewise, reviewing the construction of the resolvent, we find Gλ(x, 0) ≡ 0,
yielding

(7.7) G(x, t− s; 0) ≡ 0.

That is, G∗(x, t− ·; ·) is the Green function for the adjoint equation, as may
alternatively be seen directly by a duality argument analogous to the proof
of Lemma (3.2).

Thus, integrating G against (7.2), integrating by parts, and using the fact
that G = 0 and u = h on the boundary y = 0, we obtain for any classical
solution of (7.2) that
(7.8)

∫ t

0

∫ ∞

0

G(x, t− s; y)Q(u(y, s))y dy ds =

∫ t

0

∫ ∞

0

G(x, t− s; y)(∂s − Ly)u(y, s) dy ds

=

∫ t

0

∫ ∞

0

((∂s − Ly)
∗G∗)∗(x, t− s; y)u(y, s) dy ds

+ u(x, t)−
∫ ∞

0

G(x, t; y)g(y) dy−
∫ t

0

Gy(x, t− s; 0)Bh(s) ds,

from which we obtain (7.4) by rearranging and integrating by parts the term
∫ t

0

∫∞
0
G(x, t− s; y)Q(u(y, s))y dy ds.

Indeed, (7.4) may be taken as the definition of a weak solution in L∞(x, t).
(One can see using convolution identities that this agrees with the usual
definition in terms of integration against test functions φ ∈ C∞

0 (R × R).)
Existence of weak solutions can be obtained by a standard contraction map-
ping/continuation argument using the convolution bounds of Lemmas 7.2–7.4
below; we omit the details, since we shall carry out quite similar but more
difficult estimates in the proof of stability. Smoothness of solutions may then
be obtained by a bootstrapping argument as sketched in Appendix A.
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To establish stability, we use the following lemmas proved in [HZ].

Lemma 7.2 (Linear estimates [HZ]). Under the assumptions of Theorem
1.5,

(7.9)

∫ +∞

0

|G(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0.

Lemma 7.3 (Nonlinear estimates [HZ]). Under the assumptions of Theorem
1.5,

(7.10)

∫ t

0

∫ +∞

0

|Gy(x, t− s; y)|Ψ(y, s) dyds≤ C(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0, where

(7.11)
Ψ(y, s) := (1 + s)1/2s−1/2(θ + ψ1 + ψ2)

2(y, s)

+ (1 + s)−1(θ + ψ1 + ψ2)(y, s).

We require also the following estimate accounting boundary effects.

Lemma 7.4 (Boundary estimate). Under the assumptions of Theorem 1.5,

(7.12)
∣

∣

∣

∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣

∣

∣
≤ CE0(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0.

Proof. The estimate on
∫ t−1

0
, where Gy(x, t − s; 0) is nonsingular, follows

readily by estimates similar to but somewhat simpler than those of Lemma
(7.3), which we therefore omit.

To bound the singular part
∫ t

t−1
, we integrate (7.6) in y from 0 to +∞,

recalling that G(x, t− s; 0) ≡ 0, to obtain

(7.13) GyB = −
∫ +∞

0

Ay(y)G(x, t− s; y) dy −
∫ +∞

0

Gs(x, t− s; y) dy.
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Substituting in the lefthand side of (7.12), and integrating by parts in s, we
obtain

(7.14)

∫ t

t−1

GyBh(s) ds =

∫ 1

0

(

∫ +∞

0

Ay(y)G(x, τ ; y) dy
)

h(t− τ) dτ

−
∫ 1

0

(

∫ +∞

0

G(x, τ ; y) dy
)

h′(t− τ) dτ

+
(

∫ +∞

0

G(x, 1; y) dy
)

h(t− 1),

which by
∫

|G|dy ≤ C has norm bounded by max0≤τ≤1(|h|+ |h′|)(t− τ).
Combining this with the more straightforward estimate

(7.15)

∣

∣

∣

∫ t

t−1

Gy(x, t; 0)Bh(s) ds
∣

∣

∣
≤

∫ 1

0

|Gy(x, τ ; 0)|Bh(s) ds

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0

τ−1e−|x|2/Cτ dτ

= C|x|−2 max
0≤τ≤1

|h(t− τ)|

×
∫ 1

0

(|x|2/τ)e−|x|2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

we find that the contribution from
∫ t

t−1
has norm bounded by

max
0≤τ≤1

(|h|+ |h′|)(t− τ)(1 + |x|)−2.

Combining this estimate with the one for
∫ t−1

0
, we obtain (7.12).

With these preparations, the proof of stability is straightforward.

