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Semantics and computability of the evolution of
hybrid systems

ABSTRACT
In this paper we consider the semantics for the evolution of hybrid systems, and the
computability of the evolution with respect to these semantics. We show that with respect to
lower semantics, the finite-time reachable sets are lower-semicomputable, and with respect to
upper semantics, the finite-time reachable sets are upper-semicomputable. We use the
framework of type-two Turing computability theory and computable analysis, which deal with
obtaining approximation results with guaranteed error bounds from approximate data. We show
that in general, we cannot find a semantics for which the evolution is both lower- and upper-
semicomputable, unless the system is free from tangential and corner contact with the guard
sets. We highlight the main points of the theory with simple examples illustrating the subtleties
involved.
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Abstract

In this paper we consider the semantics for the evolution of hybrid systems, and
the computability of the evolution with respect to these semantics. We show that with
respect tolower semantics, the finite-time reachable sets are lower-semicomputable,
and with respect toupper semantics, the finite-time reachable sets are upper-
semicomputable. We use the framework of type-two Turing computability theory and
computable analysis, which deal with obtaining approximation results with guaran-
teed error bounds from approximate data. We show that in general, we cannot find a
semantics for which the evolution is both lower- and upper- semicomputable, unless
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1 Introduction

Hybrid systems are dynamic systems in which the evolution has both discrete-time (instan-
taneous) and continuous-time elements. Hybrid models are becoming increasingly preva-
lent in industry, and there is a need for tools which can perform reliable simulation and
verification analysis of hybrid systems. The interplay between the continuous and discrete
dynamics causes difficulties in the analysis of hybrid systems which do not occur in discrete-
or continuous-time systems, and which lend hybrid systems a distinctive character.

Many questions about the behaviour of a hybrid system can be framed in the context
of reachable sets and the reachability relation. It has long been known that the reachability
relation for hybrid systems is undecidable [2], except for the class of timedautomata (and
slight generalisations), for which reachable sets can be computed exactly[26]. Rather than
considering decidability of the reachability relation, it is more natural to consider the com-
putability of the reachable set. For more complicated systems, symbolic computations are
infeasible and approximate numerical computations are required. This motivates the study

∗This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
Vidi grant 639.032.408.
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of what is possible to compute using approximations to the exact problem data ifit is only
necessary to compute the result approximately.

In this paper, we base our computability results on the theory of computable analysis
of Weihrauch and co-workers [28], which is equivalent to that of [23] based on oracle ma-
chines. All computations are performed using ordinary Turing machines, and hence can be
implemented using existing computers. (This is unlike the real-RAM theory of [8], which
cannot be effectively implemented.) In order to allow computation on uncountable sets,
we allow computations to run indefinitely, writing an output stream which represents suc-
cessively more accurate approximations to the result. We say a quantity is computable if
it can be computed to arbitrary (metric) accuracy, and semicomputable if it is possible to
compute convergent approximations from above or below. We note that uncomputability in
the framework of computable analysis does not necessarily imply uncomputability in some
algebraic framework in which the objects of interest can be specified exactly. The results in
this paper extend those of [16], and provide full proofs. Similar results on the computability
of reachable sets for discrete-time systems were given in [15].

We will see that computability of the reachable set is strongly related to topological
properties of the invariants and guard sets, and continuity properties of the continuous and
discrete dynamics. In order to separate technical issues relating to the solution of differential
equations and differential inclusions from the intrinsic difficulties of hybridsystems, we
describe the continuous dynamics directly as a flow, rather than by a differential relation.
Upper-semicontinuity of solutions of hybrid systems has been considered in[4, 19]. Lower-
semicontinuity of the solutions of Lipschitz differential inclusions and hybrid systems has
been studied in [11, 12].

Unlike purely discrete- or continuous-time systems, for which there is a well-defined
notion of solution, for hybrid systems we need to use different solution concepts for com-
puting lower- and upper-approximations to the reachable set. The upper solution concept
may necessarily impose nondeterministic (multivalued) solutions to an otherwise determin-
istic system, whereas lower solution concepts may impose blocking. Reliable simulation
imposes the need to consider multiple possible evolutions, each of a qualitativelydifferent
nature.

There are many other tools available for computing reachable sets of hybridsystems,
such as d/dt [1], Hy(per)tech [22], VeriShift [9], Checkmate [5] and Phaver [18]. However,
these tools are mainly restricted to systems with affine dynamics and guard sets (apart from
CheckMate, which allows nonlinear dynamics), and can only compute over-approximations
to the reachable set. To remedy this situation, a software tool ARIADNE [6] is being devel-
oped to implement the computable operations of this paper. Computation of the solution of
hybrid systems using a set-oriented approach using the software package GAIO [17], which
is particularly applicable to the computation of the operators studied in this paper, has been
considered in [21].

The paper is structured as follows. In Section 2 we indicate the difficulties encountered
in the study of hybrid systems, and motivate the use of a formal computability theory. In
Section 3 we give some technical preliminaries on computability theory for pointsand sets.
In Section 4 we present the ways in which the evolution of a hybrid system mayfail to
be continuous. In Section 5 we present the main theorems on semicomputability ofthe
evolution. In Section 6 we present some modelling frameworks for hybrid systems, and
discuss reliable simulation and implementation issues. Finally, in Section 7 we state some
conclusions and give directions for further research.
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2 Motivation

2.1 Continuous- and Hybrid-Time Systems

One of the most important results in the theory of continuous-time systems is the existence
and uniqueness result for Lipschitz differential equationsẋ = f(x). Further, ifΦ : X ×
R → X is the solution flow of the differential equation, thenΦ is continuous, and can be
effectively approximated, in the sense that given the functionf , the initial conditionx0 and
the integration timet, we can computeΦ(x0, t) arbitrarily accurately on a digital computer.
In many situations, the dataf , x0 andt may not be known exactly. However, even in this
case, given a sufficiently accurate description off andx0, we can still compute the evolution
Φ.

Compare the situation for differential equations with that for hybrid systems.If we
denote the solution of a hybrid system with initial conditionx at timet by Ψ(t, x), we see
that there are a number of situations in which the solution may vary discontinuously in x
andt.

Time discontinuity at discrete transitions Whenever the state of the system is reset dur-
ing a discrete transition, a discontinuity in the time evolution occurs.

Figure 1: Time discontinuity at a discrete transition.

Spacial discontinuity at tangencies and corner collisionsIf the continuous evolution
touches a guard set tangentially nearx, then some points nearx undergo a discrete
transition, whereas other points undergo further continuous evolution. The same phe-
nomenon may occur of the continuous evolution touches a corner of a guard set.

Spacial discontinuity at switching boundaries If x lies on the boundary of two guard
sets, then some points nearx undergo one transition, and others undergo the other.

Spacial discontinuity at instantaneous transitionsSuppose that after a discrete transi-
tion, the statex lies on the boundary of the switching set. Then some points near
x immediately undergo a second transition, whereas other points may flow away for
the activation region and do not undergo the transition.

All these situations may occur generically, which means that they persist under small pertur-
bations of the parameters defining the system. From the viewpoint of dynamics, it is these
discontinuities which distinguish hybrid systems from purely discrete-time or continuous-
time systems. In many cases, the spacial discontinuities only occur for a “small”(measure
zero) set of initial conditions, and might therefore be considered not to be of physical in-
terest. However, spacial discontinuities may still occur on a (locally) denseset of initial
conditions. If the exact solution passes very near a discontinuity point attime t, then the
presence of even a small numerical error may cause the computed solution after time t to
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Figure 2: Spacial discontinuities. (a) At a tangency; (b) at a corner collision, (c) at a
switching boundary, and (d) at an instantaneous transition.

differ drastically from the exact solution. As we shall see, it is important to handle these
situations correctly in the development of a sound numerical theory of hybrid systems.

2.2 Computability theory

We have seen that hybrid systems may exhibit discontinuities in the evolution, and intu-
itively we expect that the presence of discontinuities will cause difficulties incomputing
the system evolution, even to the extent that it is impossible to compute the evolution to
arbitrary accuracy. However, to actually prove that a certain computational task is impos-
sible, we need a formal theory of computation, which requires specifying acomputational
model, and also the input and output data that the computational model works with. We
compare this motivation with Turing’s motivation for introducing his computing machines,
which was to prove the impossibility of an algorithmic solution of Hilbert’s Entschuldigung
problem. Since we are interested in algorithmic solutions to problems concerninghybrid
systems, if our original problem turns out to be unsolvable in general, we want to know
to what extent our problems are solvable, or find related problems which are completely
solvable.

In this paper, we use the theory ofcomputable analysisas developed by Weihrauch [28]
and co-workers. In this theory, computation is performed by ordinary Turing machines
acting on streams of data. The data stream encodes a sequence of approximations to some
quantity, such as a subset of the state space, or a function describing a system. A function
or operator is computable if given a data stream encoding a sequence of approximations
converging to the input, it is possible to calculate a data stream encoding a sequence of
approximations converging to the output. In practice, finite computations can be obtained
by terminating whenever a given accuracy criterion is met. However, it is theoretically very
convenient to consider the computations to be infinite, since we can talk aboutcomputing
the mathematical objects themselves. Two encodings orrepresentationsof the same class
of mathematical object are equivalent if each can be transformed into the other by a Turing
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machine; this makes it possible to relate results on representations which are easy to work
with theoretically to representations which are efficient to work with in implementations.

The representations used in computable analysis are each related to a topology on the
set of objects under consideration, and so give a clean link between approximability, con-
tinuity and formal computability. The fundamental theorem is that only continuous func-
tions with respect to a given topology can be computable with respect to representations
based on that topology. Hence if we can prove that a function is discontinuous, then it is
uncomputable. For “naturally” defined functions the converse is typically also true, that
continuous functions are computable. It is worth emphasising that a functionwhich is
uncomputable with respect to one representation may be computable with respect to a rep-
resentation based on a different topology. This corresponds to givingmore information in
the input, or requiring less information in the output. We shall see later that the use of the
correct topology/representation is vital when considering computability forhybrid systems.

