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Abstract

The equation studied is u′′ + n−1
r

u′ + εu u′ + ku′2 = 0, with boundary
conditions u (1) = 0, u (∞) = 1. This model equation has been studied by
many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use
an elementary approach to show that there is an infinite series solution which
is uniformly convergent on 1 ≤ r < ∞. The first few terms are easily derived,
from which one quickly deduces the inner and outer asymptotic expansions,
with no matching procedure or a priori assumptions about the nature of the
expansion. We also give a short and elementary existence and uniqueness
proof which covers all ε > 0, k ≥ 0, and n ≥ 1.

1 Introduction

The main problem is to investigate the asymptotics as ε → 0 of the boundary value
problem

u′′ +
n− 1

r
u′ + εuu′ + ku′2 = 0 (1)

with
u (1) = 0, u (∞) = 1. (2)

We consider the cases k = 0 and k = 1. Our interest in these problems, originally
due to Lagerstrom in the 1950s [6],[7], was stimulated by two recent papers by
Popovic and Szmolyan [10],[11], who adopt a geometric approach to the problem
when k = 0, and there are many papers which use methods of matched asymptotics
or multiple scales, with varying degrees of rigor. We will review some of this work
below. The point of this paper is to give a completely rigorous and relatively short
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answer to the problem without making any appeal either to geometric methods or to
matched asymptotics. We can express the solution as an infinite series, uniformly
convergent for all values of the independent variable. From this series we obtain the
inner and outer asymptotic expansions with no a priori assumption about the nature
of these expansions. An important, and as far as we know, original, feature is that
there is no “matching”.

Lagerstrom came up with these problems as models of viscous incompressible
(k = 0) and compressible (k = 1) flow, so much of his work centered on n = 2 or
3, but he also discussed general n ≥ 1 [8]. The infinite series we develop can be
obtained for any real number n. What n controls is the rate of convergence of the
series.

For ε = k = 0, there is an obvious distinction between n > 2 and n ≤ 2. If
n > 2, then the problem (1)− (2) has the unique solution

u = 1−
1

rn−2
, (3)

so that the solution with ε small is presumably some sort of perturbation of this.
If n ≤ 2 then there is no such solution. A consequence is that the convergence as
ε → 0 is more subtle when n ≤ 2 then when n > 2. Our analysis will show that
there is little prospect of discussing the behavior for small ε if n < 2, but fortunately
we can handle all n ≥ 2. Although it has been thought that finding the asymptotics
when k = 1 is considerably more difficult than when k = 0, [3], we will show that
our technique covers each case with comparable effort.

Our methods are not restricted to Lagerstrom’s problems (1)−(2). In subsequent
work (in preparation), we will show that there is a general method which can yield
similar results for a class of singularly perturbed boundary value problems.

We start in section 2 by showing that each of these problems has one and only
one solution, for any n ≥ 1 and any ε > 0. This is based on a simple shooting
argument plus a comparison principle. These results have been obtained before,
but our proof is quite short. In the subsequent sections we develop the integral
equation referred to above, and show how it leads with relative ease to the inner
and outer expansions. These expansions go back to Lagerstrom and Kaplun, with
rigorous justification of some of the features to be found in [1] or [11], for example.
We find the exposition in Hinch’s book [3] particularly clear (though nonrigorous),
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and make that our point of comparison in checking that we get the same expansions
as were found previously.1

2 Existence and uniqueness

As far as we know, the first existence proof was by Hsiao [4], who only considered
n = 1 and sufficiently small ε > 0. Subsequently Tam gave what seems to be the
first proof valid for all ε > 0 and k ≥ 0, [14]. Subsequent proofs by MacGillivray
[9], Cohen, Lagerstrom and Fokas [1], Hunter, Tajdari, and Boyer [5], each of which
covers all ε > 0, and by several other authors, e.g. [12],[10], for restricted ranges
of ε, add to the variety of techniques which have been shown to work. Uniqueness
is proved in [5] (for k = 0) by use of a contraction mapping theorem, and in [1]
by essentially a comparison method. The goal of [10] is not to give a short proof,
but to illustrate the application of geometric perturbation theory to a much studied
problem in matched asymptotic expansions. The proofs we give of existence and
uniqueness are considerably shorter than the others we have seen.

Theorem 1 There exists a unique solution to the problem (1)− (2) for any k ≥ 0,
ε > 0, and n ≥ 1.

Proof. Like some others, starting with [14], we prove existence using a shooting
method, by considering the initial value problem

u′′ +
n− 1

r
u′ + εuu′ + ku′2 = 0 (4)

u (1) = 0, u′ (1) =c, (5)

for each c > 0. Since u′ = 0 implies that u′′ = 0 and u is constant, any solution to
this problem is positive and increasing. As was observed in [14],

u′′ + εuu′ ≤ 0,

and so from (5) ,

u′ +
1

2
εu2 ≤ c.

