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Abstract. We consider a variation of the classical Turán-type extremal prob-
lem as introduced by Erdős et al. in [7]. Let π be an n-element graphic se-
quence, and σ(π) be the sum of the terms in π, that is the degree sum. Let
H be a graph. We wish to determine the smallest m such that any n-term
graphic sequence π having σ(π) ≥ m has some realization containing H as a
subgraph. Denote this value m by σ(H, n). For an arbitrarily chosen H, we
construct a graphic sequence π∗(H, n) such that σ(π∗(H, n)) + 2 ≤ σ(H, n).
Furthermore, we conjecture that equality holds in general, as this is the case for
all choices of H where σ(H, n) is currently known. We support this conjecture
by examining those graphs that are the complement of triangle-free graphs,
and showing that the conjecture holds despite the wide variety of structure in
this class. We will conclude with a brief discussion of a connection between
potentially H-graphic sequences and H-saturated graphs of minimum size.

Keywords: Degree sequence, Potentially graphic sequence, H-saturated
graph.

1. Introduction

A good reference for any undefined terms is [1]. Let G be a simple undirected
graph, without loops or multiple edges. Let V (G) and E(G) denote the vertex
set and edge set of G respectively and let d(v) denote the degree of a vertex v.
Let G denote the complement of G. Denote the complete graph on t vertices and
the complete bipartite graph with partite sets of size r and s by Kt and Kr,s,
respectively. Additionally, let Kt

s denote the complete balanced multipartite graph
with t partite sets of size s. Given any two graphs G and H , their join, denoted
G + H , is the graph with V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪
E(H)∪{gh | g ∈ V (G), h ∈ V (H)}. Additionally, let α(G) denote the independence
number of G. If H is a subgraph of G, we will write H ⊂ G, and if H is an induced
subgraph of G, we will write H < G.

A sequence of nonnegative integers π = (d1, d2, ..., dn) is called graphic if there
is a (simple) graph G of order n having degree sequence π. In this case, G is said
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to realize π, and we will write π = π(G). If a sequence π consists of the terms
d1, . . . , dt having multiplicities µ1, . . . , µt, we may write π = (d µ1

1 , . . . , d µt

t ).

For a given graph H , a sequence π is said to be potentially H-graphic if there
is some realization of π which contains H as a subgraph. Additionally, let σ(π)
denote the sum of the terms of π. Define σ(H, n) to be the smallest integer m so
that every n-term graphic sequence π with σ(π) ≥ m is potentially H-graphic. In
this paper, given an arbitrary H , we construct a graphic sequence π∗(H, n) such
that σ(π∗(H, n)) + 2 ≤ σ(H, n). We then show that equality holds for all graphs
H that are the complement of a triangle-free graph. There have been numerous
papers, including but certainly not limited to [5], [3], [4], [7], [9], [11], [12], [14],
[15], [16], [17] and [18], that consider the potential problem for specific graphs or
narrow families of graphs. It is our hope that the ideas and results presented in
this paper will facilitate a broader consideration of problems of this type.

2. A Short History

In this section, we present the extremal sequences for two classes of graphs:
complete graphs and complete balanced bipartite graphs. Our goal is to motivate
the general constructions in the next section.

2.1. H = Kt. In [7] Erdős, Jacobson and Lehel conjectured that σ(Kt, n) = (t −
2)(2n − t + 1) + 2. The conjecture rises from consideration of the graph K(t−2) +

K(n−t+2). It is easy to observe that this graph contains no Kt, is the unique

realization of the sequence ((n − 1)t−2, (t − 2)n−t+2), and has degree sum (t −
2)(2n − t + 1). The cases t = 3, 4 and 5 were proved separately (see respectively
[7], [12] and [15], and [16]), and Li, Song and Luo [17] proved the conjecture true
via linear algebraic techniques for t ≥ 6 and n ≥

(
t
2

)
+ 3. A purely graph-theoretic

proof was given in [10] and also as a corollary to the main result in [4].

2.2. H = Ks,s. The following results appears in [12] and [18]. Here E1, E2, E3 and
E4 are somewhat technical numerical classes which, based on the parity of n and
s, assure that the given degree sums are even.