Since objects are described by sequences of symbols, we can represent sets of contin-
uum cardinality. This includes points in Euclidean space, open, closed andcompact subsets,
continuous functions and semicontinuous multivalued functions, but not arbitrary subsets of
space or arbitrary discontinuous functions. It is also possible to represent Borel probability
measures and measurable functions, though in this article, we only considercomputations
involving points and sets. In particular, we will require the data describing our systems to
be in terms of open/closed sets and (semi)continuous functions.

The representations used must allow information about the objects they describe to be
obtained from a finite amount of data. Consider a computation whose result issome real
numberx. In traditional numerical analysis, it is usual to compute a sequence of floating-
point or rational approximationsxn converging tox. Often some order of convergence is
given, such as|x−xn| = O(1/nk) for some integerk. Unfortunately, in this model, know-
ing some particular approximationxn gives in theoryno informationon the value ofx. To
gain information aboutx, we also need to know an error boundǫn for the approximation,
such that|x − xn| < ǫn. If ǫn → 0, then we can compute an approximation tox with
arbitrary knownaccuracy. We say thatxn converges effectivelyto n. In some problems,
especially optimisation problems, we merely seek a sequence of approximationsxn con-
verging tox from above (or below). In this case, we cannot give metric bounds onx, but
can still deduce properties ofx, such asx > xn.

In theoretical work, especially when making a link between computation and topology,
it is more convenient to work withpropertiesof objects. For example, if(a, b) is an open
interval, thenx ∈ (a, b) is a property ofx. Further, such properties should berobust, in the
sense that if some property holds forx, then it holds for ally nearx. Topologically, this
means that a property corresponds to membership of an open set.

To describe arbitrary objects in some space, we first choose a countablecollection
σ = {I1, I2, . . .} of basic open sets (properties) such thatx is determined uniquely by
its properties. For example, if we takeσ to be the collection of all open intervals(a, b) with
rational endpoints, then determining whetherx ∈ (a, b) for all (a, b) ∈ σ is sufficient to
determinex. Usually, we only need to know a subset of properties to determinex and all of
its properties uniquely. For example, if we can enumerate a sequence of rational intervals
(an, bn) such thatx ∈ (an, bn) for all n andlimn→∞ bn − an = 0, then we can determine
all other intervals(a, b) such thatx ∈ (a, b). Notice that the information given by approx-
imations is equivalent to the information given by properties. For if we knowx ∈ (a, b),
then(a+ b)/2 is an approximation tox with errorǫ = (b− a)/2.

In practice, we cannot determine all properties ofx, or compute an infinite sequence
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of approximations tox. Instead, we are usually content to compute sufficient informa-
tion aboutx to be able to approximatex to some desired accuracy (which can be checked
a-posteriori). However, it is useful to know thatx can be approximated toanydesired accu-
racy. Further, by describingx by a list ofall its properties, we can often conceptually work
with the objectx itself rather than with approximations tox, a considerable simplification.

While the model of computation, being based on Turing machines, subsumes ordinary,
finite computation, the main purpose of computable analysis theory is to deal with approxi-
mations. In particular, the data describing the systems is interpreted as being approximate.
This can drastically change the computability properties. Consider the following simple
example:

Example2.1. Consider the differential equatioṅx = x2 + ǫ with initial conditionx(0) =
−1. We wish to determine whether the solution remains bounded. Ifǫ is taken to be a
rational number which is described exactly, the problem is always solvable; the solution
is bounded if and only ifǫ 6 0. However, if theonly information we have aboutǫ is
approximate (possiblyǫ is an experimental parameter) then ifǫ = 0, then no matter how
accurate the approximation toǫ, we cannot eliminate the possibility thatǫ > 0 and that the
solution is unbounded.

To summarise, boundedness of the solution in the caseǫ = 0 is undecidable when using
approximate data, but decidable using exact data. Further, ifǫ is very close to0, we need
a very accurate approximation toǫ in order to determine boundedness. Even in the exact
model, ifǫ = 0, then a very small amount of noise in the system will destroy boundedness.

The interested reader is strongly advised to read [28] for more details.

3 Technical preliminaries

3.1 Multivalued Dynamical Systems

In many applications, it is convenient to represent systems by nondeterministic models de-
fined by multivalued functions. Further, as we shall see, nondeterminism isunavoidable if
we are to give a framework for hybrid systems under which we can computethe evolution.

We sayF is amultivalued functionfromX to Y , denotedF : X ⇉ Y , if F associates
to eachx ∈ X, a subsetF (x) of Y . If A ⊂ X, we defineF (A) =

⋃
x∈A F (x), and if

F : X ⇉ Y andG : Y ⇉ Z, we defineG ◦ F : X ⇉ Z by G ◦ F (x) := G(F (x)) =⋃
y∈F (x)G(y). ThepreimageF−1 : Y ⇉ X of a multivalued functionF : X ⇉ Y is

defined byF−1(B) = {x ∈ X | F (x) ∩ B 6= ∅}. We sayF is lower-semicontinuous
if F−1(V ) is open wheneverV is open, andupper-semicontinuousif F−1(B) is closed
wheneverB is closed.F is continuousif it is both lower- and upper-semicontinuous. If
F : X ⇉ Y is closed-valued lower-semicontinuous andC is compact, thenF (C) need not
be closed, but for any setA, F (A) ⊂ cl(F (A)).

In control theory, lower-semicontinuous functions are often appropriate to model con-
trol input, and upper-semicontinuous functions are appropriate to model disturbances. For
hybrid automata (without inputs), lower-semicontinuous functions are usedif we want to
be sure that a trajectory with some propertyexists, whereas upper-semicontinuous functions
are used if we want to be sure thatall trajectories have some property.

We write f :⊂ X → Y if f is a partial function fromX to Y . Let C(R+ 99K X)
be the set of continuous partial functionsη :⊂ R+ → X such thatdom(η) is a nonempty
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connected interval[0, t] or [0, t[. A multivalued flowis a subsetΦ of C(R+ 99KX) with the
following properties:

1. If η1, η2 ∈ Φ andη1(s) = η2(0), then the catenationη = η1 ·η2 given byη(t) = η1(t)
for t 6 s andη(t) = η2(t− s) for t > s, t− s ∈ dom(η2) is in Φ.

2. If η ∈ Φ, then the shiftσsη given byσsη(t) = η(t+ s) for t+ s ∈ dom η is in Φ.

3. If η ∈ Φ, then the restriction ofη to an initial subdomain is inΦ.

Given a flowΦ ⊂ C(R+ 99KX), we can define

• a multivalued functionX ⇉ C(R+ 99KX) by x 7→ {η ∈ Φ | η(0) = x}, and

• a multivalued functionX × R+ ⇉ X by (x, t) 7→ {y ∈ X | ∃η ∈ Φ s.t.η(0) =
x andη(t) = y}.

We will use Φ interchangeably to denote the flow as a subset ofC(R+ 99K X), as the
multivalued functionX ⇉ C(R+ 99KX) or as the multivalued functionsX × R+ ⇉ X
defined above. The usage will be clear from the context.

We say a flow isupper-semicontinuousif dom(η) is closed for allη ∈ Φ, and the map
Φ : X ⇉ C(R+ 99KX) is upper-semicontinuous, andlower-semicontinuousif dom(η) =
[0, t[ is half-open for allη ∈ Φ, andΦ : X ⇉ C(R+ 99KX) is lower-semicontinuous.

A differential inclusionon a manifoldX is a continuous-time evolution equation of
the form ẋ ∈ F (x) whereF : x ∈ X ⇉ TxX. A solution to the differential inclusion
ẋ ∈ F (x) is an absolutely continuous functionξ : [0, T ) → X such thatξ̇(t) ∈ F (ξ(t))
for almost allt ∈ [0, T ). Theflow of a differential inclusion is set of all solutions. In this
paper we work directly with flows and their semicontinuity properties, but lower- There
is considerable work in the literature on semicontinuity properties of the solutions of a
differential inclusion, see [3] for an overview.

3.2 Hybrid Systems

A minimal definition of a hybrid system is

Definition 3.1. A hybrid system is a tripleH = (X,Φ, R) whereX is the state space,
Φ ⊂ C(R+ 99KX) is adynamicsatisfying the flow conditions andR ⊂ X ×X is thereset
relation.

We will typically restrict to single-valued flows in the examples. To representa trajec-
tory of a hybrid system, we need to take into account the possibility that more than one
discrete event occurs at a given time. To capture the intermediate states, weuse the follow-
ing definition ofhybrid time domain[14, 20], which is based on work of [25]:

Definition 3.2 (Hybrid trajectory). Let (ti)i<∞ be an increasing sequence inR+ ∪ {∞}
with t0 = 0. Then theti define ahybrid time domainT ⊂ R+ × Z+ by

T = {(t, n) ∈ R+ × Z+ | tn 6 t 6 tn+1} =
∞⋃

n=0

[tn, tn+1] × {n}.

A hybrid trajectoryis a continuous functionξ : T → X for some hybrid time domain. This
is equivalent to requiring thatt 7→ ξ(t, n) is continuous fort ∈ [tn, tn+1].

The trajectoryξ is Zenoif limn→∞ tn <∞, and has finitely many events if there exists
n such thattm = ∞ for all m > n.
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The evolution of a hybrid system consists of continuous flow interspersedwith discrete
transitions.

Definition 3.3 (Solution of a hybrid system). A hybrid trajectory is asolutionor execution
of the hybrid systemH = (X,Φ, R) if

1. ξ(·, n) ∈ Φ, and

2. (ξ(tn, n− 1), ξ(tn, n)) ∈ R for all n.

TheevolutionΨ of a hybrid systemH is the functionΨ : X × R+ × Z+ ⇉ X by

Ψ(x, t, n) = {y | ∃ solutionξ of H s.t. ξ(0, 0) = 0 andξ(n, t) = y}. (1)

In later sections, we will consider hybrid systems defined using invariant domains, acti-
vation regions and guard sets.

