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Abstract. The solutions of a family of semilinear stochastic equations in a Hilbert space with
a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily
only a growth condition assumption. An arbitrary member of the family of fractional Brownian
motions can be used in these equations. Existence and uniqueness for both weak and mild solutions
are obtained for some of these semilinear equations. The weak solutions are obtained by a measure
transformation that verifies absolute continuity with respect to the measure for the solution of the
associated linear equation. Some examples of stochastic differential and partial differential equations
are given that satisfy the assumptions for the solutions of the semilinear equations.
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1. Introduction. Fractional Brownian motion denotes a family of Gaussian
processes with continuous sample paths that are indexed by the Hurst parameter
H € (0,1) and that have properties that appear empirically in a wide variety of phys-
ical phenomena, such as hydrology, economic data, telecommunications, and medicine.
Since some physical phenomena are naturally modeled by stochastic partial differen-
tial equations and the randomness can be described by a fractional Gaussian noise, it
is important to study the problems of the solutions of stochastic differential equations
in a Hilbert space with a fractional Brownian motion. A significant family of these
stochastic equations is the set of semilinear equations, so it is important to investigate
the existence and the uniqueness of the solutions of the equations and the sample path
properties of the solutions. If primarily only some growth assumptions are made on
the nonlinear terms in the semilinear equations, then it is natural to investigate weak
solutions, especially those that arise by an absolutely continuous transformation of
the measure of the solution of the associated linear stochastic equation.

The study of the solutions of stochastic equations in an infinite-dimensional space
with a (cylindrical) fractional Brownian motion (for example, stochastic partial differ-
ential equations) has been relatively limited. For the Hurst parameter H € (1/2,1),
linear and semilinear equations with an additive fractional Gaussian noise, the formal
derivative of a fractional Brownian motion, are considered in [8,13,15,28]. Random
dynamical systems described by such stochastic equations and their fixed points are
studied in [22]. A pathwise (or nonprobabilistic) approach is used in [21] to study
a parabolic equation with a fractional Gaussian noise where the stochastic term is
a nonlinear function of the solution. Strong solutions of bilinear evolution equations

*Received by the editors March 4, 2008; accepted for publication (in revised form) November 11,
2008; published electronically February 20, 2009. Research supported in part by NSF grants DMS
0204669, DMS 0505706, ANI 0124510, and GACR 201/04/0750.

http://www.siam.org/journals/sima/40-6/71764.html

TDepartment of Mathematics, University of Kansas, Lawrence, KS 66045 (duncan@math.ku.edu,
bozenna@math.ku.edu).

fInstitute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic (maslow@math.
cas.cz).

2286

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/10/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SEMILINEAR STOCHASTIC EQUATIONS 2287

with a fractional Brownian motion are considered in [11,12], and the same type of
equation is studied in [33], where a fractional Feynman—Kac formula is obtained. A
stochastic wave equation with a fractional Gaussian noise is considered in [2], and a
stochastic heat equation with a multiparameter fractional Gaussian noise is studied
in [16,18].

One facet of the motivation for the study of weak solutions in an infinite-
dimensional space follows from some results [7, 27] for weak solutions in finite-
dimensional spaces that use an absolutely continuous transformation of measures
which generalize the result of Girsanov [14] for Brownian motion.

In this paper, a similar analysis is made for infinite-dimensional state spaces.
While the structure of the infinite-dimensional Girsanov theorem is analogous to the
finite-dimensional case, significant distinct difficulties arise when the application of
this theorem is used for stochastic equations in infinite-dimensional spaces. First
the driving process is only cylindrical, so the Girsanov theorem can only be used to
transform the semilinear equation to a linear equation that is a fractional Ornstein—
Uhlenbeck process. Since there is no classical strong solution to the linear equation,
the mild solution must be used, making the analysis of the transformation of the
measures by the Radon-Nikodym derivative more difficult because a suitable sam-
ple path regularity of the Ornstein—Uhlenbeck process must be verified. Unlike the
finite-dimensional case, this regularity is not immediate and some assumptions on
the coefficients in the linear equation must be made which are known for the case of
Brownian motion. The sample regularity requirement increases as the Hurst parame-
ter H increases. Dually the operators that appear in the Radon-Nikodym derivative
are less regular as H increases. Thus the applicability of the Girsanov theorem is not
immediate in this case and some conditions must be determined for the whole proce-
dure to succeed. Furthermore, for H > % in the finite-dimensional case it is assumed
that the nonlinear term in the semilinear equation satisfies a global Holder condition,
but this assumption is not satisfied in many typical examples in infinite-dimensional
spaces, such as reaction-diffusion equations. Thus this Holder condition is relaxed
here as well.

In section 2, some results from fractional calculus are given, and these results are
used to describe a kernel function for an integral operator that provides an isometry
of the second moment of Wiener-type stochastic integrals with respect to a fractional
Brownian motion and the Lebesgue space of square integrable functions. Furthermore,
some recent results for the solution of a linear stochastic equation in a Hilbert space
[28] are described. In section 3, semilinear stochastic equations in a Hilbert space
are studied. Initially, an absolute continuity of measures result for transforming the
solution of a linear stochastic equation is verified that can be viewed as an analogue
of the result of Girsanov [14] for a transformation of a finite-dimensional standard
Brownian motion. For a semilinear stochastic equation where the nonlinear term
satisfies a linear growth condition and some additional conditions are satisfied, it is
shown that there is one and only one weak solution. The weak solution is obtained
by verifying an absolute continuity of the measure of the solution with respect to the
measure of the solution of the associated linear equation. The cases H € (0,1/2) and
H € (1/2,1) are treated separately. Absolute continuity of the above measures is
verified when the nonlinearity satisfies a power growth condition and some additional
assumptions are made. In section 4, some examples of stochastic differential and
partial differential equations are given that satisfy the assumptions of the theorems.
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2. Preliminaries. In this section, a cylindrical fractional Brownian motion in a
separable Hilbert space is introduced, a Wiener-type stochastic integral with respect to
this process is defined, and some basic properties of this integral are noted. Initially,
some facts from the theory of fractional integration (cf. [31]) are described. Let
(V]I - 1, (-,-)) be a separable Hilbert space. If ¢ € L*([0,T],V), then for o > 0 the
left-side and the right-side fractional (Riemann-Liouville) integrals of ¢ are defined
(for almost all ¢t € [0,T]) by

(13:0) (0= g5 | (6= 9" et s

and

T
U%www=f§1[<&%w*ﬂ@w,

respectively, where I'(+) is the gamma function. For « € (0,1) the inverse operators
of these fractional integrals are called fractional derivatives and can be given by their
respective Weyl representations

o 1 P(t Ea(t) — (s
08.0) 0= gy (v [ Gl )

and

A S A B L B
wfﬁﬂw‘ru—m(ah¢w+“ﬂ @TBET“>’

where ¢ € I, (L' ([0,T],V)) and ¢ € I$_ (L' ([0,T],V)), respectively.
Let Kg(t,s) for 0 < s <t <T be the real-valued kernel function

(2.1) Ku(t,s) = et —5)"4 | en (3 —H) /t (u—s)"""" <1 - (5)%H> du

I'(H+1) I'(H+3)
for H € (0,1/2). If H € (1/2,1), then Ky has a simpler form as

[N

C t

The terms ¢ and ¢p are constants that depend only on H.
Define the integral operator Ky induced from the kernel Ky by

t

(2.3) Kpp(t) = / Ku(t, s)h(s) ds
0

for h € L2 ([0,T],V). It is well known [31] that

Kp: L2 ([0, 7], V) — 252 (L2 ([0, 7], V)

is a bijection and Kz can be described as

(2.4) Kh(s) = eul2! (“%41 3" (uH,é h)) (s
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for H € (0,1/2] and
H-—1
(2.5) Kyh(s) = cuIL, (uH,%I0+ 2 (u%,Hh)) (s)

for H € [1/2,1), where

(3 _]3
cyg = CHF(2H),
and

uq(s) = 1
for s > 0 and a € R. The inverse operator

Ky 172 (L2([0,77,V)) — L2 ((0,7],V)

is given by

— _—1 1_ 3—H
(2.7) Ky'o(s) = et s Dg " (uyy D30 (5)
for H € (0,1/2] and

(2.8) Ki'ol(s) = e s" D3 % (uy_ D) (s)
for H € [1/2,1) and o € It~ % (L2([0,T,V)). Note that if ¢ € H' ([0,7],V), the
Sobolev space, then

_ __ 1. 1-H
(2.9) Ky 'p(s) = eg's? 213, (u%ngo’) (s)

for H € (0,1/2].

