
Breaking the ǫ-Soundness Bound of the Linearity Test over GF(2)

Tali Kaufman∗ Simon Litsyn† Ning Xie‡

Abstract

For Boolean functions that are ǫ-far from the set of linear functions, we study the lower
bound on the rejection probability (denoted by rej(ǫ)) of the linearity test suggested by Blum,
Luby and Rubinfeld. This problem is arguably the most fundamental and extensively studied
problem in property testing of Boolean functions.

The previously best bounds for rej(ǫ) were obtained by Bellare, Coppersmith, H̊astad,
Kiwi and Sudan. They used Fourier analysis to show that rej(ǫ) ≥ ǫ for every 0 ≤ ǫ ≤ 1

2
. They

also conjectured that this bound might not be tight for ǫ’s which are close to 1/2. In this paper
we show that this indeed is the case. Specifically, we improve the lower bound of rej(ǫ) ≥ ǫ by
an additive constant that depends only on ǫ: rej(ǫ) ≥ ǫ+ min{1376ǫ3(1− 2ǫ)12, 1

4
ǫ(1− 2ǫ)4},

for every 0 ≤ ǫ ≤ 1

2
. Our analysis is based on a relationship between rej(ǫ) and the weight

distribution of a coset of the Hadamard code. We use both Fourier analysis and coding theory
tools to estimate this weight distribution.

∗CSAIL, MIT, Cambridge, MA 02139. E-mail: kaufmant@mit.edu.
†Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, ISRAEL. E-mail: lit-

syn@eng.tau.ac.il.
‡CSAIL, MIT, Cambridge, MA 02139. E-mail: ningxie@csail.mit.edu. Research done while the author was at

State Univ. of New York at Buffalo and visiting CSAIL, MIT. Research supported in part by NSF grant 0514771.

0
Dagstuhl Seminar Proceedings 08341
Sublinear Algorithms
http://drops.dagstuhl.de/opus/volltexte/2008/1697

1 Introduction

Property testing [19, 11] studies the robust characterizations of various algebraic and combina-
torial objects. It often leads to a new understanding of some well-studied problems and yields
insight to other areas of computer science (see survey articles [10, 17, 18] for more on property
testing). The first problem, and arguably one of the most natural and fundamental ones, being
studied under the framework of property testing is linearity test. A function f : {0, 1}m → {0, 1}
is called linear if for all x, y ∈ {0, 1}m, f(x)+f(y) = f(x+y). A function f is said to be ǫ-far from
linear functions if one needs to change f ’s value on at least an ǫ-fraction of its domain to make f
linear. Blum, Luby and Rubinfeld [8] considered the following randomized algorithm (henceforth
referred to as “BLR test”) to test if a function is linear : Given a function f : {0, 1}m → {0, 1},
choose uniformly at random x, y ∈ {0, 1}m and reject if f(x)+ f(y) 6= f(x+ y). We call the prob-
ability of the test accepting linear functions the completeness of the test while the probability of
rejecting non-linear functions soundness. Note that in general, among other things, soundness
depends on the distance parameter ǫ.

In retrospect, it is quite surprising that the analysis of such a natural test turned out to be
highly complex. Much effort has been devoted to understanding the rejection probability behavior
of BLR test [8, 3, 9, 6, 7, 4], the optimal tradeoff between query complexity and soundness of some
variants of BLR test [24, 23, 21, 13, 22]. Many generalizations and extension of BLR test were also
studied; for example, testing linear consistency among multiple functions [2], testing polynomials
of higher degree (generalizing the linear case in BLR test) [1, 20], testing Long Codes [5, 12].

It is clear that the completeness of BLR test is one, i.e., if f is linear, then BLR test al-
ways accepts. The most important quantity for BLR test (and for many other tests as well) is
the soundness, since this parameter indicates how robust the test characterizes the objects being
tested. The soundness analysis of BLR test was found to be highly non-trivial. Indeed, vari-
ous papers studied the following question: For all Boolean functions that are ǫ-far from linear
functions, what is the minimum rejection probability of the BLR linearity tests. We denote this
lower bound by rej(ǫ). Understanding rej(ǫ) is important not only because its relation to the
hardness of approximating some NP-hard problems but also due to the fact that it is a natural
and fundamental combinatorial problem. The most interesting (and also most difficult) cases are
those where 1

4 ≤ ǫ < 1
2 . In this paper, we study the rejection probability of BLR test over GF (2).

By combining Fourier analysis and coding theoretic tools, we improve the previously best known
bound of rej(ǫ) by a constant depending only on ǫ for all ǫ ∈ [1/4, 1/2). Perhaps surprisingly,
our result shows that the celebrated Fourier analysis based soundness bound [4], rej(ǫ) ≥ ǫ, is
suboptimal by an additive constant that depends only on ǫ for all ǫ ∈ (0, 1

2). A key ingredient of
our proof is viewing the Fourier coefficients in terms of the weight distributions of codewords and
applying coding bounds to them. It is hoped that techniques developed in coding theory may
find other places to improve results on Boolean functions obtained by Fourier analysis.

1.1 Related research

Blum, Luby and Rubinfeld [8] first suggested the BLR linearity test and showed that for every
ǫ, rej(ǫ) ≥ 2

9ǫ based on a self-correction approach. Using a combinatorial argument, Bellare et
al. [6] proved that rej(ǫ) ≥ 3ǫ − 6ǫ2. This bound is optimal for small ǫ but is very weak for
ǫ’s that are close to 1

2 . Bellare and Sudan [7] further showed that rej(ǫ) ≥ 2
3ǫ when ǫ ≤ 1

3 and

1

rej(ǫ) ≥ 2
9 when ǫ > 1

3 . This series of works culminated in [4], where Fourier transform techniques
found their first use in PCP-related analysis. The linear lower bound rej(ǫ) ≥ ǫ as well as the
so-called “Knee” bound, rej(ǫ) ≥ 45

128 when ǫ ≥ 1
4 , are all due to [4]. They also showed that

all the known bounds are tight for ǫ ≤ 5
16 . In [4], numerical simulation results suggested that

the lower bound rej(ǫ) ≥ ǫ for ǫ > 5
16 may be improved, but not by too much. Kiwi [15] and

Kaufman and Litsyn [14] gave alternative proofs for the fact that rej(ǫ) ≥ ǫ for every ǫ (up to
an additive term of O(1

n)). Their proofs are more coding theory oriented. Specifically, the proofs
are based on studying the weight distribution of the Hadamard code and its ǫ-away coset as well
as various properties of Krawtchouk polynomials.