3.3 Computable analysis for sets and functions

We now outline how to describe objects such as points, sets and functions in the framework
of computable analysis. The material in this section can be found in [28, 15].

Formally, arepresentationof some setX is a partial surjective functionδ :⊂ Σω → X
for some finite alphabetΣ. We sayw ∈ Σω is aδ-nameof x ∈ X if δ(w) = x.

LetX be a topological space whose topologyτ is generated by a countable collection
of open setsσ = {I0, I1, . . .}. Thenδ is thestandard representationof (X, τ, σ, ν) if a
δ-name ofx ∈ X is a binary encoding of an enumeration of{I ∈ σ | x ∈ I}. Informally,
we say that aδ-name ofx encodes a list of allI ∈ σ such thatx ∈ I.

We say that a functionf : X1 × · · · × Xk → X0 is (δ1, . . . , δk; δ0)-computable if
there is a Turing-computable partial functionM :⊂ Σω × · · · × Σω → Σω such that
δ0(M(w1, . . . , wk)) = f(δ1(w1), . . . , δk(xk)) whenever the right-hand side is defined.

We will restrict to hybrid systems such that the state spaceX is a locally-compact
second-countable Hausdorff space, and letβ be a base forX. For Euclidean spaceX =
Rn, we takeβ to be the collection of all open bounded boxes with rational endpoints;
(a1, b1) × (a2, b2) × · · · × (an, bn) with ai, bi ∈ Q for i = 1, 2, . . . , n.

We have the following representations of points and sets.

• A ρ-name ofx ∈ X encodes a list of allI ∈ β such thatx ∈ I.

• A θ<-name of openU ⊂ X encodes a list of allI ∈ β such thatI ⊂ U .

• A ψ<-name of closedA ⊂ X encodes a list of allI ∈ β such thatI ∩A 6= ∅.

• A ψ>-name of closedA ⊂ X encodes a list of allI ∈ β such thatI ∩A = ∅.

• A κ>-name of compactC ⊂ X encodes a list of all tuples(I1, . . . , Ik) ∈ β∗ such
thatC ⊂

⋃k
i=1 Ij . An equivalent representation encodes aψ>-name ofC together

with anI ∈ β such thatC ⊂ I.

• A κ-name of compactC encodes both aψ<-name and aκ>-name.
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It is easy to see that each of the properties encoded is robust with respect to a small change
in the set being described. For example, ifI is a subset of some open setU , thenI is also
a subset ofV for any sufficiently small perturbationV of U . The information given byθ<

is sufficient to compute a sequence of sets (described as finite unions of boxes) converging
to U from inside, and the information given byκ> is sufficient to compute a convergent
sequence of outer-approximations toC. The information given byκ is sufficient to compute
C to arbitrary accuracy in the Hausdorff metric.

Using these representations, the first natural question to ask is which geometric op-
erations (union, intersection) are computable. It turns out that the finite union of closed
sets is upper-semicomputable i.e.(A,B) 7→ A ∪ B is (ψ>, ψ>;ψ>)-computable,
and the countable union of open sets is lower-semicomputable. The countableclosed
union of closed sets is also lower-semicomputable i.e.(A1, A2, . . .) 7→ cl(

⋃∞
n=1An) is

(ψ<, ψ<, . . . ;ψ<)-computable. The intersection of two closed sets(A,B) 7→ A ∩ B is
upper-semicomputable i.e.(ψ>, ψ>;ψ>)-computable but not lower-semicomputable i.e.
not (ψ,ψ;ψ<)-computable. In other words it is not possible to enumerate all basic open
setsI ∈ β such that(A ∩ B) ∩ I 6= ∅ from similar enumerations forA andB. How-
ever, the closure of the intersection of an open and a closed set is lower-semicomputable i.e.
(U,A) 7→ cl(U ∩A) is (θ<, ψ<;ψ<)-computable.

We now wish to describe continuous functions. The standard way of doingthis is via
the compact-openrepresentation. For iff : X → Y is continuous andJ ⊂ Y is open,
thenf−1(Y ) is open. Hence ifI is compact, then the propertyI ⊂ f−1(J) is robust.
Alternatively, if I is compact, thenf(I) is compact, so the propertyf(I) ⊂ J is robust, and
is equivalent toI ⊂ f−1(J). Hence:

• A γ-name of continuousf : X → Y encodes a list of all(I, J) ∈ βX × βY such that
I ⊂ f−1(J).

With this representation, the operator(f, x) 7→ f(x) is (γ, ρ; ρ)-computable, the oper-
ator (f,A) 7→ cl(f(A)) is (γ, ψ<;ψ<)-computable (lower-semicomputable), the operator
(f, C) 7→ f(C) is (γ, κ>;κ>)-computable (upper-semicomputable) and(f, U) 7→ f−1(U)
is (γ, θ<; θ<)-computable (lower-semicomputable). Further, the solution operator for Lip-
schitz differential equations is computable, or in other words, the operator(f, x, t) 7→
Φf (t, x) is (γ, ρX , ρR; ρX)-computable, whereΦ(t, x) denotes the flow off satisfying
ẋ(t) = f(x(t)) if x(t) = Φ(t, x0).

We have the following representations of multivalued maps.

• A µ< name of a lower-semicontinuous mapF : X ⇉ Y with closed values encodes
a list of all pairs(I, J) ∈ βX × βY such thatI ⊂ F−1(J).

• A µ> name of an upper-semicontinuous mapF : X ⇉ Y with compact values
encodes a list of all tuples(I, J1, . . . , Jk) ∈ βX × β∗Y such thatF (I) ⊂

⋃k
i=1 Ji.

It is easy to show that the closure of the image of a closed set under a closed-valued
lower-semicontinuous function is lower-semicomputable i.e.(F,A) 7→ cl(F (A)) is
(µ<, ψ<;ψ<)-computable, and the image of a compact set under a compact-valued
upper-semicontinuous function is upper-semicomputable i.e.(F,C) 7→ cl(F (A)) is
(µ>, κ>;κ>)-computable. Further, the information provided by the image of a set, or even
a point, under a multivalued functionF , is precisely enough to compute a name ofF . In
other words, if we have a compact-valued upper-semicontinuous multivalued functionF ,
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and we can computex 7→ F (x) in the sense that given aρ-name ofx we have an algorithm
to generate aκ>-name ofF (x), then we can generate aµ>-name ofF .

We have the following representations of multivalued flows.

• A φ<-name of a lower-semicontinuous multivalued flowΦ encodes a list of all
(I, T, J) ∈ βX × βR × βX such that for allx ∈ I, there is a solutionξ such that
ξ(0) = x andξ(T ) ⊂ J .

• A φ>-name of an upper-semicontinuous multivalued flowΦ encodes a list of all
(I, T,J ) ∈ βX × βR × β∗X such that for allx ∈ I, and all solutionsξ such that
ξ(0) = x, ξ is defined onT andξ(T ) ⊂ J ; equivalently, for allx ∈ I andt ∈ T ,
Φ(x, t) ⊂ J .

Note that the information given by aφ<-name of a lower-semicontinuous multivalued flow
Φ is strictly stronger than the information provided by aµ<-name ofΦ considered as a
multivalued functionΦ : X ×R+ ⇉ X. The information given by aφ>-name of an upper-
semicontinuous multivalued flowΦ is equivalent to the information provided by aµ>-name
of Φ considered as a multivalued functionΦ : X × R+ ⇉ X.

In this paper, we work directly with flows, and do not consider explicitly consider dif-
ferentiable formalisms of the continuous dynamics. This is actually no restriction, since we
can effectively compute the solution of differential inclusions under standard conditions.
The solution of a general locally Lipschitz continuous differential inclusionwas shown to
be computable (using different terminology) in [27]. We can refine this result and consider
lower-semicomputability and upper-semicomputability separately.

Theorem 3.4(Computability of differential inclusions). LetΦ : R+ ×X ⇉ X denote the
flow of the differential inclusioṅx ∈ F (x).

1. If F is upper-semicontinuous with compact convex values and linear growth at in-
finity, then the solution operatorF 7→ Φ is upper-semicomputable; more precisely,
F 7→ Φ is (µ>;φ>)-computable..

2. If F is locally Lipschitz lower-semicontinuous with closed values, then the solution
operatorF 7→ Φ is lower-semicomputable; more precisely,F 7→ Φ is (µ<;φ<)-
computable.

In this paper, we will usually consider the computability of the solution operatorΨ of
a hybrid systemH. We will sometimes use the terminology “Ψ is computable” or “Ψ is
computable fromH” instead of the more precise “the operatorH 7→ Ψ is computable”.

4 Discontinuity in the solution of hybrid automata

Let H be a hybrid system,X0 be a set of initial states, andT a set of times. We wish to
compute the set of points reachable under the evolution ofH starting atX0 for times inT .
In other words, we wish to compute the operator(H,X0, T ) 7→ ΨH(X0, T ). Note that this
problem includes the problem of computing simulations, in which case we takeX0 = {x0}
andT = {t} to be singleton sets.
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4.1 Hybrid Automata

A simple class of hybrid system is that ofhybrid automata.

Definition 4.1. A hybrid automaton is a tuple(X,G, f, r) whereX is a space,G ⊂ X is a
guard set, f is a vector field onX andr : X → X is areset map.

The evolution of a hybrid automaton proceeds roughly as follows. The solution evolves
according to the differential equatioṅx = f(x) as long asx(t) 6∈ G. As soon asx(t) enters
G, adiscrete eventoccurs and the state is reset tor(x). If r(x) ∈ G, then a further discrete
event occurs without any prior continuous evolution.

Typically, the state spaceX of a hybrid automaton is of the formX =
⋃k

i=1{qi} ×Xi,
whereqi is themodeof the system andXi the continuous state spacecorresponding to
modeqi. A state is denoted(q, x) whereq is thediscrete stateof the system, andx is the
continuous state.