Theorem 2.1. • If s is an odd, positive integer and n ≥ 4s2 + 3s− 8, then

σ(Ks,s, n) =

{
(5
2s − 5

2 )n − 11
8 s2 + 5

2s + 7
8 if(s, n) ∈ E3

(5
2s − 5

2 )n − 11
8 s2 + 5

2s + 15
8 if(s, n) ∈ E4.

(1)

• If s is an even, positive integer and n ≥ 4s2 − s − 6, then

σ(Ks,s, n) =

{
(5
2s − 2)n − 11

8 s2 + 5
4s + 2 if(s, n) ∈ E1

(5
2s − 2)n − 11

8 s2 + 5
4s + 1 if(s, n) ∈ E2.

(2)

In order to establish a lower bound on σ(Ks,s, n) the authors present several
sequences dependent on the parities of s and n.
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(i) If s is odd and (s, n) ∈ E3, then

π(Ks,s, n) = ((n − 1)s−1, 2s − 2, 2s− 3, . . . ,
3

2
s +

3

2
,
3

2
s +

1

2
,

(
3

2
s −

1

2
)

s

2
+ 3

2 , (
3

2
s −

3

2
)n−2s,

3

2
s −

5

2
). (3)

(ii) If s is odd and (s, n) ∈ E4, then

π(Ks,s, n) = ((n − 1)s−1, 2s − 2, 2s− 3, . . . ,
3

2
s +

3

2
,
3

2
s +

1

2
,

(
3

2
s −

1

2
)

s

2
+ 3

2 , (
3

2
s −

3

2
)n−2s+1). (4)

(iii) If s is even and (s, n) ∈ E1, then

π(Ks,s, n) = ((n − 1)s−1, 2s − 2, 2s − 3, . . . ,
3

2
s + 1,

3

2
s, (

3

2
s − 1)n− 3

2
s+2)). (5)

(iv) If s is even and (s, n) ∈ E2, then

π(Ks,s, n) = ((n−1)s−1, 2s−2, 2s−3, . . . ,
3

2
s+1,

3

2
s, (

3

2
s−1)n− 3

2
s+1, (

3

2
s−2)). (6)

Each of these sequences can be realized by the join of Ks−1 and some graph H ′.
This H ′ has no vertices of degree s, one vertex of degree s−1, two vertices of degree
s − 2 and so on. More generally, no choice of H ′ contains x1 vertices of degree x2,
where x1 + x2 = s + 1. This implies that H ′ cannot possibly contain a copy of
Kx1,x2

. However, if any of these sequences were to be potentially Ks,s-graphic, at
least s+1 of the vertices in a copy of Ks,s would have to be chosen from H ′. These
vertices in turn, would comprise some Kx1,x2

where x1 + x2 = s + 1.

3. A General Lower Bound

We assume that H has no isolated vertices and furthermore that n is sufficiently
large relative to |V (H)|. We define the quantities

u(H) = |V (H)| − α(H) − 1,

and
d(H) = min{∆(F ) : F < H, |V (F )| = α(H) + 1}.

Consider the following sequence,

π̂(H, n) = ((n − 1)u(H), (u(H) + d(H) − 1)n−u(H)). (7)

If this sequence is not graphic, that is if n−u(H) and d(H)−1 are both odd, we
reduce the smallest term by one. To see that this will result in a graphic sequence,
we make two observations. First, (d(h)−1)-regular graphs of order n−u(H) ≥ d(H)
exist whenever d(H)−1 and n−u(H) are not both odd. If n and d(H)−1 are both
odd, it is not difficult to show that the sequence ((d(H)− 1)n−u(H)−1, d(H)− 2) is
graphic

Every realization of π̂(H, n) is a complete graph on u(H) vertices, joined to
a graph, call it G′, that is either (d(H) − 1)-regular or nearly so. Note that the
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subgraph induced by any α(H) + 1 vertices of H has maximum degree at least
d(H). Thus, no realization of π̂(H, n) could possibly contain a copy of H , as at
least α(H) + 1 vertices of such a subgraph would have to lie in G′.