1We thank the referees for some very helpful comments. In particular, they called our attention
to earlier proofs of the existence and uniqueness results, in some cases by techniques similar to ours.
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In particular, since u′ ≥ 0,

u ≤

√

2c

ε
, (6)

so the solution exists, and satisfies this bound, on [1,∞). Therefore, limr→∞ u (r)
exists. Writing the equation in the form

(

rn−1u′
)

′

+ (εu+ ku′)
(

rn−1u′
)

= 0, (7)

and integrating twice, gives

rn−1u′ (r) = ce−ku(r)−ε
R

r

1
u(s)ds, (8)

u (r) =

∫ r

1

c

sn−1
e−ku−

R

s

1
εudtds. (9)

If u (2) < 1, then since u is increasing, (9) implies that

u (2) > p (c) =

∫ 2

1

c

sn−1
e−ε−kds.

From this, and (6) , we see that there are c1 and c2, with 0 < c1 < c2, such that if
c = c1 then u (∞) < 1, while if c = c2, then u (∞) > u (2) ≥ 1. Further, from (8)
for any r > R > 2,

u (r) = u (R) + c

∫ r

R

1

sn−1
e−ku−

R

s

1
εudtds.

If n > 2 the second term is bounded above by c
(n−2)Rn−2 , while if 1 ≤ n ≤ 2 and

R ≥ 2, it is bounded by c
∫

∞

R
e−ε(s−2)p(c)ds. Hence, this term tends to zero as R → ∞,

uniformly for r ≥ R, c1 ≤ c ≤ c2. Since u (R) is a continuous function of c, for any
R, it follows that u (∞) is also continuous in c, and so there is a c with u (∞) = 1,
giving a solution to (1)− (2) .

For uniqueness, suppose that there are two solutions of (1) − (2) , say u1 and
u2, with u′

1 (1) > u′

2 (1) > 0. Then u1 > u2 on some maximal interval, say (1, X)
where X ≤ ∞. For the same initial conditions, if ε = k = 0 then direct integration
shows that u1 > u2 on (1,∞), and moreover, u1 (∞) > u2 (∞). We then raise ε
and k, looking for a pair (ε1, k1) such that u1 (X) = u2 (X) for some X ≤ ∞, and
if 0 ≤ ε < ε1 or 0 ≤ k < k1, no such X exists. Hence, at (ε1, k1) , u1 ≥ u2 on
[0,∞). If, at (ε1, k1) , X < ∞, then u1 and u2 must be tangent at X, since u1 − u2

has a minimum there, contradicting the uniqueness of initial value problems for (1).
Hence, X = ∞, and u1 > u2 on (1,∞).
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Observe from (7) that if u′

1 (r) = u′

2 (r) for some r, then (rn−1 (u′

1 − u′

2))
′

< 0,
since u1 > u2, so that there cannot be oscillations in u′

1−u′

2. Hence, u1 (∞) = u2 (∞)
implies that there is an R with u′

1 (R) = u′

2 (R) and u′

1 < u′

2 on (R,∞). Integrating
(7) , and recalling that u1 (∞) = u2 (∞) , gives

rn−1 (u′

1 − u′

2) |
∞

R =
1

2
εRn−1

(

u2
1 − u2

2

)

|R

+
1

2
ε (n− 1)

∫

∞

R

sn−2
(

u2
1 − u2

2

)

ds− k

∫

∞

R

sn−1
(

u′2
1 − u′2

2

)

ds.

The left hand side is zero, and all the terms on the right are positive, giving the
necessary contradiction.

Remark 1 The existence theorem in [10] has one added part. It is shown there that
as ε → 0, the solution tends to a so-called “singular” solution obtained by taking
a formal limit as ε → 0. See [10] for details. This limit result follows from our
rigorous asymptotic expansions given below.

Remark 2 There would seem to be no difficulty in extending the existence proof
even to n < 1, but the uniqueness proof does use essentially the fact that n ≥ 1.

3 The infinite series (with k = 0, n ≥ 2)

Starting again with (1), and u (1) = 0, we first consider the case k = 0, and obtain

rn−1u′ = Be−ε
R

r

1
u(t)dt (10)

for some constant B. Since u (∞) = 1, (10) implies that u′ (r) is exponentially
small as r → ∞. Hence we can rewrite (10) as

rn−1u′ = Ce−εr−ε
R

r

∞
(u−1)dt,

so that

u− 1 = C

∫ r

∞

1

tn−1
e−εt−ε

R

t

∞
(u−1)dsdt.

