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ABSTRACT

In this paper we consider the semantics for the evolution of hybrid systems, and the
computability of the evolution with respect to these semantics. We show that with respect to
lower semantics, the finite-time reachable sets are lower-semicomputable, and with respect to
upper semantics, the finite-time reachable sets are upper-semicomputable. We use the
framework of type-two Turing computability theory and computable analysis, which deal with
obtaining approximation results with guaranteed error bounds from approximate data. We show
that in general, we cannot find a semantics for which the evolution is both lower- and upper-
semicomputable, unless the system is free from tangential and corner contact with the guard
sets. We highlight the main points of the theory with simple examples illustrating the subtleties
involved.
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Abstract

In this paper we consider the semantics for the evolutionybfid systems, and
the computability of the evolution with respect to these astics. We show that with
respect tdower semantics, the finite-time reachable sets are lower-sengatable,
and with respect toupper semantics, the finite-time reachable sets are upper-
semicomputable. We use the framework of type-two Turing matability theory and
computable analysis, which deal with obtaining approxiomatesults with guaran-
teed error bounds from approximate data. We show that inrgenge cannot find a
semantics for which the evolution is both lower- and uppemigomputable, unless
the system is free frofangentialandcornercontact with the guard sets. We highlight
the main points of the theory with simple examples illustrgithe subtleties involved.
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1 Introduction

Hybrid systems are dynamic systems in which the evolution has both discretertstan(
taneous) and continuous-time elements. Hybrid models are becoming ingtggseva-
lent in industry, and there is a need for tools which can perform reliablelation and
verification analysis of hybrid systems. The interplay between the continaiod discrete
dynamics causes difficulties in the analysis of hybrid systems which do oot icdiscrete-
or continuous-time systems, and which lend hybrid systems a distinctivectirara

Many questions about the behaviour of a hybrid system can be framed rotiiext
of reachable sets and the reachability relation. It has long been knowthéhaeachability
relation for hybrid systems is undecidable [2], except for the class of tmuomata (and
slight generalisations), for which reachable sets can be computed efzgjthRather than
considering decidability of the reachability relation, it is more natural to cemgfte com-
putability of the reachable set. For more complicated systems, symbolic compsitatéen
infeasible and approximate numerical computations are required. This mestives study
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of what is possible to compute using approximations to the exact problem diaisdahly
necessary to compute the result approximately.

In this paper, we base our computability results on the theory of computablesan
of Weihrauch and co-workers [28], which is equivalent to that of [28sed on oracle ma-
chines. All computations are performed using ordinary Turing machimeshance can be
implemented using existing computers. (This is unlike the real-RAM theory ofnBich
cannot be effectively implemented.) In order to allow computation on uncblentets,
we allow computations to run indefinitely, writing an output stream which reptsssuc-
cessively more accurate approximations to the result. We say a quantity isitzdiepif
it can be computed to arbitrary (metric) accuracy, and semicomputable if itsilge to
compute convergent approximations from above or below. We note tbatnputability in
the framework of computable analysis does not necessarily imply unconilfiytalosome
algebraic framework in which the objects of interest can be specifiedlgx@he results in
this paper extend those of [16], and provide full proofs. Similar resultthe computability
of reachable sets for discrete-time systems were given in [15].

We will see that computability of the reachable set is strongly related to topalogic
properties of the invariants and guard sets, and continuity propertieg abtitinuous and
discrete dynamics. In order to separate technical issues relating to thiersolidifferential
equations and differential inclusions from the intrinsic difficulties of hylmydtems, we
describe the continuous dynamics directly as a flow, rather than by aedtiffel relation.
Upper-semicontinuity of solutions of hybrid systems has been considef¢dlifi]. Lower-
semicontinuity of the solutions of Lipschitz differential inclusions and hybystems has
been studied in [11, 12].

Unlike purely discrete- or continuous-time systems, for which there is a veéihed
notion of solution, for hybrid systems we need to use different solutiocegs for com-
puting lower- and upper-approximations to the reachable set. The uplogioa concept
may necessarily impose nondeterministic (multivalued) solutions to an otheretisern-
istic system, whereas lower solution concepts may impose blocking. Reliable anula
imposes the need to consider multiple possible evolutions, each of a qualitatiffetent
nature.

There are many other tools available for computing reachable sets of gyaiems,
such as d/dt [1], Hy(pentech [22], VeriShift [9], Checkmate [5iildhaver [18]. However,
these tools are mainly restricted to systems with affine dynamics and guardysatisffom
CheckMate, which allows nonlinear dynamics), and can only computeap@oximations
to the reachable set. To remedy this situation, a software teohBNE [6] is being devel-
oped to implement the computable operations of this paper. Computation of thersaolutio
hybrid systems using a set-oriented approach using the software jga@kd@® [17], which
is particularly applicable to the computation of the operators studied in this,jesebeen
considered in [21].

The paper is structured as follows. In Section 2 we indicate the difficultiesiernered
in the study of hybrid systems, and motivate the use of a formal computabilityytheo
Section 3 we give some technical preliminaries on computability theory for panisets.
In Section 4 we present the ways in which the evolution of a hybrid systemfailap
be continuous. In Section 5 we present the main theorems on semicomputability of
evolution. In Section 6 we present some modelling frameworks for hybstesys, and
discuss reliable simulation and implementation issues. Finally, in Section 7 we stade so
conclusions and give directions for further research.



2 Motivation

2.1 Continuous- and Hybrid-Time Systems

One of the most important results in the theory of continuous-time systems isithense
and uniqueness result for Lipschitz differential equations f(x). Further, if® : X x

R — X is the solution flow of the differential equation, thénis continuous, and can be
effectively approximated, in the sense that given the funcfiahe initial conditionzy and
the integration time, we can comput@(x, t) arbitrarily accurately on a digital computer.
In many situations, the datg =, and¢ may not be known exactly. However, even in this
case, given a sufficiently accurate descriptioyf @hdx, we can still compute the evolution
D,

Compare the situation for differential equations with that for hybrid systethsve
denote the solution of a hybrid system with initial conditiomat timet¢ by ¥ (¢, ), we see
that there are a number of situations in which the solution may vary disconshuiouz:
andt.

Time discontinuity at discrete transitions Whenever the state of the system is reset dur-
ing a discrete transition, a discontinuity in the time evolution occurs.

Figure 1: Time discontinuity at a discrete transition.

Spacial discontinuity at tangencies and corner collisiondf the continuous evolution
touches a guard set tangentially neathen some points nearundergo a discrete
transition, whereas other points undergo further continuous evolutioems@ame phe-
nomenon may occur of the continuous evolution touches a corner of d gefar

Spacial discontinuity at switching boundaries If x lies on the boundary of two guard
sets, then some points neaundergo one transition, and others undergo the other.

Spacial discontinuity at instantaneous transitionsSuppose that after a discrete transi-
tion, the stater lies on the boundary of the switching set. Then some points near
x immediately undergo a second transition, whereas other points may flow away f
the activation region and do not undergo the transition.

All these situations may occur generically, which means that they persist anll pertur-
bations of the parameters defining the system. From the viewpoint of dyndms&tese
discontinuities which distinguish hybrid systems from purely discrete-time atiragous-
time systems. In many cases, the spacial discontinuities only occur for a “gmai#sure
zero) set of initial conditions, and might therefore be considered nog tof physical in-
terest. However, spacial discontinuities may still occur on a (locally) deesef initial

conditions. If the exact solution passes very near a discontinuity potithatt, then the
presence of even a small numerical error may cause the computed solfftgiotinae ¢ to



Figure 2: Spacial discontinuities. (a) At a tangency; (b) at a cornbiisiom, (c) at a
switching boundary, and (d) at an instantaneous transition.

differ drastically from the exact solution. As we shall see, it is importantaiodte these
situations correctly in the development of a sound numerical theory ofchgipstems.

2.2 Computability theory

We have seen that hybrid systems may exhibit discontinuities in the evolutidnintan
itively we expect that the presence of discontinuities will cause difficultiesdmputing
the system evolution, even to the extent that it is impossible to compute the evolution to
arbitrary accuracy. However, to actually prove that a certain computdttask is impos-
sible, we need a formal theory of computation, which requires specifyicmrgutational
model, and also the input and output data that the computational model works\itdth
compare this motivation with Turing’s motivation for introducing his computing nvaes)
which was to prove the impossibility of an algorithmic solution of Hilbert's Entsciguig
problem. Since we are interested in algorithmic solutions to problems concédminmiy
systems, if our original problem turns out to be unsolvable in general, ard Y@ know
to what extent our problems are solvable, or find related problems wheckanpletely
solvable.