The degree sum of (7) is

σ(π̂(H, n)) = n(2u(H) + d(H) − 1) − u(H)(u(H) + d(H)), (8)

and if both n − u(H) and d(H) − 1 are odd, the sum will be one smaller.

To gain some additional insight, we will consider first the case H = Kt. Then
u(Kt) = t − 2 and d(Kt) = 1, so that

π̂(Kt, n) = ((n − 1)t−2, (t − 2)n−t+2).

This is exactly the extremal sequence put forth to establish the lower bound for
σ(Kt, n). Similarly, the extremal sequences used to determine σ(kK2, n), σ(C2k+1, n)
and σ(K1+kK2, n) are precisely π̂(kK2, n), π̂(C2k+1, n) and π̂(K1+kK2, n), respec-
tively (see [12],[14] and[11]). However, σ(π̂(Ks,s, n)) is asymptotically equivalent
to, but smaller than σ(Ks,s, n). Along these lines, we are able to refine the sequence
given above.

For convenience, let d = d(H), u = u(H) and α = α(H) and let vi(H) denote
the number of vertices of degree i in H . For all i, d ≤ i ≤ α we define the quantity
mi to be the minimum number of vertices of degree at least i over all induced
subgraphs F of H with |V (F )| = α + 1 and

∑α
j=i vj(F ) > 0 and 0 if no such

subgraphs exist. The quantities ni, d ≤ i ≤ α, are defined recursively such that
nd = md − 1 and either ni = min{mi − 1, ni−1} if mi ≥ 1 or ni = 0 if mi = 0.
Finally, we define δα−1 = nα−1 and for d ≤ i ≤ α− 2 we define δi = ni − ni+1. We
do not define δα, as any induced subgraph composed of a maximum independent
set and an additional vertex has at most one vertex of degree α, and as such nα is
always 0.

We now consider the following sequence:

π∗(H, n) = ((n−1)u, (u+α−1)δα−1 , (u+α−2)δα−2, . . . (u+d)δd , (u+d−1)n−u−Σδi).
(9)

The sequence π∗ is constructed so that it contains ni terms that are at least
u + i and δi terms that are exactly ui.

If this sequence is not graphic, then we will reduce the smallest term which is
strictly greater than u(H) in the sequence by one and redefine π∗(H, n) to be this
graphic sequence instead. The following is the main result of this paper.

Theorem 3.1. Given a graph H, with u(H) and d(H) as above, and n sufficiently

large then,

σ(H, n) ≥ max{σ(π∗(H∗, n)) + 2 | H∗ ⊆ H}. (10)

Proof. Let H∗ be the subgraph of H that realizes the maximum above. Let G
be any realization of π∗(H∗, n). We show that G does not contain a copy of H∗.
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Note that this degree sequence implies that G is a copy of Ku(H∗) joined to another
graph G∗ on n−u(H∗) vertices. Assume that there is a copy of H∗ contained in G.
There are at least α(H∗) + 1 vertices from G∗ that must belong to this copy of H .
Let H∗∗ denote the subgraph of H∗ induced by these α(H∗) + 1 vertices. Notice,
however, no α(H∗) + 1 vertices of G∗ have sufficient degree to contain a copy of
any H∗∗. In particular, if

∑
j≥` vj(H

∗∗) > 0 then H∗∗ contains at least m` vertices
of degree ` or greater. By our construction, there are at most n` ≤ m` − 1 vertices
of degree at least ` in G∗. This contradicts the assumption that H∗∗ ⊆ G∗. Thus,
G contains no copy H∗ and hence no copy of H . �

Theorem 3.1 requires that we examine all subgraphs of H . To see that this is
necessary, we consider the split graph Kt + Ks with a pendant vertex v adjacent
to one of the vertices in the independent set of order s. For this choice of H ,
α(H) = s and hence u(H) = (s + t + 1) − s − 1 = t and d(H) = 1. However,
if we remove v, the pendant vertex, and consider the split graph, we can see that
u(Kt + Ks) = t − 1 but any s + 1-vertex subgraph of Kt + Ks must contain
some vertex from the Kt, implying that d(Kt + Ks) = s. Therefore, if we choose
s ≥ 3, σ(π∗(Kt + Ks, n)) ≥ σ(π∗(H, n)).