Setting εr = ρ, εt = τ , and εs = σ, we obtain

u (ρ)− 1 = Cεn−2

∫ ρ

∞

1

τn−1
e−τe−

R

τ

∞
(u(σ)−1)dσdτ, (11)
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where we use the arguments ρ and σ to indicate that we mean the rescaled version
of u. Here C is a constant satisfying

− 1 = Cεn−2

∫ ε

∞

1

τn−1
e−τe−

R

τ

∞
(u−1)dσdτ. (12)

Since for each ε there is a unique solution, this determines a unique C, dependent
on ε.

We now consider the integral
∫

∞

τ

(1− u (σ)) dσ, (13)

which appears in the exponent in (12). This integral has been seen to converge for
each ε, but we need a bit more, namely, that it is bounded uniformly in ε ≤ τ < ∞
as ε → 0. To see this, we note that as a function of σ, u satisfies

d2u

dσ2
+

n− 1

σ

du

dσ
+ u

du

dσ
= 0

u = 0 when σ = ε, u (∞) = 1.

Denoting the unique solution by uε (σ) , we claim that if 0 < ε1 < ε2, then uε1 > uε2

for ε2 ≤ σ < ∞. If this is false, then ε1 and ε2 can be chosen so that uε1 (σ0) =
uε2 (σ0) for some σ0 ≥ ε2. But then, the problem

d2u

dσ2
+

n− 1

σ

du

dσ
+ u

du

dσ
= 0

u (σ0) = uε1 (σ0) , u (∞) = 1

has two solutions, contradicting our earlier uniqueness proof.
A consequence of this is that

∫

∞

ε2
(1− uε1 (σ)) dσ <

∫

∞

ε2
(1− uε2 (σ)) dσ, which

implies that the integral in the exponent in (12) , including the minus sign in front,
is bounded below independently of τ ≥ ε, and of ε. We then see that the τ -integral
in (12) approaches −∞ as ε → 0, and hence, that

lim
ε→0+

Cεn−2 = 0.

Since
∫ τ

∞
(u− 1) dσ > 0, it follows from (11) that if

En−1 (ρ) =

∫

∞

ρ

1

τn−1
e−τdτ,
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then
|u (ρ)− 1| < Cεn−2En−1 (ρ) . (14)

For purposes of future estimates, we make the obvious remark that

En−1 (ρ) =







O (ρ2−n) as ρ → 0 if n > 2
O (log ρ) as ρ → 0 if n = 2
O (ρ1−ne−ρ) as ρ → ∞.

(15)

Hence if n > 2 there is a constant K such that

En−1 (ρ) ≤ Kmin
(

ρ2−n, ρ1−ne−ρ
)

. (16)

The method now is to work from (11). As observed before, since u′ (r) is expo-
nentially small as r → ∞, the integral term

∫

∞

ρ
(u− 1) dσ converges. Hence, for

given ε > 0 and ρ0 > 0, and any ρ ≥ ρ0,

u (ρ)−1 = Cεn−2

∫ ρ

∞

1

τn−1
e−τ

{

1−

∫ τ

∞

(u− 1) dσ +
1

2

(
∫ τ

∞

(u− 1) dσ

)2

− · · ·

}

dτ,

(17)
where the series in the integrand converges uniformly for ρ0 ≤ τ < ∞.

In fact, we will need to use this series for all ρ ≥ ε. Thus we need to check its
convergence in this interval. This follows from (14) and (15) , which imply that for
any ρ ≥ ε, if n ≥ 2, then

∣

∣

∣

∣

∫

∞

ρ

(u (s)− 1) ds

∣

∣

∣

∣

< Cεn−2

∫

∞

ε

En−1 (s) ds (18)

and

εn−2

∫

∞

ε

En−1 (s) ds =

{

o (1) as ε → 0 if n > 2
O (1) as ε → 0 if n = 2

.

Hence for n > 2 and any C, the series in the integrand of (17) converges uniformly
on [ε,∞).

Now set

Φ = Cεn−2

∫

∞

ε

En−1 (s) ds.

