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Abstract
A new mathematical framework is introduced for combining the linear compartmental models
used in pharmacokinetics with the spatiotemporal distributions of activity that are measured in
single photon emission computed tomography (SPECT) and PET imaging. This approach is global
in the sense that the compartmental differential equations involve only the overall spatially
integrated activity in each compartment. The kinetics for the local compartmental activities are not
specified by the model and would be determined from data. It is shown that an increase in
information about the spatial distribution of the local compartmental activities leads to an increase
in the number of identifiable quantities associated with the compartmental matrix. These
identifiable quantities, which are important kinetic parameters in applications, are determined by
computing the invariants of a symmetry group. This group generates the space of compartmental
matrices that are compatible with a given activity distribution, input function, and set of support
constraints. An example is provided where all of the compartmental spatial supports have been
separated, except that of the vascular compartment. The question of estimating the identifiable
parameters from SPECT and PET data is also discussed.
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1. Introduction
Linear compartmental models have been used successfully to describe tracer kinetics in
biomedical research and to explain the results of pharmacokinetic experiments [1]. For a
bolus input, the basic form for the activity or tracer concentration in any given compartment,
after the bolus has been administered, is a sum of decaying exponentials as a function of
time. For this reason, in single photon emission computed tomography (SPECT) and PET
imaging, multiple exponential models are often used to model the time course of activity in
individual voxels [2,3,4,5,6], in regions of interest [7,8,9,10], or in voxels within regions of
interest [11,12,13]. The justification for this type of kinetic model is usually an appeal to
compartmental models. We might call this approach local compartmental modeling.
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However, conventional compartmental modeling in pharmacokinetics is a global model; that
is, it deals with the whole organism. As will be shown below, when this type of global
compartmental modeling is combined with the spatiotemporal distributions of activity that
are the objects of SPECT and PET imaging, the resulting temporal behavior of the local
activity is not a sum of decaying exponentials except under special, and probably un-
realistic, circumstances. This is one motivation for finding out which aspects of
conventional compartmental modeling do carry over to the imaging context.

In section 2, we introduce the basic object model that allows us to combine SPECT or PET
imaging with a compartmental description of kinetic behavior. This object model represents
the simplest way to combine the concept of a spatiotemporal distribution of activity with
compartmental kinetic equations. In sections 3 and 4, we derive some alternate expressions
for the activity distribution that can be derived from the original object model. In section 3,
we introduce the local input function and relate it to the activity distribution. In section 4, we
use the eigenvector decomposition for the compartmental matrix to decompose the activity
distribution into a sum of functions, one for each eigenvalue. These three sections provide
three equivalent mathematical expressions for a spatiotemporal activity distribution that are
all consistent with the compartmental kinetic equations. The relations between the object
model presented here and the standard multiexponential models are described in section 5.

Beginning in section 6, we address the identifiability problem for the compartmental matrix.
For this discussion, we assume that we have a spatiotemporal activity distribution, an input
function, and information about the spatial support of each compartment. In practice, the
activity distribution would be the result of a reconstruction algorithm, the input function
would be measured as the tracer is being administered, and the support information would
be the result of prior knowledge about the anatomy, possibly from another imaging modality
such as CT or magnetic resonance imaging (MRI). We then ask whether there is more than
one compartmental matrix that is compatible with all of this information. If that is true, we
also want to know which quantities associated with the compartmental matrix will be
constant across all compatible matrices. These invariants are the identifiable quantities of the
compartmental matrix, and they represent the most information about the compartmental
matrix that we can hope to extract from our imaging experiment.

In section 6, we find these invariants when there is no support information and, in section 7,
we go to the opposite extreme, where we are able to completely separate the compartments
spatially. With no support information, the results are very similar to those in standard
compartmental modeling, while with complete support information, we find that the entire
compartmental matrix is identifiable. The more common situation, where we have partial
support information, is described in sections 8–10. We find in this case that there is a
symmetry group that describes all of the uncertainty in the compartmental matrix and that
the invariants of this symmetry group are the identifiable quantities associated with the
compartmental matrix. We then determine what these invariants are in the general case.

In actual imaging situations, we may be able to spatially separate all of the anatomical
compartments except the vascular compartment. We examine this important special case in
detail in section 11 and relate the identifiable quantities of the compartmental matrix to its
eigenvalues and eigenvectors. In section 12, we introduce the SPECT or PET imaging
system in general terms and discuss how it may be used to identify the kinetic parameters
associated with the compartmental matrix. Finally, in section 13, we discuss the limitations
of this model and possible directions for future work.
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2. Linear kinetic model for SPECT or PET imaging
In this section, we describe the kinetic model for the activity distribution f (r, t). This model
describes the simplest way to combine a compartmental temporal model, of the type used in
conventional pharmacokinetics, with the spatial activity distribution that is the object of
interest in SPECT or PET imaging. The basic idea is that the spatial integrals of
spatiotemporal compartmental activity functions are the temporal compartmental functions
that appear in the first-order linear system of differential equations that make up the
temporal model. This is the most obvious way to link the pharmacokinetic model with
imaging.

