A GENERAL LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES

MICHAEL J. FERRARA
DEPARTMENT OF THEORETICAL AND APPLIED MATHEMATICS
THE UNIVERSITY OF AKRON
MJF@UAKRON.EDU
JOHN SCHMITT
DEPARTMENT OF MATHEMATICS
MIDDLEBURY COLLEGE
JSCHMITT@MIDDLEBURY.EDU

Abstract

We consider a variation of the classical Turán-type extremal problem as introduced by Erdős et al. in [7]. Let π be an n-element graphic sequence, and $\sigma(\pi)$ be the sum of the terms in π, that is the degree sum. Let H be a graph. We wish to determine the smallest m such that any n-term graphic sequence π having $\sigma(\pi) \geq m$ has some realization containing H as a subgraph. Denote this value m by $\sigma(H, n)$. For an arbitrarily chosen H, we construct a graphic sequence $\pi^{*}(H, n)$ such that $\sigma\left(\pi^{*}(H, n)\right)+2 \leq \sigma(H, n)$. Furthermore, we conjecture that equality holds in general, as this is the case for all choices of H where $\sigma(H, n)$ is currently known. We support this conjecture by examining those graphs that are the complement of triangle-free graphs, and showing that the conjecture holds despite the wide variety of structure in this class. We will conclude with a brief discussion of a connection between potentially H-graphic sequences and H-saturated graphs of minimum size.

Keywords: Degree sequence, Potentially graphic sequence, H-saturated graph.

1. Introduction

A good reference for any undefined terms is [1]. Let G be a simple undirected graph, without loops or multiple edges. Let $V(G)$ and $E(G)$ denote the vertex set and edge set of G respectively and let $d(v)$ denote the degree of a vertex v. Let \bar{G} denote the complement of G. Denote the complete graph on t vertices and the complete bipartite graph with partite sets of size r and s by K_{t} and $K_{r, s}$, respectively. Additionally, let K_{s}^{t} denote the complete balanced multipartite graph with t partite sets of size s. Given any two graphs G and H, their join, denoted $G+H$, is the graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup$ $E(H) \cup\{g h \mid g \in V(G), h \in V(H)\}$. Additionally, let $\alpha(G)$ denote the independence number of G. If H is a subgraph of G, we will write $H \subset G$, and if H is an induced subgraph of G, we will write $H<G$.

A sequence of nonnegative integers $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is called graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said
to realize π, and we will write $\pi=\pi(G)$. If a sequence π consists of the terms d_{1}, \ldots, d_{t} having multiplicities μ_{1}, \ldots, μ_{t}, we may write $\pi=\left(d_{1}^{\mu_{1}}, \ldots, d_{t}^{\mu_{t}}\right)$.

For a given graph H, a sequence π is said to be potentially H-graphic if there is some realization of π which contains H as a subgraph. Additionally, let $\sigma(\pi)$ denote the sum of the terms of π. Define $\sigma(H, n)$ to be the smallest integer m so that every n-term graphic sequence π with $\sigma(\pi) \geq m$ is potentially H-graphic. In this paper, given an arbitrary H, we construct a graphic sequence $\pi^{*}(H, n)$ such that $\sigma\left(\pi^{*}(H, n)\right)+2 \leq \sigma(H, n)$. We then show that equality holds for all graphs H that are the complement of a triangle-free graph. There have been numerous papers, including but certainly not limited to [5], [3], [4], [7], [9], [11], [12], [14], [15], [16], [17] and [18], that consider the potential problem for specific graphs or narrow families of graphs. It is our hope that the ideas and results presented in this paper will facilitate a broader consideration of problems of this type.

2. A Short History

In this section, we present the extremal sequences for two classes of graphs: complete graphs and complete balanced bipartite graphs. Our goal is to motivate the general constructions in the next section.
2.1. $H=K_{t}$. In [7] Erdős, Jacobson and Lehel conjectured that $\sigma\left(K_{t}, n\right)=(t-$ $2)(2 n-t+1)+2$. The conjecture rises from consideration of the graph $K_{(t-2)}+$ $\bar{K}_{(n-t+2)}$. It is easy to observe that this graph contains no K_{t}, is the unique realization of the sequence $\left((n-1)^{t-2},(t-2)^{n-t+2}\right)$, and has degree sum $(t-$ $2)(2 n-t+1)$. The cases $t=3,4$ and 5 were proved separately (see respectively [7], [12] and [15], and [16]), and Li, Song and Luo [17] proved the conjecture true via linear algebraic techniques for $t \geq 6$ and $n \geq\binom{ t}{2}+3$. A purely graph-theoretic proof was given in [10] and also as a corollary to the main result in [4].
2.2. $H=K_{s, s}$. The following results appears in [12] and [18]. Here E_{1}, E_{2}, E_{3} and E_{4} are somewhat technical numerical classes which, based on the parity of n and s, assure that the given degree sums are even.
Theorem 2.1. - If s is an odd, positive integer and $n \geq 4 s^{2}+3 s-8$, then