The reader should note that for any values of n and s, π∗(Ks,s, n) is exactly
those sequences given in (3)-(6). Additionally, given values of n, s and t, π∗(Kt

s, n)
matches the extremal sequences given in [23].

We conjecture that equality holds in Theorem 3.1.

Conjecture 1. Let H be any graph, and let n be a sufficiently large integer. Then

σ(H, n) = max{σ(π∗(H∗, n)) + 2 | H∗ ⊆ H}. (11)

We also pose the weaker conjecture, that the bound put forth is asymptotically
correct.

Conjecture 2. Let H be any graph, and let ε > 0. Then there exists an n0 =
n0(ε, H) such that for any n > n0

σ(H, n) ≤ max{(n(2u(H∗) + d(H∗) − 1 + ε) | H∗ ⊆ H}. (12)

Conjectures 1 and 2 have been verified for a wide variety of graphs. This in-
cludes, but is not limited to: complete graphs and unions of complete graphs [7],
[9], [12], [15], [16], [17], complete bipartite graphs [3],[12], [18], complete multipar-
tite graphs [5], [20], matchings [12], cycles [14], (generalized) friendship graphs [2],
[9], [11], and split graphs [4] At this time we know of no subgraph for which these
conjectures do not hold for sufficiently large n.

While Conjecture 1 seems challenging, we feel that there is a good chance that
Conjecture 2 could be verified. In the following section, we will verify Conjecture
1 for a broad class of graphs.
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4. Complements of Triangle-Free Graphs

We now turn our attention to graphs H of order k ≥ 3 with α(H) = 2, or those
graphs that are the complement of a triangle-free graph. The main result of this
section is as follows.

Theorem 4.1. Let H be any graph of order k with α(H) = 2. Then

σ(H, n) = σ(π∗(H, n)) + 2.

Any graph H in this class has u(H) = k − 3 and d(H) ≤ 2. We prove Theorem
4.1 by considering the cases d(H) = 1 and d(H) = 2 separately. In each case we
construct a graph H(d) that contains H as a subgraph and show that σ(H(d), n) =
σ(π∗(H, n))+2. This implies that max{σ(π∗(H∗, n))+2 | H∗ ⊆ H} = σ(π∗(H, n))+
2.

The following result from [4] will be very useful.

Theorem 4.2. If n ≥ 3s + 2t2 + 3t − 3 then

σ(Ks+Kt, n) =

{
(t + 2s − 3)n − (s − 1)(s + t − 1) + 2 if t or n − s is odd.

(t + 2s − 3)n − (s − 1)(s + t − 1) + 1 if t and n − s are even.

It is not difficult to see that if d(H) = 2 then H is isomorphic to Kk − tK2,
where k is the order of H and t is some positive integer that is at most k

2 . Let H be
a graph of order k ≥ 3 with α(H) = 2 and d(H) = 2 and let n ≥ k be an integer.
Then, by (9), we have.

(i) If n ≡ k − 3 (mod 2) then

π∗(H, n) = ((n − 1)k−3, (k − 2)n−k+3) (13)

(ii) If n 6≡ k − 3 (mod 2) then

π∗(H, n) = ((n − 1)k−3, (k − 2)n−k+2, k − 3) (14)

Proposition 4.3. Let H be a graph of order k with α(H) = 2 and d(H) = 2, and

let n be a sufficiently large integer. Then

σ(H, n) = σ(π∗(H, n)) + 2 = n(2k − 5) − k2 + 4k − 1 − m,

where m = n − k + 3 (mod 2).

Proof. The fact that σ(H, n) ≥ σ(π∗(H, n)) + 2 follows from Theorem 3.1. Note
that any H with α(H) = 2 and d(H) = 2 is a subgraph of Kk−2 + K2 so that
σ(H, n) ≤ σ(Kk−2 + K2, n). Theorem 4.2 implies

σ(Kk−2 + K2, n) = n(2k − 5) − k2 + 4k − 1 + m = σ(π∗(H, n)) + 2.