We note that, if n > 2, then Φ → 0 as ε → 0, while if n = 2, then Φ → 0 as C → 0.
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We proceed to solve (17) by iteration. Thus, the first approximation is, from
(16) ,

u (ρ)− 1 = Cεn−2

∫ ρ

∞

1

τn−1
e−τdτ +O

(

Φ2
)

,

and we obtain the second approximation by substituting this back in (17) . Repeating
this, we reach

u− 1 = −Cεn−2En−1 + (Cεn−2)
2 ∫ ρ

∞

1
τn−1 e

−τ
(∫ τ

∞
En−1dσ

)

dτ

+1
2
(Cεn−2)

3 ∫ ρ

∞

1
τn−1 e

−τ
(∫ τ

∞
En−1dσ

)2
dτ

− (Cεn−2)
3 ∫ ρ

∞

1
τn−1 e

−τ
∫ τ

∞

{∫ σ

∞

1
sn−1 e

−s
(∫ s

∞
En−1dt

)

ds
}

dσdτ +O (Φ4) ,

(19)

as Φ → 0.
To obtain C, we need to be able to evaluate each of these terms for small ρ (in

particular, for ρ = ε), and this is a matter of integration by parts. Thus, for
non-integral n,

En−1 (ρ) =

∫

∞

ρ

e−τ

τn−1
dτ = −

ρ2−n

2 − n
e−ρ +

1

2− n

∫

∞

ρ

e−τ

τn−2
dτ

= −
ρ2−n

2 − n
e−ρ +

1

2− n
En−2, (20)

and this can be repeated to give En−1 as a sum of terms of the form ckρ
ke−ρ and

En−p, until 0 < n− p < 1. Then

En−p =

∫

∞

0

e−τ

τn−p
dτ −

∫ ρ

0

e−τ

τn−p
dτ

= Γ (p+ 1− n)−

∫ ρ

0

e−τ

τn−p
dτ

and we can then continue to integrate by parts as far as we like. (If n is an integer,
we will reach

∫

∞

ρ
e−τ

τ
dτ , which introduces a logarithm.)

Thus En−1 (ρ) can be expressed as a sum of terms of the form ckρ
ke−ρ, and so

obviously the same is true of E2
n−1 , with e−2ρ in place of e−ρ. Also,

∫ ρ

∞

En−1 (τ) dτ =

∫ ρ

∞

(
∫

∞

τ

e−σ

σn−1
dσ

)

dτ

=

[

τ

(
∫

∞

τ

e−σ

σn−1
dσ

)]

|ρ
∞
+

∫ ρ

∞

e−τ

τn−2
dτ

= ρEn−1 − En−2, (21)
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so that
∫ ρ

∞
En−1dτ can be expressed as the same type of sum. Hence the second

term in (19) gives a sum of terms of the form Ek (2ρ) and the third and fourth terms
a sum involving Ek (3ρ).

We now carry the process through in the most interesting cases, n = 2, 3.

4 The case k = 0, n = 2

When n = 2 we are interested in

E1 (ρ) =

∫

∞

ρ

1

τ
e−τdτ

= −e−ρ log ρ+

∫

∞

ρ

e−τ log τdτ

= −e−ρ log ρ+

∫

∞

0

e−τ log τdτ −

∫ ρ

0

e−τ log τdτ

= −e−ρ log ρ− γ − ρ (log ρ− 1) e−ρ + O
(

ρ2 log ρ
)

, for small ρ,

= − log ρ− γ + ρ+O
(

ρ2 log ρ
)

. (22)

(See, for example, [2], Chapter 1.) Also, for future purposes, using (20) we obtain

E2 (ρ) =
e−ρ

ρ
−E1 (ρ) (23)

=
1

ρ
+ log ρ+ (γ − 1)−

1

2
ρ+O

(

ρ2 log ρ
)

as ρ → 0. (24)

Looking now at (19) , with ρ = ε, we see that as ε → 0,

C log ε → −1

and

C =
1

log 1
ε

+O

(

1
(

log 1
ε

)2

)

.

Hence the series in (19) is in powers of 1
log 1

ε

.
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Also, we will work our approximations (in order to compare the results with those
of Hinch in [3]) to order 1

log2( 1

ε
)
, so that (for example)

u =
a (r)

log
(

1
ε

) +
b (r)

log2
(

1
ε

) +O

(

log−3 1

ε

)

for any fixed value of r (ρ of order ε). This, as we shall see, necessitates finding

C =
1

log
(

1
ε

)

{

1 +
A

log
(

1
ε

) +
B

log2
(

1
ε

) +O

(

log−3

(

1

ε

))

}

,

and requires use of all the terms in (19) .

With this in mind, we look at the second term of (19). Thus from (21) ,

∫

∞

ρ

E1dτ = −ρE1 + e−ρ, (25)

so that the second term is

C2

∫ ρ

∞

1

τ
e−τ

(

τE1 − e−τ
)

dτ = C2

{
∫ ρ

∞

e−τE1dτ −

∫ ρ

∞

e−2τ

τ
dτ

}

= C2

{

[

−e−τE1

]

|ρ
∞
− 2

∫ ρ

∞

e−2τ

τ
dτ

}

= C2
(

−e−ρE1 (ρ) + 2E1 (2ρ)
)

. (26)

From (22), the second term is therefore

C2 (log ρ+ γ − 2 log 2ρ− 2γ +O (ρ))

= C2 (− log ρ− γ − 2 log 2 +O (ρ)) (27)

as ρ → 0.