$$
\sigma\left(K_{s, s}, n\right)= \begin{cases}\left(\frac{5}{2} s-\frac{5}{2}\right) n-\frac{11}{8} s^{2}+\frac{5}{2} s+\frac{7}{8} & i f(s, n) \in E_{3} \tag{1}\\ \left(\frac{5}{2} s-\frac{5}{2}\right) n-\frac{11}{8} s^{2}+\frac{5}{2} s+\frac{15}{8} & i f(s, n) \in E_{4}\end{cases}
$$

- If s is an even, positive integer and $n \geq 4 s^{2}-s-6$, then

$$
\sigma\left(K_{s, s}, n\right)= \begin{cases}\left(\frac{5}{2} s-2\right) n-\frac{11}{8} s^{2}+\frac{5}{4} s+2 & i f(s, n) \in E_{1} \tag{2}\\ \left(\frac{5}{2} s-2\right) n-\frac{11}{8} s^{2}+\frac{5}{4} s+1 & i f(s, n) \in E_{2}\end{cases}
$$

In order to establish a lower bound on $\sigma\left(K_{s, s}, n\right)$ the authors present several sequences dependent on the parities of s and n.
(i) If s is odd and $(s, n) \in E_{3}$, then

$$
\begin{align*}
\pi\left(K_{s, s}, n\right)=\left((n-1)^{s-1}, 2 s-2,2 s-3\right. & , \ldots, \\
\frac{3}{2} s+\frac{3}{2}, & \frac{3}{2} s+\frac{1}{2} \tag{3}\\
& \left.\left(\frac{3}{2} s-\frac{1}{2}\right)^{\frac{s}{2}+\frac{3}{2}},\left(\frac{3}{2} s-\frac{3}{2}\right)^{n-2 s}, \frac{3}{2} s-\frac{5}{2}\right) .
\end{align*}
$$

(ii) If s is odd and $(s, n) \in E_{4}$, then

$$
\begin{align*}
\pi\left(K_{s, s}, n\right)=\left((n-1)^{s-1}, 2 s-2,2 s-3, \ldots\right. & \frac{3}{2} s+\frac{3}{2}, \frac{3}{2} s+\frac{1}{2} \\
& \left.\left(\frac{3}{2} s-\frac{1}{2}\right)^{\frac{s}{2}+\frac{3}{2}},\left(\frac{3}{2} s-\frac{3}{2}\right)^{n-2 s+1}\right) \tag{4}
\end{align*}
$$

(iii) If s is even and $(s, n) \in E_{1}$, then

$$
\begin{equation*}
\pi\left(K_{s, s}, n\right)=\left((n-1)^{s-1}, 2 s-2,2 s-3, \ldots, \frac{3}{2} s+1, \frac{3}{2} s,\left(\frac{3}{2} s-1\right)^{\left.n-\frac{3}{2} s+2\right)}\right) \tag{5}
\end{equation*}
$$

(iv) If s is even and $(s, n) \in E_{2}$, then

$$
\begin{equation*}
\pi\left(K_{s, s}, n\right)=\left((n-1)^{s-1}, 2 s-2,2 s-3, \ldots, \frac{3}{2} s+1, \frac{3}{2} s,\left(\frac{3}{2} s-1\right)^{n-\frac{3}{2} s+1},\left(\frac{3}{2} s-2\right)\right) . \tag{6}
\end{equation*}
$$

Each of these sequences can be realized by the join of K_{s-1} and some graph H^{\prime}. This H^{\prime} has no vertices of degree s, one vertex of degree $s-1$, two vertices of degree $s-2$ and so on. More generally, no choice of H^{\prime} contains x_{1} vertices of degree x_{2}, where $x_{1}+x_{2}=s+1$. This implies that H^{\prime} cannot possibly contain a copy of $K_{x_{1}, x_{2}}$. However, if any of these sequences were to be potentially $K_{s, s}$-graphic, at least $s+1$ of the vertices in a copy of $K_{s, s}$ would have to be chosen from H^{\prime}. These vertices in turn, would comprise some $K_{x_{1}, x_{2}}$ where $x_{1}+x_{2}=s+1$.

