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Abstract. We propose a restoration algorithm for band limited images that considers irregular
(perturbed) sampling, denoising, and deconvolution. We explore the application of a family of
regularizers that allow to control the spectral behavior of the solution combined with the irregular to
regular sampling algorithms proposed by H.G. Feichtinger, K. Gröchenig, M. Rauth and T. Strohmer.
Moreover, the constraints given by the image acquisition model are incorporated as a set of local
constraints. And the analysis of such constraints leads to an early stopping rule meant to improve
the speed of the algorithm. Finally we present experiments focused on the restoration of satellite
images, where the micro-vibrations are responsible of the type of distortions we are considering here.
We will compare results of the proposed method with previous methods and show an extension to
zoom.
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1. Introduction. A general image acquisition system may be modeled by the
following image formation model

z(ξk) = (h ∗ u)(ξk) + nξk
, ξk ∈ Ξ, (1.1)

where Ξ = {ξk}N2

k=1 ⊆ R2 is a finite set of regular or irregular samples, u : R2 → R is
the ideal undistorted image, h : R2 → R is a blurring kernel whose Fourier spectrum
ĥ has most of its energy concentrated in the spectral support of u, z is the observed
sampled image which is represented as a function z : Ξ → R, and nξk

is, as usual, a
white Gaussian noise with zero mean and standard deviation σ.

Reconstructing a signal u : R2 → R over an infinite support from a finite set
of samples z(ξk) is not possible without imposing restrictions. As in most works, in
order to simplify this problem, we shall assume that the functions h and u are periodic
of period N in each direction. Let us denote by ΩN the interval [0, N [2 and assume
that h, u are functions defined in ΩN . To fix ideas, we assume that h, u ∈ L2(ΩN ), so
that h∗u is a continuous function in ΩN [28] (which may be extended to a continuous
periodic function in R2). Then the samples (h ∗ u)(ξk), ξk ∈ Ξ, are well defined.

We shall concentrate on the particular case of perturbed sampling and we shall
assume that Ξ is a set of N2 samples, which take the particular form

Ξ = Z2 ∩ ΩN + ε(Z2 ∩ ΩN ), (1.2)

where ε : R2 → R2 is a “smooth and small” perturbation function in the sense that
supp ε̂ ⊆ [− N

Tε
, N

Tε
]2 for some period Tε > 2 corresponding to the maximum vibration
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frequency and the mean amplitude of the perturbation ([
∫
ΩN

|ε(x)|2dx/
∫
ΩN

dx]
1
2 ) is

small with respect to 1 pixel (we refer to Section 2 for a model (2.1) of this perturbation
and also for a general overview of irregular sampling aspects).

Even knowing the exact sampling geometry Ξ, the blurring kernel h and the
statistics of the noise n, the problem of recovering u from z is very ill-posed in a
variety of situations that arise in real-world image acquisition systems. The main
difficulty comes from the fact that perfect reconstruction from irregular samples can
only be ensured either with a sampling rate, which is much larger than in the regu-
lar case (relative to the bandwidth of h), or similar to the regular critical sampling
rate, but under very constrained sampling geometries that rarely appear in practice.
(See [3, Chapter 2] for a discussion on this problem). In any case, even if perfect
reconstruction is sometimes possible in theory, with a relatively small and realistic
sampling rate, it is still very ill posed, which limits its practical interest whenever
noisy measurements are involved. A common and unavoidable strategy to solve this
ill-conditioning is regularization. And the typical constrained formulation of a reg-
ularization method [47] consists in choosing between all possible solutions of (1.1)
the one that minimizes the functional J(u). Modeling the acquisition system (1.1)
through constrained minimization eliminates the regularization parameter in classical
variational or bayesian formulations, and due to the statistical nature of the noise
information, the constraint is expressed as an upper estimate of the noise variance σ2.
The constrained restoration problem becomes

min
u

J(u),

subject to
∑

ξk∈Ξ

|(h ∗ u)(ξk) − z(ξk)|2 ≤ N2σ2,

where the regularizer J(u) embodies our a-priori knowledge of the image, specify-
ing its smoothness properties. The use of the Dirichlet integral

∫
ΩN

|Du|2 dx is not
satisfactory, mainly due to the unability of the previous functional to resolve dis-
continuities (edges) and oscillatory textured patterns, the information corresponding
to high frequencies of z being attenuated by it. Indeed, functions in W 1,2(Ω) (i.e.,
functions u ∈ L2(Ω) such that Du ∈ L2(Ω)) cannot have discontinuities along rec-
tifiable curves. These observations motivated the introduction of Total Variation
(TV (u) =

∫
ΩN

|Du|) in image restoration problems by L. Rudin, S. Osher and E.

Fatemi in their work [44]. The a priori hypothesis is that functions of bounded varia-
tion (the BV model) ([6, 25]) are a reasonable functional model for many problems in
image processing, in particular, for restoration problems ([44]). Typically, functions
of bounded variation have discontinuities along rectifiable curves, being continuous in
the measure theoretic sense away from discontinuities. The discontinuities could be
identified with edges. The ability of total variation regularization to recover edges is
one of the main features which advocates for the use of this model (its ability to de-
scribe textures is less clear, some textures can be recovered, but up to a certain scale
of oscillation). We refer to [25] for the definition of functions of bounded variation
and their basic properties.

We shall explore in this paper a family of regularizers that takes into account the
spectral decay of the Fourier coefficients in the class of images we are looking for.
In the case of satellite images, this spectral behavior can be estimated by statistical
measures of the decay of Fourier coefficients. The general class of regularizers we
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consider is

JA(u) =

∫

ΩN

|A(D)u| (1.3)

where A(D)u is defined by the coefficients of its Fourier series F(A(D)u)(ω) =
A(iω)û(ω), ω ∈ Z2. Note that JA(u) < ∞ imposes a frequency penalization ac-
cording to the profile A(iω). In practice we choose A(iω) so that |A(iω)| ∼ | 2π

N ω|p
for large |ω|, 1 ≤ p ≤ 2. This is in consonance with the approach of Gröchenig and
Strohmer [32] that proposes to incorporate an a-priori decay in the restoration process
(see Section 2).

In [4] (see also [5, 13, 43]), the authors proposed a restoration model using a lo-
cal estimate of the noise variance. The local formulation contributes to reducing the
unnaturally-looking aspect of images obtained from global Total Variation based min-
imization, thus improving the recovery of textures. Following the mentioned proposal
we replace the constraint

∑

ξk∈Ξ

|(h ∗ u)(ξk) − z(ξk)|2 ≤ N2σ2,

by

G ∗ |∆Ξ(h ∗ u) − z|2(ξk) ≤ σ2, ∀ξk ∈ Ξ, (1.4)

where the sampling operator ∆Ξ : C(R2) → ℓ2(Ξ) is given by ∆Ξ(v) = {v(ξk)}N2

k=1 and
G is a discrete convolution kernel such that G(ξ) > 0 for all ξ ∈ Ξ and

∑
k G(ξk) = 1.

Combining the two ideas described above, the use of a regularizer that takes into
account the spectral decay of images in a certain class (1.3), and the incorporation
of the image acquisition model as a set of local constraints (1.4), we propose the
following constrained variational model for restoring u

min
u

∫

Ω

|A(D)u|,

subject to
[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) ≤ σ2 ∀ξk ∈ Ξ.

(1.5)

The constrained formulation (1.5) can be solved using the unconstrained formu-
lation

min
u

max
(λk)≥0

∫

Ω

|A(D)u| + 1

2

∑

ξk∈Ξ

λk

{[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) − σ2

}
(1.6)

where λk ≥ 0 is a Lagrange multiplier that has to be chosen so that the constraints
(1.4) are satisfied. Let us say explicitly that both the blurring kernel h and the
sampling grid Ξ (alternatively the grid perturbation function ε) are assumed to be
known exactly, and that the only thing known about the noise nξk

is that it is a
white Gaussian noise with zero mean and known variance σ2. Several methods exist
to estimate all these parameters [35] for a given acquisition device and we shall not
address this question here.

The case of recovering an irregularly sampled image on a regular sampling grid
was already considered by the second author in [3], but the blurring kernel h was
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assumed to be an ideal window (with Nyquist frequency cutoff), i.e., ĥ = χ[−1/2,1/2]2 .
Different numerical algorithms were tested in the case where the sampling set is per-
turbed according to (1.2) and they worked relatively well only within a low-frequency
spectral region R ⊆ [−α, α]2, where α ≈ 1

2 − 1/Tε. When attempting to recover û in
the high frequency band [−1/2, 1/2]2\R serious theoretical and numerical problems
appeared and, actually, restoration errors were most important there. Subsequently,
the restoration problem (1.5) was studied in [5] when J(u) is the total variation and
the image acquisition model was incorporated as a set of local constraints on a parti-
tion of the image obtained as a result of a segmentation. The use of local constraints
(1.4) was advocated in [4] and we also adopt this technique here.

Let us finally mention that many numerical algorithms have been proposed to
minimize total variation (or similar models) subject to a global constraint as in (1.5)
[44, 29, 14, 49, 17, 18, 19, 20, 24, 16, 45]. Imposing local constraints in a partition
of the image was proposed in [43] and further developed in [13, 5, 4]. In [38] the
authors combined total variation minimization with a set of constraints of type |〈h ∗
u − z, ψ〉| ≤ τ where ψ varies along an orthonormal basis of wavelets (or a family
of them) and τ > 0. The aim was also to construct an algorithm which preserves
textures and has good denoising properties. As we will do here, these constraints were
incorporated using Uzawa’s algorithm. In [30], the authors proposed to minimize total
variation subject to a family of local constraints which control the local variance of the
oscillatory part of the signal. The constraints are introduced via Lagrange multipliers
with an approach similar to the one used in [44]. This amounts to adding a spatially
varying fidelity term that locally controls the extent of denoising over image regions
depending on their content. Besides the fact that we use Uzawa’s algorithm and
we try to address the problem of deconvolution and denoising of irregularly sampled
images, the work [30] is quite similar to our approach. Finally, in [45], the authors
proposed a non-convex data attachment term with a larger weight (depending on the
inverse of the modulus of the gradient) in flat areas than in textured ones. This goes
in the same sense as our model, that is, to be able to denoise flat regions of the image
while keeping the oscillations in textured areas.

Let us summarize the contributions of the paper. Our goal is to propose an
algorithm for image denoising and deconvolution. The specificity of the considered
problem comes from the fact that the images we deal with are irregularly sampled. On
the one hand, we carry out a thorough and accurate modelization of the problem based
on local constraints (1.4), and propose a family of frequency adaptive regularization
functionals (1.3) that incorporates a priori image smoothness model. On the other
hand, we prove the convergence of our algorithm. Lastly, the study of the local
constraint model combined with standard error propagation allows to derive useful
stopping criteria for the algorithm.