In this paper, we use the theory@aimputable analysias developed by Weihrauch [28]
and co-workers. In this theory, computation is performed by ordinamngumachines
acting on streams of data. The data stream encodes a sequence &frappoms to some
guantity, such as a subset of the state space, or a function describiagems A function
or operator is computable if given a data stream encoding a sequenp@rokienations
converging to the input, it is possible to calculate a data stream encodingianeeqof
approximations converging to the output. In practice, finite computations eadbtained
by terminating whenever a given accuracy criterion is met. However, it gétieally very
convenient to consider the computations to be infinite, since we can talk etwoyguting
the mathematical objects themselves. Two encodingsmesentation®f the same class
of mathematical object are equivalent if each can be transformed into teehlytia Turing
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machine; this makes it possible to relate results on representations whiciissreoevork
with theoretically to representations which are efficient to work with in implememtstio

The representations used in computable analysis are each related to gyopolihe
set of objects under consideration, and so give a clean link betweeoxappbility, con-
tinuity and formal computability. The fundamental theorem is that only contisidionc-
tions with respect to a given topology can be computable with respect tesepations
based on that topology. Hence if we can prove that a function is disconignahen it is
uncomputable. For “naturally” defined functions the converse is typicddly aue, that
continuous functions are computable. It is worth emphasising that a funetidch is
uncomputable with respect to one representation may be computable withtrespeep-
resentation based on a different topology. This corresponds to ginorg information in
the input, or requiring less information in the output. We shall see later thatsthefuthe
correct topology/representation is vital when considering computabilitinforid systems.

Since objects are described by sequences of symbols, we can rémetseof contin-
uum cardinality. This includes points in Euclidean space, open, closezbamgiact subsets,
continuous functions and semicontinuous multivalued functions, but bivtaay subsets of
space or arbitrary discontinuous functions. It is also possible to repr&orel probability
measures and measurable functions, though in this article, we only consideutations
involving points and sets. In particular, we will require the data describurgsgstems to
be in terms of open/closed sets and (semi)continuous functions.

The representations used must allow information about the objects thaybeetscbe
obtained from a finite amount of data. Consider a computation whose reswitis real
numberz. In traditional numerical analysis, it is usual to compute a sequence tihfiea
point or rational approximations,, converging taz. Often some order of convergence is
given, such agr — x,,| = O(1/n*) for some integek. Unfortunately, in this model, know-
ing some particular approximatiar), gives in theoryno informationon the value ofc. To
gain information about, we also need to know an error bouagdfor the approximation,
such thatjx — z,,| < €,. If ¢, — 0, then we can compute an approximationztevith
arbitrary knownaccuracy. We say that,, converges effectively n. In some problems,
especially optimisation problems, we merely seek a sequence of approximatiauos-
verging tox from above (or below). In this case, we cannot give metric bounds, dout
can still deduce properties of such ase > x,,.

In theoretical work, especially when making a link between computation armdotpy
it is more convenient to work witpropertiesof objects. For example, fa, b) is an open
interval, thenr € (a, b) is a property ofc. Further, such properties should tmbust in the
sense that if some property holds forthen it holds for ally nearxz. Topologically, this
means that a property corresponds to membership of an open set.

To describe arbitrary objects in some space, we first choose a coumtzldetion
o = {I1,I5,...} of basicopen sets (properties) such thais determined uniquely by
its properties. For example, if we taketo be the collection of all open intervals, b) with
rational endpoints, then determining whethee (a,b) for all (a,b) € o is sufficient to
determiner. Usually, we only need to know a subset of properties to determanad all of
its properties uniquely. For example, if we can enumerate a sequenceéoofitantervals
(an, by) such thate € (ay, by,) for all n andlim,, . b, — a, = 0, then we can determine
all other intervalga, b) such thate € (a,b). Notice that the information given by approx-
imations is equivalent to the information given by properties. For if we know (a, b),
then(a + b)/2 is an approximation te with errore = (b — a)/2.

In practice, we cannot determine all propertiescofor compute an infinite sequence



of approximations tar. Instead, we are usually content to compute sufficient informa-
tion aboutx to be able to approximate to some desired accuracy (which can be checked
a-posteriori). However, it is useful to know thatan be approximated #nydesired accu-
racy. Further, by describing by a list ofall its properties, we can often conceptually work
with the objectr itself rather than with approximations 19 a considerable simplification.

While the model of computation, being based on Turing machines, subsudieargy
finite computation, the main purpose of computable analysis theory is to dealppitta-
mations. In particular, the data describing the systems is interpreted as ppitxianate.
This can drastically change the computability properties. Consider the foljogimple
example:

Example2.1 Consider the differential equatioh= 22 + ¢ with initial conditionz(0) =
—1. We wish to determine whether the solution remains bounded. idftaken to be a
rational number which is described exactly, the problem is always solvigesolution
is bounded if and only it < 0. However, if theonly information we have about is
approximate (possibly is an experimental parameter) therxit= 0, then no matter how
accurate the approximation é¢pwe cannot eliminate the possibility that- 0 and that the
solution is unbounded.

To summarise, boundedness of the solution in the €asé is undecidable when using
approximate data, but decidable using exact data. Furthersifery close td), we need
a very accurate approximation tan order to determine boundedness. Even in the exact
model, ife = 0, then a very small amount of noise in the system will destroy boundedness.
The interested reader is strongly advised to read [28] for more details.

3 Technical preliminaries

3.1 Multivalued Dynamical Systems

In many applications, it is convenient to represent systems by nondeteimmmixlels de-
fined by multivalued functions. Further, as we shall see, nondeterminiamaigidable if
we are to give a framework for hybrid systems under which we can contipetevolution.

We sayfF' is amultivalued functiorirom X to Y, denotedF’ : X = Y/, if F' associates
to eachr € X, a subset’(z) of Y. If A C X, we defineF(A) = (J,., F(x), and if
F:X=YandG:Y = Z,wedefineGo F : X = ZbyGo F(x) := G(F(x)) =
Uyer@) G(y). ThepreimageF—' : Y = X of a multivalued function” : X = Y'is
defined byF~1(B) = {x € X | F(x) N B # (}. We sayF is lower-semicontinuous
if F~1(V) is open wheneveV is open, andupper-semicontinuou$ F—!(B) is closed
wheneverB is closed. F' is continuousif it is both lower- and upper-semicontinuous. If
F : X = Y is closed-valued lower-semicontinuous ariés compact, therd'(C') need not
be closed, but for any set, F/(A) C cl(F(A)).

In control theory, lower-semicontinuous functions are often apprapt@amodel con-
trol input, and upper-semicontinuous functions are appropriate to mastatloances. For
hybrid automata (without inputs), lower-semicontinuous functions are iisee want to
be sure that a trajectory with some propeskysts whereas upper-semicontinuous functions
are used if we want to be sure tradk trajectories have some property.

We write f :C X — Y if f is a partial function fromX to Y. Let C(R* --» X)
be the set of continuous partial functionsC R* — X such thaidom(n) is a nonempty



connected intervdD, ¢] or [0, ¢[. A multivalued flowis a subse® of C'(R* --+ X) with the
following properties:

1. Ifn1,me € ® andn;(s) = n2(0), then the catenatiom = n; -7z given byn(t) = n1(¢)
fort < sandn(t) = no(t —s)fort > s,t — s € dom(ne) isin ®.

2. If n € @, then the shiftyn given byosn(t) = n(t + s) fort + s € domnisin ®.
3. If n € @, then the restriction of to an initial subdomain is i®.

Given a flow® c C(R* --+ X), we can define
e a multivalued functionY = C(R* --» X) by z — {n € ® | n(0) = x}, and

e a multivalued functionX x RT = X by (z,t) — {y € X | 3Inp € ®s.t.9(0) =
x andn(t) = y}.

We will use @ interchangeably to denote the flow as a subsef'@R"™ --» X), as the
multivalued functionX = C(R* --» X)) or as the multivalued function§ x R = X
defined above. The usage will be clear from the context.

We say a flow isupper-semicontinuou$ dom(n) is closed for ally € ®, and the map
®: X = C(RT --» X) is upper-semicontinuous, atalver-semicontinuou dom(n) =
0, ¢[ is half-open for all) € ®, and® : X = C(R™" --» X) is lower-semicontinuous.

A differential inclusionon a manifold.X is a continuous-time evolution equation of
the formz € F(x) whereF : x € X = T,X. A solutionto the differential inclusion
i € F(x) is an absolutely continuous functign: [0,7) — X such that(t) € F(&(t))
for almost allt € [0,T"). Theflow of a differential inclusion is set of all solutions. In this
paper we work directly with flows and their semicontinuity properties, but teviaere
is considerable work in the literature on semicontinuity properties of the sotutibra
differential inclusion, see [3] for an overview.

3.2 Hybrid Systems
A minimal definition of a hybrid system is

Definition 3.1. A hybrid system is a tripled = (X, ®, R) where X is the state space,
® C C(R" --» X) is adynamicsatisfying the flow conditions anl C X x X is thereset
relation.

We will typically restrict to single-valued flows in the examples. To repreadrajec-
tory of a hybrid system, we need to take into account the possibility that moneotia
discrete event occurs at a given time. To capture the intermediate statese\ree follow-
ing definition ofhybrid time domairj14, 20], which is based on work of [25]:

Definition 3.2 (Hybrid trajectory) Let (¢;);<~ be an increasing sequenceRt U {oo}
with tq = 0. Then thet; define ahybrid time domair?” ¢ R* x ZT by

oo
T ={(t,;n) € R X Z¥ |t <t <tpyr} = | Jltn, tnr1] x {n}.
n=0
A hybrid trajectoryis a continuous functiof : 7 — X for some hybrid time domain. This
is equivalent to requiring that— £(¢, n) is continuous fot € [t,,, t,,11].
The trajecton is Zenoif lim,, .., t, < oo, and has finitely many events if there exists
n such that,,, = oo forall m > n.