3. A General Lower Bound

We assume that H has no isolated vertices and furthermore that n is sufficiently large relative to $|V(H)|$. We define the quantities

$$
u(H)=|V(H)|-\alpha(H)-1
$$

and

$$
d(H)=\min \{\Delta(F): F<H,|V(F)|=\alpha(H)+1\} .
$$

Consider the following sequence,

$$
\begin{equation*}
\widehat{\pi}(H, n)=\left((n-1)^{u(H)},(u(H)+d(H)-1)^{n-u(H)}\right) . \tag{7}
\end{equation*}
$$

If this sequence is not graphic, that is if $n-u(H)$ and $d(H)-1$ are both odd, we reduce the smallest term by one. To see that this will result in a graphic sequence, we make two observations. First, $(d(h)-1)$-regular graphs of order $n-u(H) \geq d(H)$ exist whenever $d(H)-1$ and $n-u(H)$ are not both odd. If n and $d(H)-1$ are both odd, it is not difficult to show that the sequence $\left((d(H)-1)^{n-u(H)-1}, d(H)-2\right)$ is graphic

Every realization of $\widehat{\pi}(H, n)$ is a complete graph on $u(H)$ vertices, joined to a graph, call it G^{\prime}, that is either $(d(H)-1)$-regular or nearly so. Note that the
subgraph induced by any $\alpha(H)+1$ vertices of H has maximum degree at least $d(H)$. Thus, no realization of $\widehat{\pi}(H, n)$ could possibly contain a copy of H, as at least $\alpha(H)+1$ vertices of such a subgraph would have to lie in G^{\prime}.

The degree sum of (7) is

$$
\begin{equation*}
\sigma(\widehat{\pi}(H, n))=n(2 u(H)+d(H)-1)-u(H)(u(H)+d(H)) \tag{8}
\end{equation*}
$$

and if both $n-u(H)$ and $d(H)-1$ are odd, the sum will be one smaller.
To gain some additional insight, we will consider first the case $H=K_{t}$. Then $u\left(K_{t}\right)=t-2$ and $d\left(K_{t}\right)=1$, so that

$$
\widehat{\pi}\left(K_{t}, n\right)=\left((n-1)^{t-2},(t-2)^{n-t+2}\right) .
$$

This is exactly the extremal sequence put forth to establish the lower bound for $\sigma\left(K_{t}, n\right)$. Similarly, the extremal sequences used to determine $\sigma\left(k K_{2}, n\right), \sigma\left(C_{2 k+1}, n\right)$ and $\sigma\left(K_{1}+k K_{2}, n\right)$ are precisely $\widehat{\pi}\left(k K_{2}, n\right), \widehat{\pi}\left(C_{2 k+1}, n\right)$ and $\widehat{\pi}\left(K_{1}+k K_{2}, n\right)$, respectively (see [12],[14] and[11]). However, $\sigma\left(\widehat{\pi}\left(K_{s, s}, n\right)\right)$ is asymptotically equivalent to, but smaller than $\sigma\left(K_{s, s}, n\right)$. Along these lines, we are able to refine the sequence given above.

For convenience, let $d=d(H), u=u(H)$ and $\alpha=\alpha(H)$ and let $v_{i}(H)$ denote the number of vertices of degree i in H. For all $i, d \leq i \leq \alpha$ we define the quantity m_{i} to be the minimum number of vertices of degree at least i over all induced subgraphs F of H with $|V(F)|=\alpha+1$ and $\sum_{j=i}^{\alpha} v_{j}(F)>0$ and 0 if no such subgraphs exist. The quantities $n_{i}, d \leq i \leq \alpha$, are defined recursively such that $n_{d}=m_{d}-1$ and either $n_{i}=\min \left\{m_{i}-1, n_{i-1}\right\}$ if $m_{i} \geq 1$ or $n_{i}=0$ if $m_{i}=0$. Finally, we define $\delta_{\alpha-1}=n_{\alpha-1}$ and for $d \leq i \leq \alpha-2$ we define $\delta_{i}=n_{i}-n_{i+1}$. We do not define δ_{α}, as any induced subgraph composed of a maximum independent set and an additional vertex has at most one vertex of degree α, and as such n_{α} is always 0 .

We now consider the following sequence:
$\pi^{*}(H, n)=\left((n-1)^{u},(u+\alpha-1)^{\delta_{\alpha-1}},(u+\alpha-2)^{\delta_{\alpha-2}}, \ldots(u+d)^{\delta_{d}},(u+d-1)^{n-u-\Sigma \delta_{i}}\right)$.

The sequence π^{*} is constructed so that it contains n_{i} terms that are at least $u+i$ and δ_{i} terms that are exactly u_{i}.

If this sequence is not graphic, then we will reduce the smallest term which is strictly greater than $u(H)$ in the sequence by one and redefine $\pi^{*}(H, n)$ to be this graphic sequence instead. The following is the main result of this paper.

Theorem 3.1. Given a graph H, with $u(H)$ and $d(H)$ as above, and n sufficiently large then,

$$
\begin{equation*}
\sigma(H, n) \geq \max \left\{\sigma\left(\pi^{*}\left(H^{*}, n\right)\right)+2 \mid H^{*} \subseteq H\right\} \tag{10}
\end{equation*}
$$

Proof. Let H^{*} be the subgraph of H that realizes the maximum above. Let G be any realization of $\pi^{*}\left(H^{*}, n\right)$. We show that G does not contain a copy of H^{*}.