Since the operator K;II plays an importzlmt role in what follows, it is desirable to
have some information about its domain I$+§(L2( [0,77],V)). It is straightforward that
1072 (L2([0,T],V)) € CP([0,T],V) for 8> 1 — H and H € (0,1/2). However, in
section 3, a more refined result is needed. If H € (1/2,1), then Igf% (L% ([0,T],V))
L2 ([0,T,V).

A definition of the stochastic integral of a deterministic V-valued function with
respect to a scalar fractional Brownian motion (5(t),t > 0) is given. This definition
uses the methods in [1,6,11,30]. An alternative, equivalent method is given in [10].

A family of linear operators (K3;, H € (0, 1)) is defined which provides an isometry
between Wiener-type integrals of a fractional Brownian motion and L2 ([0,77],V).
It is written as an adjoint because the linear operator g occurs naturally in the

factorization of the covariance for a fractional Brownian motion in LZ2.
Let K3;: € — L?([0,T],V) be the linear map given by

T
210)  Kiplt) = oK)+ [ (ol) = o) L ) s
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for p € £ and Ky given by (2.1), where & is the linear space of V-valued step functions
on [0,T7], that is, ¢ € £ if

n—1
= Z il b0 (1)
i=1

where z; € Viorie{l,....,.n—1}and 0 =t; <to <---<t, =T.
Define the stochastic integral as

/Oww sz i) — B(t).

It follows directly that

2
(2.11) E

/OTsodﬂ

where |{72(9 77y 15 the norm in L?([0,7T],V) induced by the inner product. Let
(H,] - |#, (-, -)#) be the Hilbert space obtained by the completion of the pre-Hilbert
space € with the inner product

(2.12) (s V)r = (Kire, Ka) 120, 11,v)

for ¢, € &£. The stochastic integral is extended to an arbitrary ¢ € H by the
isometry (2.11). Thus H is a linear space of integrable functions, and it is useful to
obtain some more specific information about H. If H € (1/2,1), then it is easily
verified that H D H, where H is the Banach space of Borel measurable functions with
the norm | - |z given by

* 2
= |’CHSD|L2([0,T],V) )

T T
(2.13) 2, = / / o) 1o(0)]| dr(u — v) dudo,

where ¢p(u) = H(2H — 1)[u?"~2, and it can be verified that H > L7 ([0,T],V)
and, in particular, H > L2 ([0,T], V) (cf. [12]). If ¢ € H and H > 1/2, then

/ @dﬂ‘ / / )) & (u — v) du dv.

If H € (0,1/2), then the space of integrable functions is smaller than for H €
(1/2,1). For H € (0,1/2) it is known that H D H' ([0,77],V) (cf. [17, Theorem 5.20])
and H D CP ([0,T],V) for each 8 > 1/2 — H (a more specific result is given in the
next section). If H € (0,1/2), then the linear operator Kj; can be described by a
fractional derivative

(215) Kire(®) = cut* DI (un_y¢) (1),

(2.14) E

where its domain is H = :,%fH (L%([0,T1,V)) (cf. [1, Proposition 6]). If H € (1/2,1),
then

(2.16) Kiro(®) = enth 7177 (u_y0) (8),
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A standard cylindrical fractional Brownian motion is defined now.

DEFINITION 2.1. Let (2, F,P) be a complete probability space. A cylindrical
process (B,-): QxRy xV — R on (2, F,P) is called a standard cylindrical fractional
Brownian motion with the Hurst parameter H € (0,1) if

(1) for each x € V' \ {0}, m(B(),;y) is a standard scalar fractional Brownian

motion with the Hurst parameter H;

(2) fora,eR and z,y €V

(B(t), ax + By) = a(B(t),z) + B(B(t),y) a.s. P.

Note that (B(¢),z) has the interpretation of the evaluation of the functional B(t)
at = though the process B(-) does not take values in V.

For H = 1/2, this definition is the usual one for a standard cylindrical Wiener
process in V. For a complete orthonormal basis (e,,n € N) of V, letting §,(t) =
(B(t), en) for n € N, the sequence of scalar processes (8,,n € N) is independent and
B can be represented by the formal series

(2.17) B(t) = Bu(t)en

that does not converge a.s. in V.
Naturally associated with a standard cylindrical fractional Brownian motion is a

standard cylindrical Wiener process (W (t),t > 0) in V such that, formally, B(t) =
KW (t). For x € V' \ {0}, let 8,.(t) = (B(t), z). It is elementary to verify from (2.1)
that there is a scalar Wiener process (w,(t),t > 0) such that

(2.18) B(t) = /O Ku(t,s) duws(s)

for t € Ry Dually, w,(t) = B ( (IC}EI)_l 1(,+)), where Kj; is given by (2.15) or (2.16)
and V = R. Thus there is a formal expansion of W,

(2.19) W(t) =Y wa(t)en,
n=1

where (e, n € N) is a complete orthonormal basis for V and w,, = (W, e,) for n € N.
Now, the stochastic integral fOT G dB is defined for a suitable operator-valued
function G: [0,T] — £L(V) so that the integral is a V-valued random variable.
DEFINITION 2.2. Let G: [0,T] — L(V) be Borel measurable, let (e,,n € N) be
a complete orthonormal basis in V', let G(-)e, € H for each n € N, and let B be
a standard cylindrical fractional Brownian motion for some fized H € (0,1). The

stochastic integral fOT G dB is defined as

T o0 T
(2.20) /GdB ::Z/ Gey dfn,
0 =170

provided the infinite series converges in L*(, V).
It is elementary to verify that this definition does not depend on the complete
orthonormal basis that is used.
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The following proposition describes some L£(V)-valued functions G that can be
used as integrands in Definition 2.2.

PROPOSITION 2.3. Let G: [0,T] — L(V) be Borel measurable and let G(-)x € H
for each x € V. Let Tp: V. — L2([0,T), V) be given as

(2.21) (Trz) (t) = (KyG) (1)

fort € [0,T) and x € V. If T'r € Lo (V, L? ([0, T), V)), the linear space of Hilbert—
Schmidt operators, then the stochastic integral £2.20) is a centered Gaussian V -valued

random variable with the covariance operator Qr given by
(2.22) Ora = / S (Cren) (5),3) (Tren) (5) d.
0 pn=1

This integral does not depend on the choice of the complete orthonormal basis (e,,n €
N) in V.

Proof. Substituting G in the definition of the stochastic integral (2.20), it is
clear that the terms of the summation on the right-hand side are V-valued Gaussian
random variables by the construction of the integral for a scalar fractional Brownian
motion, and the sequence of random variables ( fOT Gen dBn,n € N) is independent.
Computing the second moment of the tail of the series in (2.20) yields

T
/ Gey, dBx
0

o0 T o0
-3 / I(Crew) (5)17 ds = S Trexlagomv: -
k=m

k=m

2 00 2 00 T
E -3 E _ Z/O 1 Ger) ()12 ds
k=m k=m

Y Gewdby
k=m

It is clear that this final series tends to zero as m tends to infinity. Thus there is
convergence in L?(Q, V') of the partial sums of the infinite series in (2.20).