The proposition follows. �

Those graphs H with α(H) = 2 and d(H) = 1 have a considerably wider variety
of structures. Any graph H in this class is the complement of a triangle-free graph
G that is not a matching. The disjoint union of two cliques falls into this class, as
does Kk − tP3 and many other graphs of varying densities. We are able to verify
Conjecture 1 for this diverse class of graphs. Our first observation is that any graph



A GENERAL LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 7

H with α(H) = 2 and d(H) = 1 must contain K2 ∪K1 as an induced subgraph, as
this is the only graph on 3 vertices with maximum degree 1. This also immediately
implies that md = m1 = 2. Therefore, if H is any graph of order k with α(H) = 2
and d(H) = 1 and n ≥ k is an integer, then (9) implies that

π∗(H, n) =
(
(n − 1)k−3, (k − 3)n−k+3

)
. (15)

The following lemma from [12] will be useful in the next proof.

Lemma 4.4. If π is a graphical sequence with a realization G containing H as a

subgraph, then there is a realization G′ of π containing H with the vertices of H
having the |V (H)| largest degrees of π.

We now show that Conjecture 1 holds when α(H) = 2 and d(H) = 1.

Proposition 4.5. Let H be a graph of order k with α(H) = 2 and d(H) = 1, and

let n be a sufficiently large integer. Then

σ(H, n) = σ(π∗(H, n)) + 2 = n(2k − 6) − k2 + 5k − 4

Proof. Let π be a nonincreasing, n-term graphic sequence with σ(π) ≥ n(2k− 6)−
k2+5k−4. Note that if n is sufficiently large, σ(π) ≥ σ(Kk−1, n) ≥ σ(Kk−3+K3, n).
We will show that π has a realization containing Kk−3 +(K2∪K1) and, as we have
previously observed that H must contain an induced copy of K2∪K1, a copy of H .

Let G be a realization of π that contains a copy of Kk−3 + K3 on the k vertices
of highest degree in G. Such a realization exists by Lemma 4.4. Let S denote this
subgraph, F denote the complete subgraph of order k − 3 and let I denote the
independent set of order 3 in S, so that S = F + I. We can assume that F is
comprised of the k−3 vertices of highest degree in G. If not, there are vertices x in
I and y in F such that d(y) < d(x). We wish to create a realization of G containing
a copy of Kk−3 + K3 on the k vertices of highest degree such that x is in F and y
is in I. If x is adjacent to all the other vertices in S, we can simply exchange the
roles of x and y. If x was not adjacent to exactly one vertex in I, say v, then as
d(x) > d(y) there is some vertex w outside of S that is adjacent to x but not to y.
We will create a new realization of π by adding the edges yw and xv and deleting
the edges yv and xw. The case where x is not adjacent to exactly two vertices in
I is handled similarly. Repeating this process allows us to create a realization of π
containing Kk−3 + K3 = F + I in which the k − 3 highest degree vertices of G lie
in F .

Let x1 and x2 be the vertices in I having the highest degrees, and note that
σ(π) ≥ σ(Kk−1, n) implies d(x1) and d(x2) are both at least k − 2. If there is any
edge in the subgraph induced by I, then G contains a copy of Kk−3 + (K2 ∪ K1)
and we are done. Therefore, we may assume that I is an independent set. Let N1

and N2 denote N(x1) \ S and N(x2) \ S, respectively, and note that both of these
sets are nonempty since d(x1) and d(x2) are both at least k − 2. If y1 and y2 are
distinct vertices in N1 and N2, respectively, then we may assume that y1 and y2

are adjacent. If they are not, then we would exchange the edges x1y1 and x2y2 for
the nonedges x1x2 and y1y2, creating an edge in I and completing the proof.
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The goal of the next part of this proof is to show that we may assume that there
is some vertex v in F such that d(v) ≤ 4k.