1.2 The main result

In the following, we present our main result showing an improved bound for rej(ǫ). Specifically,
we prove

Theorem 1. Let ∆(γ) = 5γ
8 − γ2

32 . For all ǫ, 1/4 ≤ ǫ ≤ 1/2 and for all γ, 0 < γ ≤ 1,

rej(ǫ) ≥ ǫ+ min{4096(1 − ∆(γ))3ǫ3(1 − 2ǫ)12,
γ

2
ǫ(1 − 2ǫ)4}.

As a simple corollary by plugging in γ = 1/2 and combine our new result with known bounds
for 0 ≤ ǫ ≤ 1

4 (i.e., rej(ǫ) ≥ 3ǫ− 6ǫ2), we get

Corollary 2. For all ǫ, 0 ≤ ǫ ≤ 1/2,

rej(ǫ) ≥ ǫ+ min{1376ǫ3(1 − 2ǫ)12,
1

4
ǫ(1 − 2ǫ)4}.

Note that Theorem 1 improves upon rej(ǫ) ≥ ǫ by an additive constant that depends only
on ǫ for all 1

4 ≤ ǫ < 1
2 . Our result improves over all previously known bounds for every ǫ,

45
128 ≤ ǫ < 1

2 , but only by a very small quantity. For example, for ǫ = 0.4, our improvement is
about 1.024× 10−7. We believe our bound can be further improved systematically (note that our
current approach already gives bounds better than that stated in the Main Theorem for ǫ’s such
that 1/(1− 2ǫ)2 is close to integers). However, as the numerical results shown in [4], one can not
expect to see too much improvement over rej(ǫ) ≥ ǫ. Note that our improvement over rej(ǫ) ≥ ǫ
vanishes at ǫ = 1

2 . This is indeed as expected since we know that rej(1
2) = 1

2 .

1.3 Proof overview

The proof has three key ingredients. We will use C to denote the Hadamard code of length n
whose codewords are exactly the set of all linear functions.

The coset code C+v There are two equivalent ways of viewing the BLR test: one is to think f
as a Boolean function mapping {0, 1}m to {0, 1} and the BLR test simply picks x and y uniformly
at random and check if f(x) + f(y) = f(x+ y). This functional viewpoint leads naturally to the
beautiful Fourier analysis approach of [4], which shows that rej(ǫ) can be exactly expressed as a
cubic sum of Fourier coefficients of the function (−1)f . Another way to study the BLR test, first
suggested in [15] and followed by [14], treats f as a codeword v of length n with n = 2m. (Due to

2

this fact, from now on, we will use codeword v and function f interchangeably.) Since the set of
linear functions may be viewed as the set of codewords of the Hadamard code C. BLR test can
be viewed as picking a random weight-3 codeword from C⊥ and check if it is orthogonal to v. We
combine these two viewpoints together by reinterpreting the Fourier analytic result in the coding
theoretic setting. Our simple but important observation is that the Fourier coefficients of f are
equivalent to the weights of the codewords in a coset of C. Therefore rej(ǫ) can be expressed as
a simple function of the weight distribution of the code C + v, where C + v is an ǫ-away coset of
the Hadamard code C. To make this clear, we remind the reader that the weight distribution of
a code C is a set of integers that represent the numbers of codewords in C of different weights,
where the weight of a codeword is the number of coordinates at which the codeword is non-zero.
A vector v is ǫ-far from a code C if one needs to change at least an ǫ-fraction of v’s bits to make
it belong to C. An ǫ-away coset of C is obtained by adding a vector v that is ǫ-far from C to
every codeword in C.

Maximization Problem In order to obtain a lower bound on a function that involves the
weight distribution of C + v, we reformulate our problem as a Maximal Sum of Cubes Problem,
in which we look for an upper bound on the sum of cubes of a set of integers under certain
constraints. The bound rej(ǫ) = ǫ corresponds to a simple optimal configuration in which all
the codewords of C + v sit at weight 1

2n except a constant number (1
(1−2ǫ)2

) of them sit at weight

ǫn. Moreover, this is the unique configuration that meets the bound rej(ǫ) = ǫ. Any deviation
from the optimal configuration implies an improved lower bound on rej(ǫ). Our strategy thus
is to show that this optimal weight distribution is not achievable due to some special properties
of the code C + v. In particular, we will focus on the following two ways in which the optimal
configuration may break down:

1. There exists a heavy codeword in C + v, i.e. a codeword of weight larger than n
2 .

2. The number of codewords in C + v of weight at most (ǫ+ η)n is less than 1
(1−2ǫ)2

, where η

is a positive number.

A natural tool to show that one of the above properties holds is the Johnson Bound. Roughly
speaking, the well-known Johnson bound offers a bound on the maximum number of codewords
of a specific weight in a code with some specific minimum distance. However, it turns out that
Johnson bound is met exactly by the code C+v at weight ǫn, and we fail to get any improvement
by applying it directly to C + v. The way we overcome this is by considering a new code C|V
and applying a slightly stronger variant of the commonly used Johnson bound which enables us
to bound the number of codewords of at least (or at most) a specific weight. This turns out to
be crucial in our analysis.

From the code C + v to the code C|V We consider the code C|V of block length n′ = ǫn,
obtained from C by restricting it to the ǫn non-zero coordinates of v. This code is a linear
code. It has the same number of codewords as the original code C + v. More precisely, we show
that if it contains fewer codewords then an improved lower bound on rej(ǫ) is immediate. A
nice property of this new code is that there is a one-to-one correspondence between the weight
of a codeword in C|V and the weight of the corresponding codeword in C + v. Since C|V is a

3

linear code, its minimum distance equals the minimum weight of its codewords. If this minimum
weight is small, then by the one-to-one relation between the weights of C + v and that of C|V ,
the heaviest codeword in C + v will have a large weight, which yields an improved lower bound
for rej(ǫ) according to Condition 1 from above. However, if the maximum weight of C + v is
small, or equivalently, the minimum distance of C|V is large, then by applying the Johnson bound
to C|V , we get that the number of codewords lying between weight ǫn and (ǫ + η)n in C + v is
less than the optimal bound (1

(1−2ǫ)2
), which also yields an improved lower bound for rej(ǫ) by

Condition 2 mentioned before.