To verify that (2.20) is a Gaussian random variable and the form of the covariance
Qr, initially note that for any ¢ € H and = € V, there is the equality

T T
(2.23) / wdf, = / Ko dw,,
0 0

where w, is the Wiener process given by (2.18). The terms in the infinite series on
the right-hand side of (2.20) are V-valued, independent centered Gaussian random

variables with the sequence of covariance operators (ngl ) ne N)

~ T
(2.24) Qg?)x = / (K Gen) (9),2) (K5 Gen) (s)ds

0

for each n € N and x € V. Thus
(225) Qra=Y / (K Gen) (5), ) (Kl Gen) (s) ds
n=1 0

T oo
= [ S dCren (9.0) (Pre) (5) s
n=1
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The summability of the infinite series on the right-hand side follows from the Hilbert—
Schmidt property of I'r. The independence of the stochastic integral from the choice
of the complete orthonormal basis follows from (2.23) and the analogous property for
stochastic integrals with respect to a standard cylindrical Wiener process. d

Since for almost all ¢ € [0,7T] the linear operator I'r(-)(¢) : V — V is Hilbert—
Schmidt, so we denote for almost all ¢ € [0,T] the adjoint of I'r(-)(¢) as I (-)(¢) :
V — V. It follows by (2.25) that for z,y € V,

(Qraw) = [ 3 (Fren) (9.9) (Trea) (9).0) ds

T o0

_ /O 3 (e, (T5) (5)) {en, (T3y) ()) ds
n=1

T

_ / ((T52) (s), (D7) (s)) ds

0
T
:/0 (CrTha(s),y) ds.

If H € (1/2,1), then Qr satisfies

~ T T
QTZ/O/O G(u)G*(v)pu(u — v) dudv,

where ¢ (u) = H(2H — 1)|u|?7=2 and G is assumed to satisfy

T T
/0 / G (W) 3 |G| vyt (4 — ) dudy < o0

(cf. [13, Proposition 2.2]).

The next proposition shows that some densely defined linear operators commute
with the stochastic integration.

PROPOSITION 2.4. If A: Dom(A) — V is a closed linear operator, Dom(A) C V,

and G: [0,T] — L(V) is Borel measurable such that G([0,T]) C Dom(A) and both G
and AG satisfy the conditions for G in Proposition 2.3, then

T
/ GdB c Dom(A) a.s. P
0
and

T T
(2.26) A/ GdB:/ AGdB a.s. P.
0 0

Proof. By the assumptions on G and AG, it follows that Ge,, € H and AGe, € H
for n € N, so by a standard argument using a sequence of step function integrands,
the following equality is satisfied:

~ T T ~
A/ Gey, dB, = / AGey, df,,.
0 0
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Since the sequence of integrals that are obtained from a complete orthonormal basis
(en,n € N) are Gaussian random variables it follows that

m T T
(2.27) lim Z/ Gendﬁn:/ GdB as.P
n=170 0

m— 00

and
[ m T m_ T T _
lim A(Z/ Gend6n> = lim Z/ AGendﬂn:/ AGdB as. P.

Since A is a closed linear operator it follows that fOTGdB € Dom(A) as. P and
equality (2.26) is satisfied. O

Some results are reviewed for a linear stochastic differential equation with a cylin-
drical fractional Brownian motion whose solution is often called a fractional Ornstein—
Uhlenbeck process. This process is a mild solution of the linear stochastic equation

(2.28) dZ(t) = AZ(t)dt + ®dB(t),
Z(0) =z,

where Z(t), x € V, (B(t),t > 0) is a standard cylindrical fractional Brownian with
H e (0,1),® € L(V), A: Dom(A) — V, Dom(A) C V, and A is the infinitesimal
generator of a strongly continuous semigroup (S(¢),¢ > 0) on V. A mild solution of
(2.28) is

(2.29) Z(t) = S(t)z + /t S(t — )@ dB(r)
0
= S(t)x + Z(t),

where the stochastic integral in (2.29) is given by Definition 2.2.

Typically it is assumed that (S(¢),¢ > 0) is an analytic semigroup. In this case,
there is a B € R such that the operator BI — A is uniformly positive on V; that is,
the resolvent set contains {A € C;|arg| < 7/2+ d} UU, where § > 0 and U is a
neighborhood of zero. R

For each 6 > 0, (V|| - ||5) is a Hilbert space where Vs = Dom ((8I — A)°) with
the graph norm topology so that

lalls = H(BI—A)% .

For the mild solution of (2.28), the cases H € (0,1/2) and H € (1/2,1) have been
treated separately [13,28] because the conditions for similar results are somewhat
different. The case H = 1/2 (Brownian motion) has been studied extensively (cf. [4]).

For H € (1/2,1), the following sample path property of the solution is described
in [13)].

PROPOSITION 2.5. If H € (1/2,1), S(t)® € Lo(V) for each t > 0 and

To To
(2.30) / / u” Y S (w) @ £, (v [S (V)@ 2, vy P (u —v) dudy < 00
0o Jo

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/10/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SEMILINEAR STOCHASTIC EQUATIONS 2295

for some Ty > 0 and o > 0, then there is a Holder continuous V -valued version of the
process (Z(t),t > 0) with Holder exponent 3 < «, where Z is the stochastic convolution
in (2.29) and ¢p is given in (2.13). If (S(t),t > 0) is an analytic semigroup, then
there is a version of the process (Z(t),t € [0,T]) with C? ([0, T], Vs) sample paths for
each T >0 and f+ 0 < a.

For each H € (0,1), there are the following results for the sample path behavior
of the mild solution [28].

PROPOSITION 2.6. Let (S(t),t > 0) be an analytic semigroup, let H € (0,1), and
let

fort €[0,T], some ¢ >0, and vy € [0,H). Let &« > 0 and 6 > 0 satisfy
(2.32) a+d+y < H.

Then there is a version of the process (Z(t),t € [0,T]) with C* ([0,T],Vs) sample
paths. If it is assumed instead of (2.31) and (2.32) that ® € L2(V') and o +6 < H,
then the process (Z(t),t € [0,T]) has a C* ([0,T], V) version. In particular, there is

a C*([0,T],V) version for 0 < o < H.

3. Semilinear stochastic equations. In this section, both weak and mild
solutions are obtained for various semilinear stochastic equations with a fractional
Brownian motion. The cases H € (0,1/2) and H € (1/2,1) are treated separately as
in the case of the linear stochastic equations (Propositions 2.5 and 2.6). The weak
solution of a semilinear equation is obtained by an absolutely continuous transforma-
tion of the measure for the solution of the associated linear equation. The absolute
continuity methods given here are an analogue of the results for the measure of a finite-
dimensional fractional Brownian motion [7,9,25,26] and the results for Wiener mea-
sure [3,14]. For a fixed H € (0,1) and T > 0, let (F%, ¢ € [0,T]) be the filtration for the
standard cylindrical fractional Brownian motion (B(t),¢ € [0,7]) with the Hurst pa-
rameter H. The sub-c-algebra F; C F can be generated by o (3,(s), s € [0,t],n € N),
where (5,,n € N) is a sequence of independent scalar fractional Brownian motions
with the Hurst parameter H that is given in the definition of a standard cylindrical
fractional Brownian motion (Definition 2.1).

The following result describes an absolute continuity for a transformation of a
standard cylindrical fractional Brownian motion.

THEOREM 3.1. Let H € (0,1) and T > 0 be fized and let (u(t),t € [0,T]) be a
V -valued, (F)-adapted process such that

1.

T
/ lu@®)||dt < oo a.s. P
0

U() = /O-u(s) ds € I(fff% (L*([0,T],V)) a.s. P.

Furthermore, it is assumed that
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where

B1)  &T)=exp

T 1 /7T ,
/ (K (U)(8), dW (1)) - 5 / 1Kz (U)(®)]] dt],
0 0

where (W( ).t €10,T]) is a standard cylindrical Wiener process in'V given by (2.19)
and K3;' is the inverse of the integral operator Kgr in (2.3). Then the process (B(t) te
[0,T7) given by

B(t) := B(t) — U(t)

is a standard cylindrical fractional Brownian motion in V' with the Hurst parameter
H on the probability space (Q,}' IE”), where

d_]P

(3.2) =&(T) a.s.