In order to motivate this approach to combining compartmental models with imaging, we
present a simple example with two compartments and two voxels. The activity in each
compartment is spread across both voxels and is allowed to move between voxels as time
goes on. Governing the movement of activity between voxels and compartments in the
simulation was a linear model that was consistent with a linear model for the activities in the
compartments summed over the two voxels. The input was a constant bolus into the first
compartment between t = 0 and t = 1. In Figure 1, we show the time activity curves for each
voxel on the left and, on the right, a double exponential fit for times after the input bolus. If
each voxel is governed by a two-compartment model, then the double exponential behavior
is what we would expect after t = 1. The decay rates for the exponential functions in the
fitted curves, which are also the eigenvalues of the compartmental matrices for each voxel,
are λ1 = 1.560 and λ2 = 0.295 for voxel 1, and λ1 = 0.240 and λ2 = 0.239 for voxel 2. In
Figure 2, we show the actual time activity curves for the two compartments on the left and
double exponential fits for times after the bolus on the right. These curves would not be
available in an imaging experiment, since we cannot determine from imaging the level of
activity in a given voxel in each compartment. The rate constants for the compartmental
activities are λ1 = 0.8 and λ2 = 0.3. In this example, these are the correct rate constants, and
they are not predicted by the voxel-fitting approach. If we now use the local, voxel-fitting,
approach to derive compartmental matrices for each voxel, then there can be no expectation
that these local compartmental matrices are related in any way to the actual compartmental
matrix governing the compartmental model. The problem is that the local compartmental
model does not allow for activity moving between voxels. Since voxels are not anatomical
features and can be very small, it seems to be unwise to assume that activity cannot move
from one voxel to another. This is one of the main motivations for the present work. More
details for this example are given in the appendix.

Although the compartments in standard compartmental models for pharmacokinetics are
regarded as somewhat abstract entities, when we wish to combine these models with
imaging we must accept the fact that the activity in each compartment has a spatial
distribution within the body. For this reason, we assume that the activity distribution f (r, t)
can be decomposed into a sum of separate contributions from different tissue types and/or
different biological environments, i.e., different compartments:

(2.1)

Examples of tissue types could be normal tissue from various organs, cancerous tissue,
blood, muscle, and so forth. Examples of different environments could be intercellular and
intracellular environments within a given tissue type. The number L of terms in the sum will
depend, among other things, on the tracer and the amount of detail we wish to include in the
model. There is no easy answer to the question of how many terms should be included in
this sum; typically we try to explain the data with as few terms as possible, but there may be
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biological justifications for having more terms. The terms in this sum will be called the local
compartmental activities and are assumed to be nonnegative functions. It must be
emphasized that the imaging system can, at best, provide the overall activity distribution f (r,
t) for the entire organism. We will assume that we are in this best case scenario, so that f (r,
t) for the entire organism is known for all points in the subject being imaged and at all times.
It is important to note that, even in this situation, the individual local compartmental
activities are not distinguished by either the SPECT or PET imaging system. With actual
imaging systems, there are, of course, other problems as well, such as limited sampling in
space and time, choice of reconstruction algorithm, imaging-system noise, and a limited
field of view. We will discuss some of these issues in section 12.

We need to introduce the space-integrated compartmental activities in order to describe the
kinetic model for the activity distribution. In the following equation, and others to appear
below, space-integrated quantities will always be denoted by overbars. The space-integrated
compartmental activities are functions of time given by

(2.2)

where the region Sl is a spatial support region for the function al (r, t) for all t. What we
mean by this condition on Sl is that we have prior knowledge that the function al (r, t)
vanishes outside Sl for all t. The function al (r, t) may in fact vanish outside a smaller
region; therefore, Sl is not necessarily the mathematical spatial support of al (r, t), which is
usually defined as the smallest closed region outside of which the function vanishes. The
region Sl represents the state of our prior knowledge about the mathematical support of al (r,
t); i.e., we know that this support is inside Sl. The source of this prior knowledge would
typically be anatomical information based on our knowledge of the normal anatomy of the
subject species or derived from another imaging modality, such as CT or MRI. In the latter
situation, we will see that dual-modality imaging could be very useful for estimating
pharmacokinetic parameters.

The easiest way to describe the linear kinetic model is to first form the vector of space-
integrated compartmental activities

(2.3)

In the linear kinetic model, this vector-valued function is assumed to satisfy the vector
differential equation

(2.4)

where the L × L matrix K is called the compartmental matrix, and the L-dimensional vector
function Ī (t) is the input function. Typically, we would identify the first compartment with
the vascular system and
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(2.5)

where Ī (t) is the input function to the bloodstream and e1 is the vector with 1 in the first
entry and the rest 0. For simplicity, we will assume in all of our discussions below that the
input function has this form. Other forms for the input vector function result in some simple
modifications of some of the equations to follow. The authors are aware that obtaining the
input function, from samples or otherwise, is one of the major problems in applications of
compartmental modeling to experiments. We will not address that problem in this work in
any detail and will assume a best case scenario—that the input function is known.

There are standard assumptions about the compartmental matrix in pharmacokinetic theory.
The first constraint on this matrix is that the off-diagonal elements are nonnegative: Kij ≥ 0
for i ≠ j. These numbers represent a relative rate of flow of activity from compartment j into
compartment i. The second constraint is that the diagonal elements are nonpositive: Kii ≤ 0.
These numbers represent a relative rate of flow of activity out of compartment i. The third
constraint is that the magnitude of a diagonal element is at least as large as the sum of the
other elements in the same column:

(2.6)

This relation guarantees that activity is conserved.

To see this last point, we first define an L-dimensional vector u by ul = 1 for all l. If S is a
support set for the observed activity distribution, then the integrated activity is given by

(2.7)

The dagger symbol refers to the transpose operation and converts a column vector to a row
vector. Differentiating this equation gives us

(2.8)

The three constraints on the compartmental matrix imply that the components of the vector
K†u are nonpositive. If we have equality in the third constraint, then these components all
vanish, and the rate of change in the overall activity in the organism is equal to the overall
input. If the left side in the third constraint is greater than the right side, then some activity is
being diverted outside of the organism. For SPECT or PET imaging, there is also an overall
decrease of activity in all compartments because the images are produced by the radioactive
decay of an unstable isotope. Note that, by Gershgorin’s circle theorem [14], the constraints
on K also imply that the real parts of the eigenvalues of K are nonpositive.