The intuitive reason that we benefit from applying the Johnson bound to C|V rather than to
C+ v is straightforward: The block length of C|V is much smaller than the block length of C+ v,
but the number of codewords in C|V is the same as C + v1.

The relations between the three codes in consideration, namely C, C + v, and C|V (for a code
C and a vector v that is ǫ-far from C), as well as the idea of looking at a restricted code of smaller
block length in order to get better coding bounds, might have other applications.

1.4 Organization

Section 2 introduces necessary notation and definitions. In section 3 we show rej(ǫ) can be
expressed as a function of the weight distribution of a coset of the Hadamard code. Then we
reformulate the problem of lower bounding rej(ǫ) as a maximization problem in section 4. In
section 5 we study the weight distribution of a restricted code of the coset code and then prove
the Main Theorem in section 6. Several technical claims appear in the Appendix.

2 Preliminaries

We will use [n] to denote the set {1, . . . , n}, where n is a positive integer. Let v be a vector
in {0, 1}n. The weight of v, denoted wt(v) is the number of non-zero bits in v. A code C of
block length n is a subset of {0, 1}n. C is called a linear code if C is a linear subspace. Let
u, v ∈ {0, 1}n. The distance between u and v is defined to be the number of bits at which they
disagree: dist(u, v) = |{i ∈ [n]|u(i) 6= v(i)}| = wt(u − v). The minimum distance of a code C is
minu,v∈C dist(u, v). If C is a linear code, then the minimum distance of C equals the minimum
weight of codewords in C. Let C be a code of block length n. The distance of v ∈ {0, 1}n from code

C is the minimum distances between v and codewords in C, i.e., dist(v, C)
def
= minc∈C dist(v, c).

With an abuse of notation, in the following, we will use C to denote the Hadamard code and C⊥

to denote its dual Hamming code.

Recall that a function ℓ : {0, 1}m → {0, 1} is linear if for all x, y ∈ {0, 1}m, ℓ(x)+ℓ(y) = ℓ(x+y).
An equivalent characterization is: ℓ is linear if and only if ℓ(x) = α · x =

∑m
i αixi for some

1The reason we are able to improve the bound rej(ǫ) ≥ ǫ by a constant is more subtle: For 1

4
≤ ǫ ≤ 1

2
, there

is a “reciprocal” relationship between the relative weights of codeword in C and corresponding codeword in C|V ;
that is, the smaller the relative weight in C, the larger the relative weight in C|V , and vice versa. Note that the
denominator of the expression in Johnson bound is d

n
− 2w

n
(1− w

n
) after dividing by n2. Therefore Johnson bound

will give better bounds when w

n
(1 − w

n
) gets smaller, or, when w/n is very close to either 0 or 1. By switching

from C to C|V , w

n
is mapped to w

′

n′ . The advantage of changing to C|V is that it makes the distance between w
′

n′

and 1 smaller than the distance between w

n
and zero. This advantage disappears at ǫ = 1/2, therefore we get no

improvement at that point, as expected.

4

α ∈ {0, 1}m, and we denote such a linear function by ℓα and denote the set of all such functions
by LIN. Let f, g : {0, 1}m → {0, 1}. The (relative) distance between f and g is defined to be

the fraction of points at which they disagree: dist(f, g)
def
=Prx∈{0,1}m [f(x) 6= g(x)]. The distance

between a function f and linear functions is the minimum distance between f and any linear

function: dist(f,LIN)
def
= ming∈LIN dist(f, g). A function f is said to be ǫ-far from linear functions

if its distance from linear functions is at least ǫ.

Next we introduce some basic notions in Fourier analysis. We will focus on functions defined
over the Boolean cube. Note that the set of functions f : {0, 1}m → R forms a vector space of
dimension 2m. A convenient orthonormal basis for this vector space is the following functions
called characters: ψα(x) = (−1)α·x, where α ∈ {0, 1}m. Consequently, any f(x) : {0, 1}m → R

can be expanded as

f(x) =
∑

α

f̂αψα(x),

where f̂α = 〈f, ψα〉
def
= 1

2m

∑

x∈{0,1}m f(x)ψα(x) is called the α-th Fourier coefficient of f . Define

h(x) = (−1)f(x). Note that the range of h(x) is {−1, 1}.

One can encode f as an n = 2m bit codeword v ∈ {0, 1}n by enumerating all its values on
the Boolean cube. The same encoding applied to the set of linear functions {ℓα} gives rise to the
Hadamard code C, in which we denote the codeword corresponding to ℓα by cα.

We are going to use the following two elementary inequality in our analysis. The proofs of
these inequalities can be found in the Appendix.

Lemma 3. For all real y with 0 ≤ y ≤ 1/2,

1

1 − y
− y ≥

1
√

1 − 2y2
.

Lemma 4. Let γ be a constant with 0 ≤ γ ≤ 1. Then for all real y with 0 ≤ y ≤ 1/2,

1

(1 − y)2
−

1

1 − 2y2
− γ

y

1 − y
≥ (8 − 5γ)y2.

3 The coset code C + v

Using Fourier analytic tools, Bellare et al. proved the following result in their seminal paper.

Lemma 5 ([4]). Let f : {0, 1}n → {0, 1} and h(x) = (−1)f(x). If dist(f,LIN) = ǫ then

rej(ǫ) =
1

2
(1 −

∑

α∈{0,1}m

ĥ3
α).

Sometimes reformulating a Boolean function problem as a coding theoretic problem offers
new perspectives. To this end, we need to introduce the standard notion of coset codes. Let
C be a linear code of block length n and let v ∈ {0, 1}n such that v /∈ C, the v-coset of C is

C + v
def
={c + v|c ∈ C}. Note that |C + v| = |C|. The weight distribution or spectrum of C is

BC = (BC
0 , B

C
1 , · · · , B

C
n), where BC

i = |{c ∈ C|wt(c) = i}|.

