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Abstract. A class of optimal control problems for quasilinear elliptic equations is considered,
where the coefficients of the elliptic differential operator depend on the state function. First- and
second-order optimality conditions are discussed for an associated control-constrained optimal control
problem. Main emphasis is laid on second-order sufficient optimality conditions. To this aim, the
regularity of the solutions to the state equation and its linearization is studied in detail and the
Pontryagin maximum principle is derived. One of the main difficulties is the nonmonotone character
of the state equation.
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1. Introduction. In this paper, we consider optimal control problems for a
quasilinear elliptic equation of the type

{—diV [a(z,y(x)) Vy(@)] + f (2, y(2)) = u(z) in Q,

(L.1) y(r)=0  on TI.

Equations of this type occur, for instance, in models of heat conduction, where the
heat conductivity a depends on the spatial coordinate x and on the temperature y.
For instance, the heat conductivity of carbon steel depends on the temperature and
also on the alloying additions contained; cf. Bejan [2]. If the different alloys of steel are
distributed smoothly in the domain, then a = a(z,y) should depend in a sufficiently
smooth way on (z,y). Similarly, the heat conductivity depends on (z,y) in the growth
of silicon carbide bulk single crystals; see Klein et al. [22].

If a is independent of z, then the well-known Kirchhoff transformation is helpful
to solve (1.1) uniquely. Also in the more general case a = a(z,y), a Kirchhoff-type
transformation can be applied. Here, we may define b(x,y) := foy a(z, z)dz and set
O(x) := b(z,y(x)). Under this transformation, we obtain a semilinear equation of the
type —A 0 + div [(Vb) (2, b7 (z,0))] + f(z,b71(x,0)) = u. We thank an anonymous
referee for this hint. However, b should at least be Lipschitz with respect to x and,
due to the new divergence term, the analysis of this equation is certainly not easy,
too. We believe that the direct discussion of the quasilinear equation is not more
difficult. Moreover, the form (1.1) seems to be more directly accessible to a numerical
solution.
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In the case a = a(z,y), in spite of the nonmonotone character of the equation
(1.1), there exists a celebrated comparison principle proved by Douglas, Dupont, and
Serrin [16] that leads to the uniqueness of a solution of (1.1); for a more recent paper,
extending this result the reader is referred to Kfizek and Liu [23]. We will use the
approach of [23] to deduce that (1.1) is well posed under less restrictive assumptions
than those considered by the previous authors.

For other classes of quasilinear equations, in particular for equations in which
a depends on the gradient of y, we refer the reader to, for instance, Lions [24] and
Necas [27].

As far as optimization is concerned, there exists a rich literature on the optimal
control of semilinear elliptic and parabolic equations. For instance, the Pontryagin
principle was discussed for different elliptic problems in [5], [4], [1], while the parabolic
case was investigated in [6] and [29]. Problems with quasilinear equations with nonlin-
earity of gradient type were considered by [7], [8], [11], and [12]. This list on first-order
necessary optimality conditions is by far not exhaustive. However, to our knowledge,
the difficult issue of second-order conditions for problems with quasilinear equations
has not yet been studied.

There is some recent progress in the case of semilinear equations. Quite a number
of contributions to second-order necessary and/or sufficient optimality conditions were
published for problems with such equations. We mention only [3], [14], and the state-
constrained case in [10], [15], [28].

Surprisingly, the important state equation (1.1) has not yet been investigated in
the context of optimal control. Our paper is the first step towards a corresponding
numerical analysis. We are convinced that our analysis can also be extended to other
quasilinear equations or associated systems, since the main difficulties are already
inherent in (1.1).

First-order optimality conditions are needed to deduce regularity properties of op-
timal controls as an important prerequisite for all further investigations. The second-
order analysis is a key tool for the numerical analysis of nonlinear optimal control
problems. As in the minimization of a function f : R — R, second-order sufficient
conditions are commonly assumed to guarantee stability of locally optimal controls
with respect to perturbations of the problem. For instance, an approximation of the
PDEs by finite elements is a typical perturbation of a control problem. Associated
error estimates for local solutions of the FEM-approximated optimal control problem
are based on second-order sufficiency. Likewise, the standard assumption for the con-
vergence of higher order numerical optimization algorithms such as SQP-type methods
is a second-order sufficient condition at the local solution to which the method should
converge.

A review on important applications of optimal control theory to problems in
engineering and medical science shows that in most of the cases the underlying PDEs
are quasilinear. Although our equation has a particular type, our problem might
serve as a model case for the numerical analysis of optimal control problems with
more general quasilinear equations or systems.