Proof. Initially, it is noted that for an (Fy)-adapted process, (n(t),t € [0,T]) with
ne L2([0,T],V) as. P, [, (n,dW) is defined by

/ " dw = i / " tnvew) du,

where the sequences (8,,n € N) and (w,,n € N) are related by (2.18). It is shown
that K;;'U satisfies the conditions of 7 so that the stochastic integral in (2.20) is
well-defined. Recall that the linear operator Ky given in (2.3) is a bijection

Ky: L2(0,7],V) — IE% (L2([0, 7, V) |

so by assumption 1 in Theorem 3.1, K, (U) € L?([0,T],V) a.s. P. From the definition
of Ky, it follows that (K" (U)(t),t € [0,T7]) is an (F;)-adapted process because U is
(Fi)-adapted. By the construction of the standard cylindrical Wiener process W, it
is a Wiener process with respect to (F;) so &r is a well-defined random variable. By
a Girsanov theorem for Wiener processes in infinite dimensions (cf. [4,24]), equality
(3.2) defines a probability P on (€2, F) such that

Wt) = W(t) - /O K3 (U)(s) ds

is a standard cylindrical Wiener process in V. Let

Ba(t) := (B(t), en) — (U(t), en)

B () = (W —</K s)ds en>.
It follows that

(3.3) /KHts)dwn /KHts dwn (s /KHts (U)()en> ds

= a1 </ Kn(t,9) (55 (0)(0) ds.en )

= Bu(t) — (KK (U)(t), en)
= Bult) = (U(t), en) = Bult).

and
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Thus (B(t),t € [0,T]) is a standard cylindrical fractional Brownian motion in V' with
the Hurst parameter H on (Q,F,P). |
In this section, the following semilinear stochastic equation is considered:

(3.4) dX () = (AX(t) + F(X(t))) dt + ®dB(t),

where t € Ry, X(t), Xo € V is nonrandom, (B(t),t > 0) is a standard cylindri-
cal fractional Brownian motion with the Hurst parameter H € (0,1), ® € L(V),
A: Dom(A) — V, Dom(A) C V, and A is the infinitesimal generator of a strongly
continuous semigroup (S(t),t > 0) on V. The function F': V' — V is nonlinear, and
for the applications to stochastic partial differential equations it is more useful to
assume that F is defined only on a (dense) subspace of V. So, let (E, || -||g) be a sep-
arable Banach space that is continuously embedded in V and F': E — F with X € E.
Subsequently, it is assumed that F': E — E is Borel measurable, Im(F) C Im(®), for
G:=9"'F,G:E—V,and

(3.5) IG(@))| < &1+ [l]f)
and
(3.6) IF(@)|le < k@1+|z]p)

for each z € £ and some p > 1. Furthermore, it is assumed that there is a constant
K such that for each pair (x,y) in Dom(A), there is a z* € 9||z|| g such that

(3.7) (Az — Ay + F(z) — F(y), 2" ) p,p- < K|z — yl|E,

where 9||z||g is the subdifferential of the norm ||z||g at the point z = = — y and
(-,+,)E,p~ is the pairing between E and E*. The basic results on subdifferentials can
be found in [32]. Inequality (3.7) is a one-sided growth condition that ensures the
absence of explosions of solutions of (3.4) in a finite time. Some subsequent examples
should clarify its interpretation.

The notions of a weak and a mild solution of (3.4) are given now.

DEFINITION 3.2. A weak solution of (3.4) is a triple (X (t), B(t), (Q,F, (F),P),
t > 0), where (B(t),t > 0) is a standard cylindrical fractional Brownian motion in V/
that is defined on the probability space (Q,F,P), (B(t),t > 0) and (X(t),t > 0) are
adapted to the filtration (Fy), and (X (t),t > 0) is an E-valued process satisfying

(3.8)  X(t)=St)Xo+ /Ot S(t — r)F(X (r)) dr + /Ot S(t —r)® dB(r).

A mild solution, (X (t),t > 0) of (3.4), is an E-valued process on a fixed probability
space (Q, F, (Ft),P) with a given standard cylindrical fractional Brownian motion that
is the fractional Brownian motion in (3.8), (B(t),t > 0) and (X (¢),t > 0) are adapted
to the filtration (F:), and the process (X (t),t > 0) satisfies (3.8).

Equation (3.8) has a unique weak solution if, for any two weak solutions (X (t),
B(t), (Q, F, (F),P),t > 0) and (X (t), B(t), (0, F, (F:),P),t > 0), the processes (X (t),
t>0) and (X(t),t > 0) have the same probability law.

The equation has a unique mild solution if, for any two processes (X1 (t),t > 0) and
(X2(t),t > 0) that satisfy (3.8) on the same probability space (2, F, (Fy),P) with the
same standard cylindrical fractional Brownian motion, P (X1(t) = X2(t),t > 0) = 1.
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A primary goal in this section is to verify weak existence and weak uniqueness of
a solution of (3.4). Note that (H1) alone is not sufficient to ensure that the stochastic
convolution has values in E. While the assumption (H2) is given in a rather general
form, it is verified for particular examples in section 4. Since the cases H € (0,1/2)
and H € (1/2,1) require different methods, they are treated separately.
The following three assumptions are made to construct a solution of (3.4):
(H1) The semigroup (S(t),t > 0) generated by A is analytic on V and for each t >
0, S(t)|p € L(E) and || S(t)| 5 || £(&) is bounded on compact time intervals.
(H2) @ € L£(V) is injective and for T' > 0 the stochastic convolution process

</Ot S(t — 1) D dB(r),t € [o,:r])

has a version with C([0,T], F) sample paths.
(H3) The function F': E — V in (3.4) is Borel measurable, Im(F) C Im(®), and
the function G = ®~'F: E — V satisfies

(3.9) 1G@)] < k(1 + [lz]2)

for some k > 0 and all x € E.
The following result verifies a weak solution for H € (0,1/2).
THEOREM 3.3. If H € (0,1/2) and the conditions (H1)-(H3) are satisfied, then
the semilinear equation (3.4) has a weak solution. If additionally F': E — E and

(3.10) [F (@)l < ki (1+ [|lzlle)

for some k1 > 0 and oll x € E, then the weak solution is unique.

Proof. Initially, existence of a weak solution is verified. By a standard method
that has been used for equations of the form (3.4) with a standard cylindrical Brownian
motion (cf. [4,24]), it suffices to verify that the cylindrical process

B(t):B(t)—/O G(Z(s)) ds

is a standard cylindrical fractional Brownian motion in a suitable probability space
where

Z(t) = S(t)Xo + Z(t)

satisfies the associated linear equation. To use Theorem 3.1 it is necessary to verify
that G = ® ' F satisfies the conditions of U in this theorem, that is,

(3.11) | ez ase it @2 o.v))
and

(312) Eexp[p(2)] = 1.

where

(3.13)

o= [ ' (i ([ e hoawen) -3 [ '
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K is the inverse of Kg in (2.3), and (W (), > 0) is a standard cylindrical Wiener
process in V by (2.19).
From (2.9), it follows that

(3.14) ‘KHl (/0 G(Z)> £2(0,7],V)

=y }UH—%IO%J:H (“%—HG(Z))

T ) 2
= éH/ (SH_5 ) ds
0

2
T
< épk? (1 +1Zlcqo,m),B) + sup ||S(t)XO||E> / s
te[0,T] 0

2

2

L2([0,T],V)

/OS rE (s — )5 HG(Z(r)) dr

s 2
: (/ r2 (g —py=sH dr) ds
0
<ep (1 + |Z|2c<[o,TJ,E>)

for some ¢y > 0 that depends only on 7. This inequality verifies (3.11). By (3.14) it

follows directly that
~ T )
3 / Ky ( / G(Z)) )
0 0
for some ¢ > 0. Substituting v = * in the integral with respect to r on the right-hand

side of (3.14), it easily follows that ¢z | 0 as T | 0. Since Z is a C([0, T], E)-valued
Gaussian random variable, it follows that

(3.15) E exp

2
dt] < cEexp {kCT|Z|QC([O,T]7E)}

(3.16) E exp []%CT|Z~|ZC([O7T],E)} <0

is satisfied for T' > 0 sufficiently small by the Fernique inequality. Clearly, (3.16) is
the Novikov condition [19] which implies the equality (3.12) for 7" > 0 sufficiently
small. For arbitrary T > 0, a simple iteration verifies the result, that is,

TTn .

k/ K (/ G(Z)) (t)
Tyt 0

for a sufficiently fine partition 0 = Ty < 71 < -+ < T, = T. Using a downward
induction procedure from the well-known proofs of the martingale property for the
Radon—Nikodym derivative in (3.12) for an arbitrary 7' > 0 (see, e.g., [20, Exam-
ple 6.2.3]), the verification of the equality in (3.12) is obtained.