As we shall see, hybrid automata are sufficiently rich to allow us to find discontinuous
dynamics.

4.2 Temporal discontinuities

We first give a trivial example to show that the evolution may vary discontinuously in time.

Example4.2. LetH be the hybrid automaton with two modes,q1 andq2, withX1 = R and
X2 = R0 = {0}. The dynamics inX1 is constant,̇x = c. There is a single evente with
reset mapr(q1, x) = (q2) which is activated whenx > a.

X1 X2

Figure 3: A hybrid automaton with two discrete modes and piecewise-constantdynamics
exhibiting a temporal discontinuity.

Let the initial condition bex(0) = x0. Then if x0 > a, the evente is immediately
activated and the final state is(q2) for all t > 0. If x0 < a andc > 0, then the evente is
activated whent = t1 = (a − x0)/c. Hence fort < t1, then state is(q1, x0 + ct), and for
t > t1, the state is(q2). Hence the evolution is discontinuous int.

Of course, time discontinuities are the essence of hybrid automaton dynamics.In Sec-
tion 5 we see that temporal discontinuities can be handled as long as they do not occur at
the final evolution time, and are not also associated with spacial discontinuities.

4.3 Spacial discontinuities

We now give several examples to show that the evolved sets varydiscontinuouslywith
system parameters and initial condition, even when no transition occurs at the final evolution
time.

Example4.3 (Discontinuity induced by tangency with guard set). Let H be a hybrid au-
tomaton with two modesq1 andq2, with X1 = R2 andX2 = R0. The dynamics inX1 is
affine, (ẋ, ẏ) = (2y,−1). There is a single reset map withr(q1, x, y) = (q2, 0) which is
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activated when the constraintc1 given byx > a. The solution to the continuous dynamics
in modeq1 is (x(t), y(t)) = (x0 + 2y0t− t2, y0 − t). The maximum value ofx is x0 + y2

0

and is attained whent = y0.

X1

X2

Figure 4: A hybrid automaton with two discrete modes and piecewise-affine dynamics ex-
hibiting a grazing discontinuity.

Suppose the initial condition is(q1, x0, y0) with x0 = −1 andy0 = +1. Thenx(t)
reaches a maximum value of0 at t = 1. Consider the setΨH((x0, y0), t = 2). Then if
a > 0, the constraintc1 is not satisfied, and the reached state is(q1,−1,−1). However,
if a < 0, the constraintc1 is satisfied for somet < 1, and the state at timet = 2 is (q2).
Hence the evolution is discontinuous in the parametera.

Now suppose thata is fixed at0, and the initial condition is(x0, 1) with x0 < 0. Then
for x0 < −1, the maximum value ofx is 1 + x0 which is less thana, so the constraint is
never active and the reached state is(q1, x0,−1). However, ifx0 > −1, the constraintc1 is
satisfied for somet < 1 and the reached state is(q2). Hence the evolution is discontinuous
in the parametera.

Example4.4 (Discontinuity induced by corner collisions). Let H be a hybrid automaton
with three modesq1, q2 andq3, with X1 = R2 andX2 = X3 = R0. The dynamics inX1

has constant derivative,(ẋ, ẏ) = (1, 1). There are two events,e2 ande3, with reset maps,
r2 andr3 with r2(q1, x, y) = (q2) andr3(x, y) = (q3), and activationsc2 which is activated
whenx > a, andc3 which is activated wheny > b.

X1 X3

X2

Figure 5: A hybrid automaton with three discrete modes, affine guard sets and piecewise-
constant dynamics exhibiting a corner discontinuity.

Suppose the initial condition is(q1, x0, y0) with x0 = y0 = 0. Then if0 < a < b < 1,
the evente2 is activated beforee3, and the state at timet = 1 is (q2). If 0 < b < a < 1,
then evente3 is activated beforee2, and the state at timet = 1 is (q3). Hence the evolution
is discontinuous in the parametersa andb. In a similar way, we can show that the evolution
is discontinuous in the initial state.

Example4.5 (Discontinuity induced by immediately activated events). Let H be a hybrid
automaton with three modesq1, q2 andq3, with X1 = R2, X2 = R andX3 = R0. The
dynamics inX1 has constant derivative,(ẋ, ẏ) = (1, 0), and the dynamics inX2 is ẋ = 1.
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The evente1 is may occur in modeq1, with activationx > a and resetr1(q1, x, y) = (q2, x+
y). The evente2 may occur in modeq2, with activationx 6 0 and resetr2(q2, z) = (q3).

X1

X2

X3

Figure 6: A hybrid automaton with three discrete modes, affine guard sets and piecewise-
constant dynamics exhibiting a discontinuity caused by an immediately activated event.

Suppose the initial condition is(q1, x0, y0) with x0 = −1 andy0 = 0. Then the event
e1 is activated at(q1, a, 0) and the state is reset to(q2, a). If a < 0, evente2 is immediately
activated, and a transition occurs to state(q3). If a > 0, then the continuous statez in mode
q2 satisfiesz > a > 0, and so evente2 is never activated, and the state at timet for t > 1 is
(q2, t− 1). Hence the evolution is discontinuous in the parameters.

If the initial state is(q1,−1, y0), then the evente1 is activated at(q1, a, y0) and the state
is reset to(q2, z) with z = a + y0. If y0 > −a, the state remains in modeq2 whereas if
y0 < −a, thenz < 0 and evente2 is immediately activated and the state is reset to(q3).
Hence the evolution is discontinuous in the initial state.

4.4 Coherent semantics of evolution

We have seen that the evolution operatorΨ : X×R+ → X of a non-Zeno hybrid automaton
may be discontinuous in both space and time, even for affine systems. By the fundamental
theorem of computable analysis, this means that the evolution is uncomputable, at least
near the discontinuity points. This does not in itself rule out the possibility of regularising
the evolution in some way so that the evolution becomes computable. In Section 5 we
shall show that by using appropriately-defined nondeterministic semantics,we can make
the evolution semicomputable. In this subsection we prove that it is impossible to regularise
the evolution near continuity points to make the solution fully computable i.e. both lower-
and upper-semicomputable.

Definition 4.6 (Coherent semantics of evolution). Let H = (X,R,Φ) be a hybrid au-
tomaton, and letU ⊂ X × R+ be the domain of continuity of the solution operator
Ψ : X × R+ → X. We say that a set-valued solution operatorΨ̂ : X × R+ ⇉ X
hascoherent semanticsif Ψ̂(x, t) = {Ψ(x, t)} for all (x, t) ∈ U .

In other words, away from discontinuities, the solution operatorΨ̂ must be single-
valued, with the value given byΨ. This condition eliminates trivial approximations, such as
takingΨ̂(x, t) = X for all x ∈ X, t ∈ R+. For maximum flexibility, we give no restrictions
on the discontinuity set.

Theorem 4.7(Uncomputability of the evolution of hybrid automata). LetH be a class of
hybrid automata. Then for any coherent semantics of evolution, the finite-time evolution of
a hybrid system is uncomputable. This result holds even if we restrict to(x, t)-values for
which no event occurs at timet.

In particular, the operator(X0, t) 7→ ΨH(X0, t) is not (κ, ρ;κ)-computable. Further,
even if no event is possible at timet, the operatorx 7→ ΨH(x, t) is not(κ;κ)-computable.
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The result is immediate from the following general lemma, since we have seen examples
for which the evolution has non-removable discontinuities, even away fromdiscrete events.

Lemma 4.8. Let f : U → Y be single-valued and continuous on an open, dense subsetU
ofX, and letY be compact. Supposef has no continuous closed-valued extension overX.
Thenf has no continuous multivalued extensionF overX.

Proof. For letx be an essential discontinuity point off , andA =
⋂

x∈V cl(f(V ∩U)) over
open setsV . SupposeF (x) ⊂6= A, let y ∈ A \ F (x), and take a closed neighbourhoodB
of y such thatA ∩B = ∅. ThenF−1(B) does not containx, but contains points arbitrarily
close tox, soF would not be upper-semicontinuous. SupposeF (x) ⊃ A andA has two
distinct elementsy andz. LetW be an open neighbourhood ofy such thatcl(W ) is disjoint
from z. ThenF−1(W ) containsx but does not contain points inF−1(X \ cl(W )) which
come arbitrarily close tox, soF is not lower-semicontinuous.

4.5 Sliding along switching boundaries

A particularly nasty form of discontinuity occurs when a solution slides alongthe boundary
of a guard set before crossing.

Example4.9 (Uncomputability caused by sliding). Consider a hybrid automaton in two-
dimensions with a transition which is active fory > 0. Consider the floẇx = 1, and

ẏ =





a+ 3x2 − y if x 6 0;

a− y if 0 6 x 6 b;

a+ 3(x− b)2 − y if x > b

.

Fora = 0, and let(x0, y0) be a point withx0 < 0 such that the continuous orbit starting at
(x0, y0) exactly reaches the point(0, 0). Then forb > 0, the continuous evolution starting
at (x0, y0) slides along the surfacey = 0 for 0 6 x 6 b, and then crosses intoy > 0. The
hybrid orbit therefore undergoes a discrete transition at some point(x, 0) with 0 6 x 6 b,
but the exact value ofx at which this transition occurs is undetermined. Fora > 0, we see
thatẏ > 0 wheny = 0, and the orbit starting at(x0, y0) undergoes a discrete transition with
x < 0, whereas fora < 0, the orbit starting at(x0, y0) undergoes a discrete transition with
x > b. Hence the spacial evolution is discontinuous at the parameter valuea = 0. Since for
a lower-approximation to the solution we may only consider solutions which persist under
perturbations, the hybrid evolution starting at(x0, y0) cannot be continued past the point
(0, 0).

Now consider the casea = 0 and b = 0, which is the limit of the casesa = 0,
b > 0. Since the hybrid orbit starting at(x0, y0) is blocked at(0, 0) for b > 0, in the limit
b = 0, the orbit cannot be continued past(0, 0) when computing lower-approximations.
However, the dynamics in this case is given by the differential equation(ẋ, ẏ) = (1, 3x2 −
y), so all solutions which reachy = 0 cross topologically transversely. This implies that
topological transversality of crossing a guard set is not in itself sufficient to ensure that a
discrete transition is enabled at the crossing point.