Using the equivalence between linear functions and Hadamard code, we have the following
coding theoretic formula for rej(ǫ):

5

Lemma 6. rej(ǫ) = 1
2

(

1 − 1
n3

∑n
i=0B

C+v
i (n− 2i)3

)

.

Proof. By definition of Fourier coefficient,

ĥα = 〈h, ψα〉 = 〈(−1)f , (−1)ℓα〉 = 〈(−1)v, (−1)cα〉 =
1

2m

∑

x∈{0,1}m

(−1)v(x)+cα(x)

= Prx[v(x) = cα(x)] − Prx[v(x) 6= cα(x)] = 1 −
2dist(v, cα)

n
=
n− 2wt(v + cα)

n
,

where in the last step we use the fact that, for binary vectors u and v, dist(u, v) = wt(u − v) =
wt(u+ v). Lemma 5 now gives

rej(ǫ) =
1

2



1 −
∑

α∈{0,1}m

ĥ3
α



 =
1

2



1 −
∑

α∈{0,1}m

(n− 2wt(v + cα))3

n3





=
1

2

(

1 −
∑

c∈C

(n− 2wt(v + c))3

n3

)

=
1

2

(

1 −

∑n
i=0B

C+v
i (n− 2i)3

n3

)

,

where in the final step we change summation over codewords in C to summation over weights of
the codewords in C + v.

This relation between the Fourier coefficients of (−1)f and the weight distribution of coset
code C + v seems to be new and may find applications in other places.

Since rej(ǫ) is now expressed as a weight distribution of the coset code C + v, our next step
is to study how the codewords in C + v are distributed so that to make the rejection probability
minimum.

4 Maximization problem

Note that we can rewrite Lemma 6 as

rej(ǫ) =
1

2
−

∑

ci∈C (n− 2wt(v + ci))
3

2n3
=

1

2
−

1

2n3

n−1
∑

i=0

x3
i ,

where xi = n − 2wt(ci + v), for ci ∈ C, 0 ≤ i ≤ n − 1. Hence our goal of getting a better lower

bound than ǫ for rej(ǫ) is equivalent to getting a better upper bound than 1− 2ǫ for 1
n3

∑n−1
i=0 x

3
i .

This observation motivates the following measure of improvement (gain) and to reformulate the
problem of lower bounding rej(ǫ) as a Maximal Sum of Cubes Problem.

Definition 7. Let xi = n− 2wt(ci + v), for ci ∈ C, 0 ≤ i ≤ n− 1. Define

gain(ǫ) =
1

n3

(

(1 − 2ǫ)n3 −
n−1
∑

i=0

x3
i

)

.

Consequently, rej(ǫ) = ǫ+ 1
2gain(ǫ).

6

Since v is ǫ-far from C, it follows that xi ≤ (1−2ǫ)n, for all 0 ≤ i ≤ n−1. We further observe
another constraint on the set of integers {x0, x1, . . . , xn−1} is that their Euclidean norm is n2.

Claim 8.
∑n−1

i=0 x
2
i = n2.

This claim follows directly from the Parseval’s equality. An alternative proof, based on the
norm-preserving property of the Hadamard matrix, was given in [14].

As we will show in the next lemma, if these two constraints are the only constraints on
{x0, x1, . . . , xn−1}, then the bound rej(ǫ) ≥ ǫ is essentially optimal. However, as we will see in
the next section, since the xi’s are related to the weight distribution of C + v, the properties of
the code C + v impose more constraints on xi’s, thus making this optimal bound unattainable.

Lemma 9. Consider the following Maximal Sum of Cubes Problem: Let 0 < α ≤ 1 be a constant

and n be a large enough integer. For a set of n integers x0, x1, · · · , xn−1, find the maximum of

x3
0 + x3

1 + · · · + x3
n−1 under the constrains:

x2
0 + x2

1 + · · · + x2
n−1 = n2

∀i : xi ≤ αn.

The maximum is achieved at the following optimal configuration: 1
α2 of the xi’s are assigned the

maximum value αn, and the rest are assigned the value zero. The maximum thus obtained is αn3.

Note that in our setting xi = n − 2wt(ci + v) so α = 1 − 2ǫ and consequently
∑n−1

i=0 x
3
i ≤

(1 − 2ǫ)n3.

Proof. First note that, without loss of generality, we may assume that each xi is non-negative2.
Then we have

(
∑n−1

j=0 x
3
j)

1/3

(
∑n−1

j=0 x
2
j)

1/2
= (

n−1
∑

j=0

x3
j

(
∑n−1

i=0 x
2
i)

3/2
)1/3 = (

n−1
∑

j=0

(
x2

j
∑n−1

i=0 x
2
i

)3/2)1/3.

Since 0 ≤ x2
j ≤ α2n2 for every j,

(
x2

j
∑n−1

i=0 x
2
i

)3/2 ≤ α
x2

j
∑n−1

i=0 x
2
i

.

This gives

(
∑n−1

j=0 x
3
j)

1/3

(
∑n−1

j=0 x
2
j)

1/2
≤ (α

n−1
∑

j=0

x2
j

∑n−1
i=0 x

2
i

)1/3 = α1/3.

Moreover, the equality is attained only if all of the values of xi are either zero or αn. This is
possible only if 1

α2 of the xi’s equal αn, and the rest are zeros. In that case x3
0 +x3

1 + · · ·+x3
n−1 =

αn3.

2Otherwise, we can do the following to keep
P

x2

i = n2 while increasing
P

x3

i . For −αn ≤ xi < 0, replace xi

with −xi; for xi < −αn, replace xi with several smaller positive integers with the same L2-norm. See the proof of
Lemma 10 below for more details.

7

We will employ the following two lemmas on gain(ǫ) to obtain improvement.

Lemma 10. If there exists an xi such that xi = −δn for some δ > 0, then gain(ǫ) ≥ min{2δ3, 2α3}.