Let us finally explain the plan of the paper. In Section 2 we introduce the problem
of irregular to regular sampling and we discuss the ACT algorithm of Gröchenig
and Strohmer [32]. In Section 3 we introduce our frequency adaptive variational
restoration model with local constraints in the continuous setting. The corresponding
discrete model is discussed in Section 4 along with the adaptation of a computational
improvement introduced by L. Moisan in [39]. In Section 5 we study the existence,
uniqueness and numerical approximation to the model introduced in the previous
Section. This study is completed in Section 6 where we describe a Quasi-Newton
algorithm for the solution of the Euler Lagrange equation corresponding to the energy
in (1.6) for fixed values of the Lagrange multipliers (λk). In Section 7 we propose a
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practical stopping condition for the restoration algorithm for the local constraint
model. In Section 8 we display experiments concerning restoration and zooming of
irregularly sampled images. Section 9 summarizes the main conclusions of this work.

1.1. Preliminaries and notations. Let us introduce some notations.

For any function u ∈ L2(ΩN ) (assuming periodicity of period N in each direction)
we denote its Fourier coefficients as

û(p, q) =
1

N2

∫

ΩN

u(x, y)e−2πi (px+qy)
N dxdy for (p, q) ∈ Z2.

As in [40], our plan is to compute a band limited approximation to the solution of the
restoration problem. To do so, assume for simplicity that M is an even number and
define

BM := {u ∈ L2(ΩN ) : û is supported in IM} where IM := {−M
2

+ 1, . . . ,
M

2
}2.

We notice that BM is a finite dimensional vector space of dimension M2 which can

be identified with RM2

by mapping u ∈ BM to the vector ~u =
(
u(r N

M , l N
M )
)M−1

r,l=0
.

Moreover, if u ∈ BM we may write

u(x, y) =
∑

−M
2 <p,q≤M

2

û(p, q)e2πi (px+qy)
N .

where

û(p, q) =
1

M2

∑

0≤r,l<M

u

(
r
N

M
, l
N

M

)
e−2πi (pr+ql)

M , −M
2
< p, q ≤ M

2
.

Then the values u
(
r N

M , l N
M

)
, 0 ≤ r, l < M , can be recovered as the discrete inverse

Fourier transform of û(p, q). Hence u ∈ BM can also be identified with the vector of

Fourier coefficients û ∈ ICM2

. Note that we shall mainly study here the critical sam-
pling case M = N , however we will keep two different symbols M for the bandwidth
and N for the domain size in order to simplify the exposition of certain parts of the
algorithm.

We intend to solve the restoration problem in the class of band-limited functions
BM . Later on we will comment on this choice. We will also use the operator notation
for the Fourier transform that applied to the function u returns the vector of its
Fourier coefficients: û = Fu , conversely F∗û = u denotes the inverse transform, then
F∗F = Id.

2. Irregular to regular sampling. Opposed to digital photographs, satellite
images are generally not acquired by a squared array of sensors but by a sweeping
bar of sensors known as TDI (Time Delay Integrator) [46]. This acquisition geometry
called push-broom is widely applied in aerospace imaging applications and, nowadays,
it provides the highest resolution in earth imaging applications. As a consequence of
this progressive acquisition mode, the micro-vibrations of the satellite together with
irregularities in sensors position result in perturbed sampling sets. In most cases,
the knowledge of certain vibration modes and the analysis of acquired images help
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to estimate, very accurately, the perturbations in the sampling grid, which can be
modeled [3] by

ε(x) =

q∑

k=1

ak(x)cos(2π〈ωk

N
, x〉 + φk), x ∈ R2, (2.1)

for some q ≥ 1, where ak(x) are smooth modulation functions and the vibration fre-
quencies ωk are an order of magnitude (or even more) below the Nyquist frequency of
the sampling rate. The bound on the modulation functions is inversely proportional
to ωk and the number of vibration modes is small. This results in smooth and small
perturbations with |ε(x)| no larger than a few pixels, and perturbation slope |∇ε(x)|
no larger than about one tenth of a pixel per pixel. As a consequence these pertur-
bations are hardly noticeable and we should talk of perturbed sampling rather than
irregular sampling in those cases. Even if the image distortion is not evident from a
geometrical point of view it is very important to correct the perturbations in image
registration applications where a sub-pixel accuracy is necessary.

In order to be less dependent on a particular physical instrument, in our exper-
iments we used a simplified version of this model which still captures its main char-
acteristics, namely the perturbation function ε = (ε1, ε2) is simulated as a discrete
colored noise, i.e. for ω ∈ Z2 we define

ε̂i(ω) ∼ N(0, σ̃2) if |ω| ≤ N/Tǫ

= 0 otherwise
(2.2)

where σ̃ is chosen in such a way that the standard deviation of εi(x) is A for i ∈ {1, 2}.
This gives σ̃ = ATǫ

2 (we have taken the Fourier transform as an isometry). Thus the
behavior of the perturbation is characterized by the two parameters “amplitude”
A and maximal vibration frequency N/Tε (or “minimal vibration period” Tε). The
precise values of A and Tε used in our experiments will be specified in the experiments
Section.

There are many works in the literature dealing with the irregular to regular sam-
pling problem. Let us mention that, according to Kadec’s theorem [36], we have a
perfect recovery of the signal if we consider a perturbed sampling with small perturba-
tions |ε(x)| ≤ 0.11. Recall also that Beurling-Landau’s theorem [37], ensures perfect
reconstruction of a function from its samples for arbitrary stable sampling sets [37],
but it requires the (lower) sampling density to be larger than 1. These conditions are
very restrictive and do not hold true for most of the image restoration applications.
For a comparison between several iterative methods we refer the reader to [12, 27, 3].

2.1. The ACT algorithm. One of the best performing reconstruction methods
available for irregular to regular sampling is the ACT algorithm (for Adaptive-weights
Conjugate-gradient on Toeplitz-matrix) introduced by Gröchenig et. al. in [32]. This
method represents a discrete image u as a trigonometric polynomial of order M/2 in
each variable (for simplicity of notation we shall assume that M is an even number)

so that the interpolation at the sampling points Ξ = {ξk}N2

k=1 ⊆ R2 becomes

u(ξk) =
∑

t∈{−M
2 +1,..., M

2 }2

ate
2πi
M 〈t,ξk〉, k ∈ {1, . . . , N2}. (2.3)

Thus, if z represents the irregularly sampled data we may write [32]

z = Sa, where S = ((skt)), skt = e
2πi
M 〈t,ξk〉, (2.4)
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i.e. S is the Vandermonde matrix associated to the trigonometric polynomial in (2.3).
Note that S maps a ∈ ℓ2({−M

2 +1, . . . , M
2 }2) to z = {z(ξk)} ∈ ℓ2(Ξ) as given in (2.3).

The bandwidth M of the trigonometric polynomial is chosen to be M ≤ N , so the
system (2.4) is expected to be determined or over-determined.

Following [32], the ACT algorithm recovers the coefficients a of the trigonometric
polynomial by solving the least squares problem

argmin
a

‖
√
W (Sa− z)‖2, (2.5)

where the matrix W = diag({wk}k=1..N2) assigns weights that are inversely propor-
tional to the sampling density at ξk:

wk = area(Vk) where Vk := ({x : |x− ξk| < |x− ξj |, ∀j 6= k}) . (2.6)

If we interpret the discrete data z(ξk) as a piecewise constant function
∑

k z(ξk)χVk
,

then the weights wk guarantee the isometry between the irregular sampling on the
grid Ξ and its function representation, thus compensating the local variations in the
sampling density. Moreover, by using the weightsW , Gröchenig and Strohmer provide
an explicit estimate for the rate of convergence of the ACT algorithm [32].

The system of normal equations associated to (2.5) is

S∗WSa = S∗Wz , (2.7)

where S∗ denotes the adjoint matrix of S (a notation that will be used throughout this
paper). Observe that the M2 ×M2 matrix S∗WS has a Toeplitz structure [32], and
thus, S∗WSa is efficiently computed in O(M2 log2(M

2)) time using Fourier methods.
Moreover the entries of T := S∗WS and b := S∗Wz can be approximated using
the NFFT [41] in O(M2 log2(M

2)) time each [32]. Finally, (2.7) is solved using a
conjugate gradient (CG) method. The following algorithm summarizes the method.

Algorithm I: ACT algorithm for a fixed bandwidth M
Requires: N2 irregular samples in vector z.
Ensures: M2 regular samples in vector u.
1. Compute T = S∗WS and b = S∗Wz using the NFFT.
2. Solve Ta = b using conjugate gradients.
3. Compute the regular samples u(iN

M , j N
M ) for (i, j) ∈ {0, . . . ,M − 1}2 by ap-

plying the inverse FFT to a.

Let us note that in the more realistic cases where T is not invertible or ill-
conditioned, the CG solver acts as a regularizer and chooses the minimum norm
solution a among those that satisfy (2.7). This is a constrained variational formu-
lation that can be written using a Lagrange multiplier λ > 0 as the unconstrained
minimization problem

min
a

‖a‖2 + λ‖Ta− b‖2.

This formulation also applies to the following two variants of the ACT algorithm
[32] that incorporate an a-priori spectral decay rate |û(ω)| ≤ Lφ(ω), for some L > 0,
of the image class to be restored (when available). For satellite images this estimation
has been performed by Almansa in [3] and it is given by φ(ω) = (1 + | 2π

N ω|)−p for
some value of p near 1.6.
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• The first proposed variant solves CTa = Cb (instead of (2.7)) using the CG
algorithm, where C = diag({φ(ω)}ω∈{−M

2 +1,..., M
2 }2). Notice that we can

write the problem as

(ACTD) min
a

‖a‖2 + λ‖C(Ta− b)‖2, (2.8)

for some λ > 0. Since the weighting matrix C is applied to the residuals
Ta− b, then it affects the relative cost of the errors by shifting the cost from
high frequencies towards the lower ones. This shift is reflected in CG search
directions, altering the intermediate solutions so that they will fit the low
frequency before the higher ones.

• The second ACT variant solves Td = b where a = Cd, using the CG algo-
rithm. Re-writing it as an optimization problem, observe that the weights
appear now in the regularity term

(ACTR) min
a

‖C−1a‖2 + λ‖Ta− b‖2. (2.9)

The spectral weights C−1 are now penalizing the apparition of higher fre-
quencies in the solution a and not in the residual.

In either case, if T is invertible and the CG algorithm converged, then the so-
lution of both variants coincides with the solution of (2.7). But the CG iteration is
truncated before its convergence mainly due to the ill-conditioning of the operator T .
So, the solutions obtained by the above methods differ because of the different search
directions. As it can be observed experimentally, incorporating the spectral decay
indeed reduces the restoration errors, specially when applied to the regularity term
in (2.9) (see Table 8.1 in Section 8). In that case, it amounts to finding a solution in
a class of functions with a particular spectral decay.

Remark 1. (Global constraint & stopping condition) In [32] the authors also
proposed to extend the ACT algorithm in order to consider the presence of Gaussian
noise n (with standard deviation σ) in the image formation model: Sa+ n = z. This
extension is implemented as a stopping condition for the CG algorithm (Step 2 of
Algorithm I)

stop CG if ‖Sa− z‖2 ≤ τN2σ2 with τ ≃ 1

that is designed to avoid the over-fitting of the solution and hence the amplification
of the noise. Thus, the ACT with residual-based stop conditions can be seen as a
numerical approximation to the minimization of ‖Ca‖2 subject to the constraints
above.