Note that this degree sequence implies that G is a copy of $K_{u\left(H^{*}\right)}$ joined to another graph G^{*} on $n-u\left(H^{*}\right)$ vertices. Assume that there is a copy of H^{*} contained in G. There are at least $\alpha\left(H^{*}\right)+1$ vertices from G^{*} that must belong to this copy of H. Let $H^{* *}$ denote the subgraph of H^{*} induced by these $\alpha\left(H^{*}\right)+1$ vertices. Notice, however, no $\alpha\left(H^{*}\right)+1$ vertices of G^{*} have sufficient degree to contain a copy of any $H^{* *}$. In particular, if $\sum_{j \geq \ell} v_{j}\left(H^{* *}\right)>0$ then $H^{* *}$ contains at least m_{ℓ} vertices of degree ℓ or greater. By our construction, there are at most $n_{\ell} \leq m_{\ell}-1$ vertices of degree at least ℓ in G^{*}. This contradicts the assumption that $H^{* *} \subseteq G^{*}$. Thus, G contains no copy H^{*} and hence no copy of H.

Theorem 3.1 requires that we examine all subgraphs of H. To see that this is necessary, we consider the split graph $K_{t}+\overline{K_{s}}$ with a pendant vertex v adjacent to one of the vertices in the independent set of order s. For this choice of H, $\alpha(H)=s$ and hence $u(H)=(s+t+1)-s-1=t$ and $d(H)=1$. However, if we remove v, the pendant vertex, and consider the split graph, we can see that $u\left(K_{t}+\overline{K_{s}}\right)=t-1$ but any $s+1$-vertex subgraph of $K_{t}+\overline{K_{s}}$ must contain some vertex from the K_{t}, implying that $d\left(K_{t}+\overline{K_{s}}\right)=s$. Therefore, if we choose $s \geq 3, \sigma\left(\pi^{*}\left(K_{t}+\overline{K_{s}}, n\right)\right) \geq \sigma\left(\pi^{*}(H, n)\right)$.

The reader should note that for any values of n and $s, \pi^{*}\left(K_{s, s}, n\right)$ is exactly those sequences given in (3)-(6). Additionally, given values of n, s and $t, \pi^{*}\left(K_{s}^{t}, n\right)$ matches the extremal sequences given in [23].

We conjecture that equality holds in Theorem 3.1.
Conjecture 1. Let H be any graph, and let n be a sufficiently large integer. Then

$$
\begin{equation*}
\sigma(H, n)=\max \left\{\sigma\left(\pi^{*}\left(H^{*}, n\right)\right)+2 \mid H^{*} \subseteq H\right\} \tag{11}
\end{equation*}
$$

We also pose the weaker conjecture, that the bound put forth is asymptotically correct.

Conjecture 2. Let H be any graph, and let $\epsilon>0$. Then there exists an $n_{0}=$ $n_{0}(\epsilon, H)$ such that for any $n>n_{0}$

$$
\begin{equation*}
\sigma(H, n) \leq \max \left\{\left(n\left(2 u\left(H^{*}\right)+d\left(H^{*}\right)-1+\epsilon\right) \mid H^{*} \subseteq H\right\}\right. \tag{12}
\end{equation*}
$$

Conjectures 1 and 2 have been verified for a wide variety of graphs. This includes, but is not limited to: complete graphs and unions of complete graphs [7], [9], [12], [15], [16], [17], complete bipartite graphs [3],[12], [18], complete multipartite graphs [5], [20], matchings [12], cycles [14], (generalized) friendship graphs [2], [9], [11], and split graphs [4] At this time we know of no subgraph for which these conjectures do not hold for sufficiently large n.

While Conjecture 1 seems challenging, we feel that there is a good chance that Conjecture 2 could be verified. In the following section, we will verify Conjecture 1 for a broad class of graphs.

4. Complements of Triangle-Free Graphs

We now turn our attention to graphs H of order $k \geq 3$ with $\alpha(H)=2$, or those graphs that are the complement of a triangle-free graph. The main result of this section is as follows.
Theorem 4.1. Let H be any graph of order k with $\alpha(H)=2$. Then

$$
\sigma(H, n)=\sigma\left(\pi^{*}(H, n)\right)+2
$$

Any graph H in this class has $u(H)=k-3$ and $d(H) \leq 2$. We prove Theorem 4.1 by considering the cases $d(H)=1$ and $d(H)=2$ separately. In each case we construct a graph $H(d)$ that contains H as a subgraph and show that $\sigma(H(d), n)=$ $\sigma\left(\pi^{*}(H, n)\right)+2$. This implies that $\max \left\{\sigma\left(\pi^{*}\left(H^{*}, n\right)\right)+2 \mid H^{*} \subseteq H\right\}=\sigma\left(\pi^{*}(H, n)\right)+$ 2.