The kinetic equation can also be formulated in terms of concentrations of the activity in each
compartment. First, let Vl be the volume of compartment l, i.e., the volume of the
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mathematical spatial support of the function al (r, t). We will assume that Vl is independent
of time. Then, the concentration vector C ̄ (t) is defined componentwise by

(2.9)

If we define the diagonal matrix T by , then we may write the kinetic equation
as

(2.10)

where the middle expression defines the matrix Kc and the vector Īc (t). In the imaging
context, the volumes Vm are often unknown. For this reason, we will focus on activities
rather than concentrations. Note that, since the matrices K and Kc are related by a similarity
transformation, they have the same eigenvalues.

3. The local input function
In this section, we will derive an alternative expression for the activity function f (r, t) that
explicitly contains the compartmental matrix. To do this, we must introduce the idea of a
local input function I (r, t). It is tempting to think of the local input function in physical
terms, but this can lead to problems, as will be discussed below. It is probably better to think
of the introduction of the local input function more as a change of variable that is made for
mathematical convenience.

Theorem 3.1
If there is initially no activity in the organism, then the activity distribution can be written in
the following form:

(3.1)

where the vector function I (r, t′) satisfies the constraint

(3.2)

Proof—We start with the local compartmental activity vector

(3.3)

and note that f (r, t) = u†a (r, t). In terms of this vector function, the kinetic equation may be
written as

Clarkson and Kupinski Page 6

SIAM J Imaging Sci. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.4)

We are supposing that the interchange of differentiation and integration used to obtain this
equation can be justified by assuming, for example, that a (r, t) and its time derivative are
continuous in S, but we will not pursue this question in detail. This last equation suggests
that we define the vector-valued local input function by a local kinetic equation

(3.5)

Again, at this point, the local input function is a purely mathematical construction defined
by (3.5). The possible physical meaning, or lack thereof, of this function will be addressed
below. By definition, the local input function is constrained by (3.2). The original kinetic
model given in (2.4) is equivalent to the combination of (3.2) and (3.5).

We assume that there is initially no activity in the field of view. This assumption is not
essential, and background radiation can be taken into account, but it does simplify the
mathematics somewhat. Since the compartmental activities are all nonnegative, this gives
the initial condition a (r, 0) = 0. With this initial condition, the solution to the local kinetic
equation (3.5) can be written in the form [15]

(3.6)

This equation shows us that if we know the vector function I (r, t) and the matrix K, then the
vector function a (r, t) is determined. Similarly, (3.5) shows us that if we know a (r, t) and
K, then I (r, t) is determined. In any case, the model for the activity distribution now has the
form given in (3.1).

The expression for the activity distribution given in this theorem incorporates the kinetic
model into an expression for f (r, t), with the assumption that the function I (r, t) satisfies the
constraint in (3.2). The kinetic model for the activity distribution is now summarized in (2.1)
and (2.4) or, equivalently, in (3.1) and (3.2). The two ways of representing the activity
distribution are linked by (3.5).

4. Eigenvalue decomposition of the compartmental matrix
In keeping with the usual convention in compartmental modeling, we will write the
eigenvalue equation for the compartmental matrix with a negative sign: Kvl = −λlvl. As
noted above, the constraints on K imply that the real parts of the λl are positive. In fact, it is
usually assumed that these numbers are real and that there are L distinct eigenvectors; i.e., K
is diagonalizable. Because diagonalizability is a generic property of matrices, this
assumption is not too difficult to justify. On the other hand, the property that all of the
eigenvalues of a matrix are real is not a generic property and is therefore an implicit
nontrivial constraint on the compartmental matrix. It is difficult to formulate this constraint
in terms of properties of the elements of K, but we will assume that the eigenvalues are all
real.

We will say that a quantity associated with the compartmental matrix is identifiable if it is
uniquely determined by the activity distribution and the support information. If a quantity
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associated with K is not identifiable, then it will be impossible to determine uniquely, even
under the best conditions. On the other hand, for identifiable quantities, there is at least the
possibility of obtaining an accurate estimate.

Theorem 4.1
Under generic assumptions about the compartmental matrix, the eigenvalues of the
compartmental matrix are identifiable when the input is time-limited.

Proof—The local input function can be expanded in the eigenvector basis as

. This expansion leads to the corresponding expansion for the global

input function by integrating over the field of view: . The object model now
consists of functions that have expansions of the form

(4.1)

From this equation, we find that the integrated activity can be written as

(4.2)

Now suppose that u†vl ≠ 0 for all l, and  is not identically zero for any l. These
conditions on the eigenvectors and input function components are generic properties of the
compartmental matrix and input function. We may now normalize the eigenvectors so that
u†vl = 1 for all l. By taking the Laplace transform of both sides of (4.2), we find that

(4.3)

where  is the Laplace transform of the function . If the input function is time-

limited, then the functions  are analytic, and therefore the only singularities of F̄ (s)
are at the eigenvalues. Thus, the eigenvalues λl can be determined from f (r, t) when we have
time-limited input.

We will always assume that the input is time-limited and therefore that the eigenvalues of
the compartmental matrix are identifiable. If the input function is not time-limited, then (4.3)
may still lead to an identification of the eigenvalues, for example, when the numerators are
analytic functions. This is also a standard result in conventional compartmental modeling of
pharmacokinetics [1]. We will also always assume that the normalization u†vl = 1 has been
enforced for the eigenvectors of the compartmental matrix.