In the third and fourth terms of (19) we need only the leading terms, i.e. we can
ignore the equivalent of γ + 2 log 2 in (27). Using (25) the third term becomes

1

2
C3

∫ ρ

∞

e−τ

τ

(

e−τ − τE1

)2
dτ =

1

2
C3 (log ρ+O (1)) as ρ → 0. (28)
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Finally, in the fourth term, the integrand in the τ -integral is just the second term,
(as a function of σ), so that from (25) , the fourth term is

M = −C3

∫ ρ

∞

e−τ

τ

[
∫ τ

∞

{

−e−σE1 (σ) + 2E1 (2σ)
}

dσ

]

dτ. (29)

It is seen from (25) that for any τ ≤ ∞,
∫ τ

0
E1 (σ) dσ converges. Hence we can

write the inner integral above in the form
∫ 0

∞
+
∫ τ

0
, and it follows that

M = −C3

∫ ρ

∞

e−τ

τ
{K + r (τ)} dτ

where K is a constant, r is bounded and r (τ) = O (τ log τ) as τ → 0. It further
follows that

M = C3 (KE1 (ρ) +O (1)) as ρ → 0.

We can evaluate K using (25) and (22):

∫

∞

0

E1 (2σ) dσ =
1

2

∫

∞

0

E1 (u) du =
1

2
,

∫

∞

0

e−σE1 (σ) dσ =
[

−
(

e−σ − 1
)

E1

]

∞

0
−

∫

∞

0

(

e−σ − 1
) e−σ

σ
dσ

= lim
σ→0

{−E1 (2σ) + E1 (σ)} = lim
σ→0

(log 2σ − log σ) = log 2. (30)

Hence, from (29), the fourth term of (19) is

C3 {E1 (ρ) (log 2− 1) +O (1)} = −C3 {(log 2− 1) log ρ+O (1)} as ρ → 0. (31)

Now setting ρ = ε and using (27) , (28), and (31), we obtain that

−1 = −C (− log ε− γ +O (ε)) + C2 (− log ε− γ − 2 log 2 +O (ε))

+
1

2
C3 (log ε+O (1))− C3 {(log 2− 1) log ε+O (1)}

as ε → 0. Hence,

1

log
(

1
ε

) = C

(

1−
γ

log
(

1
ε

)

)

−C2

(

1−
γ + 2 log 2

log
(

1
ε

)

)

+C3

(

3

2
− log 2

)

+O

(

log−4

(

1

ε

))

,

(32)
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and

C =
1

log
(

1
ε

) +
A

log2
(

1
ε

) +
B

log3
(

1
ε

) +O

(

1

log4
(

1
ε

)

)

,

where

−γ + A− 1 = 0,

B − γA− 2A+ (γ + 2 log 2) +
3

2
− log 2 = 0.

Hence,

A = γ + 1

B = γ2 + 2γ +
1

2
− log 2.

Thus, for fixed r, ρ of order ε, we have, with λ = log
(

1
ε

)

,

u− 1 =

(

1

λ
+

γ + 1

λ2
+

(γ + 1)2 − 1
2
− log 2

λ3

)

(log r + log ε+ γ)

+
1

λ2

(

1 +
2 (γ + 1)

λ

)

(− log r − log ε− γ − 2 log 2)

+
1

λ3

(

3

2
− log 2

)

(log r + log ε) +O
(

λ−4
)

,

so that, after cancellation,

u =
log r

λ
+

γ log r

λ2
+O

(

λ−3
)

.

This is the “inner expansion”. For the “outer expansion”, i.e. fixed ρ, r of order 1
ε
,

we use (19) , truncated to second order, to get

u− 1 = −E1 (ρ)

(

1

λ
+

γ + 1

λ2

)

+
1

λ2

(

2E1 (2ρ)− e−ρE1 (ρ)
)

+O
(

λ−3
)

.

These results are in accordance with those of Hinch and of others on this problem.
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5 The case k = 0, n = 3

Here we are interested in (from (22) and (23))

E2 (ρ) =
e−ρ

ρ
− E1 (ρ) =

1

ρ
+ log ρ+ (γ − 1)−

1

2
ρ+O

(

ρ2 log ρ
)

as ρ → 0.

Thus, the first term on the right of (19) evaluated at ρ = ε is

−C
(

1 + ε log ε+ (γ − 1) +O
(

ε2
))

as ε → 0.