The following result from [4] will be very useful.
Theorem 4.2. If $n \geq 3 s+2 t^{2}+3 t-3$ then
$\sigma\left(K_{s}+\bar{K}_{t}, n\right)=\left\{\begin{array}{l}(t+2 s-3) n-(s-1)(s+t-1)+2 \quad \text { if } t \text { or } n-s \text { is odd. } \\ (t+2 s-3) n-(s-1)(s+t-1)+1 \quad \text { if } t \text { and } n-s \text { are even. }\end{array}\right.$
It is not difficult to see that if $d(H)=2$ then H is isomorphic to $K_{k}-t K_{2}$, where k is the order of H and t is some positive integer that is at most $\frac{k}{2}$. Let H be a graph of order $k \geq 3$ with $\alpha(H)=2$ and $d(H)=2$ and let $n \geq k$ be an integer. Then, by (9), we have.
(i) If $n \equiv k-3(\bmod 2)$ then

$$
\begin{equation*}
\pi^{*}(H, n)=\left((n-1)^{k-3},(k-2)^{n-k+3}\right) \tag{13}
\end{equation*}
$$

(ii) If $n \not \equiv k-3(\bmod 2)$ then

$$
\begin{equation*}
\pi^{*}(H, n)=\left((n-1)^{k-3},(k-2)^{n-k+2}, k-3\right) \tag{14}
\end{equation*}
$$

Proposition 4.3. Let H be a graph of order k with $\alpha(H)=2$ and $d(H)=2$, and let n be a sufficiently large integer. Then

$$
\sigma(H, n)=\sigma\left(\pi^{*}(H, n)\right)+2=n(2 k-5)-k^{2}+4 k-1-m
$$

where $m=n-k+3(\bmod 2)$.
Proof. The fact that $\sigma(H, n) \geq \sigma\left(\pi^{*}(H, n)\right)+2$ follows from Theorem 3.1. Note that any H with $\alpha(H)=2$ and $d(H)=2$ is a subgraph of $K_{k-2}+\bar{K}_{2}$ so that $\sigma(H, n) \leq \sigma\left(K_{k-2}+\bar{K}_{2}, n\right)$. Theorem 4.2 implies

$$
\sigma\left(K_{k-2}+\bar{K}_{2}, n\right)=n(2 k-5)-k^{2}+4 k-1+m=\sigma\left(\pi^{*}(H, n)\right)+2
$$

The proposition follows.

Those graphs H with $\alpha(H)=2$ and $d(H)=1$ have a considerably wider variety of structures. Any graph H in this class is the complement of a triangle-free graph G that is not a matching. The disjoint union of two cliques falls into this class, as does $K_{k}-t P_{3}$ and many other graphs of varying densities. We are able to verify Conjecture 1 for this diverse class of graphs. Our first observation is that any graph
H with $\alpha(H)=2$ and $d(H)=1$ must contain $K_{2} \cup K_{1}$ as an induced subgraph, as this is the only graph on 3 vertices with maximum degree 1 . This also immediately implies that $m_{d}=m_{1}=2$. Therefore, if H is any graph of order k with $\alpha(H)=2$ and $d(H)=1$ and $n \geq k$ is an integer, then (9) implies that

$$
\begin{equation*}
\pi^{*}(H, n)=\left((n-1)^{k-3},(k-3)^{n-k+3}\right) . \tag{15}
\end{equation*}
$$

The following lemma from [12] will be useful in the next proof.
Lemma 4.4. If π is a graphical sequence with a realization G containing H as a subgraph, then there is a realization G^{\prime} of π containing H with the vertices of H having the $|V(H)|$ largest degrees of π.

We now show that Conjecture 1 holds when $\alpha(H)=2$ and $d(H)=1$.
Proposition 4.5. Let H be a graph of order k with $\alpha(H)=2$ and $d(H)=1$, and let n be a sufficiently large integer. Then

$$
\sigma(H, n)=\sigma\left(\pi^{*}(H, n)\right)+2=n(2 k-6)-k^{2}+5 k-4
$$

Proof. Let π be a nonincreasing, n-term graphic sequence with $\sigma(\pi) \geq n(2 k-6)-$ $k^{2}+5 k-4$. Note that if n is sufficiently large, $\sigma(\pi) \geq \sigma\left(K_{k-1}, n\right) \geq \sigma\left(K_{k-3}+\bar{K}_{3}, n\right)$. We will show that π has a realization containing $K_{k-3}+\left(K_{2} \cup K_{1}\right)$ and, as we have previously observed that H must contain an induced copy of $K_{2} \cup K_{1}$, a copy of H.