Now consider the flow(ẋ, ẏ) = (1, 0) the guard setx = y and reset map(x, y, q0) 7→
(y, q1). The flow is transverse to the guard set, and if the initial state if(x, c, q0) with
x < y, then after the first reset the new state is(c, q1). However, it is possible to make
aC0 perturbation of the guard set, so that the flow is parallel to the guard set for y = a.
By the previous discussion, this means that the evolution of the perturbed hybrid system
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(b)(a) (c)

Figure 7: Sliding along a guard set. The discontinuity in (b) can be perturbed to give
a continuous system in (a) and (c), but the evolution of the original discontinuity point
depends on the perturbation.

cannot undergo a discrete transition for initial conditions withy0 = a. Since we wish to
compute lower approximations to the flow which persist under perturbation, this means that
the evolution of the original hybrid system cannot undergo a discrete transition if y0 = a.
Since the above argument holds for arbitrarya, the evolution of the original hybrid system
cannot undergo a discrete transition at any point of the guard set.

(a) (b)

Figure 8: AC0-perturbation of the guard set at a transverse crossing (a) can result in sliding
at any point (b). The evoluition cannot be continued, since we cannot rule out the presence
of sliding.

We have therefore demonstrated that, at least without additional informationon the be-
haviour, the evolution of a hybrid system cannot be allowed undergo a discrete transition
at a crossing of a guard set if we are to compute lower-approximations to theevolution
which are robust with respect to perturbations. However, the above situation is pathologi-
cal, in then sense that “most” systems do not exhibit this kind of sliding behaviour. Further,
transverse crossings are generic for hybrid systems with differentiableflows (such as from a
Lipschitz differential equation) and differentiable guard sets, and in theC1 topology, trans-
verse crossings cannot be perturbed away. This suggests that this pathological behaviour
can be treated numerically by computing derivatives, and this is indeed the case. How-
ever, trajectories which slide along the guard set can occur even inCr flows withCr guard
sets in the neighbourhood of aCr singularity, and such singularities occur generically in
r-dimensional hybrid systems. Hence even taking higher-order derivatives might not be
enough in some cases.

In this paper, we resolve the difficulty by giving a topological definition of a“detectable”
crossing (which is weaker than topological transversality), and show that if we restrict to
systems with detectable crossings, then it is possible to compute the evolution. Itis possible
to prove that crossings are detectable numerically by computing derivatives of the flow and
guard set.

In the above example, a discontinuity in the evolution resulting in a loss of lower-
semicomputability can occur at a degree-d crossing if perturbations of orderd − 1 are
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allowed. Hence, a purely topological approach to lower-approximations insystems with
crossings of guard sets is bound to fail.

5 Semicontinuity of evolution of hybrid systems

We now introduce a class of nondeterministic hybrid systems and consider conditions under
which the evolution is semicomputable.

5.1 Nondeterministic hybrid systems

In this paper, we use the following definition of hybrid system, which slightly extends that
of [4], and is essentially equivalent to that used in [19].

Definition 5.1 (Hybrid system). A hybrid systemis a tupleH = (X,D,A,Φ, R) where

• the state spaceX is a manifold,

• D ⊂ X is thedomainset,

• A ⊂ X is theactivationset.

• Φ : X ⇉ C(R+ 99KX) is a multivaluedflow, and

• R : X ⇉ X defines aresetmapx′ ∈ R(x).

In typical examples, the flow will be defined by a differential equationẋ = f(x) or differ-
ential inclusionẋ ∈ F (x).

Note that instead of working with differential inclusions, we work directly withflows,
since this separates the core hybrid systems theory (e.g. detecting crossings with guard
sets) from the technicalities of integrating with differential inclusions. IfA andD form a
topological partition ofX (i.e.D ∪A = X andD◦ ∩A◦ = ∅, where◦ denotes the interior
of a set), andΦ is given by the differential inclusioṅx ∈ F (x) thenH = (X,A, F,R) is
an impulse differential inclusionas defined in [4].

Definition 5.2 (Trajectories of hybrid systems). A trajectory or solution of a hybrid system
H = (X,D,A,Φ, R) is a hybrid trajectoryξ : T → X such that

• ξ(t, n) ∈ D whenevertn 6 t 6 tn+1,

• ξ(tn, n− 1) ∈ A,

• ξ(t, n) = η|[0,tn+1−tn](t− tn) for someη ∈ Φ, and

• ξ(tn, n) ∈ R(ξ(tn, n− 1)).

Note that even ifΦ andR are single-valued, then the evolution can still be nondeter-
ministic. For if x ∈ D ∩ A, then both continuous evolution and a discrete jump may be
possible starting fromx.

In this section, we will make regular use of the set-valued indicator functionIS : X ⇉
X defined byIS(x) = {x} if x ∈ S, andIS(x) = ∅ if x 6∈ S. It is straightforward to
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show that ifA is closed, thenIA is upper-semicontinuous, and ifU is open, thenIU is
lower-semicontinuous. We will also use therestricted reset mapR|A defined by

R|A(x) := R(IA(x)) =

{
R(x) if x ∈ A

∅ if x 6∈ A.
(2)

and therestricted dynamicΦ|D : X × R+ ⇉ R+ given by

Φ|D(x, t) := {y | ∃η ∈ Φ s.t.η(0) = x, η([0, t]) ⊂ D andη(t) = y}. (3)

5.2 Upper-semicomputability of the evolution

We now consider upper-semicomputability of the evolution of set-based hybrid systems.

Definition 5.3. A set-based hybrid systemH = (X,D,A,Φ, R) is upper-semicontinuous
if

• D andA are closed,

• Φ andR are upper-semicontinuous with compact values.

Note that by sayingΦ is upper-semicontinuous with compact values, it follows that ifξn
is a sequence of solutionsξn ∈ Φ(xn) with limn→∞ xn = x∞, then there is a subsequence
of theξn converging to a curveξ∞.

Upper-semicontinuity of the solution of upper-semicontinuous hybrid systemswas
proved in [19]. In this work, we prove that the solution operator is also upper-
semicomputable, as stated in [16].

Theorem 5.4(Upper-semicomputability for nondeterministic hybrid systems). The evolu-
tion of an upper-semicontinuous hybrid system is upper-semicomputable.

More precisely, letH = (X,D,A,Φ, R) be a hybrid system such thatD andA are
closed, andΦ andR are upper-semicontinuous with compact values. LetX0 ⊂ X be a
compact initial state set,T ⊂ R+ a compact set of times, andN a bound on the number of
events. Then the operator(D,A,Φ, R) 7→ ΨH is (ψ>, ψ>, φ>, µ>;µ>)-computable.

Lemma 5.5. LetR be a compact-valued upper-semicontinuous map, andA a closed set.
Then the operator(R,A) 7→ RA is (µ>, ψ>;µ>)-computable.

Proof. For any compact set,RA(C) = R(C ∩A), so the image is computable.

Lemma 5.6. Let Φ be an upper-semicontinuous compact-valued flow, andD a closed set.
Then the operator(Φ, D) 7→ Φ|D is (φκ

>, ψ>;φκ
>)-computable.

Proof. Consider the restricted flowsΦD,n given byη ∈ ΦD,n ⇐⇒ ξ ∈ Φ andη(t) ∈ D
for t ∈ {m/2n | m = 0, 1, . . . , 22n}. Clearly, any trajectory inΦD,n+1 lies in ΦD,n, so
the allowable orbits form a monotone decreasing set. Further, sinceΦ(X0) is a compact
subset ofC(R+ 99K X) for any compact set of initial statesX0, andC(R+ 99K X) is a
Polish space,Φ(X0) is sequentially-compact. Hence ifηn is a sequence of solutions ofΦ
such thatηn(0) ∈ X0 andηn ∈ ΦA,n, then there is a subsequenceηni

which converges to
a continuous functionη∞. SinceD is closed andηi(m/2

n) ∈ D for all i sufficiently large,
we haveη∞(m/2n) ∈ D. Sinceη∞ is continuous and{m/2n | m,n ∈ N} is dense inR+,
we haveη(t) ∈ D for all t. HenceΦ|D(x) =

⋂
n∈N ΦD,n(x).
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It remains to show that eachΦD,n is computable. It is sufficient to consider{η | ξ(t) ∈
D} is a computable closed set inD for all t ∈ R+, since then we can writeΦD,n(x0) =

Φ(x0) ∩
⋂22n

m=0{ξ | η(m/2
n) ∈ D}. This follows since

{η | η(t) 6∈ D} =
⋃

{(T,J)∈βR×βX |J∩D 6=∅ andt∈T}{η | η(T ) ⊂ J}

and
{η ∈ Φ | η(T ) ⊂ J} = cl({η ∈ Φ | η(T ) ⊂ J})

Hence{η | η(t) ∈ D} is the complement of
⋃

(J,T )|J∩D 6=∅ andt∈T cl({)η | η(T ) ⊂ J},
which can be computed fromD.

We can now give the proof of Theorem 5.4.

Proof. By Lemmas 5.5 and 5.6, we can obtain aµ>-name of the restricted resetR|A and a
φ>-name of the restricted flowΦ|D. It remains to compute aµ>-name of the evolutionΨ.

Consider the caseD = A = X, soΦ|D = Φ andRA = R. Let Ψh(x) := Φ|D(x, t).
Then we can obtain aµ> name of(x, t) 7→ Φ(x, t). Define

Ψ(x, t; t1, . . . , tn) = {y ∈ X | ∃ solutionξ of H with event timest1 6 · · · 6 tn 6 t

s.t. ξ(0, 0) = x andξ(t, n) = y}.