Consider first the case where N2 ⊆ N1 (N1 ⊆ N2 is handled identically) and let
w be a vertex in N2. If |N1 \ N2| > k then d(w) > d(x2) since w is adjacent to
every vertex in N1 \ N2. We therefore assume that |N1 \ N2| ≤ k. Also note that
N1∩N2 is a clique, and hence contains at most k−2 vertices. There is some vertex
v in F that is not adjacent to w, otherwise d(w) > d(x1), which contradicts our
choice of G. Let y be a neighbor of v that does not lie in S ∪ N1 ∪ N2. If no such
y exists, then clearly d(v) ≤ 4k. We claim that wy is an edge of G, lest we could
exchange the edges x1w, x2w and yv for the nonedges wv, wy and x1x2 (see Figure
1), creating an edge in I. However, if the degree of v is more than 4k there are at
least k − 1 such choices for y. This implies that d(w) ≥ k + |N1| > d(x1), which
contradicts our choice of G. Thus we may assume that d(v) ≤ 4k.

1

2F

I

x

x

w N2

y

v

Figure 1. N2 ⊆ N1

Assume now that there is some vertex w1 in N1 \ N2 and some vertex w2 in
N2 \N1. We first show that N1 ∪N2 is complete. To accomplish this, we need only
show that for any w′

1 in N1 \N2, w1w
′
1 is an edge of G (or symmetrically, if w′

2 is an
element of N2 \ N1 then w2w

′
2 is an edge in G). If not, we can exchange the edges

x1w1, x1w
′
1 and x2w2 for the nonedges w1w

′
1, x1w2 and x1x2, creating an edge in I

and completing the proof. Thus, since N1 ∪ N2 is complete we may assume that
|N1∪N2| ≤ k−1. Again, there is some v in F such that w2 is not adjacent to v, lest
d(w2) > d(x2). Let y be any neighbor of v not in S∪N1∪N2. Then w1 is adjacent to
y or else we could exchange the edges yv, x1w1 and x2w2 for the nonedges yw1, vw2

and x1x2 (see Figure 2), creating an edge in I. If d(v) > 3k, then there are at
least k such choices for y, implying that d(w1) ≥ k + |N1 ∪ N2| − 1 > d(x1), a
contradiction.

Hence, we may assume that there is some vertex v in F such that d(v) ≤ 4k. As
a result, there are at most (k−4)(n−1)+4k edges adjacent to vertices in F , at most
12k edges adjacent to vertices in I and, as both N1 and N2 have at most 4k vertices
each, at most 4k(8k) = 32k2 edges adjacent to vertices in N1 ∪N2. This is at most
(k−4)n+32k2+15k+4 edges. However, there are at least σ(π)/2 = (k−3+o(1))n
edges in G, so for n sufficiently large there is some edge yz in G such that y is not
adjacent to any w1 in N1 and z is not adjacent to any w2 in N2, where w1 and
w@ may be the same vertex. We can therefore exchange the edges x1w1, x2w2 and
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y

1

2F

I

x

x

w2

1w
N

N

1

2

v

Figure 2. N2 6⊆ N1 and N1 6⊆ N2

yz for the nonedges w1y, w2z and x1x2, creating an edge in I, and completing the
proof. �

Propositions 4.3 and 4.5 together imply Theorem 4.1. As mentioned above, there
is quite a wide variety to the structures of those graphs H having independence
number 2, and yet we have demonstrated that σ(H, n) for this class depends only
on the value of d(H), as suggested by Conjecture 1.

5. H-Saturated Graphs

Here we describe the relationship of σ(H, n) to another extremal function sat(n, H).
We begin with the relevant terminology and results.

A graph G is said to be H-saturated if G contains no copy of H as a subgraph and
for any edge e not in G, G+e does contain a copy of H . The problem of determining
the minimum number of edges in an H-saturated graph, denoted sat(n, H), was first
considered in 1963 by Erdős, Hajnal and Moon [6] for H = Kt. They determined

that sat(n, Kt) = (t−2)(n−1)−
(
t−2
2

)
, which arises from consideration of the split

graph Kt−2 + Kn−t+2. The best known upper bound for an arbitrary graph H is
given by the following result of Kászonyi and Tuza [13].