Let G be a realization of π that contains a copy of $K_{k-3}+\bar{K}_{3}$ on the k vertices of highest degree in G. Such a realization exists by Lemma 4.4. Let S denote this subgraph, F denote the complete subgraph of order $k-3$ and let I denote the independent set of order 3 in S, so that $S=F+I$. We can assume that F is comprised of the $k-3$ vertices of highest degree in G. If not, there are vertices x in I and y in F such that $d(y)<d(x)$. We wish to create a realization of G containing a copy of $K_{k-3}+\bar{K}_{3}$ on the k vertices of highest degree such that x is in F and y is in I. If x is adjacent to all the other vertices in S, we can simply exchange the roles of x and y. If x was not adjacent to exactly one vertex in I, say v, then as $d(x)>d(y)$ there is some vertex w outside of S that is adjacent to x but not to y. We will create a new realization of π by adding the edges $y w$ and $x v$ and deleting the edges $y v$ and $x w$. The case where x is not adjacent to exactly two vertices in I is handled similarly. Repeating this process allows us to create a realization of π containing $K_{k-3}+\bar{K}_{3}=F+I$ in which the $k-3$ highest degree vertices of G lie in F.

Let x_{1} and x_{2} be the vertices in I having the highest degrees, and note that $\sigma(\pi) \geq \sigma\left(K_{k-1}, n\right)$ implies $d\left(x_{1}\right)$ and $d\left(x_{2}\right)$ are both at least $k-2$. If there is any edge in the subgraph induced by I, then G contains a copy of $K_{k-3}+\left(K_{2} \cup K_{1}\right)$ and we are done. Therefore, we may assume that I is an independent set. Let N_{1} and N_{2} denote $N\left(x_{1}\right) \backslash S$ and $N\left(x_{2}\right) \backslash S$, respectively, and note that both of these sets are nonempty since $d\left(x_{1}\right)$ and $d\left(x_{2}\right)$ are both at least $k-2$. If y_{1} and y_{2} are distinct vertices in N_{1} and N_{2}, respectively, then we may assume that y_{1} and y_{2} are adjacent. If they are not, then we would exchange the edges $x_{1} y_{1}$ and $x_{2} y_{2}$ for the nonedges $x_{1} x_{2}$ and $y_{1} y_{2}$, creating an edge in I and completing the proof.

The goal of the next part of this proof is to show that we may assume that there is some vertex v in F such that $d(v) \leq 4 k$.

Consider first the case where $N_{2} \subseteq N_{1}\left(N_{1} \subseteq N_{2}\right.$ is handled identically) and let w be a vertex in N_{2}. If $\left|N_{1} \backslash N_{2}\right|>k$ then $d(w)>d\left(x_{2}\right)$ since w is adjacent to every vertex in $N_{1} \backslash N_{2}$. We therefore assume that $\left|N_{1} \backslash N_{2}\right| \leq k$. Also note that $N_{1} \cap N_{2}$ is a clique, and hence contains at most $k-2$ vertices. There is some vertex v in F that is not adjacent to w, otherwise $d(w)>d\left(x_{1}\right)$, which contradicts our choice of G. Let y be a neighbor of v that does not lie in $S \cup N_{1} \cup N_{2}$. If no such y exists, then clearly $d(v) \leq 4 k$. We claim that $w y$ is an edge of G, lest we could exchange the edges $x_{1} w, x_{2} w$ and $y v$ for the nonedges $w v, w y$ and $x_{1} x_{2}$ (see Figure 1), creating an edge in I. However, if the degree of v is more than $4 k$ there are at least $k-1$ such choices for y. This implies that $d(w) \geq k+\left|N_{1}\right|>d\left(x_{1}\right)$, which contradicts our choice of G. Thus we may assume that $d(v) \leq 4 k$.

Figure 1. $N_{2} \subseteq N_{1}$
Assume now that there is some vertex w_{1} in $N_{1} \backslash N_{2}$ and some vertex w_{2} in $N_{2} \backslash N_{1}$. We first show that $N_{1} \cup N_{2}$ is complete. To accomplish this, we need only show that for any w_{1}^{\prime} in $N_{1} \backslash N_{2}, w_{1} w_{1}^{\prime}$ is an edge of G (or symmetrically, if w_{2}^{\prime} is an element of $N_{2} \backslash N_{1}$ then $w_{2} w_{2}^{\prime}$ is an edge in G). If not, we can exchange the edges $x_{1} w_{1}, x_{1} w_{1}^{\prime}$ and $x_{2} w_{2}$ for the nonedges $w_{1} w_{1}^{\prime}, x_{1} w_{2}$ and $x_{1} x_{2}$, creating an edge in I and completing the proof. Thus, since $N_{1} \cup N_{2}$ is complete we may assume that $\left|N_{1} \cup N_{2}\right| \leq k-1$. Again, there is some v in F such that w_{2} is not adjacent to v, lest $d\left(w_{2}\right)>d\left(x_{2}\right)$. Let y be any neighbor of v not in $S \cup N_{1} \cup N_{2}$. Then w_{1} is adjacent to y or else we could exchange the edges $y v, x_{1} w_{1}$ and $x_{2} w_{2}$ for the nonedges $y w_{1}, v w_{2}$ and $x_{1} x_{2}$ (see Figure 2), creating an edge in I. If $d(v)>3 k$, then there are at least k such choices for y, implying that $d\left(w_{1}\right) \geq k+\left|N_{1} \cup N_{2}\right|-1>d\left(x_{1}\right)$, a contradiction.