Then since we can write

Ψ(x, t, (t1, . . . , tn)) = Φt−tn ◦R ◦ Φtn−tn−1
◦ · · · ◦R ◦ Φt1(x)

we see that the map(x, t, t1, . . . , tn) 7→ Ψ(x, t, (t1, . . . , tn)) is a composition of functions
for which we haveµ>-names, and hence we can computeµ>-name ofΨ. We can write
Ψ(x, t, n) = Ψ(x, t, Tt,n) whereTt,n = {(t1, . . . , tn) ∈ Rn | ∀i, 0 6 ti 6 ti+1 6
t}. Sincet 7→ Tt,n is (ρ, κ>)-computable, we can compute aµ>-name of the function
(x, t, n) 7→ Ψ(x, t, n). ThenΨ(x, t, [0, N ]) =

⋃∞
n=0 Ψ(x, t, n) =

⋃N
n=0 Ψ(x, t, n) is a

finite union ofµ>-computable functions. Hence we can compute aµ>-name ofΨ.

We say a system isuniformly non-Zenoif there exist(T,N) such that in any time
interval of length at mostT , there occur at mostN discrete events. As shown in [19],
any non-Zeno upper-semicontinuous hybrid system with a compact globalattractor mush
be uniformly non-Zeno. For non-Zeno systems, we can drop the bounds on the number of
events.

Corollary 5.7 (Upper-semicomputability for non-Zeno hybrid systems). Let H =
(X,D,A,Φ, R) be a uniformly non-Zeno upper-semicontinuous hybrid system LetX0 ⊂ X
be a compact initial state set, andT ⊂ R+ a compact set of times. Then the operator
(D,A,Φ, R,X0, T ) 7→ ΨH(X0, T ) is (ψ>, ψ>, φ>, µ>;µ>)-computable.

5.3 Lower-semicomputability of evolution

Definition 5.8. A hybrid systemH = (X,D,A,Φ, R) is lower-semicontinuousif

• D andA are open, and

• Φ andR are lower-semicontinuous with closed values.

18



In this situation, we have the following computability result.

Theorem 5.9.The evolution of a lower-semicontinuous domain-activation hybrid system is
lower-semicomputable.

More precisely, letH = (X,D,A,Φ, R) be a hybrid system, whereD andA are open,
Φ is a lower-semicontinuous multivalued flow, andR : X ⇉ X is lower-semicontinuous.
LetX0 ⊂ X be closed andT ⊂ R+ be closed. Then the operator(D,A,Φ, R) 7→ clΨH

is (θ<, θ<, θ<, µ<;µ<)-computable. Equivalently, the operator(D,A,Φ, R,X0, T ) 7→
clΨH(X0, T ) is (θ<, θ<, θ<, µ<, ψ<, ψ<;ψ<)-computable

The basic idea of the proof is as follows. We leth be a time step, and consider all
trajectories ofH such that discrete events are constrained to occur at timeskh with 0 <
kh < t. We show that the evolution defined by this semantics is lower-semicomputable,
and that in the limit ash → ∞ we obtain all trajectories. It is important that we do not
allow a discrete transition to occur at the initial or final time of the evolution.

Lemma 5.10. Let R be a closed-valued lower-semicontinuous map, andU an open set.
Then the operator(R,U) 7→ R|U is (µ<, θ<;µ<)-computable.

Proof. From the definition ofIU , we haveJ ⊂ I−1
U (K) iff J ⊂ U ∩ K so the function

U 7→ IU is (θ<;µ<)-computable. The result follows sinceRU = R ◦ IU = cl(R ◦ IU ), and
composition of functions is a lower-semicomputable operation.

Lemma 5.11. Let Φ be an lower-semicontinuous closed-valued flow, andD an open set.
Then the operator(Φ, D) 7→ Φ|D is (φA<, θ<;φA<)-computable.

Proof. We first show that for allt > 0, {η | η([0, t]) ⊂ D} is computable. We see that for
fixed η andt ∈ Q thatη([0, t]) ⊂ D ⇐⇒ ∃0 = t0 < t1 < · · · < tk = t, J1, . . . , Jk with
J i ⊂ D such thatη([ti−1, ti]) ⊂ Ji. so we can write

{
η | η([0, t]) ⊂ D

}
=

⋃
{(ti,Ji)∈(Q×β)∗|Ji⊂D}

⋂
{η | η([ti−1, ti]) ⊂ Ji}

which is a computable (from aθ<-name ofD) countable union of finite intersections of
basic open sets.

HenceΦ|D is the closure of the intersection ofΦ with the union of partial trajectories
such thatη([0, tn]) ⊂ D, so is computable.

We now present the proof of Theorem 5.9

Proof. First consider the caseD = A = X, so thatΦ = Φ|D andR = R|A. Note
that from aφ<-name ofΦ as a mapX ⇉ C(R+ 99K X), we can compute aµ<-name
of Φ as a mapX × T ⇉ X. DefineΨ(x, t; t1, . . . , tn) andTt,n as in the proof of The-
orem 5.4. Then the mapt 7→ Tt,n is lower-semicomputable i.e.(ρ;ψ<)-computable, and
since(x, t, t1, . . . , tn) 7→ Ψ(x, t; t1, . . . , tn) is a composition of maps of the formΦti−ti−1

andR, for which we haveµ<-names, we can compute aµ<-name oft 7→ Ψ(x, t). Hence
we can compute aµ<-name of the closed composition(x, t) 7→ cl(Ψ(x, t)).

The general case follows from the fact that(D,Φ) 7→ Φ|D and (A,R) 7→ R|A
are lower-semicomputable i.e. respectively(θ<, φ<;φ<)-computable and(θ<, µ<;µ <)-
computable.
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The following result will be useful in Section 5.6. It shows that the evolutionofH is the
same as the evolution we obtain by considering only trajectories with distinct event times.
Indeed, any solution ofH is the limit of solutions with distinct event times. Formally, letH
be a hybrid system and definẽΨ by

Ψ̃(x, t, n) = {y | ∃ solutionξ of H with event times0 < t1 < t2 < · · · < tn < t

such thatξ(0) = x andξ(t) = y}. (4)

Proposition 5.12. Let Ψ be the evolution of a lower-semicontinuous hybrid systemH,
and letΨ̃ be the evolution ofH consisting of trajectories with distinct event times. Then
cl(Ψ̃(x, t)) = cl(Ψ)(x, t).

Proof. Define Ut,n = {(t1, . . . , tn) ∈ Rn | 0 < t1 < · · · < tn < t}. Then
Ψ̃(x, t) = Ψ(x, t, Ut,n) whereΨ(x, t, (t1, . . . , tn)) is as defined previously. SinceΨ : X ×

R+ × (R+)n ⇉ X is lower-semicontinuous, we havecl(Ψ̃(x, t, n)) = cl(Ψ(x, t, Ut,n)) =
cl(Ψ(x, t, U t,n)) = cl(Ψ(x, t, Tt,n)) = cl(Ψ(x, t, n)) as required.

5.4 Closure and interior semantics of evolution

General hybrid systems of the form given by Definition 5.1 need not be upper- or lower-
semicontinuous. In order to compute upper- or lower approximations to the solution, we
need to convert the system into either upper- or lower-semicontinuous form. We can do this
be regularising the guard sets to be open or closed, and

Definition 5.13. LetF : X ⇉ Y be a multivalued function. Define

• F by F =
⋃
{F̂ | F̂ is upper-semicontinuous and̃F ⊂ F}, and

• F by F =
⋃
{F̃ | F̃ is lower-semicontinuous and̃F ⊂ F}.

An alternative definition ofF is in terms of its graph;Graph(F ) =
⋂

ǫ>0Nǫ(GraphF ).
It is easy to show that ifF locally takes pre-compact values (i.e.cl(F (I)) is compact for any
compactI) thenF is compact-valued upper-semicontinuous, and thatF is closed-valued
lower-semicontinuous.

Definition 5.14. LetH = (X,D,A, F,R) be a set-based hybrid system. Then

• ξ : T → X is a trajectory ofH usingclosure-semanticsif ξ is a trajectory of the
upper-semicontinuous systemH = (X, cl(D), cl(A),Φ, R).

• ξ : T → X is a trajectory ofH using interior-semanticsif ξ is a trajectory of the
lower-semicontinuous systemH = (X,D◦, A◦,Φ, R).

From Theorems 5.4 and 5.9, we deduce

Corollary 5.15. LetH = (X,D,A, F,R) be a set-based hybrid system. Then the evolution
ofH is upper-semicomputable and the evolution ofH is lower-semicomputable.

We now show thatH is “smallest” hybrid system for which the evolution is upper-
semicomputable. In other words,any attempt to compute an over-approximation to the
evolved set using approximative methods must necessarily compute an over-approximateion
to the evolved set ofH.

20



We letH be the space of hybrid systems, whereD andA are in the space of regular
sets with both the lower representationθ< and upper representationψ>, Φ is in the space of
compact-valued flows with representationφ = φ< ∨ φ>, andR is in the space of compact-
valued maps with representationµ< ∨ µ>. In other words,D is a regular set, and we have
access to a list of boxes fillingD◦, and a list of boxes fillingX \ cl(D).

Theorem 5.16. LetH = (X,D,A,Φ, R) be a hybrid system, and suppose thatΨ : H ×
X × R 7→ K(X) is upper-semicomputable andΨ(x, t) ⊃ ΨH(x, t) for all x, t. Then
Ψ(x, t) ⊃ ΨH(x, t).

We have a similar result for lower-semicontinuity.

Theorem 5.17. Let H = (X,D,A,Φ, R) be a hybrid system, and suppose thatΨ :
XH× R 7→ A(X) is lower-semicomputable andΨ(x, t) ⊂ cl(ΨH(x, t)) for all x, t. Then
Ψ(x, t) ⊂ cl(ΨH(x, t)).

The significance of these results is that, in general, it is impossible to do better than
compute over- or lower- approximations to the evolution which converge to smaller sets
than those given by the upper or lower semantics, as long as only approximate information
is used.