5. Multiexponential models
If the input function is time-limited to the time interval between 0 and T, then, for all times
later than T, we have
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(5.1)

This is a multiexponential function, i.e., a linear combination of decaying exponentials.
Multiexponential functions are therefore expected for the integrated activity when the input
function is time-limited.

The assumption that Ī (t) = 0 for t > T is consistent with, but does not necessarily imply that,
I (r, t) = 0 for t > T. If we make this latter, more questionable, assumption, then, for t > T,
we have

(5.2)

This equation is consistent with a local multiexponential model for t > T:

(5.3)

Local multiexponential models have been used extensively to fit time activity curves from
SPECT and PET imaging systems [2,3,4,5,6,7,8,9,10,11,12,13]. If an activity distribution of
this form is integrated over a voxel or a region of interest, then the result is a temporal
function that is a sum of decaying exponentials. Often, such time activity curves are fit to a
finite sum of exponentials, and the time constants λl are extracted. This procedure is justified
by an appeal to compartmental models, where such sums of decaying exponentials are
indeed the form that components of solutions to the differential equation take for t > T.
However, this method ignores the fact that the constants λl are eigenvalues of the
compartmental matrix for the biological system as a whole, and not properties of an
individual voxel or region of interest. This is one motivation for considering the global
compartmental model proposed here.

For comparison purposes, we can write the object model derived in the last section as

(5.4)

with an input constraint that now takes the following form: There are vectors vl such that

(5.5)

The eigenvalues λl and eigenvectors vl then determine K. This object model imposes no
further constraints on the activity distribution beyond those given in section 2. Of course,
this object model is more difficult to deal with than the multiexponential model, but it does
take into account the fact that we cannot isolate a voxel or region of interest from the rest of
the organism being imaged.
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The assumption that I (r, t) = 0 for t > T is also incompatible with localized compartments,
which are important for imaging applications. If am (r, t) = 0 in some region in the field of
view where the overall activity is nonvanishing, then

(5.6)

in that region. This means that if we have support information available, we cannot make the
blanket assumption that I (r, t) = 0 for t > T. Support information from imaging is therefore
incompatible with a multiexponential object model in the context of the assumptions of the
global compartmental model. If we make this assumption, we are, in effect, abandoning the
global compartmental model and going back to models that do not account for activity
moving between voxels. Equation (5.6) also shows that the local input function does not
have an obvious physical interpretation since a component of this vector function must be
nonzero in regions where the corresponding local compartmental activity component
vanishes.

6. Identifiability with no support information
For a given activity distribution f (r, t), suppose that we have no compartmental support
information; i.e., Sl = S for l = 1,…, L. Let us assume that, by some means, we have
determined a compartmental matrix K and a vector function I (r, t) that satisfy (3.1) and
(3.2). The identifiability question for the matrix K as a whole is whether there is a different
compartmental matrix K̃ together with a vector function Ĩ (r, t) that also satisfies (3.1) and
(3.2). If the answer to this question is yes, then, in the absence of further information, there
is no way to distinguish the pair K and I (r, t) from the pair K̃ and Ĩ (r, t). This implies that
K̃ and ã (r, t) are equally valid as a model for the observed activity distribution and input
function as K and a (r, t). There is an additional constraint here which should also be taken
into account, namely, that we must have al (r, t) ≥ 0 and ãl (r, t) ≥ 0 for all l and r and t. For
now, we will ignore this constraint, but we will discuss positivity in greater detail below.

Theorem 6.1
In the absence of support constraints, the compartmental matrix is not identifiable.

Proof—Since the eigenvalues of the compartmental matrix K are identifiable, they must
also be the eigenvalues of K̃, so we must have K̃ = MKM−1 for some invertible matrix M.
By expanding the exponential in (3.1) in a power series, we see that K̃ and Ĩ (r, t) will
satisfy this equation if and only if

(6.1)

for all nonnegative integers k. If (6.1) is true for k = 0,…, L − 1, then we can use the
characteristic polynomial for K to show that it is true for larger k. We also must have

(6.2)

Taken together, these last two equations imply that

(6.3)
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Since we are assuming that the input function is known, this last equation gives L − 1
independent conditions that M needs to satisfy. We do not have L conditions since (6.3) is
trivially satisfied for l = 0.

One way to satisfy the conditions in (6.1), (6.2), and (6.3) on M and Ĩ (r, t) is to do the
following:

a. Set M = AB, where B commutes with K.

b. Define

(6.4)

c. Enforce the constraints AĪ (t) = Ī (t) and A†u = u.

For the standard input function, the first constraint implies that the first column of A is a 1
followed by zeros. The second constraint implies that the columns of A all sum to 1. These
two equations therefore give 2L − 1 constraints on A. Since we are assuming that K is
diagonalizable, the dimension of the space of matrices that commute with it is L. The
dimension of the space of matrices M that we obtain from this construction is therefore L2 −
(L − 1), which is also the dimension of the space of matrices satisfying (6.3). Since L2 − (L
− 1) > 0, we know that K is not identifiable.