The evolution of a hybrid system consists of continuous flow interspevitadiscrete
transitions.

Definition 3.3 (Solution of a hybrid system)A hybrid trajectory is asolutionor execution
of the hybrid systenfi = (X, ®, R) if

1. £(-,n) € @, and
2. (&(tp,n —1),&(tn,n)) € R forall n.

Theevolution¥ of a hybrid systent! is the function¥ : X x R x Z+ = X by
U(z,t,n) = {y | 3 solution{ of H s.t.£(0,0) = 0 and&(n,t) = y}. (1)

In later sections, we will consider hybrid systems defined using invar@mighs, acti-
vation regions and guard sets.

3.3 Computable analysis for sets and functions

We now outline how to describe objects such as points, sets and functiomsfiartework
of computable analysis. The material in this section can be found in [28, 15].

Formally, arepresentatiorof some sefX is a partial surjective functioti :C X% — X
for some finite alphabet. We sayw € ¥* is ad-nameof z € X if §(w) = =.

Let X be a topological space whose topologis generated by a countable collection
of open setsr = {Iy, I1,...}. Then¢ is thestandard representatioof (X, 7,0,v) if a
d-name ofr € X is a binary encoding of an enumeration{df € o | € I}. Informally,
we say that @-name ofz encodes a list of all € ¢ such that: € 1.

We say that a functiorf : X7 x -+ x X — X is (01, ..., 0; dg)-computable if
there is a Turing-computable partial functiowl :C ¢ x --- x ¥ — 3¢ such that
do(M(wy, ... ,wg)) = f(01(w1),...,dk(xx)) whenever the right-hand side is defined.

We will restrict to hybrid systems such that the state spdces a locally-compact
second-countable Hausdorff space, andiléte a base foX. For Euclidean spac& =
R™, we takeg to be the collection of all open bounded boxes with rational endpoints;
(al,bl) X (ag,bg) X o+ X (an,bn) with a;, b; € Q fori = 1,2,...,n.

We have the following representations of points and sets.

e A p-name ofr € X encodes a list of all € g such that: € 1.

A f_-name of ope/ C X encodes a list of all € 3 such thatl c U.

A ¢)--name of closed! C X encodes a list of all € 3 such thatl N A # (.

A 1~.-name of closedd C X encodes a list of all € 3 such thatl N A = 0.

A k~-name of compaof’ C X encodes a list of all tupledy, ..., I;) € §* such
thatC' C Ule I;. An equivalent representation encodeg-aname ofC' together
withanI € g suchthatC C I.

e A k-name of compaat’ encodes both @&.-name and &~ -name.



It is easy to see that each of the properties encoded is robust witlctésgesmall change
in the set being described. For example] it a subset of some open $éf then[ is also

a subset o¥/ for any sufficiently small perturbatiol of U. The information given by

is sufficient to compute a sequence of sets (described as finite unionges)lzonverging
to U from inside, and the information given by. is sufficient to compute a convergent
sequence of outer-approximationgfo The information given by is sufficient to compute
C' to arbitrary accuracy in the Hausdorff metric.

Using these representations, the first natural question to ask is whichegy@o op-
erations (union, intersection) are computable. It turns out that the finiten wficlosed
sets is upper-semicomputable i.e(4,B) — A U B is (¢s,1~;1-)-computable,
and the countable union of open sets is lower-semicomputable. The countaddel
union of closed sets is also lower-semicomputable {&;, As,...) — cl(U,~, 4n) is
(Y<,t<,...;1p<)-computable. The intersection of two closed setsB) — AN B is
upper-semicomputable i.e(1-, 1~ ; 1~ )-computable but not lower-semicomputable i.e.
not (¢, ;- )-computable. In other words it is not possible to enumerate all basic open
sets] € (3 such that(A N B) NI # () from similar enumerations fol and B. How-
ever, the closure of the intersection of an open and a closed set issewecomputable i.e.
(U,A) —» cl(UNA)is (0, <;<)-computable.

We now wish to describe continuous functions. The standard way of dbiggs via
the compact-opemepresentation. For if : X — Y is continuous and/ C Y is open,
then f~1(Y) is open. Hence iff is compact, then the property ¢ f~!(.J) is robust.
Alternatively, if I is compact, therf(I) is compact, so the propert(I) C J is robust, and
is equivalent tdl C f~1(J). Hence:

e A y-name of continuoug : X — Y encodes alistof alll, J) € Sx x By such that

Icf4J).

With this representation, the operatgf, ) — f(x) is (v, p; p)-computable, the oper-
ator (f, A) — cl(f(A)) is (v, 1<;<)-computable (lower-semicomputable), the operator
(f,C) — f(O)is (v, k>; k> )-computable (upper-semicomputable) &ifidl) — f~1(U)
is (v, 6; 0 )-computable (lower-semicomputable). Further, the solution operator fer Lip
schitz differential equations is computable, or in other words, the ope(dtar,t) —
®f(t,x) is (v, px, pr; px )-computable, where(t,z) denotes the flow off satisfying
i(t) = [(x(t)) if a(t) = ®(t, x0).

We have the following representations of multivalued maps.

e A pi< name of a lower-semicontinuous map: X = Y with closed values encodes
alist of all pairs(1, J) € Bx x By suchthatl ¢ F~1(J).

e A u~ name of an upper-semicontinuous map: X = Y with compact values
encodes a list of all tupled, J1, ..., Ji) € Bx x (% such thatF'(I) C Ule Ji.

It is easy to show that the closure of the image of a closed set under al-clak®ed
lower-semicontinuous function is lower-semicomputable i.eF, A) — cl(F(A)) is
(1<,¥<;1<)-computable, and the image of a compact set under a compact-valued
upper-semicontinuous function is upper-semicomputable (&, C) — cl(F(A)) is
(1>, k>; k= )-computable. Further, the information provided by the image of a set, or even
a point, under a multivalued functiaf, is precisely enough to compute a nameFofin
other words, if we have a compact-valued upper-semicontinuous multivémetion F,



and we can compute — F'(z) in the sense that givenaname ofz we have an algorithm
to generate a-.-name ofF'(z), then we can generatea -name ofF".
We have the following representations of multivalued flows.

e A ¢.-name of a lower-semicontinuous multivalued flahvencodes a list of all
(I,T,J) € Bx x Br x Bx such that for al € I, there is a solutio such that
£(0) =z and¢(T) C J.

e A ¢~-name of an upper-semicontinuous multivalued fliwencodes a list of all
(I,T,J) € Bx x Br x B% such that for allz € I, and all solutiong such that
£(0) = x, ¢ is defined orll” and¢(T) € J; equivalently, for allx € T andt € T,
O(z,t) C J.

Note that the information given by@.-name of a lower-semicontinuous multivalued flow
® is strictly stronger than the information provided by:a-name of® considered as a
multivalued function® : X x R™ = X. The information given by &-.-name of an upper-
semicontinuous multivalued flow is equivalent to the information provided by:a -name
of ® considered as a multivalued functién: X x R™ = X.

In this paper, we work directly with flows, and do not consider explicitlysidar dif-
ferentiable formalisms of the continuous dynamics. This is actually no restrisiioce we
can effectively compute the solution of differential inclusions under stehdonditions.
The solution of a general locally Lipschitz continuous differential inclusi@s shown to
be computable (using different terminology) in [27]. We can refine thisltesd consider
lower-semicomputability and upper-semicomputability separately.

Theorem 3.4(Computability of differential inclusions) Let® : RT™ x X = X denote the
flow of the differential inclusiott € F'(x).

1. If F' is upper-semicontinuous with compact convex values and linear grawith a
finity, then the solution operataf” — & is upper-semicomputable; more precisely,
F — ®is (ps; ¢~ )-computable..

2. If F'is locally Lipschitz lower-semicontinuous with closed values, then the solution
operator F' — & is lower-semicomputable; more precisely,— @ is (u<; ¢<)-
computable.

In this paper, we will usually consider the computability of the solution operatof
a hybrid systemH. We will sometimes use the terminology*“is computable” or ¥ is
computable fromH” instead of the more precise “the operafér— ¥ is computable”.

4 Discontinuity in the solution of hybrid automata

Let H be a hybrid systemX, be a set of initial states, aril a set of times. We wish to
compute the set of points reachable under the evolutidi efarting atX for times inT.
In other words, we wish to compute the operathr, X, T) — ¥ (X, T). Note that this
problem includes the problem of computing simulations, in which case weXake {z(}
andT = {t} to be singleton sets.
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4.1 Hybrid Automata

A simple class of hybrid system is thatloybrid automata

Definition 4.1. A hybrid automaton is a tupleX, G, f,r) whereX is a space( C X isa
guard set f is a vector field onX andr : X — X is areset map

The evolution of a hybrid automaton proceeds roughly as follows. Théisolevolves
according to the differential equatian= f(z) as long as:(¢) ¢ G. As soon ag:(t) enters
G, adiscrete evenbccurs and the state is reseti@). If r(z) € G, then a further discrete
event occurs without any prior continuous evolution.