5.5 Deficiencies of interior semantics

Unfortunately, the definition of interior-semantics given causes difficultiesin the modelling
of systems with urgent transitions. This is because there is no way in the formalism of
specifying a coupling between the invariants and activations.

Example5.18 (Uncomputability caused aliasing). Consider a system with dynamicẋ = 1,
invariant x 6 a and activationx > b with a, b > 0. If a < b, then the invariant is
violated before the transition is activated, and further evolution is blocked.If a > b, then
the transition is activated before the invariant is violated, and a transition may occur at any
time b < x(t) < a. If a = b and we are computing an over-approximation to the evolution,
then a transition must occur exactly whenx(t) = a. However, if we are computing a lower-
approximation to the evolution, then since equality is undecidable, we need to consider the
possibility thata < b. Hence a lower-approximation to the evolution must block, since this
is the worst-case scenario.

(b)(a) (c)

Figure 9: Discrete transitions are blocked using inner semantics even at a transverse cross-
ing. In (a) the domain and activation regions overlap and crossings are possible. In (b) the
boundaries of the domain and activation regions touch, and discrete transitions are forced
with upper semantics, but disallowed using inner semantics. An arbitrarily smallperturba-
tion gives (c) in which no transitions are possible.

At first sight, it may seem that the evolution “should” continue fora = b. However,
the correct semantics for lower-approximation is to block the evolution. This isbecause
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if the invariant and activation are determined by independent parameters,then it is only
a coincidence that the transition is activated at exactly the same point as the invariant is
violated, and under a small change in the parameters then the evolution may be blocked. It
is only if we give the additional, combinatorial information that the invariant andactivation
boundaries lie exactly at the same point, that we can deduce that the evolutionmay continue.
From an implementation standpoint, we see thatx 6 a andx > b are aliases for the same
constraintx ⋚ c with c = a = b.

5.6 Lower-semicomputability of hybrid systems using crossing semantics

Let H = (X,D,A,Φ, R) be a hybrid system and supposeD andA are regular open sets
andΦ is closed-valued lower-semicontinuous. We would like to know when trajectories of
H cross instantaneously fromD toA.

Definition 5.19. A continuous trajectoryξ crosses fromD toA at timet and pointx if for
all δ > 0, ξ(t− δ, t)∩D 6= ∅ andξ(t, t+ δ)∩A 6= ∅. We say thatx is acrossing pointfor
ξ.

Note that trivially ifx ∈ D ∩ A, thenx is a crossing point for any trajectory though it.
If x 6∈ cl(D) ∩ cl(A), thenx cannot be a crossing point. The real interest is whenx lies in
∂D and∂A. By the observations of Example 5.18, ifD andA are disjoint, then by a small
perturbation, we can make their boundaries disjoint, and so any lower approximation to the
flow will have blocking. We therefore need more information about the setsD andA, and
the flowΦ than is given by the namesθ< andφ<.

Let us consider the case in whichD andA form a topological partition ofX; that is,
D ∩ A = ∅ andcl(D) ∪ cl(A) = X. Supposeξ is a trajectory such thatξ(t1) ∈ D and
ξ(t2) ∈ A, soξ apparently crosses fromD to A. We would like to be able to deduce that
ξ crosses fromD toA in the sense of Definition 5.19. Unfortunately, from Example 4.9, it
may be the case thatξ slides inside∂D ∩ ∂A rather than crossing transversely, and as we
have seen, we cannot handle sliding solutions.

Definition 5.20. LetH be a hybrid system andδ > 0. We sayH hasδ-detectable crossings
if for all trajectoriesξ of Φ such thatξ(0) ∈ D andξ(t) ∈ A for somet < δ, then there
existsc ∈ R andη ∈ Φ such thatξ([0, c[) ⊂ D, η(0) = ξ(c) andη([0, ǫ[) ∩ A 6= ∅ for all
ǫ > 0.

In other words, if there is a trajectory which moves fromD to A in time less than
δ, then from the point where the state leavesD, there is a possibly different trajectoryη
which immediately entersA. Note that the condition of detectable crossings precludes the
degenerate situation in which a solution slides along a common boundary ofD andA for
time less thanδ, and also the case of Example 5.18 in which the solution leavesD briefly
before enteringA.

In Section 6.3, we will give conditions under which a system has detectable crossings.
We now define a new notion of solution for hybrid systems.

Definition 5.21. Let H = (X,D,A,Φ, R) be a hybrid system whereD andA are open
sets. Then a hybrid trajectoryξ is a solution ofH usingcrossing semanticsif

• 0 < t1 < t2 < · · · < ti < ti+1 < · · · .

• ξ[t, n) ∈ D for tn 6 t < tn+1.
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• There existsζn ∈ Φ such thatζn(0) = ξ(tn, n) andζn([0, ǫ[) ∩A 6= ∅ for all ǫ > 0.

• ξ(·, n) ∈ Φ, and

• ξ(tn, n) ∈ R(ξ(tn, n− 1)).

Intuitively, between discrete events, solutions must remain in the interior ofD; this
prevents grazing contact with guard sets. A discrete event may occur atthe boundary ofD
if it is possible to continue the trajectory directly intoA. Note that after a reset, we require
either thatx ∈ D or that another discrete transition occurs immediately. Note that we allow
ξ(tn, n) 6∈ D if another event occurs exactly at timetn.

Using this notion of solution, we can prove the following result.

Theorem 5.22(Lower-semicomputability of the evolution of hybrid systems with detectible
crossings). Let H be a lower-semicontinuous hybrid system withδ-detectable crossings.
Then the evolutionH 7→ ΨH(x, t) is lower-semicomputable using crossing semantics.

More precisely, letH = (X,D,A,Φ, R) be a hybrid system whereD andA are open
sets, andΦ andR are lower-semicontinuous with closed values. Suppose that crossings of
Φ fromD to A are δ-detectable. LetX0 be a closed set of initial states, andT is an open
set of times. The the operator(D,A,Φ, R) 7→ ΨH is (θ<, θ<, φ<, µ<;µ<, )-computable.

We use the following lemma, which shows that the crossing times and points can be
computed.

Lemma 5.23. LetD andA be open sets andΦ be a lower-semicontinuous closed-valued
flow. Suppose that the crossings of trajectories ofΦ fromD to A are δ-detectable. Define
the crossing functionΓ : X ⇉ R+ ×X by

Γ(x0) = {(t, x) ∈ R ×X | t > 0 and∃ξ ∈ Φ s.t. ξ([0, t)) ⊂ D and

ξ([0, t+ ǫ[) ∩A 6= ∅ for all ǫ > 0}. (5)

Then the function(D,A,Φ) 7→ Γ is (θ<, θ<, φ<;µ<)-computable.

Proof. Consider the set of trajectories ofΦ which have a first crossing fromD toA at time
t ∈]t1, t2[ and pointx ∈ J , and supposet1 < t2 < t1 + δ. If η is such a trajectory, then by
the definition of crossing, we haveη([0, t1]) ⊂ D, η([t1, t2]) ⊂ J andη([t1, t2]) ∩ A 6= ∅.
Further, by theδ-detectable crossing condition, this is a sufficient condition for the existence
of a crossing at timet ∈]t1, t2[ and pointx ∈ J . HenceI ⊂ Γ−1(T × J) if and only if

I ⊂ Φ−1
(
{η | η([0, t1]) ⊂ D} ∩ {η | η([t1, t2]) ⊂ J} ∩ {η | η([t1, t2]) ∩A 6= ∅}

)

The set{η | η([0, t1]) ⊂ D} can be lower-semicomputed from aθ< name ofD, and the set
{η | η([t1, t2]) ⊂ J} is a basic open set of the flow. The set{η | η([t1, t2]) ∩ A 6= ∅} can
be written as

⋃
T⊂[t1,t2]{η | η(T ) ⊂ A}, so is a countable union of lower-semicomputable

sets. Hence we can enumerate all tuples(I, T, J) ∈ βX × βR × βX such that for allx ∈ I,
there exists a trajectory ofΦ starting atx such thatΦ has a first crossing fromD to A at
time t ∈ T and pointy ∈ J , which means we have aµ<-name ofΓ.

We can now give the proof of Theorem 5.22
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Proof. DefineΨ̃ : X × R+ × N+ ⇉ X to be the evolution ofH with crossing semantics.
Note that this means that all events must occur at distinct times. DefineR̂ : X×R ⇉ X×R

by R̂(x, t) = R(x) × {t}, andΘ((x, s), t) = Φ(x, t − s) for x ∈ X and0 < s < t. Then
Ψ̃(x, t, 1) = Θ(R̂(Γ(x)), t). It is clear that we can compute aµ<-name ofR̂ andΘ̂ from
µ<-names ofR andΦ, respectively, and by Lemma 5.23 we can compute aµ<-name of
Γ. Hence we can compute aµ< name of the composition(x, t) 7→ cl(Ψ̃(x, t, 1)). The
result by induction sincẽΨ(x, t, n+ 1) =

⋃
s∈]0,t[ Ψ̃(Ψ̃(x, s, b), t− s, 1) andcl(Ψ̃(x, t)) =

⋃∞
n=0 Ψ̃(x, t, n)

Note that in the case of crossing semantics, it is not true that every trajectory with
multiple events at the same time is a limit of trajectories with distinct event times.

6 Modelling, Simulation and Implementation

6.1 Hybrid Automata with guard sets

The description of hybrid automata introduced in Section 4 is sufficient to define the dy-
namic evolution, but is inexpressive as a modelling framework. Many hybridsystem models
are defined using explicitdiscrete state, anddiscrete eventsand allow forurgent transitions
when a trajectory first touches aguard set. Guard sets therefore form both the boundary
of the invariant domain of continuous evolution, and of the activation regionof the discrete
event. We should therefore use crossing semantics for determining the activation of events
given by guard sets when computing lower-approximations to the evolution. We can use
interior semantics when determining the activation of non-urgent orpermissivetransitions.