Remark 2. (Fourier vs. spline models) Notice that the ACT Algorithm is based
on the underlying assumption that the data can be represented by a trigonometric
polynomial. Other interpolation models like the B-Spline have been used in the liter-
ature [8]. In this work we will restrict ourselves to trigonometric polynomials mainly
because convolutions are more easily modeled in this setting, but we intend to explore
the use of B-splines in the future.

3. A frequency adaptive restoration model with local constraints. In
this Section we sketch main elements of the restoration model adopted in this paper.
To simplify the presentation the model is first defined in a continuous setting, and
the discretization details are deferred to Section 4. The proposed model is inspired
from the ideas presented in the previous Section on the ACT, as well as on a recently
proposed ACT+TV extension (next Subsection), and the use of local constraints
(Subsection 3.3) as in [4].
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3.1. The ACT + TV extension. In [5] the authors proposed to combine the
ACT algorithm written as (2.5) with total variation regularization, i.e.,

min
u

∫

ΩN

|Du|,

subject to ‖
√
W (Sû− z)‖2 ≤ N2σ2.

(3.1)

For convenience, let us refer to this model as ACT+TV. As reported in [5] (see also
Table 8.1 in Section 8) we observe an improvement of ACT+TV with respect to the
original ACT algorithm in terms of MSE error, this improvement is mainly attributed
to the edge preserving ability of the TV regularizer.

3.2. Frequency Adaptive Regularization (FAR). Inspired by (2.9) we pro-
pose to integrate the spectral weight priors given by the matrix C into the ACT+TV
formulation.

From the ACT+TV formulation we keep: (i) the use of the spatial L1-norm of
a (pseudo)differential operator as a regularizer (instead of the L2-norm ‖C−1a‖ in
(2.9)), because of the better edge-preserving capabilities of the L1-norm; and (ii) the
formulation as an optimization problem under constraints, which enables us to choose
automatically the regularization parameter λ in (2.9).

From the ACTR we keep the idea of using a frequency adapted regularizer. For
that we define the function ω ∈ Z2 → A(iω) ∈ IC × IC. We assume that

A(0) = 0, A(iω) 6= 0 ∀ω 6= 0, and |A(iω)| ≤ L

(
1 +

∣∣∣∣
2π

N
ω

∣∣∣∣
κ)

, ∀ω ∈ Z2,

(3.2)
for some L > 0, κ ≥ 0.

If u ∈ C∞(ΩN ) can be extended as a smooth and periodic function to R2, we
define A(D)u by its Fourier coefficients

Â(D)u(ω) = A(iω)û(ω) ω ∈ Z2.

We define the regularizer functional

JA(u) =

∫

ΩN

|A(D)u| =

∫

ΩN

|(A(iω)û(ω))∨|.

Notice that JA(u) can be defined for any u ∈ L2(ΩN ) such that A(D)u is a Radon
measure. In practice this will not be a problem since we only consider band limited
functions.

The total variation J(u) =
∫
ΩN

|Du| corresponds to the choice A(iω) = 2π
N iω.

Recall that functions with finite total variation are a good model for image restoration
since they permit to recover the discontinuities of the image. But, in practice, digital
images may exhibit a stronger decay in its Fourier coefficients than | 2π

N ω|−1 and other
functional models can be better suited. The operator A(D) permits us to penalize
the frequencies according to the profile A(iω). Notice that

|A(iω)û(ω)| = |Â(D)u(ω)| ≤
∫

ΩN

|A(D)u| =: L

for all ω ∈ Z2, hence

|û(ω)| ≤ L

|A(iω)| .
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If |A(iω)| ∼ |2π
N ω|κ for large |ω|, then |û(ω)| decreases as | 2π

N ω|−κ. In this way we can
favor a specific decay rate of the Fourier coefficients of u as a prior.

Remark 3. Notice that the frequency adaptive regularizer of ACTR has the form
C−1û = φ−1(ω)û(ω) where φ(ω) = (1 + |2πω/N |)−k, k ≥ 0. In practice, we consider
functions A(iω) = 2πiω

N ψ(ω) where ψ(ω) = (1+ |2πω/N |)p, p ≥ 0 (p = k− 1 gives the

same decay). Note that we can write A(D)u = DΨu, where Ψ̂u = ψû, and A(D)u
is the derivative of a filtered version of u. Since

∫
|A(D)u|2 =

∑
ω |A(iω)û(ω)|2, if

we use
∫
ΩN

|A(D)u|2 as regularizer, then the phase information disappears. This is

not the case when we use the L1-norm of A(D)u. Besides keeping the structure of
a regularization operator, when using the L1-norm, this phase is relevant in practice
(we obtain bad results if we dismiss it).

3.3. Local constraints. Following [4] we will interpret the acquisition model
as a set of local constraints (1.4) and we will search for a solution of the restoration
problem that minimizes the frequency adaptive regularizer JA(u) with a data-fitting
term derived from the acquisition model and consisting in a set of local constraints (as
in (1.5)). For convenience we will describe these constraints directly in the discrete
model (see the next Section).

4. A discrete regularization model. Let us stress here the fact that the reg-
ularization functional JA defined in the previous Section is adapted to the restoration
of functions with infinite resolution while its numerical approximation restricts the
solution to be in a finite dimensional space. We are going to adopt here the following
practical point of view. Since our data consists of a finite set of samples, we are
going to reconstruct a sampled version of the image and therefore we work in a finite
dimensional space. This reflects the fact that digital images have finite resolution.
Usually, the restored image is modeled as a piecewise constant function (the values
given on the set of pixels), but we consider here images as bandlimited functions with
a finite number frequencies, since this is a reasonable model for restoring digital im-
ages. Moreover this model is adapted to compute convolutions and permits to include
an a priori decay of the Fourier coefficients.

Based on the above considerations, we propose the following discrete regulariza-
tion functional, If u ∈ BM , then we define

Jd
A(u) =

1

M2

∑

0≤r,l<M

∣∣∣∣A(D)u

(
rN

M
,
lN

M

)∣∣∣∣ . (4.1)

If A(iω) satisfies (3.2), then JA(u) and Jd
A are seminorms in BM and the only function

u ∈ BM such that JA(u) = 0 (resp. such that Jd
A(u) = 0) is u = constant. Thus

JA(u) and Jd
A are norms in the finite dimensional quotient space BM/R, hence they

are equivalent. Notice that if u ∈ BM and we define Jd,k
A by replacing M by k in

(4.1), then Jd,k
A (u) → JA(u) as k → ∞. Unless we intend to zoom and restore the

images, we take M = N , where N2 is the number of data.

Assume that the input data (measurements) consist of N2 samples {z(ξk)}k, and
let σ̄, β > 0, and G ∈ ℓ∞(Z2) be a discrete, positive, normalized convolution kernel
such that G(r, l) ≥ 0 and

∑
(r,l)∈Z2 G(r, l) = 1. Then we propose to minimize the
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functional

min
u∈BN

Jβ,A(u) :=
∑

0≤r,l<N

√
β2 + |A(D)u (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ,

and
∑

0≤r,l<N

u (r, l) =
∑

ξk∈Ξ

wkz(ξk) =: zw.

(4.2)

To avoid the non differentiability of Jd
A at 0, it is a common approximation to use the

regularizer Jβ,A instead.
Therefore we will minimize Jβ,A(u) on BN subject to the family of constraints

in (4.2). Notice that we have incorporated the image acquisition model (1.1) as
a set of local constraints. The convolution of G and v ∈ ℓ∞(Ξ) is defined in the
usual way by imposing an arbitrary regular grid structure on Ξ, i.e. (G ∗ v)(ξk) =∑

l∈Z2 G(l − k)v(ξl). In the case of perturbed sampling this regular grid structure
may be determined by the original unperturbed grid, otherwise it may be based on a
nearest neighbor computation.

Notice that we have used the value σ̄ > 0 as an estimate of the standard deviation
of the noise. We will make tests with σ = σ and also with values of σ different from σ.
Also, the effective support of G must permit the statistical estimation of the variance
of the noise. In Section 7 we will come back to the noise estimation issue and the
choice of σ.

In the rest of the paper, we assume that the blurring kernel h satisfies

h ∈ L2(ΩN ), supp ĥ ⊆ [−M
2
,
M

2
]2, and ĥ(0, 0) = 1. (4.3)

If u ∈ BM , then we can compute h ∗ u using the Fourier transform ĥ ∗ u (p, q) =

ĥ (p, q) û (p, q).
The last equality constraint in (4.2) fixes the global mean of u to be the mean

of the samples z, weighted by the areas wk (see (2.6)). This constraint is necessary
to assure the uniqueness of the solution, since the data fitting is provided only by
inequality constraints, and the solution may be undetermined up to a constant (in
the kernel of the regularizer) in areas where the variance of z is smaller than σ2 [13].
The details of the uniqueness proof are given in Section 5.

Now, our purpose is to prove that the constrained formulation of (4.2) can be
solved using Uzawa’s method once we guarantee that the assumptions of Uzawa’s
method [26] hold. But before that, we comment on a improved discretization for
approximating JA(u).

4.1. An improved discretization formula. In this Section we follow the pro-
posal made by Moisan in [39] to improve the discretization of the total variation
formula. The basic observation is that, the computation of the Dirichlet integral in
[0, N)2 (

∫
[0,N)2

|∇u|2) cannot be done accurately unless we previously zoom the image

u by a factor of two. The same argument applies to the case of
∫
ΩN

|A(D)u|2, but

not for
∫
ΩN

√
β2 + |A(D)u|2 with β ≥ 0. Indeed, in the last case, an exact compu-

tation would involve an infinite number of samples. However, as Moisan has shown
for the TV case [39], doubling the number of variables leads to a good approximation
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of the above integral, being a good compromise between precision and algorithmic
efficiency.

Let us analyze the implications of Moisan’s discretization for our restoration
model. To do so, we need to introduce some notation. For each M ∈ N, we de-
note by XM the Euclidean space RM×M . The Euclidean scalar product and the norm
in XM will be denoted by 〈·, ·〉XM and ‖ · ‖XM , respectively, but in absence of ambi-
guities we will omit the subindex. XM represents the space of images BM sampled in
the regular grid {0, . . . ,M − 1} × {0, . . . ,M − 1} (or given by its Fourier coefficients
û ∈ ℓ2(IM ). Let us introduce the operator

P : XN → X2N , P {u(k, l)} =
{
ū
(

r
2 ,

l
2

)}
r,l∈{0,...,2N−1}

,

where {u(r, l)}r,l∈{0,...,N−1} ∈ XN and ū is the function of BN defined by the samples

{u(r, l)}r,l∈{0,...,N−1}. Observe that P̂ u(p, q) = 1IN (p, q)û(p, q). So we may consider
the operatorA(D) as acting onX2N or as acting onXN . Notice that if u ∈ XN we may
write A(D)Pu = PA(D)u. From now on we will avoid (except in ambiguous cases)
the use of subindexes to specify the function spaces of norms and scalar products, and
the function space should be clear from the context.