In addition, since the construction in the proof of this theorem gives K̃ = AKA−1, we expect
that the dimension of the space of alternate compartmental matrices K̃ that are produced via
this construction will be L2 − (2L − 1). This in turn implies that there are 2L – 1 invariants
that describe this space, and therefore no more than 2L − 1 invariants for the whole space of
alternate compartmental matrices. We know that there are at least 2L−1 independent
invariants for the space of alternate compartmental matrices. These invariants are the
eigenvalues λ1,…, λL and the numbers u†KkĪ (t) for l = 1,…, L − 1. These dimensional
arguments raise the following question: Is the construction in (a)–(c) above the only way to
satisfy the constraints on M and Ĩ (r, t) contained in (6.1), (6.2), and (6.3)? We show below
that there is an affirmative answer to this question. This affirmative answer implies that the
identifiable quantities associated with the compartmental matrix are the 2L − 1 invariants
noted above.

With the function Ĩ (r, t) given in (6.4), the corresponding vector activity function is given
by

(6.5)

This fact will be exploited below to show how support information places more constraints
on the matrix A. The existence of these additional constraints implies that there are more
invariants and hence more identifiable quantities associated with K when support
information is available.

Theorem 6.2
If the input function is time-limited, then the functions u†KkĪ (t) are identifiable.

Proof—If we return to the eigenvalue analysis, we can see a way to determine the functions

u†KkĪ (t). Using (4.3), we can show that the functions  are determined by f̄ (t) when
the input function is time-limited. This follows from the fact that the expansion of F̄ (s)
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given in (4.3) is unique when the numerators are entire functions, which they are when the
input is time-limited. The constraint

(6.6)

implies that only L − 1 of the identifiable functions  are independent. Now we can write

(6.7)

which shows that the functions u†KkĪ (t) can, in principle, be recovered.

Using the assumption that the input function is into the first compartment only, and that the
scalar function I (t) is known, the independent identifiable quantities associated with the
compartmental matrix are the eigenvalues of K and the numbers

(6.8)

for k = 1,…, L − 1. These results are very similar to results in standard compartmental
analysis for pharmacokinetics when there is one accessible compartment [1].

7. Identifiability with complete support information
Now we will examine the opposite extreme from the previous section in terms of support
information. We will say that we have complete support information when Sl ∩ Sk = 0̷ for l
≠ k. Of course, this condition may be difficult or impossible to satisfy since it may require
subcellular resolution in our imaging system in order to separate all of the compartment
supports. In particular, separating the support of the vascular compartment from other
support regions would require very high resolution in our imaging system. The reason for
considering this case is that it represents the ultimate in what an imaging system could
deliver.

Theorem 7.1
Under generic assumptions about the compartmental matrix, if we have complete support
information, then the compartmental matrix is identifiable.

Proof—If we have complete support information, then f (r, t) = al (r, t) for r ∈ Sl. This
means that a (r, t) is known and hence that ā (t) is known. Taking a derivative, we find that
Kā (t) is known for all t. If the span of the vectors ā (t) as t varies is all of ℝL, then K can be
identified in its entirety. This spanning condition will fail if the vectors KkĪ (t) all lie in a
proper subspace for k = 0, 1,…, L − 1 and all t. However, this subspace condition is not a
generic property of matrices and so is unlikely to occur in practice.

We can say then, that with complete support information, all of the quantities in the model
are identifiable, the compartmental functions al (r, t) and the compartmental matrix K.
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8. A symmetry group
Now we consider the more likely situation where we have some support information for the
compartments, but not complete support information. In this case, the variability in the
possible compartmental matrices that are compatible with the given activity distribution,
input function, and support constraints can be described in terms of a symmetry group. For
brevity, we will sometimes call such a compartmental matrix “compatible.” The invariants
of the symmetry group then provide us with the identifiable quantities associated with the
compatible compartmental matrices.

The symmetry group in question consists of the invertible matrices A that satisfy three
properties:

Symmetry group property 1: AĪ (t) = Ī (t).

Symmetry group property 2: A†u = u.

Symmetry group property 3: Aij ≠ 0 implies Sj ⊂ Si.

The first two properties have already been mentioned in section 6 and guarantee that the
constraint in (6.3) is satisfied. By definition, a matrix in the symmetry group acts on any
compatible compartmental matrix K and the corresponding local compartmental activity
vector a (r, t) to produce a new compartmental matrix K̃ = AKA−1 and a new local
compartmental activity vector ã (r, t) = Aa(r, t). Since

(8.1)

the third property of A is needed to preserve compatibility with the support information. The
new compartmental matrix, with the new local compartmental activity, is compatible with
the given activity distribution, input function, and support constraints.

When there is support information, this symmetry group has lower dimension than the
corresponding group when there is no support information, i.e., when the third symmetry
group property is deleted. Therefore, we would expect more invariants, i.e., more
identifiable quantities, when there is support information from imaging. What are these
invariants and how do we identify them from the activity distribution, the input function,
and the support sets? We answer the first of these questions below. First, though, we will
show that we really do have a symmetry group.

Theorem 8.1
The three symmetry group properties listed above define a group of matrices with the
ordinary matrix product as the group multiplication operation.

Proof—To show that the set of matrices described above is a group, first note that it is easy
to show that the first two properties are compatible with matrix products and inverses. To

address the third property, we first suppose that A″ = A′A and . Then, for some k, we

must have  and Akj ≠ 0. This implies that Sj ⊂ Sk and Sk ⊂ Si. Therefore, Sj ⊂ Si and
the collection of matrices satisfying the three properties is closed under matrix
multiplication.
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To show that this set of matrices is closed under inverses, we first prove a certain subspace
property that is equivalent to the third property. Define subspaces of ℝL by Vl = span {ek : Sl
⊂ Sk} and Wl = span{ej : Sj ⊂ Sl}. If v ∈ Vl, then

(8.2)

If this number is not zero, then, for some k, we have Sl ⊂ Sk and Sk ⊂ Si. This implies that Sl
⊂ Si. Since the index i is arbitrary, this gives Av ∈ Vl also. Thus, the subspaces Vl are
invariant under A. On the other hand, if these subspaces are invariant under A and Aij ≠ 0,
then [Aej]i ≠ 0. By the invariance property, this implies that ei ∈ Vj. This in turn gives Sj ⊂
Si. The invariance property, AVl = Vl for all l, is therefore equivalent to the third property for
the symmetry group. Now we can prove closure under the inverse operation. If A is in the
symmetry group, then AVl = Vl for all l, and the same will be true of the inverse matrix.