Proof. We first consider the case that δ ≤ α. Note that {x0, . . . , xi−1,−xi, xi+1, . . . , xn−1} satisfies
all the constrains in the Maximal Sum of Cubes Problem, so we have

αn3 ≥

n−1
∑

k=0,k 6=i

x3
k + (−xi)

3 =

n−1
∑

k=0

x3
k + 2|xi|

3 =

n−1
∑

k=0

x3
k + 2(δn)3.

For the case δ > α, we can break xi into s > 1 smaller parts such that x2
i = y2

1 + · · · + y2
s , and

y1 = αn, y2, . . . , ys > 0. Since the optimal configuration has many xj assigned 0, we can replace
xi together with s − 1 such xj ’s by y1, . . . , ys. Then we apply the same argument as in the case
of δ ≤ α to show that gain(ǫ) ≥ 2α3.

Lemma 11. Let η > 0. If the number of xi’s such that xi ≥ (α − η)n is at most ⌊ 1
α2 ⌋ − 1, then

gain(ǫ) ≥ α2η.

Proof. Set M = ⌊ 1
α2 ⌋. Let {y1, . . . , yn} be a permutation of {x0, . . . , xn−1} such that αn ≥ y1 ≥

· · · ≥ yn. We have y2
1 + · · · + y2

n = n2 and yM ≤ (α− η)n. Define T to be: T = y2
1 + · · · + y2

M−1.
Then we have T ≤ (M − 1)(αn)2 ≤ (1

α2 − 1)α2n2, and y2
M + · · · + y2

n = n2 − T. Therefore,

n−1
∑

i=0

x3
i =

n
∑

i=1

y3
i ≤ (

M−1
∑

i=1

y2
i)αn+ (

n
∑

i=M

y2
i)(α− η)n = n2(α− η)n+ ηnT

≤ n2(α− η)n+ ηn(
1

α2
− 1)α2n2 = αn3 − α2ηn3.

5 From the code C + v to the code C|V

We denote by V the set of coordinates at which v is non-zero, i.e., V = {i ∈ [n]|v(i) = 1}. Note
that |V| = wt(v). In the following we consider a code C|V which will enable us to get some insight
into the weight distribution of the code C + v.

First observe that, since we are only interested in the weight distribution of C + v, without
loss of generality, we may assume that wt(v) = ǫn. To see this, suppose that cv ∈ C is the closest
codeword to v. Since dist(v, C) = ǫn, v can be written as v = cv + vǫn, with wt(vǫn) = ǫn. Since
C is a linear code, C + v = {c+ v|c ∈ C} = {c+ cv + vǫn|c ∈ C} = {c′ + vǫn|c

′ ∈ C} = C + vǫn,

where c′
def
= c+ cv.

Definition 12. Let C be a code of block length n and v ∈ {0, 1}n be a vector of weight ǫn. We

define the code C|V of block length ǫn to be the code obtained by restricting code C to the non-zero

coordinates of v. For convenience of notation, we will use D = C|V from now on.

The following lemma shows that there is a one-to-one correspondence between the weight of
ci + v and the weight of the corresponding codeword in D.

8

Lemma 13. For 0 ≤ i ≤ n− 1, let ci be the ith codeword in the Hadamard code C and di ∈ D be

the restriction of ci to coordinates in V. Let xi = n− 2wt(ci + v), then

xi =

{

(1 − 2ǫ)n, if i = 0,

4wt(di) − 2ǫn, otherwise.

Proof. For i = 0, wt(c0 + v) = wt(v) = ǫn, hence x0 = (1 − 2ǫ)n. Since C is a Hadamard
code, for all i > 0, wt(ci) = n/2, i.e., there are n/2 ones and n/2 zeros in each codeword. For
each ci ∈ C, since there are wt(di) ones in V, there are n/2 − wt(di) ones in [n] \ V; this also
holds for ci + v, since v does not flip the bits at these coordinates. Since |v| = ǫn, there are
ǫn− wt(di) zeros in V for ci, therefore there are ǫn− wt(di) ones in V for ci + v. It follows that
wt(ci + v) = n/2 − wt(di) + ǫn− wt(di) = (1/2 + ǫ)n− 2wt(di) and xi = 4wt(di) − 2ǫn.

Lemma 14. Either D is a linear code or gain(ǫ) ≥ 2(1 − 2ǫ)3.

Proof. Since D is a restriction of linear code C, D is a linear code if and only if all the codewords
di in D are distinct. If D is not a linear code, then there exist i 6= j such that di = dj . This
implies that there is a k 6= 0 such that dk = ~0. By Lemma 13, xk = −2ǫn. Since 2ǫ ≥ 1 − 2ǫ, by
Lemma 10, gain(ǫ) ≥ 2(1 − 2ǫ)3.

Since 2(1−2ǫ)3 is always larger than the gain we are going to prove, from now on, we will focus
on the case that D is a linear code. Let n′ = ǫn be the block length of D, and d be the minimum
distance of D. Note that D contains n codewords. The following simple bound is useful.

Theorem 15 (Plotkin bound [16]). Let C be a binary code of block length n and minimum

distance d. If d ≥ n/2, then C has at most 2n codewords.

Now we have

Claim 16. d < n′/2.

Proof. Suppose d ≥ n′/2, then by the Plotkin bound stated in Theorem 15, D has at most
2n′ = 2ǫn < n codewords, a contradiction.

6 Proof of the Main Theorem

In this section, we give a proof of the main theorem.

Theorem 1 (Main Theorem). Let ∆(γ) = 5γ
8 − γ2

32 . For all ǫ, 1/4 ≤ ǫ ≤ 1/2 and for all γ,
0 < γ ≤ 1,

rej(ǫ) ≥ ǫ+ min{4096(1 − ∆(γ))3ǫ3(1 − 2ǫ)12,
γ

2
ǫ(1 − 2ǫ)4}.

Our proof will rely on the following basic coding theorem which bounds the number of code-
words of weight at least w. This is a slightly stronger variant of the well-known Johnson bound,
for a proof see, e.g., the Appendix in [5].

Theorem 17 (Johnson bound). Let C be a binary code of block length n and minimum distance

d. Let B′(n, d, w) denote the maximum number of codewords in C of weight at least w, then

B′(n, d, w) ≤ nd
nd−2w(n−w) .