The second term is

(Cε)2
∫ ρ

∞

1

τ 2
e−τ

(
∫ τ

∞

E2dσ

)

dτ

= (Cε)2
{[

−E2 (τ)

∫ τ

∞

E2 (σ) dσ

]ρ

∞

+

∫ ρ

∞

E2
2dτ

}

= (Cε)2
{

−E2 (ρ)

∫ ρ

∞

E2 (τ) dτ +

∫ ρ

∞

E2
2dτ

}

.

From (23) we see that
∫ ρ

∞

E2
2dτ = −

1

ρ
+ log2 ρ+O (log ρ) as ρ → 0,

while from (21) ,
∫ ρ

∞

E2dτ = ρE2 − E1 = 1 + log ρ+ γ +O (ρ log ρ) ,

E2

∫ ρ

∞

E2dτ =
1

ρ
log ρ+

γ + 1

ρ
+O

(

log2 ρ
)

.

In all, the second term is

(Cε)2
{

−
1

ρ
log ρ−

γ + 2

ρ
+O

(

log2 ρ
)

}

.

It is readily verified that the third and fourth terms in (19)giveO
{

C3ε3
(

1
ρ
log2 ρ

)}

,

which is negligible. Thus, evaluating (19) at ρ = ε, we have

−1 = −Cε

(

1

ε
+ log ε+ γ − 1

)

+ (Cε)2
(

−
1

ε
log ε−

γ + 2

ε

)

+O
(

C3ε2 log2 ε
)

,

13



so that
C = 1− 2ε log ε− ε (2γ + 1) +O

(

ε2 log2 ε
)

.

Then, for fixed r, ρ of order ε, we have

u− 1 = −ε (1− 2ε log ε− ε (2γ + 1))

(

1

εr
+ log ε+ log r + γ − 1

)

+ ε2
(

−
1

εr
(log ε+ log r)−

γ + 2

εr

)

+O
(

ε2 log2 ε
)

,

u = 1−
1

r
− ε log ε

(

1−
1

r

)

− ε

(

log r +
log r

r

)

+ ε (1− γ)

(

1−
1

r

)

+O
(

ε2 log2 ε
)

.

For fixed ρ, r of order ε−1, we again use (19), to give

u− 1 = −ε (1− 2ε log ε− ε (2γ + 1))E2 (ρ)

+ ε2
{

E1 (ρ)E2 (ρ)− ρE2
2 (ρ)−

∫

∞

ρ

E2
2dτ

}

+O
(

ε3
)

. (33)

Again, these results are in agreement with those of Hinch, and others, although (33)
gives one term further.

Remark 3. It is of interest to consider what happens when n < 2, since, at least
for n ≥ 1, there still exists a unique solution. The equation (19) is still valid at
ρ = ε, but since En−1 (ρ) is no longer singular at ρ = 0 for n < 2, (19) with ρ = ε
becomes merely an implicit equation for Cεn−2. This tells us that C → 0, since
εn−2 → ∞, but we no longer get an asymptotic expansion. In particular, it is no
longer obvious that C is unique. Of course, we know this from Theorem 1 if n ≥ 1.

6 The case k = 1

We can in fact treat a generalization which causes no further difficulties,

u′′ +
n− 1

r
u′ + f (u)u′2 + εu u′ = 0, (34)

14



with the same boundary conditions. As before, we will compare our results with
those of Hinch in [3].

As remarked in the proof of Theorem 1, the solution will necessarily have u′ > 0
so that conditions on f (u) are necessary only for 0 ≤ u ≤ 1. We require only that
f be continuous and positive in this interval.

Then (34) can be written as

(rn−1u′)
′

rn−1u′
+ f (u)u′ + εu = 0,

so that

log
(

rn−1u′
)

= −F (u)− ε

∫ r

1

udt+ A

for some constant A, where

F (u) =

∫ u

0

f (s) ds.

This becomes

eF (u)u′ =
C

rn−1
e−εr−ε

R

r

∞
(u−1)ds,

or, on integration,

G (u)−G (1) = C

∫ r

∞

1

tn−1
e−εt−ε

R

t

∞
(u−1)dsdt,

where

G (u) =

∫ u

0

eF (v)dv.