Thus, our final restoration model is

min
u∈XN

Kβ,A(u) :=
∑

0≤r,l<2N

√
β2 + |A(D)Pu (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ ,

and
∑

0≤r,l<N

u (r, l) =
∑

ξk∈Ξ

wkz(ξk) =: zw.

(4.4)

5. The well-posedness of the model and its numerical solution.

Proposition 5.1. Assume that (4.3) holds. Then there exists a unique minimum
u ∈ XN of (4.4).

Proof. Let um be a minimizing sequence of (4.4). Since A(D)Pum is bounded
in X2N , and ω = 0 is the only vanishing frequency for A(iω) we deduce that vm :=
um − ûm(0, 0) is bounded in XN . Now, since ûm(0, 0) is constrained to be zω, we
have that um is bounded in XN . By extracting a subsequence, if necessary, we may
assume that un → u. It is immediate to see that u satisfies the constraints. Since
Kβ,A is lower semicontinuous, we have that u is a minimum of (4.4).

Now, let u1, u2 be two minima of (4.4). If A(D)Pu1 6= A(D)Pu2, letting u =
u1+u2

2 , then the strict convexity of Kβ,A proves that Kβ,A(u) < infu∈XN Kβ,A, a
contradiction. Thus A(D)Pu1 = A(D)Pu2 and we have uniqueness modulo constants,
i.e., u1 − u2 = c for some c ∈ R. Since û1(0, 0) = û2(0, 0) we deduce that c = 0, and
therefore, u1 = u2.

Remark 4. Proposition 5.1 is also true if instead of assuming the average con-
straint in (4.4) we assume that infc∈RG ∗ (z − c)2 > σ̄2. This can be proved as in
[13, 17]. But in that case, we should also use a different (gradient descent based)
algorithm to minimize (4.4) as described in [13].

From now on, we assume that the constraints are qualified, that is there is u ∈ XN

such that

û(0, 0) = zw and
[
G ∗ |∆Ξ(h ∗ u) − z|2

]
(ξk) < σ̄2, ∀ξk ∈ Ξ, (5.1)
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which implies that the set of functions satisfying the constraints is non-empty.
We prove that the solution of (4.4) can be computed by adapting Uzawa’s algo-

rithm. Let µ > 0 and λ = (λk)N2

k=1 ≥ 0. Define the Lagrangian function

Lµ(u, {λ}) = Kβ,A(u) + µ (û(0, 0) − zw)
2

+
∑

ξk∈Ξ

λk

2
([G ∗ |∆Ξ(h ∗ u) − z|2](ξk) − σ̄2).

To adapt Uzawa’s algorithm we need the following result which can be proved as in
the proof of Proposition 5.1.

Theorem 5.2. For each λ = (λk)N2

k=1 ≥ 0, there is a unique solution u of

min
u∈XN

Lµ(u, {λ}).

Proof. Since Lµ(u, {λ}) is lower semicontinuous in u, it suffices to prove that any
minimizing sequence un is bounded. Since Lµ(um, {λ}) is bounded, we know that
A(D)(um) and (ûm(0, 0)− zw)2 are bounded. The boundedness of A(D)(um) implies
that um − ûm(0, 0) is bounded. Since (ûm(0, 0) − zw)2 is bounded, then ûm(0, 0) is
also bounded.

We solve (4.4) with Uzawa’s algorithm.

Algorithm II: Restoration with local constraints
1. Choose any set of values λ0

k ≥ 0, k = 1, . . . , N2, and µ0 > 0.
Iterate from p = 0 until convergence of λp the following steps:

2. With the values of λp, µp solve:

up = arg min
u

Lµp

(u, {λp}). (5.2)

3. Update µ and λ in the following way:

µp+1 = µp + 1,

λp+1
k = max(λp

k + ρp([G ∗ |∆Ξ(h ∗ up) − z|2](ξk) − σ̄2), 0) ∀ξk, (5.3)

where 0 < ρ∗ ≤ ρp ≤ ρ∗.
Proposition 5.3. Assume that there exists u ∈ XN such that û(0, 0) = zw and

z(ξk) = h∗u(ξk) ∀ξk ∈ Ξ. Then Uzawa’s algorithm converges to the solution of (4.4).

To prove Proposition 5.3 we need to reformulate problem (4.4) as

min
u∈XN

max
λ≥0,α+,α

−
≥0

L(u, {λ}, α+, α−), (5.4)

where λ = (λk)N2

k=1, α+, α− ≥ 0,

L(u, {λ}, α+, α−) = Kβ,A(u) +
∑

ξk∈Ξ λk([G ∗ |∆Ξ(h ∗ u) − z|2](ξk) − σ̄2)

+α+ϕ+(u) + α−ϕ−(u),

and

ϕ+(u) := û(0, 0) − zw and ϕ−(u) = −û(0, 0) + zw,
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so that the equality constraint is written as the two inequalities ϕ+(u) ≤ 0, ϕ−(u) ≤ 0.
Since, by Proposition 5.1, problem (4.4) has a solution, the classical existence

result of saddle points (see [26]) proves the existence of a solution of (5.4). Indeed the
following result is classical and can be found, for instance, in [26] (Theorems 4 and 6,
pp. 59-61) or [21] (Theorem 9.3.2).

Theorem 5.4. Assume that (5.1) holds. Let u be the solution of (4.4). Then
there are ({λ}, α+, α−) ≥ 0 such that (u, {λ}, α+, α−) is a solution of (5.4), i. e., a
saddle point of L(·, ·, ·, ·). If (u, {λ}, α+, α−) is a solution of (5.4), then u is a solution
of (4.4).

Since we will need it below, let us compute the gradient of Kβ,A(u). For any
v ∈ XN we have

〈∇Kβ,A(u), v〉XN =

〈
A(D)Pu√

β2 + |A(D)Pu|2
, A(D)Pv

〉

X2N

=

〈
P ∗A(D)∗

(
A(D)Pu√

β2 + |A(D)Pu|2

)
, v

〉

XN

for each v ∈ XN vanishing on the boundary of {0, . . . , N − 1}2. Thus, we may write

∇Kβ,A(u) = A(D)∗P ∗

(
A(D)Pu√

β2 + |A(D)Pu|2

)
∈ XN .

Now, we notice that P ∗f is just the restriction operator (subsampling operator) that
considers only the samples of f ∈ X2N in the grid {0, . . . , N − 1}2.

Finally, using this and the last two formulas, we deduce that

A(D)Pu√
β2 + |A(D)Pu|2

· ν{0,...,N−1}2

= 0

where ν{0,...,N−1}2

is the discrete normal.

As usual, we denote by ‖v‖q =
(∑N2

i,j=1 |v(i, j)|q
)1/q

for any v ∈ XN , 1 ≤ q <∞.

We denote ‖v‖∞ = max(i,j)∈{1,...,N} |v(i, j)|. And for simplicity in the cases where
there is no ambiguity, we shall omit the subindexes for the L2-norm, then ‖u‖2=‖u‖.
Proof of Proposition 5.3. Let us write Q(u) = (û(0, 0)− zw)2, R(u) = G ∗ |∆Ξ(h ∗
u) − z|2. To adapt the convergence proof of Uzawa’s method to our case, we need to
prove that
(a) If U is a bounded subset of XN then there is a constant α > 0 such that

〈∇Kβ,A(u) −∇Kβ,A(v), u− v〉 + µ〈∇Q(u) −∇Q(v), u− v〉 ≥ α‖u− v‖2

for all u, v ∈ U .
(b) R(u) is Lipschitz on bounded sets of XN and
(c) the sequence up constructed in Step 2 of the above algorithm is bounded in XN .

To prove (a) we use the inequality [48]

〈
ξ√

β2 + |ξ|2
− ξ′√

β2 + |ξ′|2
, ξ − ξ′

〉
≥ β2 |ξ − ξ′|2

(β2 + |ξ|2 + |ξ′|2)3/2
∀ξ, ξ′ ∈ Rk
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with k = 2 and we compute

〈∇Kβ,A(u) −∇Kβ,A(v), u − v〉 ≥
∑

(r,l)

|A(D)Pu(r, l)) −A(D)Pv(r, l)|2

(β2 + |A(D)Pu(r, l)|2 + |A(D)Pv(r, l)|2)3/2

≥ α
∑

(r,l)

|A(D)Pu(r, l) −A(D)Pv(r, l)|2

where (r, l) ∈ {0, 1, . . . , 2N −1}, the constant α > 0 depends on the bound for U , and

〈∇Q(u) −∇Q(v), u− v〉 = 2(û(0, 0) − v̂(0, 0))2.

Then (a) follows as a consequence of the two previous inequalities.

(b) Assume that U ⊆ XN is a bounded set. Let u, u ∈ U . Since ‖G‖1 ≤ 1, we have

‖R(u)−R(v)‖ ≤ ‖G‖1‖(h ∗ u− z)2 − (h ∗ v − z)2‖
≤ 2‖z‖∞‖h ∗ (u− v)‖ + ‖h ∗ (u+ v)‖∞‖h ∗ (u− v)‖
≤ C‖u− v‖

where C is a constant depending on the norms of h and z and on the bound for U .

(c) To prove that {up}p is bounded we observe that

Lµ(up, {λp}) ≤ Lµ(u, {λp}), ∀u ∈ XN , (5.5)

for all p. Choosing u ∈ XN such that û(0, 0) = zw and z = ∆Ξ(h ∗ u), we obtain that

Kβ,A(up) + µpQ(up) ≤ Kβ,A(u),

hence {up}p is bounded in XN .
Now, we can adapt the proof of Uzawa’s method to our case (see Theorem 5 in

[26], Sect. 3.1). Since up satisfies (5.5) we have

〈∇Kβ,A(up), u−up〉+µp〈∇Q(up), u−up〉+〈λp, R(u)−R(up)〉 ≥ 0 ∀u ∈ XN . (5.6)

Let u∗ be the solution of problem (4.4). Since, by Theorem 5.4, we have

L(u∗, {λ}, α+, α−) ≤ L(u, {λ}, α+, α−) ∀u ∈ XN ,

we also have

〈∇Kβ,A(u∗), u− u∗〉 + 〈λ,R(u) −R(u∗)〉
+α+(ϕ+(u) − ϕ+(u∗)) + α−(ϕ−(u) − ϕ−(u∗)) ≥ 0 (5.7)

for all u ∈ XN . Since u∗ is a solution of (4.4), we have that

∇Q(u∗) = 0,

and we can add µp〈∇Q(u∗), u−u∗〉 to the inequality (5.7). Taking u = up in this form
of the second inequalities, and u = u∗ in (5.6) and adding both of them we obtain

〈∇Kβ,A(up) −∇Kβ,A(u∗), up − u∗〉 + µp〈∇Q(up) −Q(u∗), up − u∗〉
−α+(ϕ+(up) − ϕ+(u∗)) − α−(ϕ−(up) − ϕ−(u∗)) + 〈λp − λ,R(up) −R(u∗)〉 ≤ 0
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Since

〈∇Kβ,A(up) −∇Kβ,A(u∗), up − u∗〉 ≥ α‖A(D)Pup −A(D)Pu∗‖2

and

µp〈∇Q(up) −Q(u∗), up − u∗〉 − α+(ϕ+(up) − ϕ+(u∗)) − α−(ϕ−(up) − ϕ−(u∗))

= 2µp(ûp(0, 0) − û∗(0, 0))2 − (α+ − α−)(ûp(0, 0) − û∗(0, 0))

≥ µp(ûp(0, 0) − û∗(0, 0))2

for p large enough, we have

〈λp − λ,R(up) −R(u∗)〉 ≤ −α‖A(D)Pup −A(D)Pu∗‖2 − µp(ûp(0, 0) − û∗(0, 0))2

≤ −α0‖up − u∗‖.
(5.8)

Now, the proof follows in a standard way. Let us give the details for the sake of
completeness. Using (5.3), we have

‖λp+1 − λ‖≤‖λp − λ+ ρp(R(up) −R(u∗))‖.