Typically, the state spac¥ of a hybrid automaton is of the forti = J¥_, {¢:} x X;,
whereg; is the modeof the system and\; the continuous state spaamrresponding to
modeg;. A state is denotedly, z) whereq is thediscrete statef the system, and is the
continuous state

As we shall see, hybrid automata are sufficiently rich to allow us to find disuarus
dynamics.

4.2 Temporal discontinuities

We first give a trivial example to show that the evolution may vary discontialyan time.

Example4.2 Let H be the hybrid automaton with two modes,andg», with X; = R and
X5 = RY = {0}. The dynamics inX; is constantj; = c. There is a single evertwith
reset map-(q1, z) = (g2) which is activated whem > a.

X Xo

Figure 3: A hybrid automaton with two discrete modes and piecewise-cortstaatnics
exhibiting a temporal discontinuity.

Let the initial condition ber(0) = z¢. Then ifzg > a, the event is immediately
activated and the final state (ig;) for all ¢ > 0. If zp < a andc > 0, then the event is
activated whert = t; = (a — o) /c. Hence fort < ¢, then state i$q1, xo + ct), and for
t > t1, the state igq2). Hence the evolution is discontinuoustin

Of course, time discontinuities are the essence of hybrid automaton dyndmigsc-
tion 5 we see that temporal discontinuities can be handled as long as they dccooat
the final evolution time, and are not also associated with spacial discontinuities

4.3 Spacial discontinuities

We now give several examples to show that the evolved setsdiacpntinuouslywith
system parameters and initial condition, even when no transition occuesfatdhevolution
time.

Example4.3 (Discontinuity induced by tangency with guard sétgt A be a hybrid au-
tomaton with two modes; andg,, with X; = R? and X, = R?. The dynamics inX; is
affine, (z,y) = (2y,—1). There is a single reset map witliq:, z,y) = (g2,0) which is
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activated when the constraint given byx > a. The solution to the continuous dynamics
in modeq; is (z(t),y(t)) = (zo + 2yot — t2,yo — t). The maximum value af is z¢ + y3

and is attained wheh= yj.
Xl\ ________ —_
/ X2

Figure 4: A hybrid automaton with two discrete modes and piecewise-affinanizs ex-
hibiting a grazing discontinuity.

Suppose the initial condition &1, zo, yo) With zp = —1 andyy = +1. Thenx(t)
reaches a maximum value ofat¢ = 1. Consider the se¥” ((zo,vo),t = 2). Then if
a > 0, the constraint; is not satisfied, and the reached statégis —1, —1). However,
if a < 0, the constraint; is satisfied for someé < 1, and the state at time= 2 is (¢2).
Hence the evolution is discontinuous in the parameter

Now suppose that is fixed at0, and the initial condition i§z¢, 1) with zy < 0. Then
for xy < —1, the maximum value of is 1 + x¢ which is less tham, so the constraint is
never active and the reached statéjis xo, —1). However, ifzy > —1, the constraing; is
satisfied for some < 1 and the reached state(ig;). Hence the evolution is discontinuous
in the parametex.

Example4.4 (Discontinuity induced by corner collisiond)et H be a hybrid automaton
with three modesg, g2 andgs, with X; = R? and X, = X3 = R°. The dynamics inX;

has constant derivativés, y) = (1,1). There are two eventsy andes, with reset maps,
ro andrs with ra2(q1, z,y) = (¢2) andrs(z,y) = (g3), and activations, which is activated
whenz > a, andes which is activated whep > b.

Figure 5: A hybrid automaton with three discrete modes, affine guard setpiacewise-
constant dynamics exhibiting a corner discontinuity.

Suppose the initial condition ig1, zo, yo) With 29 = yo = 0. Thenif0 < a < b < 1,
the evente; is activated befores, and the state at time= 11is(¢2). If 0 < b < a < 1,
then events is activated beforeq, and the state at time= 1 is (¢3). Hence the evolution
is discontinuous in the parameterandb. In a similar way, we can show that the evolution
is discontinuous in the initial state.

Exampled.5 (Discontinuity induced by immediately activated eventsjt H be a hybrid
automaton with three modeg, ¢ andgs, with X; = R?, X, = RandX3 = R’. The
dynamics inX; has constant derivativéz, y) = (1,0), and the dynamics iXs is & = 1.

12



The event; is may occur in mode, , with activation: > « and reset;(q1, z,y) = (g2, z+
y). The eventy may occur in modee, with activationz < 0 and reset (g2, 2) = (g3).

Figure 6: A hybrid automaton with three discrete modes, affine guard setgiecewise-
constant dynamics exhibiting a discontinuity caused by an immediately activaget e

Suppose the initial condition iy, xo, yo) With o = —1 andyy = 0. Then the event
e1 is activated afq;, a,0) and the state is reset {g,, a). If a < 0, eventes is immediately
activated, and a transition occurs to state). If « > 0, then the continuous statén mode
qo satisfies: > a > 0, and so event, is never activated, and the state at titfer ¢t > 1 is
(g2,t — 1). Hence the evolution is discontinuous in the parameters.

If the initial state iS(q1, —1, y0), then the event; is activated atq;, a, o) and the state
is reset to(q2, z) With z = a + yo. If yo > —a, the state remains in modg whereas if
yo < —a, thenz < 0 and evenk, is immediately activated and the state is resefgt9.
Hence the evolution is discontinuous in the initial state.

4.4 Coherent semantics of evolution

We have seen that the evolution operakor X x R™ — X of a non-Zeno hybrid automaton
may be discontinuous in both space and time, even for affine systems. Byntieniental
theorem of computable analysis, this means that the evolution is uncomputalgdasta
near the discontinuity points. This does not in itself rule out the possibility aflagiging

the evolution in some way so that the evolution becomes computable. In Sectien 5 w
shall show that by using appropriately-defined nondeterministic semamcsan make

the evolution semicomputable. In this subsection we prove that it is impossiblautanieg

the evolution near continuity points to make the solution fully computable i.e. botir{owe
and upper-semicomputable.

Definition 4.6 (Coherent semantics of evolutionjet H = (X, R, ®) be a hybrid au-
tomaton, and le/ ¢ X x R* be the domain of continuity of the solution operator
¥ : X x Rt — X. We say that a set-valued solution operafor: X x Rt = X
hascoherent semantidé U (z, t) = {U(z,t)} forall (z,t) € U.

In other words, away from discontinuities, the solution operaﬁomust be single-
valued, with the value given by. This condition eliminates trivial approximations, such as
taking¥ (z, ¢t) = X forallz € X, t € R*. For maximum flexibility, we give no restrictions
on the discontinuity set.

Theorem 4.7 (Uncomputability of the evolution of hybrid automatd)et H be a class of
hybrid automata. Then for any coherent semantics of evolution, the fiimiésevolution of
a hybrid system is uncomputable. This result holds even if we restriat, tg-values for
which no event occurs at tinte

In particular, the operato Xy, t) — ¥ (X, t) is not(x, p; k)-computable. Further,
even if no event is possible at timehe operator: — ¥ (z, ¢) is not(x; x)-computable.
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The result is immediate from the following general lemma, since we have sagpies
for which the evolution has non-removable discontinuities, even awaydieanete events.

Lemma4.8.Letf : U — Y be single-valued and continuous on an open, dense stbset
of X, and letY be compact. Suppogehas no continuous closed-valued extension d¥er
Thenf has no continuous multivalued extensiBrover X .

Proof. For letz be an essential discontinuity point gfandA = (N, .y cl(f(V NU)) over
open setd/. Supposd’(z) C# A, lety € A\ F(x), and take a closed neighbourhoBd
of y such thatd N B = (). ThenF~1(B) does not contain, but contains points arbitrarily
close toz, so F' would not be upper-semicontinuous. Suppéie) O A and A has two
distinct elementg andz. Let W be an open neighbourhoodgsuch that1(W) is disjoint
from 2. Then F~1(W) containsz but does not contain points i~ (X \ cI(W)) which
come arbitrarily close ta, soF' is not lower-semicontinuous. O

4.5 Sliding along switching boundaries

A particularly nasty form of discontinuity occurs when a solution slides atbedoundary
of a guard set before crossing.

Example4.9 (Uncomputability caused by slidingConsider a hybrid automaton in two-
dimensions with a transition which is active fg= 0. Consider the flowk = 1, and

a+ 322 —yif 2 <0;
y=qa—yif 0 <z <
a+3(x—b)2—yifz>b

Fora = 0, and let(z, yo) be a point withzy < 0 such that the continuous orbit starting at
(o, yo) exactly reaches the poifd, 0). Then forb > 0, the continuous evolution starting
at (xo,yo) slides along the surfage= 0 for 0 < = < b, and then crosses ingp> 0. The
hybrid orbit therefore undergoes a discrete transition at some fpojo} with 0 < = < b,
but the exact value of at which this transition occurs is undetermined. kar 0, we see
thaty > 0 wheny = 0, and the orbit starting dtr¢, yo) undergoes a discrete transition with
x < 0, whereas fon < 0, the orbit starting atx, y9) undergoes a discrete transition with
x > b. Hence the spacial evolution is discontinuous at the parameterwvatu@ Since for
a lower-approximation to the solution we may only consider solutions whichispersder
perturbations, the hybrid evolution starting (a, yp) cannot be continued past the point
(0,0).