Hence, we may assume that there is some vertex v in F such that $d(v) \leq 4 k$. As a result, there are at most $(k-4)(n-1)+4 k$ edges adjacent to vertices in F, at most $12 k$ edges adjacent to vertices in I and, as both N_{1} and N_{2} have at most $4 k$ vertices each, at most $4 k(8 k)=32 k^{2}$ edges adjacent to vertices in $N_{1} \cup N_{2}$. This is at most $(k-4) n+32 k^{2}+15 k+4$ edges. However, there are at least $\sigma(\pi) / 2=(k-3+o(1)) n$ edges in G, so for n sufficiently large there is some edge $y z$ in G such that y is not adjacent to any w_{1} in N_{1} and z is not adjacent to any w_{2} in N_{2}, where w_{1} and $w_{@}$ may be the same vertex. We can therefore exchange the edges $x_{1} w_{1}, x_{2} w_{2}$ and

Figure 2. $N_{2} \nsubseteq N_{1}$ and $N_{1} \nsubseteq N_{2}$
$y z$ for the nonedges $w_{1} y, w_{2} z$ and $x_{1} x_{2}$, creating an edge in I, and completing the proof.

Propositions 4.3 and 4.5 together imply Theorem 4.1. As mentioned above, there is quite a wide variety to the structures of those graphs H having independence number 2 , and yet we have demonstrated that $\sigma(H, n)$ for this class depends only on the value of $d(H)$, as suggested by Conjecture 1 .

5. H-Saturated Graphs

Here we describe the relationship of $\sigma(H, n)$ to another extremal function sat (n, H). We begin with the relevant terminology and results.

A graph G is said to be H-saturated if G contains no copy of H as a subgraph and for any edge e not in $G, G+e$ does contain a copy of H. The problem of determining the minimum number of edges in an H-saturated graph, denoted $\operatorname{sat}(n, H)$, was first considered in 1963 by Erdős, Hajnal and Moon [6] for $H=K_{t}$. They determined that sat $\left(n, K_{t}\right)=(t-2)(n-1)-\binom{t-2}{2}$, which arises from consideration of the split graph $K_{t-2}+\bar{K}_{n-t+2}$. The best known upper bound for an arbitrary graph H is given by the following result of Kászonyi and Tuza [13].

Theorem 5.1 ([13]). Let $u(H)$ be as defined above, and set

$$
s(H)=\min \left\{e\left(H^{*}\right)\left|\alpha\left(H^{*}\right)=\alpha(H),\left|V\left(H^{*}\right)\right|=\alpha(H)+1, H^{*} \subseteq H\right\}\right.
$$

then,

$$
\begin{equation*}
\operatorname{sat}(n, H) \leq n\left(u(H)+\frac{s(H)-1}{2}\right)-\frac{u(H)(u(H)+s(H))}{2} \tag{16}
\end{equation*}
$$

The reader should note that the bound given in Theorem 5.1 reflects the number of edges in the join of $K_{u(H)}$ and a graph which is (nearly) ($s-1$)-regular. Comparing Theorem 5.1 to the construction of $\pi^{*}(H, n)$, we note that $d(H) \leq s(H)$ and hence that if $i \geq s(H), n_{i}=0$. Theorem 5.1 and Theorem 3.1 immediately imply the following result.

Theorem 5.2. Given a graph H, if there exists an $H^{\prime} \subseteq H$ with $2 u\left(H^{\prime}\right)+d\left(H^{\prime}\right)-$ $1 \geq 2 u(H)+s(H)-1$ then for n sufficiently large we have

$$
\begin{equation*}
2 \operatorname{sat}(n, H)<\sigma(H, n) \tag{17}
\end{equation*}
$$

In particular, this result holds if $d(H)=s(H)$.
We strongly believe that the conclusion of Theorem 5.2 holds in general, even though the hypothesis does not. Therefore, we conjecture the following.