Taking squares, we have

‖λp+1 − λ‖2 ≤ ‖λp − λ‖2 + 2ρp〈λp − λ,R(up) −R(u∗)〉 + ρ2
p‖R(up) −R(u)‖2.

Using (5.8) and (b), we have

‖λp+1 − λ‖2 ≤ ‖λp − λ‖2 − 2α0ρp‖up − u∗‖2 + ρ2
pL

2‖up − u∗‖2.

for some L > 0. If we choose ρp such that

2α0ρp − L2ρ2
p ≥ γ > 0,

that is, 0 < ρ∗ ≤ ρp ≤ ρ∗, we have

‖λp+1 − λ‖2 ≤ ‖λp − λ‖2 − γ‖up − u∗‖2.

Then we deduce that ‖λp −λ‖ is decreasing and, thus, has a limit ℓ ≥ 0. Then letting
p→ ∞ we have that ‖up − u∗‖ → 0.

6. A Quasi-Newton algorithm for the solution of (5.2). The purpose of
this Section is to explain the algorithm used to solve problem (5.2) in Algorithm II.
For convenience, let us denote the convolution and irregular sampling operators, as
Su = ∆Ξ(h ∗ u) for any u ∈ XN .

Observe that the Euler-Lagrange equation corresponding to (5.2) is

A(D)∗

(
P ∗ A(D)Pu√

β2 + |A(D)Pu|2

)
+ 2µ(û(0, 0) − zw) + S∗(G ∗ λ)(Su − z) = 0. (6.1)

To shorten our expressions, let us define the following operators:

Mu = (
√
G ∗ λ)Su, so that M∗u = S∗(

√
G ∗ λu),
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Nu = û(0, 0), b = S∗((G ∗ λ)z) + 2µzw,

A[v](u) = A(D)∗ P ∗

(
A(D)Pu√

β2 + |A(D)Pv|2

)

and

T [v](u) = A[v](u) + 2µNu+ M∗Mu.

where u, v ∈ XN .
We want to solve (6.1) with a fixed point iteration:

A[ut](ut+1) + 2µNut+1 + M∗Mut+1 = b. (6.2)

The rest of this Section is devoted to show that such a fixed point algorithm
converges to the minimizer of (5.2). Notice that a proof based on convex analysis (the
half-quadratic regularization approach) can be found in [17] in the continuous case,
or in [20, 9] for the discrete case. Further analysis can be found in [1, 23, 49]. Here,
we will extend the proof proposed by Chan and Mulet in [19]. The advantage of such
an approach is that only basic algebra is needed. Moreover, the linear convergence
rate of this algorithm can be shown explicitly. The difference with the approach in
[19] relies on the fact that the operator M is not assumed to be invertible. In our
case the presence of the mean constraint µN permits to prove the same convergence
result as in [19], without an invertibility hypothesis on M.

Remark 5. Note that computing M∗M in (6.2) entails the computation of an
operator with a Toeplitz structure. This is efficiently computed in O(N2 log2N

2)
steps, as in the ACT algorithm (Section 2.1).

Remark 6. As mentioned in Remark 3, we may write A(D)u = DΨu. This
permits to use the change of variables v = Ψu and write the constrained restoration
problem (4.4) in terms of v. Then the regularizer coincides with the total variation
applied to v. The solution of (4.4) can be recovered as u = Ψ−1v. This represents no
change in the developments of this paper and we keep the notation A(D)u.

6.1. Existence of ut and its boundedness. The sequence ut will be defined
iteratively using (6.2).

Proposition 6.1. The equation (6.2) has a unique solution ut+1 ∈ XN which is
the minimizer of

E(u) =

∥∥∥∥∥
A(D)Pu

(β2 + |A(D)Put|2)1/4

∥∥∥∥∥

2

+
1

2
‖Mu− z′‖2 + µ‖Nu− zw‖2 (6.3)

where
∥∥∥ A(D)Pu

(β2+|A(D)Put|2)1/4

∥∥∥
2

=
∑

(r,l)

∣∣∣ A(D)Pu(r,l)

(β2+|A(D)Put(r,l)|2)1/4

∣∣∣ and z′ =
√
G ∗ λz.

Proof. It is standard that (6.3) admits a unique solution ut+1 ∈ XN . Moreover,
(6.2) is the Euler-Lagrange equation associated to (6.3) and solutions of (6.2) are
minimizers of (6.3).

Proposition 6.2. (i) There exists K0 > 0 such that

‖A(D)Put‖ ≤ K0.
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(ii) T [ut] is a bounded coercive operator. Indeed we have

〈T [ut]u, u〉 ≥ α‖u‖2 (6.4)

for some α > 0 independent of t.

(iii) The sequence ut is uniformly bounded.
Proof. Since ut+1 is a minimizer of E(u), we have E(ut+1) ≤ E(0) = 1

2‖z′‖2 +
µ‖zw‖2, and thus:

∥∥∥∥∥
1

(β2 + |A(D)Put|2)1/4
A(D)Put+1

∥∥∥∥∥

2

≤ E(0) =
1

2
‖z′‖2 + µ‖zw‖2.

We have
∣∣∣∣∣

A(D)Put+1

(β2 + |A(D)Put|2)1/4

∣∣∣∣∣

2

≥
∣∣A(D)Put+1

∣∣2

‖
√
β2 + |A(D)Put|2‖∞

Thus
∥∥A(D)Put+1

∥∥2 ≤ E(0)
∥∥∥
√
β2 + |A(D)Put|2

∥∥∥
∞

≤ E(0)
√
β2 + ‖A(D)Put‖2

∞.

But since we deal with finite dimensional spaces, there exists L > 0 which does
not depend on ut such that ‖A(D)Put‖∞ ≤ L‖A(D)Put‖. Hence we deduce that

∥∥A(D)Put+1
∥∥2 ≤ E(0)

√
β2 + L2‖A(D)Put‖2

Assume that ‖A(D)Put‖ ≤ K. Using (6.1), to get that
∥∥A(D)Put+1

∥∥ ≤ K, it is
sufficient to choose K > 0 large enough so that

E(0)
√
β2 + L2K2 ≤ K2.

(ii) The boundedness of T [ut] is immediate and we omit its proof. Let us prove that
Tt is a coercive operator. Using the bounds in Step (i), we have

〈
1√

β2 + |A(D)Put|2
A(D)Pu,A(D)Pu

〉
≥ 1√

β2 + L2K2
0

‖A(D)Pu‖2.

Hence

〈A[ut]u, u〉 ≥ 1√
β2 + L2K2

0

‖A(D)Pu‖2 ≥ α0‖u0‖2,

where we wrote u = u0 + c, with c = Nu and Nu0 = 0, and we used the fact that
A(D)P is a linear operator whose kernel are the constants. Using A[ut]c = 0 and
〈u0, c〉 = 0, we get

〈T [ut](u0 + c), u0 + c〉 ≥ 〈A[ut](u0 + c), u0 + c〉 + 2µ〈N (u0 + c), u0 + c〉
≥ 〈A[ut]u0, u0〉 + 2µc2

≥ α0‖u0‖2 + 2µc2.

Thus, we deduce (6.4).

(iii) From (6.4), we know that 〈T [ut]ut+1, ut+1〉 ≥ α‖ut+1‖2. But from (6.1), we

know that 〈T [ut]ut+1, ut+1〉 = 〈b, ut+1〉 ≤ ‖b‖‖ut+1‖. We deduce that ‖ut+1‖ ≤ ‖b‖
α .
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6.2. Convergence of the fixed point algorithm. For simplicity, given λ =
(λk)N2

k=1, we write L(u) = Lµ(u, {λ}). Recall that

∇uL(u) = T [u](u) − 2µzw −M∗z′.

Let us finally define

G(v, u) = L(u) + 〈v − u,∇uL(u)〉 +
1

2
〈v − u, T [u](v − u)〉

Proposition 6.3. The following inequality holds for any u, v ∈ XN :

L(v) ≤ G(v, u) (6.5)

Proof. We follow the proof in [19]. Since

G(v, u) − L(v) = L(u) − L(v) + 〈v − u,∇uL(u)〉 +
1

2
〈v − u, T [u](v − u)〉,

standard computations lead to

G(v, u) − L(v) =
∑

(r,l)

(
a− a+

1

2a
(a2 − a2)

)

with a =
√
β2 + |A(D)Pu(r, l)|2 and a =

√
β2 + |A(D)Pv(r, l)|2 where (r, l) ∈

{0, 1, . . . , 2N − 1}. Since a, a > 0, and a− a+ 1
2a (a2 − a2) = (a−a)2

2a ≥ 0, we have that
G(v, u) − L(v) ≥ 0.

Proposition 6.4. (i) The function ut+1 defined by (6.2) is such that:

ut+1 = argminvG(v, ut) (6.6)

i.e.: 0 = ∇uL(ut) + T [ut](ut+1 − ut).

(ii) We have limt→+∞ ‖ut+1 − ut‖ = 0.

Proof. (i) Let us denote by ū = argminvG(v, ut). We thus have 0 = ∇uL(ut) +
T [ut](ū − ut). And this last equation is precisely equation (6.2), which implies that
ū = ut+1.

(ii) From (6.5) and (6.6), we have L(ut+1) ≤ G(ut+1, ut) ≤ G(ut, ut) ≤ L(ut), i.e.
(L(ut)) is decreasing. Now, from (6.5) and (6.6), we have:

L(ut+1) ≤ G(ut+1, ut)

= L(ut) + 〈ut+1 − ut,∇uL(ut)〉 +
1

2
〈ut+1 − ut, T [ut](ut+1 − ut)〉

= L(ut) − 1

2
〈ut+1 − ut, T [ut](ut+1 − ut)〉

Using (6.4), we deduce: 1
2α‖ut+1 − ut‖2 ≤ 1

2 〈ut+1 − ut, T [ut](ut+1 − ut)〉 ≤ L(ut) −
L(ut+1) and (ii) follows.