In order to keep the manipulations simple and effect comparisons, we will consider
from here the Lagerstrom model, where f (u) = 1, F (u) = u, G (u) = eu−1. Then,
with εr = ρ, εt = τ , we have

eu − e = Cεn−2

∫ ρ

∞

1

τn−1
e−τe−

R

τ

∞
(u−1)dσdτ, (35)

and writing

u− 1 =
u− 1

eu − e
(eu − e) ,

15



we get

eu − e = Cεn−2

∫ ρ

∞

1

τn−1
e−τe−

R

τ

∞

u−1

eu−e
(eu−e)dσdτ. (36)

As in section 3, we can integrate by parts, and since 0 ≤ u−1
eu−e

≤ 1 in 0 ≤ u < 1,
we will develop a convergent series as before. To get the first three terms (necessary
to give Hinch’s accuracy when n = 2), we have from (36) that

eu − e

= Cεn−2

∫ ρ

∞

1

τn−1
e−τ

{

1−

∫ τ

∞

u− 1

eu − e
(eu − e) dσ +

1

2

(
∫ τ

∞

u− 1

eu − e
(eu − e) dσ

)2

+ · · ·

}

dτ.

(37)

As before, since eu − e → 0 exponentially fast as ρ → ∞, the series in the
integrand converges uniformly for large τ , so that (37) is valid for large ρ. But
again we need to extend it down to ρ = ε. From (35)we have

eu − e ≤ Cεn−2En−1 (ρ)

and so the convergence proof is the same as that preceding (19) .

Before proceeding further with n = 2, we make a couple of remarks about the
simpler case n > 2. Then, as we saw in subsection 5, only two terms are necessary
to give the required accuracy, and then (37) gives

eu − u = Cεn−2

∫ ρ

∞

e−τ

τn−1

{

1−

∫ τ

∞

u− 1

eu − e
(eu − e) dσ + · · ·

}

and since u−1
eu−e

appears in what is already the highest order term, we can replace it

by its limit as u → 1, i.e. 1
e
. Thus we get, to the required order,

eu − e = −Cεn−2En−1 −

(

Cεn−2

e

)
∫ ρ

∞

e−τ

τn−1

∫ τ

∞

(eu − e) dσdτ.

(We will proceed more carefully for n = 2.) This, apart from the factor 1
e
, is the

same equation as we dealt with in section 5 (with eu − e in place of u− 1), and the
solution can be written down from there. (If we had a general function f in place
of 1, we would get

eF (u) − eF (1) = −Cεn−2En−1 −
Cεn−2

eF (1)f (1)

∫ ρ

∞

e−τ

τn−1

(
∫ τ

∞

(

eF (u) − eF (1)
)

dσ

)

dτ.)
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Turning now to the case n = 2, and F (u) = u, we need three terms on the right
of (37) . Thus,

u− 1

eu − e
=

1

e
−

1

2e2
(eu − e) +O (eu − e)2 as u → 1. (38)

We follow the method used just before (19) and obtain from (37) that

eu − e = −Cεn−2En−1 +
1

e

(

Cεn−2
)2
∫ ρ

∞

1

τn−1
e−τ

(
∫ τ

∞

En−1dσ

)

dτ

+
1

2e2
(

Cεn−2
)3
∫ ρ

∞

1

τn−1
e−τ

(
∫ τ

∞

E2
n−1dσ

)

dτ

+
1

2e2
(

Cεn−2
)3
∫ ρ

∞

1

τn−1
e−τ

(
∫ τ

∞

En−1dσ

)2

dτ

−
1

e2
(

Cεn−2
)3
∫ ρ

∞

1

τn−1
e−τ

∫ τ

∞

{
∫ σ

∞

1

sn−1
e−s

(
∫ s

∞

En−1dt

)

ds

}

dσdτ +O
(

Φ4
)

= −Cεn−2En−1 + F1 + F2 + F3 + F4 +O
(

Φ4
)

, say.

As before, if n > 2 then this is valid for any C as ε → 0, uniformly in ρ ≥ ε, while if
n = 2, it is valid as C → 0.

For n = 2 we can continue to follow the argument in section 4. Thus, as ρ → 0,

F1 =
1

e
C2 (− log ρ− γ − 2 log 2 +O (ρ))

F3 =
1

2e2
C3 (log ρ+O (1))

F4 = −
1

e2
C3 [(log 2− 1) log ρ+O (1)] .

The term F2 did not appear before. Only the highest order term is needed for our
expansion and this is

−
1

2e2
C3

(
∫ ρ

∞

1

τ
e−τdτ

)
∫

∞

0

E2
1dσ.