Note that A†Wl = Wl for all l. This property specifies the matrices in the adjoint symmetry
group. If the Wl are all one-dimensional, so that no support set is contained in any other,
then, by the third group property, A must be diagonal. Using the second group property, we
then find that A must be the identity matrix. This in turn implies that K is completely
identifiable in this case. Therefore, complete support information is not necessary in order
for the compartmental matrix to be identifiable. However, the question that remains even in
this situation is how to identify the elements of this matrix. In other words, we know there is
a unique solution for K in this circumstance, but we do not at present know how to obtain it.
If the Wl are not all one-dimensional, then we will see that K is not completely identifiable
from the given information.

In contrast to the compartmental matrix, in the absence of complete support information, the
am (r, t) are not completely identifiable. To see this, note that if Sm ∩ Sn ≠ 0̷, then the
operation

(8.3)

(8.4)

leaves f (r, t) invariant, and, if the spatial integral of the function b (r, t) is zero, also leaves a
(t) invariant. This in turn implies that K and I (t) are unchanged by this operation. If the
support of b (r, t) is in Sm ∩ Sn, then the support information is also unchanged. Thus, this
operation gives a new compartmental activity function which is compatible with the activity
distribution, the input function, and the support constraints.

9. Identifiability and the symmetry group
Before continuing with our discussion of the symmetry group, we need to tie up a loose end
from section 6. In that section, we found that the matrix M which relates the compartmental
matrix K to the alternate compartmental matrix K̃ = MKM−1 must satisfy (6.1) and (6.2).
These two equations then give us (6.3). We provided a construction in Theorem 6.1 that
resulted in a matrix M satisfying these three equations. We want to show that this is the only
way to obtain such an M.
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Theorem 9.1
Under generic conditions on the compartmental matrix, the conditions in (6.1) and (6.2)
imply that M = AB and Ĩ (r, t) = AI(r, t), with the matrices A and B satisfying AĪ (t) = Ī (t),
A†u = u, and BK = KB.

Proof—To begin with, we fix t and set Ī = Ī (t). We will make three generic assumptions
about the compartmental matrix. Assumption 1 is that the eigenvalues of K are distinct. As
noted before, this is generally assumed in standard compartmental modeling. Assumption 2
is that the vectors KkĪ for k = 0, 1,…, L − 1 are linearly independent. Assumption 3 is that
the vectors Kku for k = 0, 1,…, L − 1 are linearly independent.

Now we write K = VDV−1, where D is a diagonal matrix. We can write the constraint
equation (6.3) as

(9.1)

With the obvious definitions for M1, u1, and I1, we rewrite this equation as

(9.2)

The three generic assumptions now imply that the entries along the diagonal of the matrix D
are all different, and that all entries in the vectors I1 and u1 are nonzero. Now we want to

show that M1 = A1B1, with the conditions DB1 = B1D, A1I1 = I1, and . The first of
these conditions implies that B1 is diagonal. Choose the vector w to satisfy M1w = I1 and
choose B1 so that B1w = I1. A necessary condition for this step is that all entries in w are
nonzero. For now, we will assume that this property of w is true and show why it is true
later. Now the matrix A1 is chosen to satisfy M1 = A1B1. Then we have

(9.3)

This gives us

(9.4)

By assumption 2, this implies that . Now we set A = VA1V−1 and B = VB1V−1 to
obtain the required factorization of M.

We still need to check that the components of the vector w are all nonzero. Suppose that the
first component of w is zero. This discussion will apply to any other component also. We

have the equation . If the diagonal entries in D are λm, then we have

(9.5)
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for some numbers αm and βm, and k = 0, 1,…, L − 1. Note that all of the βm are nonzero by
assumptions 2 and 3. By subtracting and dividing, we find that

(9.6)

for some real numbers γm. However, this contradicts the fact that the vectors in ℝL given by
 for m = 1,…, L are linearly independent since the eigenvalues λm are distinct.

Therefore, all entries in w must be nonzero.

Now that we know what M looks like, we return to the original equation

(9.7)

which reduces to

(9.8)

By assumption 3, this implies that Ĩ (r, t) = AI (r, t).

Note that K̃ = MKkM−1 = AKkA−1. This means that the symmetry group given above in
section 8 describes all of the uncertainty in the compartmental matrix. This statement in turn
implies that a quantity associated with the compartmental matrix is identifiable if and only if
this quantity is an invariant of the symmetry group as it acts on the compartmental matrices
via similarity transformations. In the next section, we will determine what these invariants
are.

10. Invariants of the symmetry group
As discussed earlier, we will suppose that, for every eigenvector vl of K, we have u†vl ≠ 0.
If this condition fails for some eigenvector, then the corresponding component of a (r, t) will
not affect the activity distribution f (r, t). This means that this component and the
corresponding eigenvalue will not be identifiable. Since this nonorthogonality condition is a
generic property of matrices, it is unlikely to fail in applications. If the eigenvectors satisfy
this condition, then we may assume as before that they are all normalized so that u†vl = 1.