9

The basic idea of the proof is the following. Since there is a one-to-one correspondence between
the weight of codeword in C+ v and that of D, we will be working with the spectrum of D. Since
D is a linear code, its minimum distance d is equal to the minimum weight of its codewords. If d
is small (much smaller than n′/2), then there is low weight codeword in D. Consequently, there
is an xi = −δn for some positive δ, which implies a large gain by Lemma 10. However, if d is
large (very close to n′/2), then we can apply the Johnson bound to D to show that the number
of xi such that xi ≥ (1− 2ǫ− η)n is less than 1

(1−2ǫ)2
for some positive η. This also implies a large

gain by Lemma 11. Moreover, as shown below in Lemma 18, there is a trade-off relation between
these two gains: If δ is small then η is large and vice versa. This trade-off enables us to prove
that gain(ǫ) = Ω(1) for every ǫ, 1/4 ≤ ǫ < 1/2.

Now we fill in the details of the proof. By Lemma 13, for all i > 0, 4wt(di)− 2ǫn ≤ (1− 2ǫ)n.
Since for all i > 0, xi ≤ (1−2ǫ)n, it follows that wt(di) ≤

n
4 = n′

4ǫ . Suppose the minimum distance
of D is d = (1/2 − δ′)n′. By Claim 16, δ′ is positive.

Note that x0 = (1 − 2ǫ)n and for all i > 0, xi ≥ (1 − 2ǫ − η)n iff wt(di) ≥ (1
4ǫ − η′)n′,

where η′ = η
4ǫ . Therefore, in order to apply Lemma 11, it suffices to show that there are at most

1
(1−2ǫ)2

− 2 codewords in D of weight at least w′def
=(1

4ǫ − η′)n′ for some η′ > 0. In the next lemma,

we show a trade-off relation between δ′ and η′.

Lemma 18 (Trade-off Lemma). For every ǫ, 1
4 ≤ ǫ < 1

2 , there exist two positive numbers δ0 and

η0 which depend only on ǫ, and a function f which is parameterized only by ǫ and is monotone

decreasing in [0, η0], such that the following holds: For all δ′ with 0 < δ′ < δ0, let η′ = f(δ′), then

if the minimum distance of code D is (1
2 − δ′)n′, then D has at most 1

(1−2ǫ)2
− 2 codewords of

weight at least (1
4ǫ − η′)n′.

Proof. Let η′ = f(δ′). We apply the Johnson bound stated in Theorem 17 to code D. Plug in
d = (1/2 − δ′)n′ and w′ = (1

4ǫ − η′)n′, we get

1
2 − δ′

(1
2 − δ′) − 2(1

4ǫ − η′)(1 − 1
4ǫ + η′)

=
1

(1 − 2ǫ)2
− 2. (1)

If we solve (1) to get f(δ′) = η′, then the statement in the lemma about η′ is also true for all
η′′ ≤ η′, provided η′ is not too large3. By some elementary algebraic manipulations, we have

δ′ =
1

2
− 2(

1

4ǫ
− η′)(1 −

1

4ǫ
+ η′)

1 − 2(1 − 2ǫ)2

1 − 3(1 − 2ǫ)2

=
2(1 − 2(1 − 2ǫ)2)

1 − 3(1 − 2ǫ)2
g(η′),

where g(η′)
def
=(η′ − 1

4ǫ)(η
′ − 1

4ǫ + 1) + 1−3(1−2ǫ)2

4(1−2(1−2ǫ)2)
. Note that since 1/4 ≤ ǫ < 1/2, we have both

1− 2(1− 2ǫ)2 and 1− 3(1− 2ǫ)2 are positive. Therefore, whenever there are positive values η′ to
make g(η′) positive, the corresponding δ′ will be positive as well.

Rewrite g(η′) as g(η′) = η′2 − bη′ + c, where b = 1
2ǫ − 1 > 0 and c = 1−3(1−2ǫ)2

4(1−2(1−2ǫ)2)
− 1

4ǫ + 1
16ǫ2

.

Since b2−4c = (1−2ǫ)2

1−2(1−2ǫ)2
> 0, there are two real roots for g(η′) = 0. Denote these two roots by η1

3That is, we require that x
def
= 1

4ǫ
− η′ > 1

2
. Since the function x(1 − x) is monotone decreasing for 1

2
< x < 1,

plugging some η′′ < η′ into (1) will only make the LHS smaller thus changing the equality into an inequality.

10

and η2 with η1 > η2. Then g(η′) assumes positive values for η′ > η1 and η′ < η2. Since η1 >
1
4ǫ −

1
2

but we are bounding the number of codewords of weight at least w′ = (1
4ǫ − η′)n′ > 1

2n
′, which

requires η′ < 1
4ǫ −

1
2 , so we only need to look at the region where η′ < η2. Therefore, we have:

There are positive η′ to make g(η′) positive

⇐⇒ η2 > 0

⇐⇒ c > 0

⇐⇒
1 − 3(1 − 2ǫ)2

4(1 − 2(1 − 2ǫ)2)
−

1

4ǫ
+

1

16ǫ2
> 0

⇐⇒ (
1

2ǫ
− 1)2 >

(1 − 2ǫ)2

1 − 2(1 − 2ǫ)2

⇐⇒ ǫ > 1/6.

I.e., for all ǫ, 1/4 ≤ ǫ < 1/2, η2 > 0. Note that g(η′) is monotone decreasing in [0, η2], so

the inverse of g exists, which we denote by g−1. Finally, we set f(δ′) = 1−3(1−2ǫ)2

2(1−2(1−2ǫ)2)
g−1(δ′),

δ0 = 2(1−2(1−2ǫ)2)
1−3(1−2ǫ)2

c, and η0 = η2 to complete the proof.

Combine this Trade-off Lemma with the two lemmas regarding gain(ǫ), Lemma 10 and
Lemma 11, we get the following lower bound for gain(ǫ). Note that since f is monotone in
[0, η0], the inverse of f exists in this interval and is denoted by f−1.