Now consider the case = 0 andb = 0, which is the limit of the cases = 0,
b > 0. Since the hybrid orbit starting &t, yo) is blocked at0,0) for b > 0, in the limit

= 0, the orbit cannot be continued pgét 0) when computing lower-approximations.

However, the dynamics in this case is given by the differential equéfiof) = (1,322 —
y), so all solutions which reach = 0 cross topologically transversely. This implies that
topological transversality of crossing a guard set is not in itself suffideensure that a
discrete transition is enabled at the crossing point.

Now consider the flowz, y) = (1,0) the guard set: = y and reset magz, v, qo) —
(y,q1). The flow is transverse to the guard set, and if the initial staie,if, o) with
x < y, then after the first reset the new statddsg;). However, it is possible to make
a CY perturbation of the guard set, so that the flow is parallel to the guard sgtfo a.
By the previous discussion, this means that the evolution of the perturtied lsystem
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Figure 7: Sliding along a guard set. The discontinuity in (b) can be peduibeaive
a continuous system in (a) and (c), but the evolution of the original diswoty point
depends on the perturbation.

cannot undergo a discrete transition for initial conditions wih= a. Since we wish to
compute lower approximations to the flow which persist under perturbatimmans that
the evolution of the original hybrid system cannot undergo a discretsiti@mif o = a.
Since the above argument holds for arbitrarthe evolution of the original hybrid system
cannot undergo a discrete transition at any point of the guard set.

Figure 8: AC?-perturbation of the guard set at a transverse crossing (a) cahiresliding
at any point (b). The evoluition cannot be continued, since we canfebut the presence
of sliding.

We have therefore demonstrated that, at least without additional infornatitdme be-
haviour, the evolution of a hybrid system cannot be allowed undergoceetiistransition
at a crossing of a guard set if we are to compute lower-approximations tevtiiation
which are robust with respect to perturbations. However, the abowvatisituis pathologi-
cal, in then sense that “most” systems do not exhibit this kind of sliding betniawarther,
transverse crossings are generic for hybrid systems with differenfialle (such as from a
Lipschitz differential equation) and differentiable guard sets, and iiCthtopology, trans-
verse crossings cannot be perturbed away. This suggests that tthidogécal behaviour
can be treated numerically by computing derivatives, and this is indeed $iee ¢tow-
ever, trajectories which slide along the guard set can occur evéfi flows with C™ guard
sets in the neighbourhood of@" singularity, and such singularities occur generically in
r-dimensional hybrid systems. Hence even taking higher-order deggathight not be
enough in some cases.

In this paper, we resolve the difficulty by giving a topological definition tdetectable”
crossing (which is weaker than topological transversality), and shotiftiee restrict to
systems with detectable crossings, then it is possible to compute the evoluisopodsible
to prove that crossings are detectable numerically by computing derivativbe flow and
guard set.

In the above example, a discontinuity in the evolution resulting in a loss of lower-
semicomputability can occur at a degréerossing if perturbations of ordet — 1 are
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allowed. Hence, a purely topological approach to lower-approximatiosystems with
crossings of guard sets is bound to fail.

5 Semicontinuity of evolution of hybrid systems

We now introduce a class of nondeterministic hybrid systems and consiudigitioos under
which the evolution is semicomputable.
5.1 Nondeterministic hybrid systems

In this paper, we use the following definition of hybrid system, which slightlgmdts that
of [4], and is essentially equivalent to that used in [19].

Definition 5.1 (Hybrid system) A hybrid systenis a tupleH = (X, D, A, ®, R) where

the state spac¥ is a manifold,

D c X is thedomainset,

A C X is theactivationset.

e &: X = C(R"--»X) is a multivaluedlow, and
e R: X = X defines aesetmapa’ € R(z).

In typical examples, the flow will be defined by a differential equatiog f(x) or differ-
ential inclusiont € F'(x).

Note that instead of working with differential inclusions, we work directly wiltdws,
since this separates the core hybrid systems theory (e.g. detecting gsogsih guard
sets) from the technicalities of integrating with differential inclusionsA4 land D form a
topological partition ofX (i.e. DU A = X andD° N A° = (), where® denotes the interior
of a set), andp is given by the differential inclusion € F(z) thenH = (X, A, F,R) is
animpulse differential inclusioas defined in [4].

Definition 5.2 (Trajectories of hybrid systemsA trajectory or solution of a hybrid system
H = (X,D,A, ® R)is ahybrid trajectory, : 7 — X such that

n) € D whenevett,, <t < tyy1,
tn,m—1) € A,
t,m) = N[0t 11 —t.] (t — tn) fOr somen € @, and
;1) € R(E(tn,n —1)).

Note that even ifb and R are single-valued, then the evolution can still be nondeter-
ministic. For ifx € D N A, then both continuous evolution and a discrete jump may be
possible starting from:.

In this section, we will make regular use of the set-valued indicator funédganX =
X defined bylg(z) = {z} if z € S, andIg(z) = 0if = ¢ S. Itis straightforward to

£(t,
&(
£(
£(tn
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show that if A is closed, then 4 is upper-semicontinuous, andif is open, thenl;; is
lower-semicontinuous. We will also use trestricted reset mag| 4 defined by

R(z)ifxe A
= R(I = 2
Rla(x) = R(Ia(2)) {0 g @
and therestricted dynami®|p : X x RT™ = R* given by
®[p(z,t) :={y | In € ® s.tn(0) =z, n([0,¢]) C D andn(t) = y}. 3)

5.2 Upper-semicomputability of the evolution
We now consider upper-semicomputability of the evolution of set-baseddgystems.

Definition 5.3. A set-based hybrid systefd = (X, D, A, ®, R) is upper-semicontinuous
if

e D andA are closed,
e & andR are upper-semicontinuous with compact values.

Note that by sayin@ is upper-semicontinuous with compact values, it follows thét if
is a sequence of solutiogs € ®(x,,) with lim,, . 2, = , then there is a subsequence
of the¢&,, converging to a curvé...

Upper-semicontinuity of the solution of upper-semicontinuous hybrid sysigass
proved in [19]. In this work, we prove that the solution operator is alspeup
semicomputable, as stated in [16].

Theorem 5.4(Upper-semicomputability for nondeterministic hybrid system&)e evolu-
tion of an upper-semicontinuous hybrid system is upper-semicomputable

More precisely, letd = (X, D, A, ®, R) be a hybrid system such that and A are
closed, andP and R are upper-semicontinuous with compact values. XgtC X be a
compact initial state sefl’ C R™ a compact set of times, and a bound on the number of
events. Then the operatéb, A, ®, R) — U is (¢, ¢, ¢, p~; u~ )-computable.

Lemma 5.5. Let R be a compact-valued upper-semicontinuous map, Aradclosed set.
Then the operatofR, A) — R4 IS (i, ¥ ; u~)-computable.

Proof. For any compact seR4(C) = R(C N A), so the image is computable. O

Lemma 5.6. Let ® be an upper-semicontinuous compact-valued flow, Rralclosed set.
Then the operatof®, D) — ®|p is (¢, 1s; ¢% )-computable.

Proof. Consider the restricted flowdp, ,, given byn € ®p,, <= § € ®andn(t) € D
fort € {m/2" | m = 0,1,...,2%"}. Clearly, any trajectory ibp 11 lies in ®p ,, so
the allowable orbits form a monotone decreasing set. Further, di(&g) is a compact
subset ofC(R* --» X') for any compact set of initial state¥,, andC(R* --» X) is a
Polish space®(Xy) is sequentially-compact. Hencerjf is a sequence of solutions &f
such thaty,, (0) € X, andn,, € ®4,, then there is a subsequengg which converges to
a continuous function... SinceD is closed and);(m/2") € D for all i sufficiently large,
we haven.(m/2") € D. Sincen is continuous andm/2" | m,n € N} is dense iR,
we haven(t) € D forall t. Hence®|p(z) = (,,cy Po,n(T).
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It remains to show that eachy, ,, is computable. It is sufficient to considéy | £(t) €
D} is a computable closed set in for all ¢ € RT, since then we can writ@p ,,(z) =

d(x0) N m?jio{g | n(m/2™) € D}. This follows since

{nln@t) ¢ D} = U{(TJ)G,@]RxﬁXﬁmD;é@ andteT}{U | n(T) C J}

and
{ne®|nT) cJy=cd({ne®|nT)cCJ})

Hence{r | n(t) € D} is the complement ofJ ; 1),7+p 9 andrer 1{)7 | n(T) C J},
which can be computed from. O

We can now give the proof of Theorem 5.4.

Proof. By Lemmas 5.5 and 5.6, we can obtaip-a-name of the restricted res&t 4 and a
¢~-name of the restricted flo#| . It remains to compute a..-name of the evolution.