As in the last section, a matrix A from the symmetry group produces a new compartmental
matrix K̃ = AKA−1 that is also compatible with the given activity distribution, input
function, and support constraints. This matrix has eigenvectors K̃ṽl = −λlṽl which can also
be normalized such that u†ṽl = 1. Since A†u = u and the eigenvalues are distinct, we must
have ṽl = Avl. The constraints on the matrix A can now be used to determine invariant
quantities associated with these eigenvectors.

Theorem 10.1
The ratios of determinants given in (10.7) below are invariants of the symmetry group and
are therefore identifiable quantities associated with the compartmental matrix.

Proof—We begin by fixing k with 1 ≤ k ≤ L and choosing j so that ej is in the subspace Wk.
The jth component of the eigenvector ṽl is then given by
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(10.1)

Since Wk is an invariant subspace of the symmetry group, this vector component is given by

(10.2)

This means that the Wk component of ṽl is related to the Wk component of vl by a square
submatrix of the matrix A. This square submatrix consists of the elements Aji such that ei
and ej are in Wk. To produce invariants from this relation, we need to introduce some
notation. Let dk be the dimension of the subspace Wk. To avoid triple subscripts, and since k
is fixed thoughout this discussion, we will set d = dk in the equations below.

We know that Wk = span {ek1,…, ekd}, where Ski ⊂ Sk for i = 1,…, d. For any ordered set
(l1,…, ld) of distinct indices, we define the d × d matrices Vk (l1,…, ld) and Ṽk (l1,…, ld) by

(10.3)

and

(10.4)

We also define the d × d submatrix A(k) of A by

(10.5)

With these definitions in place, we now have, by the discussion above,

(10.6)

If (m1,…, md) is another ordered set of distinct indices, then, by taking determinants and
ratios, we find that

(10.7)

This equation tells us that the quantity on the right is invariant under the action of the
symmetry group on the compartmental matrices and is therefore an identifiable quantity
associated with the compartmental matrix K.

In the next section, we consider an example where we can list these invariants fairly easily.
In general, however, there is a problem in determining a list of independent invariants from
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the collection provided by this theorem. Beyond this mathematical question, there is also the
question of the possible biological significance of these identifiable quantities.

11. Identifiability with L − 1 nonoverlapping compartments and a vascular
compartment

We will assume that the support for the first compartment, the vascular compartment, is all
of the field of view. The supports for the other compartments are contained within the
vascular support and are nonoverlapping with each other. In other words, for l ≠ k and both
larger than 1, we have Sl ∩ Sk = 0̷. This may be a reasonable model when the nonvascular
compartments correspond to different organs.

For the invariant subspaces of the adjoint symmetry group, we have W1 = ℝL and, for k > 1,
Wk = span {ek}. The symmetry group consists of matrices A of the form

(11.1)

Because this is an L − 1 parameter group, we expect that there will be L2 − (L − 1)
invariants. These invariants are the identifiable quantities associated with the compartmental
matrix. If K̃ = AKA−1, then the first set of invariant quantities are the L eigenvalues, which,
for later use, we arrange in the diagonal matrix D:

(11.2)

The second set of invariants are the L − 1 power matrix elements:

(11.3)

The third set of invariants are the eigenvector component ratios, which we arrange in an (L
− 1) × (L − 1) matrix C:

(11.4)

for n and m running from 2 to L. The reader will notice that we now have L2 invariants,
which is too many. To resolve this problem, we show that the invariants in the second set are
all functions of those in the first and third sets.

Define the eigenvector matrix V by placing the normalized eigenvectors in columns: V =
[v1,…, vL]. Due to normalization, this matrix satisfies V†u = u. The compartmental matrix
can be written as before as K = VDV−1. Now the invariants in the second set can be written
as
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(11.5)

where the vector x satisfies Vx = e1. If we write out this system of equations, we have

(11.6)

(11.7)

(11.8)

(11.9)

where sl is the sum of the coefficients in rows 2 through L in the lth column. The solution to
this system of equations depends only on the matrix C. Therefore, the invariants in the
second set are functions of the matrices C and D. This gives the correct number of invariants
and shows that there are L − 1 free parameters in the compartmental matrix, which we may
take to be the last L − 1 components of the first normalized eigenvector. There are L2 − L +
1 identifiable quantities, which we may take to be the eigenvalues of K and the entries in the
matrix C.

The positivity constraint on the local compartmental activity a (r, t) has the effect of
confining the matrix A to a neighborhood of the identity in the symmetry group in order for
the new local compartmental activity ã (r, t) = Aa (r, t) to also be nonnegative. This
neighborhood depends on a (r, t). The end result is that the positivity constraint will not
result in any new invariants, but will produce bounds on the ranges of noninvariant
quantities associated with the compartmental matrix.

12. Imaging
For a stationary imaging system with sensitivity functions hm (r) for m = 1,…, M, and

imaging time intervals , the data may be viewed as an M × J matrix given
by

(12.1)

where the nmj are elements of a zero-mean random matrix describing the imaging-system
noise. In SPECT imaging, for example, the gmj are independent Poisson random variables,
which determine the statistics of the noise matrix. Other information we may have at our
disposal includes the input function Ī (t), spatial support regions Sm, and compartmental
volumes Vm. This information, if available, could come from measurements independent of
the functional imaging system that generates the data matrix. For example, the input
function may be known from measurements in the input device, and the spatial support
regions and their volumes may be estimated from an anatomical modality such as CT.
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The mean for the temporal Poisson point process on the mth detector is given by the
function

(12.2)

We can use the object model to derive a form for these functions in terms of the local input
function and the compartmental matrix:

(12.3)

In terms of these functions, the data matrix elements are given by

(12.4)

We may use these last two equations as a model for the data when the object, the activity
distribution, follows a linear kinetic SPECT model. The constraint in (3.2) must be included
to complete this representation of the data matrix. By fitting this model to the data, we can
produce estimates of the identifiable quantities associated with the compartmental matrix.