We are now in position to state a convergence result.
Theorem 6.5. The sequence ut defined by (6.2) converges to the solution of

(5.2).
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Fig. 7.1. The relaxed optimization problem allows solutions within a band. From the depicted
sequence of solutions ut

p (black dots) the ones that are truly satisfying the constraints are those
inside the dotted ring, since it accounts for the approximation error η. S stands for the irregular
sampling and convolution operators, Sut

p is also a sequence defined over the irregular samples and
not over the solution space.

Proof. From Proposition 6.2.(iii), we know that ut is uniformly bounded. There
exists u such that we can extract a convergent subsequence, which we still denote by
ut, with ut → u as t → +∞. From Proposition 6.4.(ii) , we know that ut+1 is also
convergent and ut+1 → u as t → +∞. Letting t → +∞ in equation (6.2), we deduce
that u is the solution of (6.1) (and thus of (5.2)). By uniqueness of the solution of
(5.2), we conclude that the whole sequence ut converges to u, solution of (5.2).

We end this Section by stating a result about the convergence rate. We denote
by ũ the solution of Problem (5.2). We use the following notations:

γt :=
G(ũ, ut) − L(ũ)

1
2 〈ũ− ut, T [ut](ũ− ut)〉

and

η := 1 − λmin(T [ũ]−1∇2
uL(ũ))

where λmin(M) denotes the smallest eigenvalue of the matrix M ; in particular if M
is positive definite then λmin(M) > 0

Proposition 6.6.

1. L(ut+1) − L(ũ) ≤ γt(L(ut) − L(ũ)).
2. η < 1 and 0 ≤ γt ≤ η, for t sufficiently large. In particular, L(ut) has a

linear convergence rate of at most η.
3. ut is r-linearly convergent with a convergence rate of at most

√
η.

Proof. We refer the interested reader to the proof of Theorem 6.1 in [19] which
can easily be extended to our case.

7. Band constraints and stopping conditions. Coming back to the opti-
mization problem (4.4), since both the functional Kβ,A(u) and the constraints are
convex, and the constraint’s feasible set V does not contain the absolute minimun
of Kβ,A(u), then the solution lies in the boundary of V . In practice, computing a
solution in ∂V is not only computationally too expensive (due to the size of the prob-
lems), but also unnecessary because of the noise. Since we rely on noise estimates
that have a certain accuracy, exceeding this accuracy in the data fitting is useless (as
we will see later in this Section). Moreover, as it has been observed in all numerical
experiments [14, 16, 17, 18, 19, 20, 24, 29, 10, 31, 44, 49], using total variation as
regularizer in denoising or restoration generally carries some loss of texture and it is
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not desirable to compute the solution that (absolutely) minimizes the TV but to keep
a solution with a slightly higher TV value in order to avoid the loss of textures.

As a consequence, to avoid this degradation, the rule of thumb has been ever
since to remove less noise than noise is actually present in the image. Gilboa studied
this in [10] and concluded that in terms of SNR the optimal selection of σ̄ is between
0.7 and 0.8 times the value of σ. In what follows we will modify the constraints to
account for this change

[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ ,

where σ̄ < σ. That is, in order to keep more texture in u we do not remove all noise
and we could write z = S(u0 + S−1(n− n̄)) + n̄ where n̄ is a noise with variance σ̄2

and we identify u0 + S−1(n− n̄) with u.

Motivated by this observation and by the fact that, due to noise, there is always
some uncertainty in the surroundings of ∂V , we will avoid the computational overhead
of getting exactly to ∂V by stopping the algorithm as soon as the solution is close to
it. This is the notion behind the band constraint

(1 − α)σ̄2 ≤
[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) ≤ (1 + α)σ̄2 ∀ξk ∈ Ξ, (7.1)

with α > 0. The constraint described by equation (7.1) is clearly non-convex, and
therefore it cannot be integrated in the method presented here. But since Uzawa’s
algorithm always pushes the solution towards the boundary of the feasible set, then
(at least in practice) it can be used to stop Uzawa’s loop by testing if (7.1) is fulfilled.

In what follows we will see that even considering relaxed constraints like (7.1),
imposing all of the local constraints simultaneously is not statistically correct, since
each constraint’s estimator behaves as a random variable. Then we will see how this
relaxation of constraints is used to early stop Uzawa’s iterations and how this helps
to improve the efficiency of our implementation.

In our experiments, we have chosen σ̄ = 0.8σ and α such that 0.8(1 + α) < 1.

7.1. Expected number of satisfied band constraints. Let us summarize
the arguments of [4] and adapt them to the case of band constraints. Each local
constraint relies on a local estimate of the residual variance of the form

SG(ξk) =
[
G ∗ |∆Ξ (h ∗ u) − z|2

]
(ξk) =

[
G ∗ |n̄|2

]
(ξk) , (7.2)

whereG is a Gaussian or uniform window centered at the interest point and nk denotes
a zero mean Gaussian noise and variance σ̄2 (recall that we are going to remove only
a noise of variance σ̄2 < σ2). Since SG is a random variable itself, the number of
satisfied constraints is estimated by the probability P [SG ≤ (1 + α)σ̄2] in the case of
the ball shaped constraint, or P [(1−α)σ̄2 ≤ SG ≤ (1+α)σ̄2] for the band constraint.
Observe that a constraint of the type SG = σ̄2 (that is in practice imposed when
solving exactly (4.4)) was already doomed to failure since it has zero probability to
occur P [SG = σ̄2] = 0.

Using the Central Limit Theorem gives only a loose estimate of the probability
distribution of SG. To improve the estimation of the expected number of satisfied
constraints let us simplify SG. By approximating the discrete convolution with G (of
standard deviation r̃) by a mean over a disk I of radius r = 2r̃ we can define a simpler
estimator SI = 1

|I|

∑
k∈I n̄

2
k.
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Fig. 7.2. Relation between the expected number of satisfied constraints and the radius r of the
disk used for the local noise estimation. The graph shows the curves computed for different widths
of the band α.

Then, for the case of the ball constraint, the expected number of satisfied con-
straints is the number of pixels times the following probability

P [SI ≤ (1 + α)σ̄2] = P

[
1

|I|
∑

k∈I

n̄2
k ≤ (1 + α)σ̄2

]
= P

[
∑

k∈I

( n̄k

σ̄

)2

≤ (1 + α)|I|
]
.

Notice that in the rightmost equation
∑

k∈I

(
n̄k

σ̄

)2
is a sum of |I| squared normalized

Gaussian random variables, so it follows a chi-square distribution with |I| degrees of
freedom (χ2(|I|)). And the probability can be computed using the incomplete gamma
function Γ(a, x) =

∫∞

x ta−1e−tdt

P [SI ≤ (1 + α)σ̄2] = P
[
χ2(|I|) ≤ (1 + α)|I|

]
= Γ

(
(1 + α)|I|

2
,
|I|
2

)
.

In the case of the band constraint the expected number of satisfied constraints N(α, r)
is the number of pixels times the following probability

P
[
(1 − α)σ̄2 ≤ SI ≤ (1 + α)σ̄2

]
= Γ

(
(1 + α)|I|

2
,
|I|
2

)
− Γ

(
(1 − α)|I|

2
,
|I|
2

)
. (7.3)

Equation (7.3) expresses the expected proportion of satisfied constraints as a function
of the radius of the disk r (|I| = πr2) and the width of the band α. We plot in
Figure 7.2 this function, for different values of α to give an intuition of its behavior.
Notice that the expected number of satisfied constraints decreases as we reduce the
band width α or the radius r. This permits to determine one parameter as a function of
the other two, i.e. using a disk of radius r = 13 (or a Gaussian with standard deviation
7.0) and defining a band of width 0.2σ̄2 (α = 0.1) gives 89% of satisfied constraints. In
practice, either we specify α, r and then the expected number of satisfied constraints
is N(α, r), or we give α and Nα and we compute r so that N(α, r) = Nα. We have
taken the second option in the experiments displayed in Section 8.

Remark 7. Observe that in (7.2) the estimation of the noise variance corresponds
to the case when the mean of the random variable is zero. Indeed, the global mean is
enforced to be zero in (4.4). We should also impose that the local means are zero with
a new set of constraints, otherwise SG will be an overestimation of the noise variance.
Adding the local mean constraint

∑
ξk∈Ξ |G∗ (∆Ξ(h∗u)−z)|2(ξk) = 0 in (4.4) adapts

to the formalism developed in this paper. But to avoid the computational overhead
of its implementation, and since the overestimation plays in favor of the relaxation
arguments presented earlier in this Section, we will not include it in the present
formulation.
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along the Quasi-Newton iterations, without applying the stopping condition for the CG algorithm.
The second sequence was obtained stopping the CG with the empirical bound, observe that the two
sequences are indistinguishable. The third sequence depicts the estimated error used to effectively
stop the Quasi-Newton iterations, as soon as the desired error is achieved.

Table 7.1

Relation between the width of the constraint band and the restoration time. Reducing the width
of the band increases the computational cost of the restoration algorithm. In the table the value of
η was selected according to the rule η = 1

3
(
√

1 + ασ̄ −
√

1 − ασ̄), and σ̄ = 1. All the reported times
correspond to experiments ran on a 1.6Ghz CPU restoring a 256 × 256 pixels image.

Band Width Effective Band Total

parameter: α
p

(1 − α)σ̄ + η
p

(1 + α)σ̄ − η running time

0.60 0.84 1.05 3 min 3 sec
0.34 0.93 1.04 3 min 37 sec
0.22 0.96 1.03 4 min 58 sec
0.10 0.98 1.02 18 min

7.2. Practical stopping conditions for an efficient implementation. Us-
ing (7.3) we may derive a practical rule to stop Uzawa’s loop. Indeed, the user specifies
α and the proportion of constraints Nα/N that must lie within the band of width α,
and the algorithm deduces the radius r of the kernel G such that N(α, r) = Nα. Then
we iterate the Uzawa’s loop in Algorithm II until the number of pixels that satisfy
the constraint (7.3) is at least Nα.

The truncation error of the Quasi-Newton has three sources: (i) truncation of
the Quasi-Newton iterations themselves, (ii) truncation of the nested CG loop, and
(iii) propagation of the CG error along QN iterations. Here we summarize how to
estimate and control the combination of the three errors for a given (global) target
error bound on the QN result ‖up −ut

p‖2 ≤ η/‖S‖. Using standard error propagation
analysis [22] and the knowledge that QN is at least linearly convergent we can estimate
the global error determining (ii) and bound the inverses of the operators T [ut] and
their dependence on ut. In our case these bounds are estimated empirically, and the
CG error is approximated by its residual. Figure 7.3 shows that this procedure is
quite effective in practice. First our CG stopping condition makes the truncated QN
sequence indistinguishable from the non-truncated QN sequence (i.e. the one with CG
iterated until exact convergence is reached, and thus not affected by CG truncation
errors (ii) and their propagation (iii)). This is because the actual QN truncation
error (with either CG truncated or not) is considerably over-estimated by our error
propagation analysis as shown in Figure 7.3. This also means that the desired error
is achieved much faster than predicted by the our error bounds.