Now
∫

∞

0

E2
1dσ =

[

τE2
1

]

∞

0
+ 2

∫

∞

0

τ
e−τ

τ
E1dτ

= 2

∫

∞

0

e−τE1dτ = 2 log 2, from (30) .
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Thus,

F2 =
1

e2
C3E1

(

log 2 +O
(

ρ log2 ρ
))

= −
1

e2
C3 ((log 2) log ρ+O (1)) ,

and, evaluating at ρ = ε, we have

1− e = C (log ε+ γ +O (ε))

−
1

e
C2 (log ε+ γ + 2 log 2 +O (ε)) +

1

2e2
C3 log ε (−2 log 2 + 1− 2 log 2 + 2) +O

(

C3
)

,

e− 1

log 1
ε

= C

(

1−
γ

log
(

1
ε

)

)

−
1

e
C2

(

1−
γ + 2 log 2

log
(

1
ε

)

)

+
1

2e2
C3

(

3− 4 log 2 +O

(

Cε

log ε

)

+O

(

C2ε

log ε

)

+O

(

C3

log ε

))

.

Hence if

C =
e− 1

log
(

1
ε

) +
A

log2
(

1
ε

) +
B

log3
(

1
ε

) +O

(

log−4

(

1

ε

))

,

then

−γ (e− 1) + A−
(e− 1)2

e
= 0,

A =
e− 1

e
(γe+ e− 1) ,

B − Aγ +
(e− 1)2

e
(γ + 2 log 2)−

2A (e− 1)

e
+

1

2e2
(e− 1)3 (3− 4 log 2) = 0.

We can of course calculate B, but in fact its value will be be irrelevant to the level
of approximation that we take.

Then, for fixed r (ρ of order ε ), we have, with l = log
(

1
ε

)

,

eu − e = (e− 1)

{

1

l
+

γ + 1− 1
e

l2
+

B/ (e− 1)

l3

}

(log ε+ log r + γ)

+
1

e
(e− 1)2

{

1

l2
+

2
(

γ + 1− 1
e

)

l3

}

(− log ε− log r − γ − 2 log 2)

+
1

2e2
(e− 1)3

l3
(3− 4 log 2) (log ε+ log r) +O

(

l−3
)

= 1− e+
(e− 1) log r

l
+

γ (e− 1) log r

l2
+O

(

l−3
)

. (39)
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(Note that the definitions of A and B were such that u = 0 at r = 1 up to
and including order l−2, so that to that order there can be only terms in log r, not
constant terms. We do not need the explicit value of B.) To obtain u, we have to
invert, so that

u = log

{

1 +
e− 1

l
log r +

γ (e− 1)

l2
log r +O

(

l−3
)

}

.

For fixed ρ, r of order ε−1, we have

eu−e = −
e− 1

l

(

1 +
γ + 1− 1

e

l

)

E1 (ρ)+
(e− 1)2

el2
(

2E1 (2ρ)− e−ρE1 (ρ)
)

+O
(

l−3
)

.

Thus

u− 1 =
1

e
(eu − e)−

1

2e2
(eu − e)2 + · · ·

= −
e− 1

e

(

1 +
γ + 1− 1

e

l

)

E1 (ρ)

l
+

(e− 1)2

e2
(2E1 (2ρ)− e−ρE1 (ρ))

l2

−
(e− 1)2

2e2
E2

1 (ρ)

l2
+O

(

l−3
)

. (40)

Again, these results are consistent with those of Hinch and others, except that Hinch
has an algebraic mistake which in (40) replaces γ + 1− 1

e
by γ − 1 + 1

e
.

7 Final Remarks

Starting with Lagerstrom, the terms involving log ε in the inner expansions have been
considered difficult to explain. They are often called “switchback” terms, because
there is nothing obvious in the equation which indicates the need for such terms, and
because, starting with an expansion in powers of ε, one finds inconsistent results
which are only resolved by adding terms of lower order, that is, powers of ε log ε. The
recent approach to the problem by geometric perturbation theory explains this by
reference to a “resonance phenomenon”, which is too complicated for us to describe
here [10],[11].

In our work, the necessity for such terms is seen already from the equation (11)
and the resulting expansion (17) :

u (ρ)−1 = Cεn−2

∫ ρ

∞

1

τn−1
e−τ

{

1−

∫ τ

∞

(u− 1) dσ +
1

2

(
∫ τ

∞

(u− 1) dσ

)2

− · · ·

}

dτ.
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In the existence proof it was seen in (9) that C = O (1) as ε → 0. On the right
of (17) the first term is simply −Cεn−2En−1 (ρ) , and the simple expansions given
for E1 and E2 show immediately the need for the logarithmic terms. There is no
“switchback”, because the procedure does not start with any assumption about the
nature of the expansion, and there is no need for a ”matching”.

A number of authors have noted that the outer expansion is a uniformly valid
asymptotic expansion on [1,∞), and therefore it “contains” the inner expansion
[5], though this is more subtle when k = 1 [13]. Our twist on this is that both
expansions are contained in the uniformly convergent series defined implicitly by
(17) . The simple derivation of this series, via the integral equation (11) is new, as
far as we know.
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