Proof of Theorem 1.5. Define

(7.16) ζ(t) := sup
y,0≤s≤t

|u|(θ + ψ1 + ψ2)
−1(y, t).

We will establish:
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Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded
by some fixed, sufficiently small constant, there holds

(7.17) ζ(t) ≤ C2(E0 + ζ(t)2).

From this result, provided E0 < 1/4C2
2 , we have that ζ(t) ≤ 2C2E0 implies

ζ(t) < 2C2E0, and so we may conclude by continuous induction that

(7.18) ζ(t) < 2C2E0

for all t ≥ 0. (By Lemma 7.1 and standard short-time estimates, u ∈ C0(x)
exists and ζ remains continuous so long as ζ remains bounded by some uni-
form constant, hence (7.18) is an open condition. From (7.18) and the defi-
nition of ζ in (7.16) we then obtain the bounds of (1.14). Thus, it remains
only to establish the claim above.

Proof of Claim. We must show that u(θ + ψ1 + ψ2)
−1 is bounded by

C(E0+ ζ(t)
2), for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains sufficiently

small. By (7.16), we have for all t ≥ 0 and some C > 0 that

(7.19) |u(x, t)| ≤ ζ(t)(θ + ψ1 + ψ2)(x, t),

and therefore

(7.20) |Q(u)(y, s)| ≤ Cζ(t)2Ψ(y, s)

with Ψ as defined in (7.11), for 0 ≤ s ≤ t. Combining (7.20) with represen-
tation (7.4) and applying Lemmas 7.2–7.4, we obtain

(7.21)

|u(x, t)| ≤
∫ ∞

0

|G̃(x, t; y)||g(y)| dy+
∣

∣

∣

∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣

∣

∣

+

∫ t

0

∫ ∞

0

|G̃y(x, t− s; y)||(Q(u))(y, s)|dy ds

≤ E0

∫ ∞

0

|G̃(x, t; y)|(1 + |y|)−3/2 dy

+
∣

∣

∣

∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣

∣

∣

+ Cζ(t)2
∫ t

0

∫ ∞

0

|G̃y(x, t− s; y)|Ψ(y, s)dy ds

≤ C(E0 + ζ(t)2)(θ + ψ1 + ψ2)(x, t).

Dividing by (θ+ψ1+ψ2)(x, t), we obtain (7.17) as claimed. This completes
the proof of the claim, and the theorem.

28



A Smoothness of solutions

In this appendix, we briefly sketch the proof that weak solutions defined by
(7.4) are necessarily smooth, classical solutions as well, by indicating how to
get the necessary derivative bounds.

Time-derivative. Rewriting the second, boundary term, on the right-
hand side of (7.4) using its convolution structure, as

∫ t

0

Gy(x, τ ; 0)Bh(t− τ) dτ,

and differentiating in t, we obtain

Gy(x, t; 0)Bh(0) +

∫ t

0

Gy(x, τ ; 0)Bh
′(t− τ) dτ,

for which the first term is bounded and smooth for x, t > 0, and the second
by the same estimate as in (7.15) is bounded by

C|x|−2

∫ t

0

|h′(t− τ)| dτ ≤ C|x|−2 log(1 + t).

Differentiating the first and third terms with respect to t and integrating
the third term by parts in y yields

(A.1)

∫ ∞

0

G(x, t; y)g(y) dy−
∫ t

t/2

∫ ∞

0

Gy(x, t− s; y)Q(u)s(y, s) dy ds

−
∫ t/2

0

∫ ∞

0

Gyt(x, t− s; y)Q(u)(y, s) dy ds,

from which, in combination with the boundary estimate already performed,
we may readily obtain a short-time bound |ut| ≤ C|x|−2t−1 by Picard itera-
tion.

Spatial-derivatives. Likewise, differentiating (7.14) with respect to x,
we may bound the x-derivative of the boundary term

∫ t

0
GyB ds by

C

∫ t

0

τ−1/2(|h′|+ |h|)(t− τ)| dτ ≤ C log(1 + t).
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Differentiating the first and third terms of the righthand side of (7.4) with
respect to x and integrating the third term by parts in y yields

(A.2)

∫ ∞

0

G(x, t; y)g(y) dy−
∫ t

t/2

∫ ∞

0

Gx(x, t− s; y)Q(u)y(y, s) dy ds

−
∫ t/2

0

∫ ∞

0

Gyx(x, t− s; y)Q(u)(y, s) dy ds,

from which, in combination with the boundary estimate already performed,
we obtain a short-time bound |ux| ≤ Ct−1/2 by Picard iteration. From the
bounds on |ut| and |ux|, finally, we obtain bounds on |uxx| by the equation
satisfied by u.
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