Consider the cas® = A = X,s0®|p = ¢ andRy = R. Let ¥, (z) := ®|p(x,t).
Then we can obtain g~ name of(x, t) — ®(x,t). Define

U(z,t;t1,...,t,) = {y € X | 3 solution¢ of H with eventtimesg; < --- <t, <t
S.t.£(0,0) = z and&(t,n) = y}.

Then since we can write
U(x,t, (t1,. .. tn)) = P4y, 0 Ro®y, 4, ;0 0Rody(x)

we see that the mafx, t,t1, ..., t,) — Y(x,t, (t1,...,t,)) IS @ composition of functions
for which we haveu~.-names, and hence we can computename of¥. We can write
U(x,t,n) = V(x,t,Tz,) WhereTy, = {(t1,...,t,) € R" | Vi, 0 < ¢; < tj41 <
t}. Sincet — T}, is (p, k>)-computable, we can computea-name of the function
(z,t,n) — U(x,t,n). Then®(z,t,[0,N]) = U2, U(z,t,n) = U, ¥(z,t,n) is a
finite union of .~ -computable functions. Hence we can compute.aname ofU. O

We say a system igniformly non-Zendf there exist(7', N) such that in any time
interval of length at most’, there occur at mosi discrete events. As shown in [19],
any non-Zeno upper-semicontinuous hybrid system with a compact gittibattor mush
be uniformly non-Zeno. For non-Zeno systems, we can drop the bountteaumber of
events.

Corollary 5.7 (Upper-semicomputability for non-Zeno hybrid system&et H =
(X, D, A, ®, R) be auniformly non-Zeno upper-semicontinuous hybrid systetij.et X

be a compact initial state set, aril ¢ R*T a compact set of times. Then the operator
(D, A, ® R, X0, T) — V(X T)is (¢, s, b, pi~; pi~ )-computable.

5.3 Lower-semicomputability of evolution
Definition 5.8. A hybrid systemH = (X, D, A, ®, R) is lower-semicontinuout
e D andA are open, and

e ® andR are lower-semicontinuous with closed values.
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In this situation, we have the following computability result.

Theorem 5.9. The evolution of a lower-semicontinuous domain-activation hybrid system is
lower-semicomputable.

More precisely, letd = (X, D, A, ®, R) be a hybrid system, whefe and A are open,
® is a lower-semicontinuous multivalued flow, aRd X = X is lower-semicontinuous.
Let Xy C X be closed and” ¢ R* be closed. Then the operatop, A, ®, R) + cl¥
is (0<,0-,0-, uc; u<)-computable. Equivalently, the operatéb, A, ®, R, X, T) —
W (X0, T)is (0,0-,0-, e, <, ;b )-computable

The basic idea of the proof is as follows. We lebe a time step, and consider all
trajectories ofH such that discrete events are constrained to occur at tirhesgith 0 <
kh < t. We show that the evolution defined by this semantics is lower-semicomputable,
and that in the limit ags — oo we obtain all trajectories. It is important that we do not
allow a discrete transition to occur at the initial or final time of the evolution.

Lemma 5.10. Let R be a closed-valued lower-semicontinuous map, &ndn open set.
Then the operatofR, U) — R|y is (u<,0<; u<)-computable.

Proof. From the definition off;;, we haveJ C I;'(K)iff J ¢ U N K so the function
U Iy is (6<; p<)-computable. The result follows sinég; = Ro Iy = cl(Ro Ii7), and
composition of functions is a lower-semicomputable operation. O

Lemma 5.11. Let & be an lower-semicontinuous closed-valued flow, &nhdn open set.
Then the operato(®, D) +— ®|p is (¢2, 0; ¢2)-computable.

Proof. We first show that for alt > 0, {n | n([0,¢]) C D} is computable. We see that for
fixedn andt € Qthatn([0,t]) C D < 0=ty <ty <--- <ty =t Ji,...,Jp With
Ji C D such thaty([t;_1,t;]) C J;. SO we can write

{n[n([0,1]) € D} = Uy, 1ye@xpy-7cpy (I n(lti-1,ti]) € Ji}

which is a computable (from &.-name of D) countable union of finite intersections of
basic open sets.

Hence®|p is the closure of the intersection &f with the union of partial trajectories
such that)([0,¢,]) C D, so is computable. O

We now present the proof of Theorem 5.9

Proof. First consider the cas® = A = X, so thatd = ®|p and R = R|4. Note
that from a¢.-name of® as a mapX = C(R' --» X), we can compute a.-name
of ® asamapX x T" = X. DefineV¥(x,t;t,...,t,) andTy, as in the proof of The-
orem 5.4. Then the map— T}, is lower-semicomputable i.€p; 1 )-computable, and
since(x,t,t1,...,ty) — Y(z,t;ty,...,t,) is a composition of maps of the foriy, _, ,
and R, for which we haveu.-names, we can computeua-name oft — W (x,t). Hence
we can compute a.-name of the closed compositi¢m, ¢) — cl(¥(x,t)).

The general case follows from the fact th@, ®) — &®|p and (A,R) — RJa
are lower-semicomputable i.e. respectivéy, ¢-; ¢~ )-computable andf., u; pu <)-
computable.

[
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The following result will be useful in Section 5.6. It shows that the evoluibH is the
same as the evolution we obtain by considering only trajectories with distinot trrees.
Indeed, any solution aff is the limit of solutions with distinct event times. Formally, fét
be a hybrid system and defirifeby

U(z,t,n) = {y | 3 solutioné of H with eventtimed < t; <ta <-- - <t, <t
such that(0) = xz and{(t) = y}. (4)

Proposition 5.12. Let ¥ be the evolution of a lower-semicontinuous hybrid systém
and let¥ be the evolution off consisting of trajectories with distinct event times. Then
(U (z,t)) = cl(P)(z, t).

Proof. Define Uy,, = {(t1,...,t,) € R* | 0 < t < --- < t, < t}. Then
U(z,t) = U(x, t, Ui n) WhereW(z,t, (t1,...,t,)) is as defined previously. Sinde: X x

Rt x (RT)" = X is lower-semicontinuous, we hav W (z, t,n)) = cl(¥(z,t, Uin)) =
(U(z,t,Usp)) = cl(¥(z,t,Ty0)) = cl(¥(x,t,n)) as required. O

5.4 Closure and interior semantics of evolution

General hybrid systems of the form given by Definition 5.1 need not lperdpr lower-

semicontinuous. In order to compute upper- or lower approximations to thésg we

need to convert the system into either upper- or lower-semicontinuoums e can do this
be regularising the guard sets to be open or closed, and

Definition 5.13. Let ' : X = Y be a multivalued function. Define
e FbyF = |J{F | F is upper-semicontinuous ard c F}, and
e FbyF =J{F | F is lower-semicontinuous antl C F'}.

An alternative definition of is in terms of its graphGiraph(F) = (..o Ne(GraphF).
It is easy to show that i’ locally takes pre-compact values (i&(F'(I)) is compact for any
compactl) then F is compact-valued upper-semicontinuous, and fha closed-valued

lower-semicontinuous.
Definition 5.14. Let H = (X, D, A, F, R) be a set-based hybrid system. Then

e £ : T — X is a trajectory ofH usingclosure-semanticg ¢ is a trajectory of the
upper-semicontinuous systefh = (X, cl(D), cl(A), ®, R).

e £ : T — X is a trajectory ofH usinginterior-semanticgf £ is a trajectory of the
lower-semicontinuous systefl = (X, D°, A°, &, R).

From Theorems 5.4 and 5.9, we deduce

Corollary 5.15. LetH = (X, D, A, F, R) be a set-based hybrid system. Then the evolution
of H is upper-semicomputable and the evolutiorHofs lower-semicomputable.

We now show thatd is “smallest” hybrid system for which the evolution is upper-
semicomputable. In other wordany attempt to compute an over-approximation to the
evolved set using approximative methods must necessarily compute asapreximateion
to the evolved set off.
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We let’H be the space of hybrid systems, whédeand A are in the space of regular
sets with both the lower representatithn and upper representatian., ® is in the space of
compact-valued flows with representation= ¢ V ¢, andR is in the space of compact-
valued maps with representatigny V u~. In other words,D is a regular set, and we have
access to a list of boxes fillin®°, and a list of boxes fillingX \ cl(D).

Theorem 5.16.Let H = (X, D, A, ®, R) be a hybrid system, and suppose that H x
X x R — K(X) is upper-semicomputable antl(z,t) > ¥ (z,t) for all 2,¢. Then
U(x,t) D Yg(x,t).

We have a similar result for lower-semicontinuity.

Theorem 5.17.Let H = (X, D, A, ®,R) be a hybrid system, and suppose that:
XH x R+ A(X) is lower-semicomputable anti(x, t) C cl(U(z,t)) for all z,¢t. Then
U(x,t) C (Y (z,t)).

The significance of these results is that, in general, it is impossible to do bedter th
compute over- or lower- approximations to the evolution which converge tdlemnsets
than those given by the upper or lower semantics, as long as only apptexifamation
is used.