Now, uniqueness of the weak solution is verified. Uniqueness in law can be proved
in a standard way by removing the term F in (3.4) by absolute continuity of measures,
which is a suitable inverse of the above construction of a weak solution.

Let (X (t),t € [0,T]) be a solution to the equation

(3.17) Eexp

2
dt] < o0

(3.18) X(t) = S(t)wo + /Ot S(t — )V F(X(r)) dr + Z(t),
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where Z(t) = fot S(t —r)®dB(r) and (B(t),t € [0,T]) is some standard cylindrical
fractional Brownian motion on a probability space (Q, F, If”)

The process (X (t),t € [0, T]) is defined on the same probability space as (B(t),t €
[0,T7]). Let (W (t),t € [0,T]) be the Wiener process associated with (B(t),t € [0,T])
by (2.18). It suffices to show that

(3.19)

exp [ﬁ(X )]

_/OT <K,—; (/0 G(X)) (t),dW(t)>—%/OT K;! </O'G(X)) ol dt]

is a Radon—Nikodym derivative on (Q,]:' , If”), so P is the measure for a fractional
Ornstein—Uhlenbeck process and uniqueness in law follows. Thus it is necessary to
show that

‘= exp

(3.20) /0 G (X(s)) ds € 173 (L2 ([0, 77, V))
and
(3.21) E exp [ﬁ(X’)} —1,

where E is integration with respect to P. The verifications of (3.20) and (3.21) are
analogous to the verifications of (3.11) and (3.12), respectively. However, since X is
not a Gaussian process, the Fernique inequality cannot be used directly. Initially, it
is verified that there is a ¢ > 0 such that

(3.22) | X|eqor,e) < c (1 + | Xollz + |Z|C([O,T],E)) ,
where Z is the stochastic process described in (H2). Let
u(t) = X(t) - Z(1)
t
= 5(t)Xo +/ St—r)F (u(r) + Z(T)) dr.
0
Thus
t ~
(3.23) u®lle < el Xol +ex [ (14 e+ 120)]e) dr
0

for some positive constants ¢; and co. By the Gronwall lemma it follows that

(3.24) lu(®)le < e (1 + | Xollz + |Z|C([0,T],E))

for t € [0,T1], so the inequality (3.22) is verified. The exponential that usually occurs
in the Gronwall inequality is bounded by e“?”. Making the analogous computations
in (3.14), it follows that

(3.25)

w5 ([ e@) o

2

<ecr (1 + |X|2C([OT],E)) <cr (1 + |Z|%‘([O,T]E)) )
L2([0,7],V)
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where ¢r | 0 as T | 0, so (3.20) is satisfied. Thus the method in (3.15)—(3.17) can be
used to verify (3.21).

The random variable exp(5(X)) in (3.19) is a Radon-Nikodym derivative and it
defines a probablhty measure Q on . By this Girsanov-type theorem the process
defined by B(t) )+ fo s)ds, where u(s) = G(X(s)), is a standard cylindrical
fractional Brownlan motlon with respect to the measure Q. Let (W( ) te [0 T]) be
the Wiener process associated with (B(t),t € [0,T]). Let U(s fo
for s € [0, 7] and let E and Eg denote the expectations with rebpect to the measures
P and Q, respectively. For a bounded measurable function ¥ on C([0,T], V) it follows
that

dgd@ Eg[¥(X) exp(—5(X))]

T T
(X exp ( | wm.avm -3 [ |U<r>||2drﬂ

W(S() X + / S(- — r)dB(r)) exp (/OT <KH1 (/O G <S(-)X0
/s (- — r)®dB( )))(s),dW(s)>
_%/OT K;! (/OG<S X0+/S — ®dB(r )))(s) zdsﬂ.

Since the processes W and B are standard cylindrical Brownian motions and stan-
dard cylindrical fractional Brownian motions, respectively, the final expectation on
the right-hand side above does not depend on the realization of X, so the uniqueness
in law is verified. O

Now the existence and the uniqueness of a weak solution of (3.4) is verified for
He (1/2,1).

THEOREM 3.4. If H € (1/2,1), (H1)-(H3) are satisfied, and

E[¥(X)] =

(3.26) 1G(z) = GW)|l < kelle =yl
for all z,y € E, some vy € (0,1], kg > 0, and Z € CP([0,T],V) for some 3 satisfying

H -1
(3.27) B> 72,

where Z is the stochastic convolution process in (H2), then (3.4) has a weak solution.
If, additionally, (3.10) is satisfied, then the weak solution is unique.

Proof. Initially, the existence of a solution is verified as in the proof of Theo-
rem 3.3. It is shown that

(3.28) /G ) ds € ILT2 (L2([0,7],V))  as.
and
(3.29) Eexp[o(2)] = 1,
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where p is given by (3.13). By (2.8) it follows that

(3.30) ‘K,‘{l </0 G(Z))

_ H-1
= cH2 ‘UH_%D0+ 2 (u%_HG(Z))

2

L2([0,T],V)
2

L2([0,T],V)

si=2 [s271G(Z(s))
rE-m\ s

w(rg) [ s 1G(2(s) - i reze)
0

2 (s —r)H+z2

ds

T s Li-H 1_H
3—H s sH=3 S )| dr
< C/O (s G2 + /O 1G(Z(r))|| d

(s —r)H+2

[ lezen ez, S
O |

(s —r)H+tz

Using (3.9) and (3.26), the analyticity of the semigroup S(-) on V', and the in-
equality

s A-H __ 1_H
S2 — T2
———dr < csl_QH,
( _ N\NH+5 -
o (s—r)"t2

where c is a generic constant, it follows that

(3.31)

i ([ o)
0
<er (1 + || Xoll% + |Z|2C([O7T],E))
ver [ ([ B =S00 ) (120, i
0 0 (5 —r)fi+s 0 (s—m)tts
) -y T s (S _ T)y)\ 2
<ecr (1 + | Xoll + |Z|C([O,T],E)) + CT/O (||X0|7/0 dr)

(s —r)Hts
T s _ YB3 2
2 S CED LR R
+CT/O |21 &6 10,1,v) (/0 (s —r)H+3 " >

where A > 0 satisfies YA < 1 and H 4+ 1/2 — v\ < 1. The first integral term in the
initial inequality in (3.31) is obtained by the analyticity of the semigroup S(.) on V,
which implies that

L2([0,T],V)

[|(S(s) — S(r))z]| Sc(s—r))‘r)‘ llz|]l, 2€V, A>0,0<r<s<T,
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for some ¢ = ¢(A). It follows that

(3.32)

([ )

where ¢ | 0 as T | 0, so (3.28) is verified and by the Fernique inequality (3.29) is
also verified.

Now the uniqueness of the weak solution is verified. Let (X(t),t € [0,T]) be the
solution to (3.4) on a probability space (Q, F.P). As in the proof of Theorem 3.3, it
is shown that

2
< er (14 1Xol% + 1202 0.11.8) + |22 om1v) )

L2([0,T],V)

(3.33) / G(X)ds € IZT2 (L2([0,7],V))  as.
0

and

(3.34) Eexp [ﬁ(}?)} —1,

where p is given by (3.13). It is necessary to obtain inequality (3.22), used in the
proof of Theorem 3.3. Inequality (3.22) is verified by verifying the inequality

(335  IXlesqoryvy < L (14 1 Xolls +|Zleqom,m + | Zlesqomv))

where X (t) = X (t) — S(t)Xo and L > 0. Let w(t) = X (t) — S(t) X — Z(t) for ¢ > 0.
The process w satisfies

¢
(3.36) w(t) = / S(t — r)u(r) dr
0
for ¢t € [0, T, where
b(t) = F(w(t) + S(t)Xo + Z(t)).
By inequalities (3.10) and (3.35) it follows that 1) € L*°([0,7T],V) a.s. P. Since the
semigroup S(-) is analytic on V, w is a-Hélder continuous for each o € (0,1), and
using the method of proof of [29, Theorem 4.3.1] there are constants ¢; > 0 for i = 1,2
such that
(3.37)
[w|es jo,r1,v) < c1l¥lLeejo,m,v) < c2 (|w|L°°([0,T],E) + [| Xoll & + |Z|C([O,T],E)) .
Thus
[ X|cs(o.1.v) < lwlesqorvy +1Zlcsqorv)
(3.38) _ i
<c (|w|L°°([O7T],E) + [ Xoll& + 1Zlc(o,1),8) + |Z|CB([O7T],V)) :

Using (3.22) again to bound |w|pe(jo,7],r), inequality (3.35) follows.
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_ Now, using the methods for inequalities (3.30)-(3.32), where Z(¢) is replaced by
X (t) = S(t)Xo + X(1), it follows that

(3.39)

5 ([ o)

where ¢ | 0 as T | 0, which by (3.22) and (3.35) verifies (3.33). Equality (3.34) is
obtained from (3.39) by the Fernique inequality as in the proof of Theorem 3.3. O

Remark 3.5. The proofs of Theorems 3.3 and 3.4 have verified, in addition to
weak existence and uniqueness of a solution to (3.4), the mutual absolute continuity
(equivalence) of the probability laws of the solution to (3.4) and the solution of (3.4)
with F' = 0 (the fractional Ornstein—Uhlenbeck process) in the path space.