The theory of optimality conditions of associated control problems is the main
issue of our paper, which is organized as follows:

First, we discuss the well-posedness of this equation in different spaces. Next, the
differentiability properties of the control-to-state mapping are investigated. Based on
these results, the Pontryagin maximum principle is derived. Moreover, second-order
necessary and sufficient optimality conditions are established.
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Notation. By Bx(z,r) we denote the open ball in a normed space X with
radius r centered at x, and by Bx(z,r) we denote its closure. In some formulas,
the partial derivative 0/0x; is sometimes abbreviated by 9;. By ¢ (without index),
generic constants are denoted. Moreover, (-, -) stands for the pairing between HE(Q)
and H~1(Q).

2. Study of the quasilinear equation.

2.1. Existence, uniqueness, and regularity of solutions. The proof of the
existence and uniqueness of a solution of (1.1) relies on the following assumptions:

(A1) Q C R" is an open bounded set with a Lipschitz boundary T
(A2) The functions a : 2 x R — R and f : @ x R — R are Carathéodory, f is

monotone nondecreasing with respect to the second variable for almost all
z € (), and

(2.1) Jag > 0 such that a(z,y) > ap for a.e. 2 € Q andVy € R.

The function a(-,0) belongs to L>(), and for any M > 0 there exist a
constant Cp; > 0 and a function ¢p; € L9(2), with ¢ > pn/(n + p) and
n < p, such that for all |y|, |y;| < M

la(z,y2) — a(z,y1)| < Cumly2 —y1| and
(2.2) |f(x,y)| < op(x) for ae. x € Q.

In the rest of the paper ¢ and p € (n,+o0) will be fixed. Let us remark that ¢ >

pn/(n+p) > n/2.
Ezxample 2.1. The following equation satisfies our assumptions if we assume
¢o, P1 € L=(Q), ¢o(r) > o >0 ae. in Q, ¢1(x) >0ae. inQ,and1 <meN:

{—div [(¢o(@) + y>™(2)) Vy(2)] + d1(2) exp(y(z)) = ( ) in ©Q,
y(x) = on T.

THEOREM 2.2. Under the assumptions (Al) and (A2), for any element u €
W=LP(Q) problem (1.1) has a unique solution y,, € HE(Q) N L*°(Q). Moreover there
exists u € (0,1) independent of u such that y, € CH(2) and for any bounded set
UcCwW=1tr(Q)

(2.3) lyull a2 ) + yullon@ < Cu YuelU

for some constant Cy > 0. Finally, if ux — u in W=EP(Q), then yu, — Yu in
H(Q) N Cr(Q).

Proof. Existence of a solution. Depending on M > 0, we introduce the truncated
function aps by

a(r,y), |yl <M,
m(z,y) = alz, +M), y>+M,
a(x,—M), y<-—M.

In the same way, we define the truncation f; of f. Let us prove that the equation

{—div lanm (2, y) Vyl + fu(z,y) = uin Q,

24
(24) y=0on T
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admits at least one solution y € H}(Q2). We define, for fixed u € W—1P(Q2) and
M > 0, a mapping F : L?(Q) — L?(Q2) by F(z) = y, where y € Hg () is the unique
solution to

(2.5) {—diV lans (z,2) VY] + far(@,2) = win Q,

y=0on I.
Thanks to assumption (A2), (2.2), we have

|far(z,2)| < dpr(x)

and ¢y € L9(Q) € H-1(Q). Therefore, (2.5) is a linear equation and u — f(-, 2)
belongs to H~1(£2); hence (2.5) admits a unique solution yy; € HE () and F is well
defined. It can be shown by standard arguments invoking in particular the compact
injection of H(Q) in L?(Q) that F is continuous. Furthermore, we have

1
(2.6) lyarll @) < o (el -1 (0) + lloarll -1 () -

Using this estimate and the fact that H!(Q) is compactly embedded into L?(), it is
easy to apply the Schauder theorem to prove the existence of a fixed point yys € HE(Q)
of F. Obviously, yas is a solution of (2.4).

Since ¢ > np/(n+ p) we have that LI(Q) C W~1P(Q). Now an application of the
Stampacchia truncation method yields

(2.7) [yarllzoe @) < coollu = f(- 0) w120,

where co, depends only on the coercivity constant «g given in (2.1) but neither on
llaar (-, yar) |l Lo () nor on far(-,yar). For the idea of this method, the reader is referred
to Stampacchia [30] or to the exposition for semilinear elliptic equations in Troltzsch
[31, Theorem 7.3]. By taking

M > coo ||U - f(,O)walp(Q)v

(2.7) implies that ap(x,ym(x)) = a(z,ym(x)) and far(z,ym(x)) = f(z, yar(z)) for
a.e. © € €, and therefore yy € HH(Q) N L>®(Q) is a solution of (1.1). The Holder
regularity follows as usual; see, for instance, Gilbarg and Trudinger [19, Theorem 8.29].
Inequality (2.3) follows from (2.6), (2.7), and the estimates in [19, Theorem 8.29].
Finally, the convergence property can be deduced from (2.3) easily once the uniqueness
is proved.