Let us now take into account the truncation error of the Quasi-Newton method
in the determination of the band constraints. Assume that we are computing Quasi-
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Fig. 8.1. Image used in the denoising experiment. At left: the reference image is non-aliased,
and it has 149 × 149 pixels. It was multiplied by a smooth window vanishing on the borders in order
to avoid periodization artifacts (not shown). In this image the mean Fourier coefficient amplitudes
decay like (2πω/N)−1.9 (center). At right, is shown the perturbed sampled image. The perturbations
have an amplitude of A = 0.88 pixels (standard deviation of ε(x)), and were simulated according to
(2.2) as colored noise with the spectral content inside [−0.5/Tε, 0.5/Tε]2 for Tε = 10.

Newton solution up and we have controlled the errors ‖Sup−Sut
p‖ ≤ ‖S‖‖up−ut

p‖ ≤ η,
where ut

p denotes the solution obtained at the t-th iteration of the method. Then we
may erode the band by η as seen in Figure 7.1. In this way we ensure that if we stop
the Quasi-Newton solution with the criterion ‖S‖‖up − ut

p‖ ≤ η, then the truncated

solution up satisfies (7.3). Clearly η must satisfy the inequality η < 1
2 (
√

1 + ασ −√
1 − ασ) and we have taken η := 1

3 (
√

1 + ασ−
√

1 − ασ), which equalizes the widths
of the three bands in Figure 7.1. Figure 7.1 illustrates the band and its reduced
version for a single constraint.

Finally, we notice that the computational complexity of the algorithm increases
as we reduce the width of the band. Indeed, taking α→ 0 makes it harder to satisfy
the constraints. And to illustrate this we display in Table 7.1 the computation times
corresponding to different values of α.

8. Experiments. We will test the proposed algorithm in three contexts, first
in the irregular to regular sampling and denoising task, then in Subsection 8.2 we
add the deconvolution, and finally in Subsection 8.3 we consider the full restoration
problem, with deconvolution, denoising, and zooming.

We compare the results obtained by the ACT Algorithm [32] (when applicable),
the algorithm described in [5] (ACT+TV), and the proposed algorithm discussing
different choices of A(D) in each context. In addition we will also consider a re-
formulation of our local constraint algorithm based on the minimization of the L2-
norm of the pseudo-differential operator A(D). The L2-norm formulation is faster and
leads to a linear system (which is solved directly with Conjugate Gradient, avoiding
the need of a fixed point loop), and it is derived by replacing the regularizer KA,β in
(4.4) by

LA(u) :=
∑

0≤r,l≤2N

|A(D)Pu(r, l)|2. (8.1)

All the experiments were performed with simulated images. The perturbations
ε(x) were generated according to the model (2.2), with an amplitude A = 0.88 (stan-
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Table 8.1

Comparison of the algorithms in the irregular to regular sampling and denosing task. These
results correspond to the restoration of the image shown in Figure 8.1, corrupted by a white Gaussian
noise with standard deviation σ = 1. The error column is obtained by comparing the restored image
u with the ground truth u0, where RMSE(u, u0) = ( 1

N
‖u − u0‖2)1/2. Its values evidence that all

the algorithms achieve errors similar to the noise variance. In all the experiments the power of the
removed noise was set to be 1

N
‖Su − z‖2 ∼ 0.908, a little below the noise level σ2 = 1, but this

allows to improve both the result’s RMSE and the visual quality of the restored images.

Algorithm Regularizer RMSE

ACT [32] or (2.5) 1.354
ACTD (2.8) residual preconditioning 1.121
ACTR (2.9) regularity preconditioning 1.049
ACT+TV [5] or (3.1) 0.961

QN+TV |A(iω)| = | 2π
N

ω|
Kβ,A(u) eq. (4.4)

0.874

QN+FAR |A(iω)| = | 2π
N

ω|1.6 0.776

QN+FAR |A(iω)| = | 2π
N

ω|1.9 0.757

L2-norm of the gradient
LA(u) eq. (8.1)

0.880
L2-norm of A(D)u with |A(iω)| = | 2π

N
ω|1.9 0.773

dard deviations of ε(x)), and where supp ε̂ ⊆ [− 0.5
Tε
, 0.5

Tε
]2 for Tε = 10. The perturbed

samples z were computed very accurately (usually 10−8) by approximating the irregu-
lar sampling formula (2.3) with the transposed NFFT [41]. Finally, we added a white
noise of standard deviation σ to the irregular samples. In the experiment displayed
here, we have taken σ = 1 gray levels (i.e.the noise power is 890 times smaller than
the image power, SNR = 29.5dB). The perturbed image shown in Figure 8.1, which
corresponds to the denoising experiment, was simulated according to this procedure.

To quantify the errors we adopt the classical root mean squared error measure
RMSE(u, u0) = ( 1

N ‖u−u0‖2)1/2 against the ground truth image (denoted as u0), and
the method noise for a qualitative analysis. The method noise was originally aimed
at comparing denoising algorithms. It consists in subtracting the restored image
to the noisy one, and studying the remaining noise. In our context assuming an
image formation model like (1.1) and denoting u the image obtained by a restoration
algorithm, the method noise becomes (z − Su), where z are the noisy samples and S
stands for the irregular sampling and convolution operators. Since the restoration is
expected to recover the original image u ≃ u0, the method noise should be as similar
to a white noise as possible. In addition, since we would like the original image u0

not to be altered by the restoration method, the method noise should not exceed the
actual noise variance, which justifies our local constraints approach.

8.1. Denoising. Observe in Table 8.1 that the proposed algorithm outperforms
(in terms of RMSE) the ACT and ACT+TV [4] algorithms, in the denoising exper-
iment. Also notice in Figure 8.2 how the method noise of the proposed algorithm
retains less structure, meaning that the method removes just the noise with less al-
teration of the texture.

The variants of the algorithm based on the minimization of an L2-norm (8.1), give
results that are comparable with the ones obtained with the FAR regularizer, and in
both reported cases the L2 results are indistinguishable from the ones obtained by
FAR. This observation advocates for the local formulation of the constraints and
it can be justified by the density of the samples in this denosing experiment, and by
the lack of both deconvolution and zoom. We can conclude that, for the denoising
(without either deconvolution nor zoom) the advantage of a nonlinear regularizer over
the L2 one is marginal, mostly because no spectral extrapolation is needed. However
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(a) ACTR

eq. (2.9) regular-
izer precondition
RMSE= 1.049

(b) ACT+TV

eq. (3.1)
RMSE= 0.961

(c) QN+TV

eq. (4.4) with
|A(iω)| ∼ | 2πω

N
|1

RMSE= 0.864

(d) QN+FAR

eq. (4.4) with
|A(iω)| ∼ | 2πω

N
|1.9

RMSE= 0.757

Fig. 8.2. Method noise of the different algorithms in the experiment of irregular to regular
sampling plus denoising. The images in the first row display the method noise (z −Su) for different
methods, less visible structure indicates a better reconstruction. The images display the grayscale
range [−3, 3] scaled to [0, 255] (the full grayscale range of the image z is [0, 155]). In the second row
we show the corresponding Fourier transforms, the spectrum highlights the structures that are barely
visible in the spatial domain.

minimizing the L2-norm is not expected to perform well in tasks that entail a spectral
extrapolation like deconvolving or zooming.

The imposition of the spectral profile produces a consistent improvement in all the
cases (| 2π

N ω| vs. | 2π
N ω|1.6 vs. | 2π

N ω|1.9), and imposing the profile corresponding to the
coefficient decay of the reference image (Figure 8.1) produces the best results. We can
study the performance of the spectral profiles by analyzing the frequency distribution
of the errors of the restored images with respect to the reference image (GT), shown
in Figure 8.3. There we can see that using the linear profile (total variation), the
low frequencies are heavily penalized and most of the errors come from them, but
imposing the profile corresponding to this image (| 2π

N ω|1.9) we reduce the errors in
the low frequency range.

Finally, let us spend a word to note the impact of the practical stopping conditions
proposed in Section 7, since they allow a significant speed up of the algorithm reducing
the execution time from 200 sec (stopping after 50 Uzawa’s iterations) to 30 sec for
images of size 149 × 149 pixels.

8.2. Denoising and deconvolution. We consider in this Section the denoising
and deconvolution of irregularly sampled images. For that we include in our image
formation model the MTF corresponding to SPOT 5 HRG (High Resolution Geo-
metric) satellite with Hipermode sampling [33]. Shortly, Hipermode is a push-broom
acquisition mode that uses two shifted bars of sensors to sample on a double-density
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Fig. 8.3. Denoising experiments with different selections of spectral profiles A(iω). Using the
spectral profile that fits the model for the ground truth image, reduces the error, especially in the
mid-low frequencies.

(a) Reference Image. (b) Noisy, blurred and irregularly sampled
image.
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Fig. 8.4. Image used in the deconvolution experiment. The Fourier coefficients’ amplitudes in
the reference image (257 × 257 pixels) decay as (2πω/N)−1.1.
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Table 8.2

Comparison of the algorithms in the irregular to regular sampling and deconvolution task.

Algorithm Regularizer RMSE

ACT+TV [5] 9.035

QN+FAR |A(iω)| = | 2π
N

ω|1.6

Kβ,A(u) eq. (4.4)

8.751

QN+TV |A(iω)| = | 2π
N

ω|1 8.542

QN+FAR |A(iω)| = | 2π
N

ω|0.4 8.779

QN+FAR |A(iω)| ∼ | 2π
N

ω|0.4 for |ω| ≥ N
4

8.337

and |A(iω)| = | 2π
N

ω|1 for |ω| <= N
4

regular QN+FAR |A(iω)| = | 2π
N

ω|1.1 Kβ,A(u) eq. (4.4) 8.393

L2-norm of the gradient
LA(u) eq. (8.1)

9.112

L2-norm of A(D)u with |A(iω)| ∼ | 2π
N

ω|0.4 for |ω| ≥ N
4

9.044

and |A(iω)| = | 2π
N

ω|1 for |ω| <= N
4

grid. The MTF associated to this system is modeled by

ĥ(p, q) = sincπ

(
2p

N

)
sincπ

(
2q

N

)
e−β1|

p
N |

︸ ︷︷ ︸
sensor integration blur

e−
α1
N

√
p2+q2

︸ ︷︷ ︸
optics & aper-
ture diffraction

sincπ

( p
N

)
,

︸ ︷︷ ︸
motion blur

−N
2
< p, q ≤ N

2
,

where α1 = 3.73 , β1 = 1.75, and where sincπ(x) = sin(πx)
πx if x 6= 0 and sincπ(x) = 1

if x = 0. This function has its first zero crossing at frequency N/2 = 1/2Hz, while at
frequency 1/4Hz the power of the MTF is only 1%, meaning that outside the spectral
support [−N/2, N/2]2 (or [−1/2, 1/2]2 Hz) of the filter there is almost no information.
To simulate a blurred, noisy and irregularly sampled image with N ×N samples we
start by applying the MTF ĥ to the image u0 ∈ XN . The samples z (Figure 8.4) are
then obtained by sampling h ∗ u0 on the irregular grid and adding the noise.