The next objective is to relax the linear growth conditions (3.9) and (3.10) and the
Hélder continuity (3.26). The linear growth condition is replaced by a dissipativity
condition of the drift term of (3.4), but some other conditions are also imposed so that
there is existence and (strong) uniqueness of a mild solution. The main contribution
of the following two theorems is a mutual absolute continuity of the probability laws
of the solutions of (3.4) with a nonzero F' and (3.4) with F = 0.

Initially, the case H € (0,1/2) is considered.

THEOREM 3.6. Let H € (0,1/2) and let (H1) and (H2) be satisfied. Let ® €
L(V) be injective, let @~ € L(E, V), and let (S(t)| .t > 0) be a strongly continuous
semigroup on E such that

2
<cr (1 + [ Xoll% + X 1E0,10,v) + |X|2C‘5([07T],V)) ;

L2([0,T],V)

(3.40) 50l ey <

fort >0 and some w € R. Let F: E — E be continuous and satisfy

(3.41) |F (@)l < ki (1+ [lzll%)

for x € E for some k1 > 0 and p > 1, and for each pair x,y € E, there is a
z* € 0|z — y|| g where J||z||g is the subdifferential of the norm || - ||g at z € E such
that

(3.42) (F(z) = F(y),2") pp- < k2llz —ylle

for some ko € R; that is, F — kol is dissipative on E. Then there is one and only
one mild solution of (3.4), and its probability law on the Borel o-algebra of Q =
C([0,T), E) is mutually absolutely continuous with respect to the probability law of the
fractional Ornstein—Uhlenbeck process (3.24) on Q.

Proof. Let (Fx, A > 0) be a family of Lipschitz continuous functions from E to E
such that each F) satisfies inequalities (3.41) and (3.42) for F' with the same constants
p, k1, ky. It is shown that there is a k > 0 depending only on @, k1, and ky such that

(3.43) lox®lle < & (1+1Xoll + 1618071,

for ¢t € [0, T is satisfied for each A > 0 and ¢ € C([0,T], E), where vy is a solution of
the equation

(3.44) ua(t) = S(t) Xo + /0 St —r)Fx (oA(r) + ¢(r)) dr

for t € [0,T].
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To verify inequality (3.43), it can be assumed by translation that ke = 0 in (3.42)

(replace F and A by F\ — kol and A + koI, respectively). Thus F) is dissipative on
E for each A > 0 and by the assumptions

(3.45) <AEZa Z*>E,E* < w”ZHzE
for each z € Dom(Ag) and 2* € 9||z||g, where Ag is the restriction of A to E that
generates the semigroup S(-)|g. For each pair z,y € Dom(Ag) and A > 0, there is a

2} € 0|l — y|| g such that

(Ap(z —y) + Fx(z) — FA(Y), 23) g g < Wz =yl B

By [5, Proposition 5.5.6], there is a sequence (v}, n € N) such that v% € C'([0,77], E)N
C([0,T], Dom(Ag)) such that v} — vy and 6§ = Lo} — Ago — F) (vF +¢) — 0 in
C([0,T], E) as n — oo. It follows that
d~ n n * n
2 ROl < (ApvX(®) + Fx (03 (@) + 6(1)), (X)) - + 10X @)
(3.46) = (Apvx(t) + Fx (v (t) + o(t)) — Fa((1)), (vX (£)")
+ (F(8(1)), (X (1)) g + 107 (D)l

<@ 1§ @)l + ks (14180 5y + 15201 5)

for t € [0,T]. Using the Gronwall lemma, and letting n — oo, verifies inequality
(3.43). )

The mild solution to (3.4) can be expressed as X (t) = v(t)+ Z(t), where v satisfies
the equation

(3.47) Mﬂ:ﬂ&%+£5ﬁ—ﬂﬂﬁﬂ+ﬂﬂﬁr

for t € [0,T]. Thus the existence and the uniqueness of a mild solution follows from
the corresponding pathwise deterministic result (cf. [5, Proposition 5.5.6]).

The equivalence of the probability laws is shown by application of Theorem 3.1.
As in the proof of Theorem 3.3, it suffices to show that

(3.48) ‘Aaﬂmweﬁﬁaﬂmﬂy»
and
(3.49) Eexp [p(2)] =1,

where p is given by (3.13). While G is not assumed to have at most linear growth as
in Theorem 3.3, there is the growth condition

(3.50) IG(@)I| < & (1+ |l2l|)
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for all 2 € F and a constant k. Proceeding as in (3.14), it follows that

\K; ( / G(Z))
0 L2([07t]7V)

< /OT <sHé /OSr%H(s—r)éHG(Z(r))dr )2 ds

T
<o (1 Voo + 50 ||s<t>Xo||€E) / 21

s 2
. (/ réfH(s —r)fé*H dr) ds
0

< e (14 11Xl + 120y 1)

(3.51)

for suitable constants ¢, c2, c¢3. This inequality verifies (3.48). To verify equality
(3.49), it suffices to assume that F is dissipative (that is, k2 = 0 in (3.42)). Recall
that m-dissipative mapping F is defined as a dissipative mapping satisfying Range(I —
AF) = E for each A > 0; cf. [22]. Since F' is continuous, it is m-dissipative (cf. [23]),
so the family (F), A > 0) of Yosida approximations of F is defined as

(3.52) Fa@) = F(Ra(@)) = 5 (Ra(a) — 2)
for x € F, where
(3.53) Ra(z) = (I —XF)"" ().

It is well known that F\: F — FE for A > 0 is Lipschitz continuous, so by Theorem 3.3,
there is the equality

(3.54) Eexp[pr(Z2)] = 1
for A > 0, where

(3.55)

oA(Z) = /OT <K;,1 (/0 sz)) (t>,dw(t>> - %/OT

and G := ®71F\. As in (3.51), it follows that

2
dt

it ([ o) o

(3.56) E ‘K;ﬁ ( | G- G(Z)))

0

L2([0,T],V)
2

T s
< CTE/ <sHé / i1 (s - ) B G (2(r) — G2 dr) ds.
0 0
By some well-known properties of the Yosida approximations and for = € F,

(3.57) 1GA(@) = G@)ll < |27, ) IFA (@) = F@)l
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it follows that F, — F as A — 0 and the right-hand side of (3.57) tends to zero as
A 10, and

IGA@ < 19745 IF3 (@) 5

< |27 gy o (L [z,

so the right-hand side of (3.56) tends to zero as A | 0. For a sequence (A,,n € N)
that decreases to zero, it follows that

(3.59) lim exp [px, (Z2)] = exp[p(Z)] a.s. P.

n—oo

To obtain equality (3.54) from equality (3.59) for A,,n € N, it is necessary and
sufficient to show that the sequence (exp [pa, (Z)],n € N) is uniformly integrable. A
sufficient condition for this uniform integrability is to verify that

(3.60)
sup E [(exp [pa, (Z)]) [log (exp [pa, (Z)])]] = sup E [(exp [px, (£)]) pr. (Z)] < o0.