Uniqueness of a solution. Here we follow the method by Kfizek and Liu [23].
Let us assume that y; € H}(Q) N L>®(Q), i = 1,2, are two solutions of (1.1). The
regularity results proved above imply that y; € C(Q), i = 1,2. Let us define the open
sets

Qo ={z € Q:ya(x) —y1(x) > 0}
and for every € > 0
Qe ={zeQ:y(x) —yi(x) > e}

Now we take 2.(z) = min{e, (y2(z) — y1(x))" }, which belongs to H}(Q2) and |z.| < e.
Multiplying the equations corresponding to y; by z. and doing the usual integration
by parts we get

/{a(xvyl)vyl . vza + f(CE, yi)za} dx = <U, Za>7 1= ]-7 2.
Q
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By subtracting both equations, using the monotonicity of f, (2.1) and (2.2) and the
fact that Vz.(x) = 0 for a.a. z & Qo\Q: and in view of Vz. = V(y2—y1)T = V(y2—y1)
a.e. in Qg \ Q. we get

a0l V2l < / {ale,y2)| V2 + [f (2. y2) — Flz, )]z o
Q

- /Q (a2, 42)V (g2 — 1) - Vae + (@, 42) — F(, 9]z} do

and, invoking the weak formulation of the equation for y,

= /[a(x,yl)Vyl —a(z,y2)Vy1] - Vze drx
Q

= / [a(x, y1)Vy1 — a(z,y2)Vy1] - Vze da
Qo \ Qe

< Cumllyz = yill e oo [IVULl L2000 IV 2e | L2 (0020
< CuellVyrllneo\oo) | Vzell L2 0\ 00 -

From this inequality, along with Friedrich’s inequality, we get
(2.8) [ 2ell2) < ClVzellL2) < C'el|VurllL2o\ao)-
Now by lime|o |20 \ 2¢] = 0 and (2.8) we deduce

=& /Q 2 <o /Q 222 < 93120y — O

which implies that |Qp] = lim.—¢ |Q:| = 0 and hence ya < y;. In the same way, we
prove that y; < ys 0

As in this theorem, throughout our paper, the solutions of PDEs are defined as
weak solutions.

Remark 2.3. Let us remark that the Lipschitz property of a with respect to y
assumed in (A2) was necessary only to prove the uniqueness of a solution of (1.1), but
it was not needed to establish existence and regularity. We can get multiple solutions
of (1.1) if the Lipschitz property (2.2) fails; see Hlavacek, Kiizek, and Maly [21] for a
one-dimensional example.

By assuming more regularity on a, f, I, and u, we can obtain higher regularity
of the solutions of (1.1).

THEOREM 2.4. Let us suppose that (Al) and (A2) hold. We also assume that
a: QxR — R is continuous and I is of class C*. Then, for anyu € W=1P(Q), (1.1)
has a unique solution y,, € Wol’p(Q), Moreover, for any bounded set U C W~1P(Q),
there exists a constant Cy > 0 such that

If up — w in W=1P(Q), then yu, — yu strongly in W, P(Q).

The proof of this theorem follows from Theorem 2.2 and the WP (Q)-regularity
results for linear elliptic equations; see Giaquinta [18, Chap. 4, p. 73] or Morrey [25,
pp. 156-157]. It is enough to remark that the function a(z) = a(z, y,(z)) is continuous
in Q and u — f(-,y.) belongs to W~=1P(Q).

Let us state some additional assumptions leading to W?2:4(2)-regularity for the
solutions of (1.1).
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(A3) For all M > 0, there exists a constant cp; > 0 such that the following local
Lipschitz property is satisfied:

(2.10) la(z1,91) — a(xa, y2)| < ear {|z1 — 22| + |y1 — y2|}

forall 7, € Q, y; € [-M, M], i =1,2.
THEOREM 2.5. Under the hypotheses (A1)-(A3) and assuming that I" is of class
CHY, for any u € L4(Q), (1.1) has one solution y,, € W24(Q). Moreover, for any
bounded set U C L9(Q2), there exists a constant Cy > 0 such that

(2.11) lyullwza) < Cu YueU.