Theorem 5.1 ([13]). Let u(H) be as defined above, and set

s(H) = min{e(H∗)|α(H∗) = α(H), |V (H∗)| = α(H) + 1, H∗ ⊆ H}

then,

sat(n, H) ≤ n(u(H) +
s(H) − 1

2
) −

u(H)
(
u(H) + s(H)

)

2
. (16)

The reader should note that the bound given in Theorem 5.1 reflects the number
of edges in the join of Ku(H) and a graph which is (nearly) (s − 1)-regular. Com-
paring Theorem 5.1 to the construction of π∗(H, n), we note that d(H) ≤ s(H) and
hence that if i ≥ s(H), ni = 0. Theorem 5.1 and Theorem 3.1 immediately imply
the following result.
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Theorem 5.2. Given a graph H, if there exists an H ′ ⊆ H with 2u(H ′)+d(H ′)−
1 ≥ 2u(H) + s(H) − 1 then for n sufficiently large we have

2sat(n, H) < σ(H, n). (17)

In particular, this result holds if d(H) = s(H).

We strongly believe that the conclusion of Theorem 5.2 holds in general, even
though the hypothesis does not. Therefore, we conjecture the following.

Conjecture 3. Let H be a graph and let n be a sufficiently large integer. Then

2sat(n, H) < σ(H, n).

As the problem of determining sat(n, H) has proven difficult over time, we are
not able to confirm Conjecture 3 in as many cases as Conjectures 1 and 2. We know
that Conjecture 3 holds for complete graphs [6], [7], tKp and certain generalized
friendship graphs [8], C4 [12], [22],[24], and K1,t [13].

6. Conclusion

In light of Theorem 4.1, it may be interesting to individually consider classes of
graphs with fixed independence number. This may be a fruitful direction, although
the diversity in the structures of the α(H) + 1 vertex induced subgraphs of such
graphs rapidly increases. We feel that this line of investigation would move us closer
to the goal of verifying either of Conjectures 1 and 2.

The authors would like to thank Mike Jacobson for his helpful comments and
insightful questions that led to Theorem 4.1.
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[7] P. Erdős, M.S. Jacobson, J. Lehel, Graphs Realizing the Same Degree Sequence and

their Respective Clique Numbers. Graph Theory, Combinatorics and Applications,
Vol. I, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.

[8] R. Faudree, M. Ferrara, R. Gould, M. Jacobson, tKp-saturated graphs, submitted.
[9] M. Ferrara, Graphic Sequences with a Realization Containing a Union of Cliques,

Graphs and Combinatorics 23 (2007), 263-269.
[10] M. Ferrara, R. Gould and J. Schmitt, Using Edge Swaps to Prove the Erdos-Jacobson-

Lehel Conjecture, to appear in Bulletin of the ICA.



A GENERAL LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 11

[11] M. Ferrara, R. Gould and J. Schmitt, Graphic Sequences with a Realizaton Contain-
ing a Friendship Graph, ARS Combinatoria 85 (2007), 161-171.

[12] R. Gould, M. Jacobson, J. Lehel, Potentially G-graphic degree sequences. Combina-
torics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New
York: Wiley & Sons, Inc., 1999, 387-400.

[13] L. Kászonyi, Z. Tuza, Saturated graphs with minimal number of edges. J. Graph

Theory 10 (1986) 203-210.
[14] C. Lai, The smallest degree sum that yields potentially Ck-graphical sequences. J.

Combin. Math. Combin. Comput. 49 (2004), 57–64.
[15] J. Li, Z. Song, An extremal problem on the potentially Pk-graphic sequences. The In-

ternational Symposium on Combinatorics and Applications, June 28-30, 1996 (W.Y.C.
Chen et. al., eds.) Tanjin, Nankai University 1996, 269-276.

[16] J. Li, Z. Song, The smallest degree sum that yields potentially Pk-graphical sequences.
J. Graph Theory 29 (1998), no.2, 63-72.
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