5.5 Deficiencies of interior semantics

Unfortunately, the definition of interior-semantics given causes difficultiéise modelling
of systems with urgent transitions. This is because there is no way in theliemmaf
specifying a coupling between the invariants and activations.

Examples.18 (Uncomputability caused aliasingyonsider a system with dynamic= 1,
invariantx < « and activationr > b with a,b > 0. If a < b, then the invariant is
violated before the transition is activated, and further evolution is blocked.> b, then

the transition is activated before the invariant is violated, and a transition ntay atany
timeb < z(t) < a. If a = b and we are computing an over-approximation to the evolution,
then a transition must occur exactly wheft) = a. However, if we are computing a lower-
approximation to the evolution, then since equality is undecidable, we needsaeothe
possibility thate < b. Hence a lower-approximation to the evolution must block, since this
is the worst-case scenatrio.

(a) (b) (c)

Figure 9: Discrete transitions are blocked using inner semantics evensaisaérse cross-
ing. In (a) the domain and activation regions overlap and crossingsoasiybe. In (b) the
boundaries of the domain and activation regions touch, and discret&itrassre forced
with upper semantics, but disallowed using inner semantics. An arbitrarily gedtlirba-
tion gives (c) in which no transitions are possible.

At first sight, it may seem that the evolution “should” continue do= b. However,
the correct semantics for lower-approximation is to block the evolution. THiedause
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if the invariant and activation are determined by independent paramétersit is only
a coincidence that the transition is activated at exactly the same point as tharitg
violated, and under a small change in the parameters then the evolution megcked It
is only if we give the additional, combinatorial information that the invariantactt/ation
boundaries lie exactly at the same point, that we can deduce that the evolatyarontinue.
From an implementation standpoint, we see that « andxz > b are aliases for the same
constraintr = ¢ with ¢ = a = b.

5.6 Lower-semicomputability of hybrid systems using crosag semantics

Let H = (X, D, A, ®, R) be a hybrid system and suppoBeand A are regular open sets
and® is closed-valued lower-semicontinuous. We would like to know when trajestof
H cross instantaneously from to A.

Definition 5.19. A continuous trajectory crosses fronD to A at timet and pointz if for
alld >0,&(t—6,t)ND # Dandé(t,t+0) N A # (. We say that: is acrossing poinfor
€.

Note that trivially if x € D N A, thenz is a crossing point for any trajectory though it.
If z & cl(D) N cl(A), thenz cannot be a crossing point. The real interest is whées in
0D and0A. By the observations of Example 5.18/fand A are disjoint, then by a small
perturbation, we can make their boundaries disjoint, and so any lowemxépyation to the
flow will have blocking. We therefore need more information about the Beamd A, and
the flow ® than is given by the namés and¢..

Let us consider the case in whidh and A form a topological partition ofX; that is,
DnNnA = (andcl(D)Ucl(A) = X. Suppos€ is a trajectory such that(t;) € D and
&(ta) € A, so¢ apparently crosses fro» to A. We would like to be able to deduce that
& crosses fromD to A in the sense of Definition 5.19. Unfortunately, from Example 4.9, it
may be the case thatslides inside? D N 0 A rather than crossing transversely, and as we
have seen, we cannot handle sliding solutions.

Definition 5.20. Let H be a hybrid system and> 0. We sayH hasj-detectable crossings
if for all trajectories¢ of ® such thatt(0) € D and&(t) € A for somet < 4, then there
existsc € R andn € ® such that ([0, c[) C D, n(0) = &(c) andn([0,€]) N A # ( for all
e> 0.

In other words, if there is a trajectory which moves fradinto A in time less than
4, then from the point where the state leavesthere is a possibly different trajectory
which immediately entergl. Note that the condition of detectable crossings precludes the
degenerate situation in which a solution slides along a common bound&raofl A for
time less thard, and also the case of Example 5.18 in which the solution le&vbsefly
before enteringa.

In Section 6.3, we will give conditions under which a system has detecteddsiogs.

We now define a new notion of solution for hybrid systems.

Definition 5.21. Let H = (X, D, A, ®, R) be a hybrid system wher® and A are open
sets. Then a hybrid trajectogyis a solution ofH usingcrossing semanticé

o D <t <ty < - <ty <tigy < -vv

o {[t,n) € Dfort, <t <tp41.
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e There existg,, € ® such that},(0) = &(t,,n) and(,([0,€[) N A # @ for all e > 0.
o {(-,n) € @, and

L4 f(tnyn) € R(g(tmn - 1))

Intuitively, between discrete events, solutions must remain in the interidp;athis
prevents grazing contact with guard sets. A discrete event may octhe hobundary ofD
if it is possible to continue the trajectory directly inth Note that after a reset, we require
either thatr € D or that another discrete transition occurs immediately. Note that we allow
&(tn,n) ¢ D if another event occurs exactly at time

Using this notion of solution, we can prove the following result.

Theorem 5.22(Lower-semicomputability of the evolution of hybrid systems with detectible
crossings) Let H be a lower-semicontinuous hybrid system witHetectable crossings.
Then the evolutiol! — ¥ (z,t) is lower-semicomputable using crossing semantics.

More precisely, letd = (X, D, A, ®, R) be a hybrid system whete and A are open
sets, andb and R are lower-semicontinuous with closed values. Suppose that crossings of
® from D to A are §-detectable. LeX be a closed set of initial states, afidis an open
set of times. The the operatb, A, ®, R) — ¥ is (0,0, ¢, ji<; i<, )-computable.

We use the following lemma, which shows that the crossing times and points can be
computed.

Lemma 5.23. Let D and A be open sets an@ be a lower-semicontinuous closed-valued
flow. Suppose that the crossings of trajectorie®dfom D to A are -detectable. Define
the crossing functiol : X = Rt x X by

I(zg) ={(t,x) e Rx X |t>0and3 € &s.t.£(]0,¢)) C D and
£([0,t+€e[)nA#0Dforalle >0}. (5)

Then the functiotD, A, ®) — T'is (0,0, ¢~; u<)-computable.

Proof. Consider the set of trajectories #fwhich have a first crossing from to A at time

t €]t1,t2[ and pointz € J, and suppose, < t» < t; + 0. If n is such a trajectory, then by
the definition of crossing, we havg|0,t1]) C D, n([t1,t2]) C J andn([t1,t2]) N A # 0.
Further, by thé-detectable crossing condition, this is a sufficient condition for the existenc
of a crossing at time €]t;, o[ and pointr € J. Hencel c I'~(T x J) if and only if

Ic e ({n|n(0,t2]) € DYy {n | n([tr,t2)) C T} 0 {n | n(tr,t2]) N A # 0})

The set{n | n([0,¢;]) C D} can be lower-semicomputed froma name ofD, and the set
{n | n([t1,t2]) C J} is a basic open set of the flow. The $@&t| n([t1,t2]) N A # (0} can
be written ad J;y;, +,1{n | n(T) C A}, so is a countable union of lower-semicomputable

sets. Hence we can enumerate all tugled’, J) € 8x x Br x Bx such that for alk: € T,
there exists a trajectory @b starting atz such that® has a first crossing fron to A at
timet € T and pointy € J, which means we haveja.-name ofl". O

We can now give the proof of Theorem 5.22
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Proof. Define¥ : X x Rt x N* = X to be the evolution off with crossing semantics.
Note that this means that all events must occur at distinct times. Dfin€ xR = X xR
by R(z,t) = R(x) x {t}, andO((z, s),t) = ®(z,t — s) for z € X and0 < s < t. Then
U(z,t,1) = @(E(F(m)), t). Itis clear that we can computea.-name of R and® from
<-names ofR and ®, respectively, and by Lemma 5.23 we can compute-aname of
I'. Hence we can computea. name of the compositiofiz, ¢t) — cl(¥(z,¢,1)). The
result by induction sinc@ (z, £, n + 1) = U,y ¥(¥(x, 5,b),t — 5, 1) andecl (¥ (z, 1)) =

U \i(x,t, n) o

Note that in the case of crossing semantics, it is not true that every trajesttr
multiple events at the same time is a limit of trajectories with distinct event times.

6 Modelling, Simulation and Implementation

6.1 Hybrid Automata with guard sets

The description of hybrid automata introduced in Section 4 is sufficient toeléfie dy-
namic evolution, but is inexpressive as a modelling framework. Many hglggtem models
are defined using explicttiscrete stateanddiscrete eventand allow forurgent transitions
when a trajectory first touchesguard set Guard sets therefore form both the boundary
of the invariant domain of continuous evolution, and of the activation regiahe discrete
event. We should therefore use crossing semantics for determining thatiactiof events
given by guard sets when computing lower-approximations to the evolutiancaf' use
interior semantics when determining the activation of non-urgeptamissiveransitions.

In our definition of hybrid systems we will describe sets in termsafstraint functions
A constraintis a continuous functiom : X — R, and we say a constraint isgular if
{z € X | ¢(x) = 0} is a codimension- topological manifold. Ifc is differentiable and
Ve(z) # 0 whenevere(z) = 0, thenc is regular, and changes sign on a differentiable
manifold.