Proof. (i) From Sobolev embedding theorems (cf. Necas [26, Theorem 3.4]), it
follows that

(2.12) LYQ) — Wb (Q) if 1<q<n,
(2.13) LYQ) — W 12(Q) if n<q< oo
Since L(Q2) ¢ W~1P(Q), we can apply Theorem 2.4 to get the existence of at least
one solution in WOLP(Q) for every 1 < p < o0 if ¢ > n, and for p = n"—_qq if g <n. We

have to prove the W?24(Q2)-regularity. To this aim, we distinguish between two cases
in the proof.

(ii)(a) Case ¢ > n. We have that y € W,?(Q) for any p < oo, in particular in
Wy29(Q). By using assumption (A3), expanding the divergence term of the PDE
(1.1), and dividing by a we find that

1 - da

(214)  -Ay= - qu—f(y)+ ) dale.y) Gy + o [Vl o
a —— j:lH’_/v Y N~~~
Loo La Loe La ?:: La

hence the right-hand side of (2.14) is in L9(2). Notice that g—z € L™ follows from

(2.10) and the boundedness of y. The C'! smoothness of I' permits us to apply a
well-known result by Grisvard [20] on maximal regularity and to get y € W24(Q).

(ii)(b) Case n/2 < q < n. Notice that y € WJH(Q) It follows that |[Vy|? €
Lo (©). A simple calculation confirms that

ng

>~ >4
2(n—q)

(2.15)

since this is equivalent to ¢ > n/2, a consequence of our assumption on g. Therefore,
it holds that |Vy|? € L9(Q) and once again the right-hand side of (2.14) belongs
to L1()). We apply again the regularity results by Grisvard [20] to obtain y €
W24(Q). O

COROLLARY 2.6. Suppose that the assumptions of Theorem 2.5, except the regu-
larity hypothesis of T, are satisfied with ¢ = 2. Then, if @ C R" is an open, bounded,
and convez set, n = 2 orn = 3, there exists one solution of (1.1): y € H*(Q)NHZ ().

Proof. This is a simple extension of Theorem 2.5 for ¢ = 2. Notice that we have
assumed n < 3 so that ¢ > n/2 is true. The C11 smoothness of ' is not needed for
convex domains, since maximal regularity holds there; cf. [20]. O
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2.2. Differentiability of the control-to-state mapping. In order to derive
the first- and second-order optimality conditions for the control problem, we need to
assume some differentiability of the functions involved in the control problem. In this
section, we will analyze the differentiability properties of the states with respect to
the control. To this aim, we require the following assumption.

(A4) The functions a and f are of class C? with respect to the second variable and,
for any number M > 0, there exists a constant Dj; > 0 such that

2

o7
‘ @(x,y)‘+‘£{(x,y)‘<DM fora.e. z €Q and V |y| < M.

j=1

Now we are going to study the differentiability of the control-to-state mapping.
As a first step we study the linearized equation of (1.1) around a solution y,. The
reader should note that the well-posedness of the linearized equation is not obvious
because of the linear operator is not monotone.

THEOREM 2.7. Given y € WHP(Q) for any v € H1(Q) the linearized equation

—div |a(z,y)Vz + @(x,y)z Vy| + a—f(a:, y)z=uv inQ,

(2.16) dy Ay

z=0 onT

has a unique solution z, € Hg ().

Remark 2.8. As a consequence of the open mapping theorem, assuming that (A2)
and (A4) hold, we know that the relation v — z, defined by (2.16) is an isomorphism
between H~1(Q) and H{(£2). Indeed, it is enough to note that the linear mapping

. da af
z— —div |a(z,y)Vz+ a—y(fc,y)z Vyl| + 8—y(x, y) z

is continuous from Hg(Q) to H1(Q). To verify this, we notice first that a(x,y),

g—‘;(x,y), and g—i(x,y) are bounded functions because of our assumptions and the

boundedness of y, which follows from the fact that y € W, ?(Q) c C(Q) for p > n.
The only delicate point is to check that

Oa
—( L2,
5, (+0)2Vy € L(9)

This property follows from the Holder inequality

(I

and the fact that

Oda

8—y(-,y)zvy

5 1/2
dx) < Dullall 2z, IV lzpe)

HY Q) C L#2(Q) C L2 (Q) ifn > 2,
Hy(Q) CL'(QVr<ooifn=2,
where we have used that

2p

n—2" p-—2

p>n=
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Remark 2.9. The reader can easily check that the proof of Theorem 2.7 can be
modified in a very obvious way to state that the equation