Lemma 19 (Gain Lemma). For all η′ ∈ (0, η0), let δ′ = f−1(η′), then gain(ǫ) ≥ min{128(ǫδ′)3, 4ǫ(1−
2ǫ)2η′}.

Proof. As before, we set δ = 4ǫδ′ and η = 4ǫη′. In the following, we consider ǫ to be any
fixed value in [14 ,

1
2). Suppose the minimum distance of D is (1

2 − δ′)n′. Then on the one hand,
there is an xi, such that xi = −4ǫδ′n = −δn. On the other hand, by Lemma 18, there are
at most 1

(1−2ǫ)2
− 2 codewords of weight at least (1

4ǫ − η′)n′ in D, which implies that there are

at most 1
(1−2ǫ)2

− 1 xi’s such that xi ≥ (1 − 2ǫ − 4ǫη′)n = (1 − 2ǫ − η)n. Denote the gains

as functions of η′ given in Lemma 10 and Lemma 11 by gainδ(η
′) and gainη(η

′), respectively.
Then we have gainδ(η

′) = 2δ3 = 128ǫ3δ′3 and gainη(η
′) = (1 − 2ǫ)2η = 4ǫ(1 − 2ǫ)2η′. Therefore

gain(ǫ) ≥ min0<η′<η0
max{gainδ(η

′),gainη(η
′)}. Note that gainδ is monotone increasing in δ′

and gainη is monotone increasing in η′. At one end η′ = 0, gainδ > 0 and gainη = 0; at
the other end η′ = η0, gainδ = 0 and gainη > 0. Combine these with the fact that g(η′)
is monotone decreasing, we see that there exists an η′′, 0 < η′′ < η0, such that gainδ(η

′′) =
gainη(η

′′) = min0<η′<η0
max{gainδ(η

′),gainη(η
′)}. By monotonicity again, for all η′ ∈ (0, η0),

gain(ǫ) ≥ min{gainδ(η
′),gainη(η

′)}.

Next we seek an explicit bound of gain(ǫ). We begin with a simple lower bound for η0.

Claim 20.

η0 ≥
(1 − 2ǫ)2

2
.

11

Proof. By definition,

η0 = η2 =
1

2

(

1

2ǫ
− 1 −

√

(1 − 2ǫ)2

1 − 2(1 − 2ǫ)2

)

=
1 − 2ǫ

2

(

1

2ǫ
−

1
√

1 − 2(1 − 2ǫ)2

)

.

Now change the variable from ǫ to y = 1− 2ǫ and apply Lemma 3, the desired bound follows.

Set η′ = γ (1−2ǫ)2

4 , where 0 < γ ≤ 1 is a constant. Plugging η′ into g(η′) and after some
straightforward calculations, we get

g(η′) =
(1 − 2ǫ)2

4

(

γ2

4
(1 − 2ǫ)2 − γ

1 − 2ǫ

2ǫ
+

1

4ǫ2
−

1

1 − 2(1 − 2ǫ)2

)

.

By changing variable to y = 1 − 2ǫ and applying Lemma 4, we arrive at

g(η′) =
y2

4

(

γ2

4
y2 − γ

y

1 − y
+

1

(1 − y)2
−

1

1 − 2y2

)

≥
y2

4

(

γ2

4
y2 + (8 − 5γ)y2

)

=2(1 − ∆(γ))(1 − 2ǫ)4,

where ∆(γ)
def
= 5γ

8 − γ2

32 . Therefore,

δ′ =
2(1 − 2(1 − 2ǫ)2)

1 − 3(1 − 2ǫ)2
g(η′) ≥ 2g(η′) ≥ 4(1 − ∆(γ))(1 − 2ǫ)4.

Plugging η′ and δ′ into Lemma 19, we get

gain(ǫ) ≥ min{8192(1 − ∆(γ))3ǫ3(1 − 2ǫ)12, γǫ(1 − 2ǫ)4}.

This completes the proof of the Main Theorem.

Acknowledgment

N.X. is very grateful to Ronitt Rubinfeld for making his visit to MIT possible. We would like to
thank Oded Goldreich, Ronitt Rubinfeld, Madhu Sudan and Luca Trevisan for encouragement,
helpful discussions and valuable suggestions.

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomials
over GF(2). In Proceedings of Random 2003, pages 188–199, 2003.

[2] Y. Aumann, J. H̊astad, M. Rabin, and M. Sudan. Linear-consistency testing. J. Comp. Sys.

Sci., 62(4):589–607, 2001.

12

[3] L Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
twoprover interactive protocols. Computational Complexity, 1(1):3–40, 1991. Earlier ver-
sion in FOCS’90.

[4] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing over
characteristic two. IEEE Transactions on Information Theory, 42(6):1781–1795, 1996. Earlier
version in FOCS’95.

[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP and non-approximability - towards
tight results. SIAM J. on Comput., 27(3):804–915, 1998. Earlier version in FOCS’95.

[6] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximation. In Proc. 25th Annual ACM Symposium on the

Theory of Computing, pages 304–294, 1993.

[7] M. Bellare and M. Sudan. Improved non-approximability results. In Proc. 26th Annual ACM

Symposium on the Theory of Computing, pages 184–193, 1994.

[8] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. J. Comp. Sys. Sci., 47:549–595, 1993. Earlier version in STOC’90.

[9] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. Journal of the ACM, 43(2):268–292, 1996.

[10] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the

European Association for Theoretical Computer Science, 75:97–126, 2001.

[11] O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45:653–750, 1998.

[12] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001. Earlier version in STOC’97.

[13] J. H̊astad and A. Wigderson. Simple analysis of graph tests for linearity and PCP. Random

Structures and Algorithms, 22:139–160, 2003.

[14] T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In Proc. 46th

Annual IEEE Symposium on Foundations of Computer Science, pages 317–326, 2005.

[15] M. Kiwi. Algebraic testing and weight distributions of codes. Theor. Comp. Sci., 299(1-
3):81–106, 2003. Earlier version appeared as ECCC TR97-010, 1997.

[16] M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information

Theory, 6:445–450, 1960.

[17] D. Ron. Property testing (a tutorial). In P.M. Pardalos, S. Rajasekaran, J. Reif, and
J.D.P. Rolim, editors, Handbook of Randomized Computing, pages 597–649. Kluwer Academic
Publishers, 2001.