In Figure 8.5 and Table 8.2 we report the results of the restoration experiments
corresponding to deconvolution with the Hipermode MTF. The small variability in
the results is an indicator that the MTF ĥ makes the restoration harder per-se, this
is also confirmed by restoring a regularly sampled image and observing that in that
case the error is similar to the irregular one (see Table 8.2). Anyway, the proposed
algorithm outperforms ACT+TV [5] mainly thanks to the local formulation of the
constraints (see Figure 8.6).

We observed that manipulating the spectral profile A(D) does not produce im-
provements consistent with the denoising case (see Figure 8.7). This is due, on one
hand, to the fact that the reference image has a spectral decay different from the
target image class (| 2π

N ω|1.6). Indeed the Fourier coefficients of the reference image
decay as (| 2π

N ω|1.1), which explains the good performance of the total variation (see
Table 8.2). On the other hand, in Figure 8.7(b) we see that the total variation con-
trols the error in the low frequency range, but in the high frequency range it is too
conservative and does not promote the spectral extrapolation.

The previous observation motivates the following experiment, building a profile
that combines, the decay of the total variation in the low frequency range, with a
decay similar to | 2π

N ω|0.4 in the high frequency range. The result of this experiment
is shown in Table 8.2 and its profile is depicted in Figure 8.7(b), there we can confirm
the desired effect.

Remark 8. The results exhibited in Tables 8.2 and 8.3 confirm that the regular-
izers based on the minimization of L2-norm, are not adequate to restore images with
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Global Constraint (RMSE=9.035) Local Constraints (RMSE=8.542)

Fig. 8.5. Restoration with deconvolution computed with ACT+TV [5] (left), and with the
proposed algorithm (right) that solves (4.4) . In the first row are shown the restored images. In the
second row, the method errors, that are re-scaled from [-5,5] (the range of the image is [0,255]). The
third row is shown the Fourier transform of the method noise (it should resemble the white noise).
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Fig. 8.6. Two details of images deconvolved using total variation and L2-norm of the gradient
as regularizers, both with local and global constraints. From left to right is shown the result of the
proposed algorithm (4.4), ACT+TV [5] (global constraint), the L2-norm with local constraints and
with a global constraint. Note that the last two results are more blurred that the total variation ones,
and as seen in Table 8.2 have a higher RMSE.
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Fig. 8.7. Deconvolution experiments with different selections of spectral profiles A(iω). Using
the spectral profile that fits the model for the ground truth image, reduces the error.

deconvolution and/or zoom, due to the inability of this type of regularizers to extrap-
olate the spectrum. This difference is also illustrated in Figure 8.6 and in Figure 8.8
for the case of deconvolution and zoom.

8.3. Extension to zooming. Zooming requires to interpolate and restore the
image while preserving and enhancing the shapes, this can be seen as a spectrum
extrapolation problem. The basic idea is to fit in as much as this is possible, the
low frequency components of the restored and zoomed image to the original data,
and to extrapolate the spectrum to the rest of the frequency domain by means of the
regularization functional. The regularization allows to recover some high frequencies,
which is indeed much more convenient than just filling them with zeros, a technique
which is known to produce ringing.

Since the FAR regularizer allows to control the spectral behavior of the solution,
in particular the extrapolated part, it will allow to improve the zoom results. Let us
first extend the formulation (4.4) to consider the restoration of irregularly sampled
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TV result (RMSE=6.079) L2-norm result (RMSE=6.270)

Fig. 8.8. Deconvolution and zoom using TV and the L2-norm of the gradient as regularizers.
The images show a detail of the zoomed images and its spectrum. Note that the L2 regularizer
recovers the low frequencies but is unable to extrapolate to higher ones.

images with a zoom of factor n

min
u∈XnN

Kn
β,A(u) :=

∑

0≤r,l<2nN

√
β2 + |A(D)Pu (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ p ∗ u) − z|2

]
(ξk) ≤ σ2 ∀ξk ∈ Ξ

and
∑

0≤r,l<nN

u (r, l) =
∑

ξk∈Ξ

wkz(ξk).

(8.2)

The zoomed and restored image u is a vector of size nN × nN (we recall that the
size of z is N ×N), and p is a spectral projector (e.g. p̂ = χR or a prolate function)
on a low-band region R which depends both on the MTF and the sampling set. In
the context we are considering here, p̂ will be different from zero in the frequency
band corresponding to the resolution of the data [−1/2, 1/2]2 and the constraint is
saying that the data is explained by the lower frequency part h ∗ p ∗ u of h ∗ u. The
regularization functional Kn

β,A(u) penalizes the oscillations that may appear when

we extrapolate the high frequencies in the spectral region [−n/2, n/2]2 \ [−1/2, 1/2]2.
Let us mention that, as discussed in [3] in the context of regular sampling, the right
choice of the spectral region R permits to reduce the aliasing effects, but we shall not
consider this problem here. For us, if we want to restore and zoom the image u by
a factor n, p̂ will be different from zero on the region R = [−1/2, 1/2]2 and zero on
[−n/2, n/2]2\R . This is a way to impose that the restored image fits the data z at
low frequencies and the high ones are extrapolated via the minimization of Kn

β,A(u).
This minimization problem (8.2) with p̂(ω) = 1IN (ω) is a direct extension of the
oversampling and denoising method introduced by Malgouyres and Guichard [40] to
the more general case of irregular to regular sampling, deconvolution, denoising and
oversampling.

The experiments shown here correspond to a 2X zoom, the images were simulated
using the procedure described for the deconvolution case, with a filter ĥ extended with
zeros up to a double size, and where the irregular sampling is performed at a double
spacing. The resulting image is shown in Figure 8.9. Since the restored image and the
reference image u0 have the same size, they can be directly compared. In Figure 8.9
are shown the distorted and the reference image as well as two restorations.

Let us first comment on the stair-casing effect that is noticeable in the bottom left
image of Figure 8.9. It is a common observation that the total variation introduces a
stair-casing effect in the restored images, but let us point out that in our case where
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Table 8.3

Deconvolution denoising and 2X zoom experiments.

Algorithm Regularizer RMSE

ACT+TV [5] 6.236

QN+FAR |A(iω)| ∼ | 2π
N

ω|1.6 for |ω| > N
4

Kβ,A(u) eq (4.4)
5.957

QN+TV |A(iω)| = | 2π
N

ω|1 5.965

QN+FAR |A(iω)| ∼ | 2π
N

ω|0 for |ω| > N
4

5.996

and |A(iω)| = | 2π
N

ω|1 for |ω| <= N
4

L2-norm of the gradient
LA(u) eq. (8.1)

6.270

L2-norm of A(D)u with |A(iω)| ∼ | 2π
N

ω|1.6 for |ω| ≥ N
4

6.270

and |A(iω)| = | 2π
N

ω|1 for |ω| <= N
4

the derivatives are computed analytically this effect may not appear. It appears in the
bottom left image of Figure 8.9 due to the poor discretization of the total variation.
Notice that the same image processed with a finer approximation as proposed in
Section 4.1 does not exhibit this artifact, see bottom right image in Figure 8.9. As
we mentioned above, this effect is product of the coarse discretization of the total
variation and was negligible in the cases of restoration without zoom. But when
zooming it is important to avoid this effect since it produces un-natural looking images
in spite of the fact that the RMSE errors of both images are similar.

Since the spectrum is extrapolated the quality of the zoomed image is not affected
by the penalty in the frequencies imposed by the regularization term. In Table 8.3
we display the results obtained with different penalization profiles. Notice that the
results are better in the case of L1-norm than L2-norm.

In contrast with the previous applications, in the present case, not removing all
the noise leads to some artifacts. The noise is defined over the original grid (be either
regular or irregular), but any residual of the original noise becomes a low frequency
colored noise in the zoomed image that is visible as artifacts.

9. Conclusions. We have proposed a model for the restoration of band limited
images that considers irregular (perturbed) sampling, denoising, and deconvolution.
In addition a theoretically sound discretization of this model, and an algorithm that
solves the resulting discrete optimization problem efficiently using automatically op-
timized thresholds and stopping conditions for a prescribed output precision level, are
presented.

An experimental evaluation (which actually requires all three modeling, dis-
cretization, and algorithmical elements) shows that our restoration model, and its
accurate discrete approximation, actually improves the performance of previous meth-
ods in terms of both signal to noise ratio (Tables 8.1, 8.2 and 8.3) and adequacy of
the statistical properties of the computed solution with respect to the assumed image
acquisition model. As we can see in Figures 8.2 and 8.5 our approach permits to
recover part of the structure lost with a global constraint leading to a method noise
that resembles more the postulated gaussian white noise. As observed by Nikolova
in [34], most denoising methods tend to produce a method noise with a distribution
which largely differs from the postulated gaussian white noise hypothesis.

The key ingredients that make our restoration model (Section 3) produce good
results are the combination of

1. the modeling of the image acquisition system through local constraints as in
[4, 5],

2. the use of a special kind of frequency adapted regularization in the spirit of
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Reference image Irregular samples

Zoomed with QN+FAR using (4.2) Zoomed with QN+FAR using (4.4)

Fig. 8.9. Deconvolution denoising and zoom. We display the QN+FAR results using a spectral
decay like: ( 2πω

N
)1.6, which coincides with the decay of the reference image. The stair-casing effect

in (c) (RMSE: 6.003) is due to the poor discretization of the regularizer in (4.2). In (d) (RMSE:
5.957) we observe the result obtained with a finer discretization of the regularizer (4.4).

the ACT algorithm proposed by H.G. Feichtinger, K. Gröchenig, M. Rauth
and T. Strohmer [32], and

3. the minimization of an L1 (instead of L2-norm) of this frequency-adapted
pseudo-differential operator. However the L2-norm produces competitive re-
sults in the case of denoising without deconvolution nor zoom (see Table 8.1).

All three aspects together collaborate to provide a better model of both, image acqui-
sition and a priori image regularity, that leads to better accordance of the statistical
properties of our solution with respect to the postulated models and the reference
image. An accurate discrete approximation to this model (Section 4), both allows the
use of convenient and efficient numerical algorithms (Section 6), and leads to well-
behaved solutions (Section 5). Finally the study of the local constraints (Section 7)
leads to a trade-off between the precision of the noise estimation and the number of
constraints that can be ensured, that is used to derive the stopping criterion for the
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different stages of the algorithm.
Experiments (Section 8) highlighting the importance of the modeling and dis-

cretization aspects described earlier are presented, namely: the quality boost provided
by the local formulation of the constraints (Figure 8.2), the importance of the dis-
cretization of the regularizer (Figure 8.9) and the usefulness of the frequency adapted
regularizer in favoring certain spectral behaviors of the solutions (Figure 8.2 and 8.5).

Our prospects for future work include adapting our algorithm to use splines as the
underlying interpolation model, and the introduction of anti-aliasing filters to handle
the case of aliased data. The exploitation of self-similarity proporties of most natural
images would also be useful to increase resolution while reducing noise and aliasing
effects.
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