A constraint defines sefsc € X | ¢(z) < 0} and{z € X | ¢(x) § 0}. The operator
¢ — {x | ¢(x) < 0} is (vy;60<)-computable and the operater— {x | ¢(z) < 0} is
(7v; ¢ <)-computable.

We now give a standard definition of hybrid automata. A transition for a tcaing
hybrid automaton is eithamrgent(sometimes calleflist-in-tim@, which means that contin-
uous evolution is not allowed when the event is activepam-blocking which means that
continuous evolution is allowed in addition to a discrete transition, and henclytiaenics
is nondeterministic.

Definition 6.1 (Hybrid automaton) A constraint hybrid systens a tupleH = (Q, F

Ey UEp,v{Xy | ¢ € Q}{F, | ¢ € Q},{Dq | ¢ € Q},{(Rge | (g,€) €
dom~}, {(Age | (¢,€) € dom~y,e € Ep},{(gge | (¢,€) € dom~, e € Ey})) where

e () is a finite set ofdiscrete stateand F is a finite set ofdiscrete eventswhich is
partitioned into subset&;; of urgent eventand Ep of permissive events

e v:C Q x E — (@Qis apartialdiscrete transition functiowith domaindom .

e For eachy, the manifoldX, is thecontinuous state spader discrete statg.
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e Foreachy, F;, : X, = TX, is a differential inclusion giving theontinuous dynam-
ics.

e Foreachy, D, C X, = is theinvariant domainfor the continuous dynamics.
e Foreach(q,e) € dom~, Ry, : Xq = X, (4. iS theresetmap.

e Foreach(q,e) € dom~ywithe € Ep, A, . C X, is anactivationregion.

e Foreach(q,e) € dom~ywithe € Ey, g4 : X, — R is aguardconstraint.

Notice that we have two types of restrictions on the continuous dynamics)yntrse
given by the invariants and those given by the guards. We also havee® &f restrictions
on the discrete dynamics, namely those given by the activations and thaselyi the
guards. When computing lower-approximations to the evolution, it is apiatepio use
interior semantics for invariants and activations, and crossing semantigadads.

It is straightforward to translate the system to an upper-semicontinuousl tsgatem
in the form of Definition 5.1. We takeX = (J .o{q} x X, as the state space. The
invariant domain is constructed from both the explicit invariabtsand the guardg .
by D = U,cq Dg N Necr, {7 | 94.¢(x) < 0}. We construct the flowb by integrating the
differential inclusiong,, and®| p by restricting to the invariant. For the discrete events, we
immediately restrict to the activation regions by taking téke (¢, ) = U e, {7(q, €)} X
Ryela,.(x) whereA, . := {x | g(x) > 0} for urgent events.

Computing lower approximations to the evolution is more challenging, since we hav
to treat urgent and permissive transitions differently. For each permissient, we take
Re|a(q, ) = Ryela,.(z) as the restricted reset map. For each urgent evemtd each
discrete statg, we can compute the crossing time $gt. : X, — X, x RT for the
restricted flow®,|p,. We can then compute each urgent transition separately as in the
proof of Theorem 5.22. By combining the discrete transitions which canrdoc each
individual event, we can show that the evolutién X x R™ = X is u.-computable from
the data describing the system.

6.2 Reliable simulation of hybrid systems

We wish to be able to reliably simulate the trajectory of a deterministic hybrid automaton
starting at some initial point. Away from discontinuity points in the spacial dependence of
the evolution, the meaning of a simulation is clear; there is a unique trajectach wk can
compute using upper semantics. However, at the discontinuity points, tieeaélaast two
possible choices for how to continue the evolution; at a grazing or exteon@er collision
point, we must choose between carrying on with the continuous dynamieppdying a
discrete reset. At a point where multiple events are activated, we musteclhebseen
which of the two or more events occurs. Even near the discontinuity poitsnay not

be able to reliably distinguish which of the possible continuations occurs dugnerical
error.

One way of resolving these different possibilities is to make either a ranthoies or
rank the possible events in some order and apply the preferred eveweveg this runs
the risk of missing qualitatively different evolutions. Another option is to cargiwith all
possible different evolutions. This is only feasible if the discontinuity sentsred at a
discrete set of time instances.
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If crossings with the guard sét = 0D N 0A ared-detectable, then we can compute
the set of grazing points &y = {z € G | ®(z,[0,6/2]) C D}, which isy.-computable
from ® and D. Takinge, to be the speciayrazing eventith guardG,, we can compute
the discontinuity set as the union of all intersections of pairs of guard dé¢nce the
discontinuity setig ). . \cguie,} Gi N Gj, and isy.<-computable from the system data.

We can think of simulation as computing the evolutigrof the system from a single
initial point. In order to distinguish between the multiple possibilities at branchamgtg,
we need only store a list of event labels and times. Since we can compactify adding
the point at infinity, the seb x (R™ U {oo}) is itself second-countable and locally compact
in the product topology. By extending the state variable with the tiraad the reset relation
by updating the list of events whenever a reset occurs, we obtain a ylavd Isystem in
which the evolution operator stores the sequence of discrete eventsearudaitime used
to reach a particular state, from which the entire trajectory can be completainstructed.

Hence by Theorem 5.4, we can compute the set of all possible evolutidimetées/o-
lutions from a given initial point for a uniformly non-Zeno hybrid system.

6.3 Implementation issues

Throughout the paper, every effort has been made to present the rhirsisuanptions neces-
sary in order to perform a computation. In particular, no assumptions aiffeeentiability
of various objects were made. Further, the counterexamples to computabil@aivbased
on simple affine systems, so adding differentiability assumptions makes necediteto
the ability to compute arbitrarily accurate approximations to the evolution. Hawefre
ficient numerical methods require differentiability assumptions on the inputsder do
obtain high-order convergence. Therefore, when implementing theatipes involved,
particularly the algorithms for computing system evolution and crossing ofiggeds, it is
important to use differentiability to obtain efficient algorithms. As an example;ribgsing
time to a transverse guard set can be computed to an order which is the maxifferm d
entiability of the guard constraint and the flow. This can allow more efficiesng over
guard constraints than methods relying purely on checking for crossing get inclusions.

The theory presented in this paper has been implemented in theroobAE for reach-
ability analysis of hybrid systems. Examples of computations performed usigoAE
can be found in [6].

7 Concluding Remarks

In this paper, we have considered the computability of the evolution of adchglstem,
in which input and output data are specified by arbitrarily-accuratecxppations to the
exact values.

The main points are summarised below:

1. Itis impossible in general to compute the evolution (simulation, reachab)ecfets
hybrid system to arbitrary accuracy, and this holds even for simple clas$sbrid
system, such as piecewise-constant derivative systems.

2. The obstruction to computability is due to discontinuities in the temporal evolution
and in the spacial dependence on the initial conditions. Away from disagtytin
points, the evolution is computable. Essentially the only hybrid systems for which
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the evolution can be computed to arbitrary accuracy for any initial conditethase
for which every trajectory starting in a given mode undergoes the sanueseg of
discrete events.

3. Itis possible to regularise any hybrid system such that it is possible toudermpn-
vergent approximations to the evolution from above (“closure semanidjglow
(“interior semantics”), but the regularisations admit different solution. sElte reg-
ularisation of a deterministic system is necessarily either nondeterministic or admits
blocking.

4. The regularisation using interior semantics cannot handle crossinggaofl sets
properly. Instead, we need to use a different regularisation “crgssemantics”.
Under a regularity condition on the crossings of the guard sets, it is pes$sibom-
pute convergent lower-approximations to the evolution; otherwise spusolutions
may be introduced.

5. The semicomputability results are valid for general classes of systengimgloons-
mooth, discontinuous and nondeterministic systems. Restricting to a specikssub
of hybrid system does not change what is possible to compute, but may fallow
more efficient algorithms.

6. The framework of “computable analysis” is a powerful machinery fiscukssing
computational aspects of hybrid systems theory. It provides a clear notihat
we should be aiming to compute about a given mathematical object which can be in
terpreted in terms of convergent sequences of approximations. & gaterral topo-
logical conditions under which the computation can be proved to be impossible.
also provides a methodology of proving computability results using naturalemnath
matical language without having to resort to the details-&ftyle proofs.

There are many interesting areas for further research, especially entigsis of lower-
semicomputability. In particular, it would be useful to have generic verlg/abnditions
under which all crossings are detectable. For general systems, it \atsddoe interest-
ing to give an exact classification of the computability of the evolution with &spethe
arithmetic hierarchy. It would also be interesting to extend this analysis to ptiobr
lems, such as verification and control synthesis, and to other classgstefs. There is
some evidence to suggest that stochastic systems with a diffusion term],[b3ay have
better computability properties than deterministic systems. It would also be ititigres
to compare decidability of system properties in the framework of computablgsis, in
which only approximations to the input are considered, with computability in some alge-
braic framework in which exact computations are possible. In the light ofigue work
on piecewise-constant derivative systems [2] and (non) o-minimal affistiems [24, 10],
it seems likely that while there are be specific problem instances which céeded us-
ing algebraic methods, using exact descriptions does not fundamentaligelthe class of
solvable problems. Finally, it is vital to develop more efficient numerical @lgms for the
computation of upper- and lower-approximations to the system evolution.
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