[18] R. Rubinfeld. Sublinear time algorithms. In Proceedings of the International Congress of

Mathematicians, 2006.

13

[19] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM J. on Comput., 25:252–271, 1996.

[20] A. Samorodnitsky. Low-degree tests at large distances. In Proc. 39th Annual ACM Sympo-

sium on the Theory of Computing, pages 506–515, 2007.

[21] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized
query complexity. In Proc. 32nd Annual ACM Symposium on the Theory of Computing,
pages 191–199, 2000.

[22] A. Samorodnitsky and L. Trevisan. Gower uniformity, influence of variables and PCPs. In
Proc. 38th Annual ACM Symposium on the Theory of Computing, pages 11–20, 2006.

[23] M. Sudan and L. Trevisan. Probabilistically checkable proofs with low amortized query
complexity. In Proc. 39th Annual IEEE Symposium on Foundations of Computer Science,
pages 18–27, 1998.

[24] L. Trevisan. Recycling queries in PCPs and linearity tests. In Proc. 30th Annual ACM

Symposium on the Theory of Computing, pages 299–308, 1998.

A Proofs of Lemma 3 and Lemma 4

Lemma 3. For all real y with 0 ≤ y ≤ 1/2,

1

1 − y
− y ≥

1
√

1 − 2y2
.

Proof. By Taylor expansion, we have

1

1 − y
− y = 1 +

∞
∑

k=2

yk,

and

1
√

1 − 2y2
= 1 +

∞
∑

k=1

(2k − 1)!!

k!
y2k.

By induction one can show that for all k ≥ 2, (2k−1)!!
k!2k−1 < 1. Indeed, 1·3

2!2 = 3
4 < 1, and (2k+1)!!

(k+1)!2k =
(2k−1)!!
k!2k−1

2k+1
2k+2 <

(2k−1)!!
k!2k−1 < 1, where the last inequality follows from induction hypothesis. Hence we

14

have

1
√

1 − 2y2
= 1 + y2 +

∞
∑

k=2

(2k − 1)!!

k!
y2k

≤ 1 + y2 +
∞
∑

k=2

(2k − 1)!!

k!

1

2k−1
yk+1 (because y ≤ 1/2)

≤ 1 + y2 +
∞
∑

k=2

yk+1

=
1

1 − y
− y.

Lemma 4. Let γ be a constant with 0 ≤ γ ≤ 1. Then for all real y with 0 ≤ y ≤ 1/2,

1

(1 − y)2
−

1

1 − 2y2
− γ

y

1 − y
≥ (8 − 5γ)y2.

Proof. We break the proof into two parts: First we show that the inequality holds for 0 ≤ y ≤ 2/7,
then we prove it for the interval 2/7 ≤ y ≤ 1/2.

Proposition 21. For all y and γ with 0 ≤ y ≤ 2
7 and 0 ≤ γ ≤ 1,

1

(1 − y)2
−

1

1 − 2y2
− γ

y

1 − y
≥ (8 − 5γ)y2.

Proof. By Taylor expansion,

1

(1 − y)2
−

1

1 − 2y2
− γ

y

1 − y
− (8 − 5γ)y2

=
∞
∑

k=0

(k + 1)yk −
∞
∑

k=0

(2y2)k − γ
∞
∑

k=1

yk − (8 − 5γ)y2

=(2 − γ)y − (7 − 4γ)y2 + (4 − γ)y3 + (1 − γ)y4 +

∞
∑

k=5

(k + 1 − γ)yk −

∞
∑

k=3

(2y2)k

≥(2 − γ)y − (7 − 4γ)y2 + (4 − γ)y3 + (1 − γ)y4 −
8y6

1 − 2y2

≥(2 − γ)y − (7 − 4γ)y2 + 3y3 −
8y6

1 − 2y2
.

Since 0 ≤ y ≤ 2
7 , (2 − γ)y ≥ 7

2(2 − γ)y2 = (7 − 7
2γ)y

2 ≥ (7 − 4γ)y2, 8y6

1−2y2 ≤ 8y6

1−2(2

7
)2

≤ 10y6, and

3y3 ≥ 3(7
2)3y6 ≥ 10y6, this completes the proof of the Proposition.

Proposition 22. For all y and γ with 2
7 ≤ y ≤ 1

2 and 0 ≤ γ ≤ 1,

1

(1 − y)2
−

1

1 − 2y2
− γ

y

1 − y
≥ (8 − 5γ)y2.

15

Proof. Let z = 1 − 2y. After substituting z into the expression and some simplification, we see
that proving the original inequality is equivalent to proving, for 0 ≤ z ≤ 3

7 ,

4

(1 + z)2
−

2

2 − (1 − z)2
− γ

1 − z

1 + z
≥ (2 −

5

4
γ)(1 − z)2.

Or, after dividing (1 − z)2 on both sides,

4

(1 − z2)2
−

2

2(1 − z)2 − (1 − z)4
− γ

1

1 − z2
≥ 2 −

5

4
γ.

Note that since 0 ≤ z ≤ 3
7 , we have γ

1−z2 ≤ γ

1−(3

7
)2

= 49
40γ ≤ 5

4γ, so the only thing remains to show

is 4
(1−z2)2

− 2
2(1−z)2−(1−z)4

≥ 2. Indeed,

4

(1 − z2)2
−

2

2(1 − z)2 − (1 − z)4
≥ 2

⇐⇒
4

(1 − z2)2
−

2

1 − (2z − z2)2
≥ 2

⇐⇒
2

(1 − z2)2
≥

2 − z2(2 − z)2

1 − z2(2 − z)2

⇐⇒ 2(1 − z2(2 − z)2) ≥ (1 − z2)2(2 − z2(2 − z)2)

⇐⇒ 2(1 + 2z − z2) ≥ 2(1 + z)2 − z2(1 + z)2(2 − z)2

⇐⇒ (1 + z)2(2 − z)2 ≥ 4

⇐⇒ z(1 − z) ≥ 0.

This finishes the proof of the Proposition.

This completes the proof of Lemma 4.

16