2
dt] ,

By Theorem 3.3,

B T
(361)  Elps,(2)explpn, (2)]] < Ea, l2 /

w5 ([ en@) o

where fEAn is the expectation with respect to Pkn and

dP,
dP

n

= exp [px, (2)],

and Z(-) satisfies (2.28). On the probability space with the measure Py, Z(-) satisfies
the following semilinear equation, where B(:) is a fractional Brownian motion with
respect to Py, :

dX», (t) = (AX(t) + Py (X () dt + ®dB(t),
X, (0) = Xo.

n

(3.62)

Since F), is Lipschitz continuous, there is a unique mild solution on a given probability

space, so it suffices to show

T .

(3.63) e[t ([ oncon)o
0 0

for some ¢ € Ry that does not depend on \,,. Repeating inequalities (3.51), where
G and Z are replaced by G, and X, respectively, and using inequality (3.58), it

follows that
2p
c(]0,T] ,E))

(3.64) /O !

2
dt <e

n?

5 ([ 6 060) 0

2
dt < c; <1 + 11Xl + ‘XA

n
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for a constant cs that does not depend on n € N where X, (t) = Xy, (t) — S(t)Xo.
By inequality (3.43) there is a constant cg that does not depend on n such that

(3.65)
w0 ([ 6 ) o

T
/
0

This inequality verifies (3.60). Thus the sequence (exp [pa, (Z)],n € N) converges in
L' and equality (3.54) is satisfied. O

Now the case H € (1/2,1) is considered.

THEOREM 3.7. Let H € (1/2,1) and the other assumptions in Theorem 3.6 be
satisfied. Let @' € L(V), Z € CP([0,T),V) for some g € (0,1),

(3.66) (F(z) - F(y),z —y) < ka ||z — ]|

for each pair x,y € E and a ko € Ry (that is, F — kol is dissipative on E with respect
to the norm on V') and

(3.67) [F(z) = F(y)|| < ks (1+ |zl + lyllE) lz —yll”
for each x,y € E, with some ks >0, ¢ > 1, and v € (0,1] such that

2
2
dt < cg (1 + X% +E |Z|g([0,T]7E)) = (<.

(3.68) v3 > H — %

Then there is one and only one mild solution to (3.4), and its probability law is
mutually absolutely continuous with respect to the probability law of the fractional
Ornstein—Uhlenbeck process (2.28) on €.

Proof. As in the proof of Theorem 3.6, it is shown that

(3.69) /0 G(Z(s)) ds € I, (L2([0,T],V))
and
(3.70) Eexp [p(Z)] = 1.

The methods to verify (3.69) and (3.70) are similar to those used in the proof of
Theorem 3.6, but now the operator Kﬁl has a different form. Using inequality (3.41)
and the Holder continuity condition (3.67), it follows that

(3.71) ‘Kﬁl </O G(Z)> L2([0.7).)

"(aon oy [Ts Mot
<o [ [sIGEE) + [ A e ar

(s=7)
[ lezen —ezon,, S
0

(s —r)H+tz

2

N[

<c |1+ |Z|QCP([O7T],E) +e3 (1 + |Z|20q([0,TJ,E))

Z(S) _ Z(T)H’Y dr| ds

7 (o 18(s)Xo = S Xo " + |
Iy

(s — r)HJF%
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for some constants ¢y, ¢a, ¢3. By the analyticity of the semigroup S(-) on V, it follows
that

(3.72) ‘K?f (/0 G(Z)> T

<o [1HIXolF

2

2 2
+ (HXOHEq + 1218 om0y + 1) (HXOHE + |Z|2C’YL3([O7T],V))}
<cs (1 + [1Xolle + 1218 0,17,v) + |Z|gﬁ([o7:r],v>)

for some constants ¢4 and ¢5 and m sufficiently large. Thus (3.69) is verified. To verify
equality (3.70) consider the family of Yosida approximations (Fj, A > 0) of F as in
the proof of Theorem 3.6. By the dissipativity of F' in the norm on V, Fy: V — V
is Lipschitz continuous for each A > 0 and has at most polynomial growth, so F
satisfies the assumptions of Theorem 3.4 so that

(3.73) Eexp [pA(Z)] =1,

where p) is given by (3.55). By the method used to obtain inequality (3.71), it follows
that

2

(3.74) E ‘K;{l (/ (CA(Z) — G(Z)))

0

L2([0,T],V)

T
C, s%*H S)) — S
< o / [ 1GA(2(s)) - G(2(5))]
g1 s S%—H _T%—H
w1 [ 162 Gz

+ [ 1GaZ00) - GEED ~ Gal2() + OZEN '
0

(s — r)HJF%

By inequalities (3.57) and (3.58), it follows that ||Gx(z) — G(z)|] — 0 as A | 0 for
each z € F and the family (Gx, A > 0) satisfies the growth condition

(3.75) G (@)l < e7 (14 ||=[I)

for 2 € E and some ¢; > 0. From the V-dissipativity of F, it follows by [5, Proposi-
tion 5.5.3] that

[Bx(z) = Ra()| < (| =yl
for z,y € E, so that

(3.76) [1Ex(x) = Fx(y)ll = | F (Ba(z)) = F (Ba(y))l
< ks (L+ [IRBA@)1 % + 1 BA@W)IE) 1z =yl

for z,y € E. Since

[RA@) |5 < llzll g + AMF @) < es (1+ [2])
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for x € E, cg € Ry, and X € (0, 1], there is the inequality
(3.77) [1Ex(@) = E)Il < eo (1 + [zl + llyllg) lz — yl”

for z,y € E, ¢ € Ry, m > 1, and A € (0,1]. So F)\ and G, satisfy inequality (3.67)
uniformly in A € (0,1]. Thus the right-hand side of inequality (3.74) tends to zero as
A | 0 by the dominated convergence theorem where a majorizing function is provided
by the estimates (3.75) and (3.77), whose integrability is shown in (3.71) and (3.72),
and there is a decreasing sequence (A, n € N) whose limit is zero such that

(3.78) Jim_exp [ox, (2)] =exp[p(Z)] as. P.

The uniform integrability of the sequence (exp [px, (Z)],n € N) is shown by verifying
the analogue of (3.60). Equivalently,

Ky ( | éu. (XW) (t

where X, (+) is the unique mild solution to (3.62). The analogous inequalities (3.71)—
(3.74) are obtained by replacing G by G using the polynomial growth bound and
the local Holder continuity that are uniform in (A,,n € N), and Z(-) is replaced by
X, (+). For some constants c19 and m > 1,

(3.80) ‘KHl </0 G, (Xxn)>

< c10 <1 + 1%l +| %,

2

T
(3.79) supE/ dt <c < oo,
n 0

2

L2([0,T],V)

m

+ ‘XATL ) )
c([0,T],E) CA([0,T],V)

where Xy, (t) = X, (t) — S(t)Xo. By inequality (3.43), it follows that

(3.81) ‘X’An

P
c([0,7],E) S en (1 + [ Xoll + |Z|C(0,T],E))

for some ¢;; > 0. Let wy, (t) = Xy, (t) — Z(t) so that

(3.82) ws (1) = /O S(t ) Es, (s, (s) + S()Xo + Z(s)) ds

for t € [0,7]. Inequality (3.81) provides a uniform bound on |wx,|c(o,7),5) 50 by
repeating the arguments for inequalities (3.37) and (3.38), it follows that

(3.83) |XAn|Cf’([O,T]7V) < c19 (1 + || Xol| + |Z|’é([0)T] p T |Z|CH([0,T]7V))

for some ¢12 > 0. Inequalities (3.80) and (3.81) verify inequality (3.79), so the
sequence (exp [pa,(Z)],n € N) is uniformly integrable and equality (3.73) is veri-
fied. d

4. Some examples. The first example is a finite-dimensional stochastic equa-
tion with a nonlinear drift. Consider the equation

(4.1) dX () = f(X(t) dt + B dB(t),
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where f: R®" — R", & € L(R"™), and (B(t),t > 0) is an R"-valued standard fractional
Brownian motion with Hurst parameter H € (0,1). This case can be subsumed in
the infinite-dimensional results given here, though some of the assumptions and the
results simplify significantly. Let £ =V =R", S(¢t) = I for t € Ry, and assume that
Q = ®d* is positive definite. The process

</Oth>dB,tE [O,T])

has sample paths in C?([0, T],R") for 0 < 3 < H. If f: R® — R" is Borel measurable
and

(4.2) 1 (@) < k(1 + )

for some k1 > 0 and all € R™, then for H € (0,1/2) there is one and only one weak
solution of (4.1) by Theorem 3.3. If, additionally, it is assumed that

(4.3) 1f(2) = F)ll < klle -yl
for all z,y € R™ and some v > 1 — 5%, then for H € (1/2,1) there is one and only

one weak solution. In each of these cases, the probability measure of the solution is
mutually absolutely continuous with respect to the probability measure of the process
(®B(t),t € [0,T7).