In terms of the eigenvalues and eigenvectors of the compartmental matrix, the mean data
function for the detector point process is given by

(12.5)

The sensitivity of our imaging system is the spatial function given by

(12.6)

In the case where we have constant sensitivity s = s (r), we have

(12.7)

If we were able to perform our imaging experiment many times with short integration times,
we could compute samples of this temporal function to any desired degree of accuracy. If
we had 2L such samples, then the coefficients and eigenvalues in the sum on the right in this
equation would be determined. In this sense, we can say that the eigenvalues are estimable
quantities when we have constant sensitivity. Finding a way to estimate the other
identifiable quantities seems to be a more difficult problem.

There is an important case where the sensitivity function is not constant—when the field of
view does not cover the entire organism. The assumption that we have made throughout this
work is that the compartmental model applies to the organism as a whole, and that the
activity distribution is known throughout the body. When the field of view is too small to
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encompass the entire organism, then this latter assumption cannot be valid, even in the
approximate sense of having a reconstruction for the entire activity distribution. Some of the
compartmental support sets may be inside the field of view, some may be outside, and others
may partially overlap the field of view. One approach to this problem is to define the
compartments in such a way that their support sets are inside the field of view and
incorporate any flow of activity outside the field of view into the diagonal elements of the
compartmental matrix. The input function becomes a problem in this case since the injection
site is often outside the field of view. A second approach combines these field-of-view
compartments with one more compartment whose spatial support is all of the organism
outside the field of view. In this case, flow of activity outside the field of view is
incorporated into off-diagonal elements of the compartmental matrix. We still have the input
function problem with this method. A third approach is to keep a global compartment
model, incorporate the field of view into the sensitivity functions hm (r), and then determine
what identifiable quantities can be estimated from the given data. It is possible that, when
we find methods to estimate identifiable quantities when the whole activity distribution is
available, it will become clear which of these quantities can be estimated from a limited
portion of the activity distribution.

13. Discussion
We have described a method for combining the linear compartmental models used in
pharmacokinetics with SPECT and PET imaging of the spatiotemporal distribution of a
tracer. The resulting object model for the activity distribution can be written in a form that
incorporates the compartmental matrix as a set of parameters. This form then allows us to
answer questions about the identifiable quantities that are associated with the compartmental
matrix. We have found that, as the spatial information we have about the local
compartmental activities improves, the number of degrees of freedom in the compartmental
matrix decreases. In other words, as spatial support information increases, the dimension of
the space of compartmental matrices compatible with this information, the input function,
and the activity distribution decreases. We have shown that the degrees of freedom in the
compatible compartmental matrices can be described by a symmetry group. The decrease in
the number of degrees of freedom in turn implies that the number of identifiable quantities
associated with the compartmental matrix increases. Therefore, there will be more scalar
quantities associated with the compartmental matrix that we can have a reasonable
expectation of estimating accurately. We have also used the symmetry group to describe a
method for finding these identifiable quantities and illustrated this method when all of the
compartmental spatial supports are distinct, except that of the vascular compartment.

There are limitations to this object model for kinetic SPECT and PET imaging. The linear
differential equation that governs the temporal evolution of the compartmental activities,
while intuitive in many respects, could certainly be generalized to include nonlinear terms.
Very little of what we have done here would apply in that situation, and new techniques
would be required to determine identifiable quantities. Even for the linear case, while we
have determined the identifiable quantities associated with the compartmental matrix, we
have not discussed in detail a method for finding values for them in a given experiment. At
present, the best advice we can offer is to first numerically search for a solution for the
compartmental matrix and local compartmental activities that matches the given
reconstruction of the activity distribution, the measured input function, and the support
information, and then determine the eigenvalues and eigenvectors of the compartmental
matrix. The invariants can then be determined from the eigenvectors and eigenvalues.
Because the practicality and numerical stability of such a procedure have yet to be
demonstrated, we would obviously prefer to have a better method.
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The next step in this research is to simulate a spatiotemporal activity distribution that
follows the compartmental kinetic model and determine practical methods for estimating the
compartmental matrix. We then need to address the question of performing this estimation
from image data, whether through a reconstruction or other means. Finally, we need to test
the applicability of this object model to real-world image data and determine which
identifiable quantities are useful in medical imaging applications.

Appendix

Two-voxel simulation details
The two-voxel simulation discussed in section 2 was generated by using a four-dimensional
linear model for a vector b (t). In this model components 1 and 2 are in the first voxel, and
components 3 and 4 are in the second voxel. The linear model is given by the equation

with the matrix Kb given by

For the input vector I1 and I2 were constant between t = 0 and t = 1, and zero after t = 1. The
input components I3 and I4 were zero for all times.

The compartmental model for the two-voxel organism is described by the vector ā (t) given
by

Thus both compartments have activity in both voxels. This activity vector obeys the linear
compartmental equation

with the compartmental matrix

Plots of the components of b (t) are shown in Figure 3. On the left of this figure are
components 1 and 2, while on the right we have components 3 and 4.
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Figure 1.
Actual voxel time activity curves and double exponential fits for the two-voxel, two-
compartment example.
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Figure 2.
Actual compartmental time activity curves and double exponential fits for the two-voxel,
twocompartment example.
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Figure 3.
Time activity curves for the compartmental activities in each voxel for the example in
section 2.
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