In our definition of hybrid systems we will describe sets in terms ofconstraint functions.
A constraint is a continuous functionc : X → R, and we say a constraint isregular if
{x ∈ X | c(x) = 0} is a codimension-1 topological manifold. Ifc is differentiable and
∇c(x) 6= 0 wheneverc(x) = 0, thenc is regular, and changes sign on a differentiable
manifold.

A constraint defines sets{x ∈ X | c(x) ≶ 0} and{x ∈ X | c(x) ⋚ 0}. The operator
c 7→ {x | c(x) < 0} is (γ; θ<)-computable and the operatorc 7→ {x | c(x) 6 0} is
(γ;ψ <)-computable.

We now give a standard definition of hybrid automata. A transition for a constraint
hybrid automaton is eitherurgent(sometimes calledjust-in-time), which means that contin-
uous evolution is not allowed when the event is active, ornon-blocking, which means that
continuous evolution is allowed in addition to a discrete transition, and hence thedynamics
is nondeterministic.

Definition 6.1 (Hybrid automaton). A constraint hybrid systemis a tupleH = (Q,E =
EU ∪ EP , γ, {Xq | q ∈ Q}, {Fq | q ∈ Q}, {Dq | q ∈ Q}, {(Rq,e | (q, e) ∈
dom γ}, {(Aq,e | (q, e) ∈ dom γ, e ∈ EP }, {(gq,e | (q, e) ∈ dom γ, e ∈ EU})) where

• Q is a finite set ofdiscrete statesandE is a finite set ofdiscrete events, which is
partitioned into subsetsEU of urgent eventsandEP of permissive events.

• γ :⊂ Q× E → Q is a partialdiscrete transition functionwith domaindom γ.

• For eachq, the manifoldXq is thecontinuous state spacefor discrete stateq.
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• For eachq, Fq : Xq ⇉ TXq is a differential inclusion giving thecontinuous dynam-
ics.

• For eachq,Dq ⊂ Xq = is theinvariant domainfor the continuous dynamics.

• For each(q, e) ∈ dom γ,Rq,e : Xq ⇉ Xρ(q,e) is theresetmap.

• For each(q, e) ∈ dom γ with e ∈ EP ,Aq,e ⊂ Xq is anactivationregion.

• For each(q, e) ∈ dom γ with e ∈ EU , gq,e : Xq → R is aguardconstraint.

Notice that we have two types of restrictions on the continuous dynamics, namely those
given by the invariants and those given by the guards. We also have two types of restrictions
on the discrete dynamics, namely those given by the activations and those given by the
guards. When computing lower-approximations to the evolution, it is appropriate to use
interior semantics for invariants and activations, and crossing semantics for guards.

It is straightforward to translate the system to an upper-semicontinuous hybrid system
in the form of Definition 5.1. We takeX =

⋃
q∈Q{q} × Xq as the state space. The

invariant domain is constructed from both the explicit invariantsDq and the guardsgq,e

byD =
⋃

q∈QDq ∩
⋂

e∈EU
{x | gq,e(x) 6 0}. We construct the flowΦ by integrating the

differential inclusionsFq, andΦ|D by restricting to the invariant. For the discrete events, we
immediately restrict to the activation regions by taking takeR|A(q, x) =

⋃
e∈EP

{γ(q, e)}×
Rq,e|Aq,e

(x) whereAq,e := {x | g(x) > 0} for urgent eventse.
Computing lower approximations to the evolution is more challenging, since we have

to treat urgent and permissive transitions differently. For each permissive event, we take
Re|A(q, x) = Rq,e|Aq,e

(x) as the restricted reset map. For each urgent evente and each
discrete stateq, we can compute the crossing time setΓq,e : Xq 7→ Xq × R+ for the
restricted flowΦq|Dq

. We can then compute each urgent transition separately as in the
proof of Theorem 5.22. By combining the discrete transitions which can occur for each
individual event, we can show that the evolutionΨ : X ×R+ ⇉ X isµ<-computable from
the data describing the system.

6.2 Reliable simulation of hybrid systems

We wish to be able to reliably simulate the trajectory of a deterministic hybrid automaton
starting at some initial pointx. Away from discontinuity points in the spacial dependence of
the evolution, the meaning of a simulation is clear; there is a unique trajectory, which we can
compute using upper semantics. However, at the discontinuity points, there are at least two
possible choices for how to continue the evolution; at a grazing or external corner collision
point, we must choose between carrying on with the continuous dynamics, orapplying a
discrete reset. At a point where multiple events are activated, we must choose between
which of the two or more events occurs. Even near the discontinuity points, we may not
be able to reliably distinguish which of the possible continuations occurs due tonumerical
error.

One way of resolving these different possibilities is to make either a random choice, or
rank the possible events in some order and apply the preferred event. However, this runs
the risk of missing qualitatively different evolutions. Another option is to continue with all
possible different evolutions. This is only feasible if the discontinuity set is entered at a
discrete set of time instances.
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If crossings with the guard setG = ∂D ∩ ∂A areδ-detectable, then we can compute
the set of grazing points asG0 = {x ∈ G | Φ(x, [0, δ/2]) ⊂ D}, which isψ<-computable
from Φ andD. Takinge0 to be the specialgrazing eventwith guardG0, we can compute
the discontinuity set as the union of all intersections of pairs of guard sets.Hence the
discontinuity set is

⋃
(ei,ej)∈E∪{e0}

Gi ∩Gj , and isψ<-computable from the system data.
We can think of simulation as computing the evolutionΨ of the system from a single

initial point. In order to distinguish between the multiple possibilities at branching points,
we need only store a list of event labels and times. Since we can compactifyR+ by adding
the point at infinity, the setE× (R+ ∪{∞}) is itself second-countable and locally compact
in the product topology. By extending the state variable with the timet, and the reset relation
by updating the list of events whenever a reset occurs, we obtain a new hybrid system in
which the evolution operator stores the sequence of discrete events and the total time used
to reach a particular state, from which the entire trajectory can be completely reconstructed.

Hence by Theorem 5.4, we can compute the set of all possible evolutions distinct evo-
lutions from a given initial point for a uniformly non-Zeno hybrid system.

6.3 Implementation issues

Throughout the paper, every effort has been made to present the minimal assumptions neces-
sary in order to perform a computation. In particular, no assumptions on thedifferentiability
of various objects were made. Further, the counterexamples to computability were all based
on simple affine systems, so adding differentiability assumptions makes no difference to
the ability to compute arbitrarily accurate approximations to the evolution. However, ef-
ficient numerical methods require differentiability assumptions on the inputs in order to
obtain high-order convergence. Therefore, when implementing the operations involved,
particularly the algorithms for computing system evolution and crossing of guard sets, it is
important to use differentiability to obtain efficient algorithms. As an example, thecrossing
time to a transverse guard set can be computed to an order which is the maximum differ-
entiability of the guard constraint and the flow. This can allow more efficient stepping over
guard constraints than methods relying purely on checking for crossing using set inclusions.

The theory presented in this paper has been implemented in the tool ARIADNE for reach-
ability analysis of hybrid systems. Examples of computations performed using ARIADNE

can be found in [6].

7 Concluding Remarks

In this paper, we have considered the computability of the evolution of a hybrid system,
in which input and output data are specified by arbitrarily-accurate approximations to the
exact values.

The main points are summarised below:

1. It is impossible in general to compute the evolution (simulation, reachable sets) of a
hybrid system to arbitrary accuracy, and this holds even for simple classesof hybrid
system, such as piecewise-constant derivative systems.

2. The obstruction to computability is due to discontinuities in the temporal evolution
and in the spacial dependence on the initial conditions. Away from discontinuity
points, the evolution is computable. Essentially the only hybrid systems for which
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the evolution can be computed to arbitrary accuracy for any initial condition are those
for which every trajectory starting in a given mode undergoes the same sequence of
discrete events.

3. It is possible to regularise any hybrid system such that it is possible to compute con-
vergent approximations to the evolution from above (“closure semantics”)or below
(“interior semantics”), but the regularisations admit different solution sets. The reg-
ularisation of a deterministic system is necessarily either nondeterministic or admits
blocking.

4. The regularisation using interior semantics cannot handle crossings ofguard sets
properly. Instead, we need to use a different regularisation “crossing semantics”.
Under a regularity condition on the crossings of the guard sets, it is possible to com-
pute convergent lower-approximations to the evolution; otherwise spurious solutions
may be introduced.

5. The semicomputability results are valid for general classes of system, including nons-
mooth, discontinuous and nondeterministic systems. Restricting to a special subclass
of hybrid system does not change what is possible to compute, but may allowfor
more efficient algorithms.

6. The framework of “computable analysis” is a powerful machinery for discussing
computational aspects of hybrid systems theory. It provides a clear notionof what
we should be aiming to compute about a given mathematical object which can be in-
terpreted in terms of convergent sequences of approximations. It gives natural topo-
logical conditions under which the computation can be proved to be impossible.It
also provides a methodology of proving computability results using natural mathe-
matical language without having to resort to the details ofǫ-δ style proofs.

There are many interesting areas for further research, especially in theanalysis of lower-
semicomputability. In particular, it would be useful to have generic verifyable conditions
under which all crossings are detectable. For general systems, it wouldalso be interest-
ing to give an exact classification of the computability of the evolution with respect to the
arithmetic hierarchy. It would also be interesting to extend this analysis to otherprob-
lems, such as verification and control synthesis, and to other classes of systems. There is
some evidence to suggest that stochastic systems with a diffusion term [13, 7], may have
better computability properties than deterministic systems. It would also be interesting
to compare decidability of system properties in the framework of computable analysis, in
which only approximations to the input are considered, with computability in some alge-
braic framework in which exact computations are possible. In the light of previous work
on piecewise-constant derivative systems [2] and (non) o-minimal affinesystems [24, 10],
it seems likely that while there are be specific problem instances which can bedecided us-
ing algebraic methods, using exact descriptions does not fundamentally change the class of
solvable problems. Finally, it is vital to develop more efficient numerical algorithms for the
computation of upper- and lower-approximations to the system evolution.
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