Now, replace the inequality in (4.2) by

(4.4) 1f(@)]] < k(1 + [[=]|”)

for some p > 1 and k; > 0. Assume that f: R” — R" is continuous and satisfies

(4.5) (f(x) = fy),z —y) < ke —yl|?
for some k3 > 0 and all z,y € R™. If H € (1/2,1), then assume that
(4.6) 1f (@) = fFI < ka (L4 2|7 + Iyl [z =yl

for some ¢ > 1, kg > 0,7 > 1— 5. For H € (0, ) Theorem 3.6 can be used to verify

that the probability law of the solution of (4.1) is mutually absolutely continuous
with respect to the probability law of (®B(¢),t € [0,T]). Furthermore, there is one
and only one mild solution of (4.1); in fact, since the state space is finite-dimensional,
the mild solution is a strong solution. For H € (%, 1) Theorem 3.7 can be used to
verify mutual absolute continuity and one and only one mild solution as for the case
H € (0,1). Note that inequalities (4.4)—(4.6) are satisfied for the important case of
models where f is a polynomial of odd degree with a negative leading coefficient.
The second example is a stochastic parabolic equation of 2mth order:

0
(4.7) 5 (6:) = [Lamul(,€) + F(u(t,©) +n(t,)
for (¢,€) € [0,T] x O with the initial condition
(4.8) u(0,8) = x(¢)
for £ € O and the Dirichlet boundary condition
oku
(19) Tt he)=0
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for (¢,€) € [0,T] x 00, k € {0,...,m— 1}, with a% denoting the conormal derivative,
O a bounded domain in R? with a smooth boundary, and Ls,, a 2mth order uniformly
elliptic operator

(4.10) Lom =Y aa(§)D"

lal<2m

with aq € C°(0O). For example, if m = 1, then this equation is called the stochas-
tic heat equation. The process 11 denotes a space-dependent noise process that is
fractional in time with the Hurst parameter H € (0, 1) and, possibly, in space. The
system (4.7)—(4.9) is modeled as

dX (t) = AX (t)dt + F(X (t))dt + ®dB(t),

(4.11) X0 s

in the space V = L?(0), where A = Ly,,,

819

Dom(A) = {g@ € H*™(0) ok

=0on 0D for k € {0,...,m—1}},

F :V — V is the operator, F(z)(&) = f(z(§)),x € V,§ € O, ® € L(V) defines
the space correlation of the noise process, and (B(t),t > 0) is a cylindrical standard
fractional Brownian motion in V' (formally, n(¢,-) = ®(9/0t)B(t,)). For ® = I, the
noise process is uncorrelated in space. It is well known that A generates an analytic
semigroup (S(t),t > 0). Furthermore

(4.12) S| 2v) < 1S o) ||y < et ™57

for ¢t € [0,T1, so if

413 H> -~
(4.13) >

then the conditions of Proposition 2.6 are satisfied with v = ﬁ

® € L(V), the stochastic convolution process

. Therefore, for any

</Ot S(t — r)® dB(r),t € [O,T])

is well-defined and has a version with C?([0,T], V) sample paths for 8 > 0 satisfying

d
(4.14) 5<H_R'

Note that the condition (4.13) extends the well-known result for a standard
Wiener process (H = ).

Theorems 3.3 and 3.4 are applied to the present example. Assume inequality
(4.13) and let ® be boundedly invertible on V. Furthermore, let f : R — R be

measurable and satisfy

(4.15) IFOI<k(1+1ED),  &€R
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By the preceding part of this example, conditions (H1)-(H3) are satisfied for
E =V = L*O) and the map F : V — V has at most linear growth. Thus by
Theorem 3.3 if H < %, then there exists a unique weak solution to (4.11).

IfH > %, some additional conditions are required. Assume that

d 1
4.16 — < =
( ) 4m < 2
(which is more restrictive than (4.13)) and suppose that

(4.17) IF) = fFII<EIE=A,  §AER,
for some k > 0 and v > 0,

H-1/2

(4.18) H—d/im

<v<1

Then, letting G be such that 6 < H — & and 78 > H — , it is clear that all of
the conditions of Theorem 3.4 are verified so there is a unique weak solution to (4.11).

The third example is a one-dimensional stochastic equation of reaction-diffusion
type. Consider the equation

(4.19) 216 = (1.9 + 1(ult.8) + (0,8

for (¢,€) € (0,T) x (0,1) and

U(O,f) = x0(€)7

ou ou
t,0 t,1 0

G0 = G =

for (t,€) € (0,7) x (0,1), where f and n are given in the previous example (with

O = (0,1)). The above formal equation can be rewritten in the form (4.11) with

V=12(0,1])), A= 2,
Dom(4) = {0 & H2(0.10): 50(0) = 520(1) =0}
where ® € L(V) and F is as given in the preceding example. The semigroup generated
by A satisfies the estimate (4.12) (with m = d = 1), so if f satisfies the conditions of
the previous example, the same conclusions on existence and uniqueness of the weak
solution are obtained.

However, it is desirable to relax condition (4.15) of the linear growth of the func-
tion f, which is very restrictive in view of reaction-diffusion models, where f is often
a polynomial. Let H > 1/2 and assume that

(4.20) IF (O] < k(1 +[€]7),
(4.21) (f(6) = F(N)) sgn(€ = A) < k(€ - ),
(4.22) [F(€) = SOOI < R+ €7 + AI"]E = Al
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for all £, A € R and some universal constants p > 0,q > 0,k > 0 and +y satisfying
H-1/2

(4.23) H_14

<y <1

Note that these conditions are satisfied if f is Lipschitz or if f is a polynomial of
odd degree with a negative leading coefficient.

The conditions of Theorem 3.7 are verified now. Take the state space £ =
C([0,1]). It is well known that the restriction of A to E generates a strongly contin-
uous semigroup of contractions on E. By Proposition 2.6 the stochastic convolution

(4.24) (/Ot S(t — r)®dB(r),t € [O,T])

has C#([0,T], Vs) sample paths for 3+ & < H — 1/4, and, hence, by the Sobolev
embedding theorem, in the space C([0,T], E) N C?([0,T],V) for 0 < 3 < H — 1/4
(by (4.23) 8 can be chosen such that Sy > H — 1/2). It remains to verify the
conditions imposed on F. The polynomial growth condition (3.41), the “dissipativity
of F — kI on V” (3.66), and the local Holder continuity of the form (3.67) follow
easily from the corresponding conditions on f, that is, (4.20), (4.21), and (4.22). The
dissipativity of F' — kI on E (3.42) is a well-known consequence of (4.21) by the
characterization of the subdifferential of the norm on E = C([0,1]) (cf. [32]). The
characterization of the subdifferentials for this example is as follows: Given z € FE,
let M, = {¢ € [0,1];|=(§)| = ||z||g}. Then p € d]|z||g if and only if the following
three conditions are satisfied: (i) u is a Radon measure on [0, 1] with ||u|| = 1; (ii) the
support of 4 is contained in M,; and (iii) [ sgn x(&)u(d€) > 0 for each Borel set T
in [0,1]. In particular if x € E has the property that M, = {{o}, then d||z||r = d¢,
for (&) = |lz||rp and d||z||g = —d¢, for x({) = —||z||g, where d¢, is the Dirac
distribution at . The family of x € E with this latter property is dense in E.
Therefore, all of the conditions of Theorem 3.7 are satisfied, and it follows that there
is a unique weak solution in the present case.
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