Conjecture 3. Let H be a graph and let n be a sufficiently large integer. Then

$$
2 \operatorname{sat}(n, H)<\sigma(H, n)
$$

As the problem of determining $\operatorname{sat}(n, H)$ has proven difficult over time, we are not able to confirm Conjecture 3 in as many cases as Conjectures 1 and 2. We know that Conjecture 3 holds for complete graphs [6], [7], $t K_{p}$ and certain generalized friendship graphs [8], C_{4} [12], [22],[24], and $K_{1, t}[13]$.

6. Conclusion

In light of Theorem 4.1, it may be interesting to individually consider classes of graphs with fixed independence number. This may be a fruitful direction, although the diversity in the structures of the $\alpha(H)+1$ vertex induced subgraphs of such graphs rapidly increases. We feel that this line of investigation would move us closer to the goal of verifying either of Conjectures 1 and 2.

The authors would like to thank Mike Jacobson for his helpful comments and insightful questions that led to Theorem 4.1.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press Inc. (1978).
[2] G. Chen, J. Schmitt, J.H. Yin, Graphic Sequences with a Realization Containing a Generalized Friendship Graph to appear in Discrete Mathematics
[3] G. Chen, J. Li, J. Yin, A variation of a classical Turán-type extremal problem. European Journal of Combinatorics 25 (2004) 989-1002.
[4] G. Chen, J. Yin, On Potentially $K_{r_{1}, r_{2}, \ldots, r_{m}}$-graphic Sequences, preprint.
[5] Guantao Chen, M. Ferrara, R. Gould, J. Schmitt, Graphic Sequences with a Realization Containing a Complete Multipartite Subgraph, to appear in Discrete Mathematics
[6] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory. Amer. Math. Monthly 71 (1964) 1107-1110.
[7] P. Erdős, M.S. Jacobson, J. Lehel, Graphs Realizing the Same Degree Sequence and their Respective Clique Numbers. Graph Theory, Combinatorics and Applications, Vol. I, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.
[8] R. Faudree, M. Ferrara, R. Gould, M. Jacobson, $t K_{p}$-saturated graphs, submitted.
[9] M. Ferrara, Graphic Sequences with a Realization Containing a Union of Cliques, Graphs and Combinatorics 23 (2007), 263-269.
[10] M. Ferrara, R. Gould and J. Schmitt, Using Edge Swaps to Prove the Erdos-JacobsonLehel Conjecture, to appear in Bulletin of the ICA.
[11] M. Ferrara, R. Gould and J. Schmitt, Graphic Sequences with a Realizaton Containing a Friendship Graph, ARS Combinatoria 85 (2007), 161-171.
[12] R. Gould, M. Jacobson, J. Lehel, Potentially G-graphic degree sequences. Combinatorics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New York: Wiley \& Sons, Inc., 1999, 387-400.
[13] L. Kászonyi, Z. Tuza, Saturated graphs with minimal number of edges. J. Graph Theory 10 (1986) 203-210.
[14] C. Lai, The smallest degree sum that yields potentially C_{k}-graphical sequences. J. Combin. Math. Combin. Comput. 49 (2004), 57-64.
[15] J. Li, Z. Song, An extremal problem on the potentially P_{k}-graphic sequences. The International Symposium on Combinatorics and Applications, June 28-30, 1996 (W.Y.C. Chen et. al., eds.) Tanjin, Nankai University 1996, 269-276.
[16] J. Li, Z. Song, The smallest degree sum that yields potentially P_{k}-graphical sequences. J. Graph Theory 29 (1998), no.2, 63-72.
[17] J. Li, Z. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially $P_{k^{-}}$-graphic sequences is true. Science in China, Ser. A, 1998, 41, (1998) 5, pp. 510-520.
[18] J. Li, J. Yin, The smallest degree sum that yields potentially $K_{r, r}$-graphic sequences. Science in China, Ser. A, 45 (2002) 6, pp. 694-705.
[19] J. Li, J. Yin, An extremal problem on potentially $K_{r, s}$-graphic sequences. Discrete Math., 260 (2003), 295-305.
[20] J. Li and J. Yin, Potentially $K_{r_{1}, r_{2}, \ldots, r_{l}, r, s}$-graphic sequences, Discrete Math. 307 (2007), no. 9-10, 1167-1177.
[21] J. Li, J. Yin, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size. Discrete Math. 301 (2005), no. 2-3, 218-227.
[22] L.T. Ollmann, $K_{2,2}$-saturated graphs with a minimal number of edges. Proc. 3rd Southeast Conference on Combinatorics, Graph Theory and Computing, (1972) 367392.
[23] J. Schmitt, On Potentially P-graphic Degree Sequences and Saturated Graphs. Ph.D. Dissertation, Emory University. May 2005.
[24] Z. Tuza, C_{4}-saturated graphs of minimum size. Acta Universitatis Carolinae - Mathematica et Physica, 30 (1989) No. 2 161-167.