: 0 0 :
—div |a(z,y1)Vz + a—Z(x, y2)z Vy| + a—;(x, y3)z =wv in

z=0 onT

has a unique solution in z € H(Q) for any elements y € WHP(Q) and y; € L*°(Q),
i=1,2,3.
Proof of Theorem 2.7. First we prove the uniqueness and then the existence.
Uniqueness of solution of (2.16). We follow the same approach used to prove the
uniqueness of a solution of (1.1). Let us take v = 0 and assume that z € H}(2) is a
solution of (2.16); then the goal is to prove that z = 0. Thus we define the sets

Q={zeN:2(x) >0} and Q. ={zecQ:z(x) > e}

Now we set z.(z) = min{e, 2" (x)}, so that 2. € H}(Q), |2c| < e, z2c >0, 2Vz. =
2:Vze, and Vz - Vz. = |Vz.|2. Then multiplying the equation corresponding to z by
ze and performing an integration by parts we get

Oa of
2, 00 . 2| .
/Q{a(a:,y)|Vz5| +8y(x,y)z5Vy Vz5+8y(a:,y)z5}dx 0;

then, by the monotonicity of f and (A2),

of
ol V2l < [ {a<x,y>|v.zs|2+8—y<x,y>z§}dx

da da
=— | —(z,y)2:Vy - Vz.dx = —/ —(z,9)2:Vy - Vz. dx
/Q ay( Y)z=Vy o, 8y( Y)z=Vy

< CumlIVyllzeoaa IV 2ell 2 @)

From here follows an inequality analogous to (2.8), and continuing the proof in a
similar manner, we conclude that || = lim._ || = 0, and therefore z < 0 in Q.
But —z is also a solution of (2.16), so by the same arguments we deduce that —z <0
in 2, and therefore z = 0.

Ezistence of solution of (2.16). For every t € [0, 1] let us consider the equation

—div |a(z,y)Vz + t@(aj, Y)z Vyu| + %(x, y)z=wv in Q,

(2.17) dy Ay

z=0 onT.

For ¢t = 0, the resulting linear equation is monotone, and by an obvious application
of the Lax—Milgram theorem we know that there exists a unique solution zo € H3(Q)
for every v € H=1(Q). Let us denote by S the set of points ¢ € [0, 1] for which (2.17)
defines an isomorphism between H{(2) and H~!(Q2). S is not empty because 0 € S.
Let us denote by t,,4, the supremum of S. We will prove first that ¢,,,, € S, and
then we will see that t,,,, = 1, which concludes the proof of existence.

Let us take a sequence {tk}zozl C S such that t; — 42 when k — oo and let us
denote by zj the solutions of (2.17) corresponding to the values ¢;. Multiplying the
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equation of z by 2, and integrating by parts, using assumptions (A1) and (A2) we
get

0
ol ¥l < | {a(x,y>|Vzk|2+a—§<x,y>zi}dm

= (v, z) — tk/ %(x,y)szy -Vz, dx
o Oy

< (1ol + 0Dl Volzmallal, 2 o ) 19000,

which implies

2.18 v <C - .
219 1Vl ey < € (s + ol 2, )
In principle it seems that there are two possibilities: either {z;}$2, is bounded in
2
L»2(Q) or it is not. In the first case (2.18) implies that {zx}%2, is bounded in
HY(Q); then we can extract a subsequence, denoted in the same way, such that
2
2z — z weakly in H}(Q2) and strongly in L2 () because of the compactness of
2

the embedding Hg () C Lp_—p2(Q) for p > n. Therefore we can pass to the limit in
(2.17), with ¢ = t, and check that z is a solution of (2.17) for ¢ = 44, and therefore
tmaz € S, as we wanted to prove.

Let us see that the second possibility is not actually a correct assumption. Indeed,
let us assume that ||zk|\L 2 — 00, taking a subsequence if necessary. We define

=

1

2kl 22,
LP=2(Q)

Pk = | — 0 and 2y = przk.

Then from (2.18) we deduce

219)  I¥alitey < € (ulollio + 12l 2, o) ) =C (oulbllasey +1).

Moreover 2, satisfies the equation

—div [a(x, y)VZ, + tk@(x,y)ék Vy} + g(x, Y)ir = prv in Q,

(2.20) dy Ay

z=0 onT.

From (2.19) we know that we can extract a subsequence, denoted once again in

the same way, such that 2, — 2 weakly in Hg () and strongly in L%(Q) Then

HéHL% @ 1 and passing to the limit in (2.20) we have that Z satisfies the equation
=

. . da . of .
—div |a(z,y)VZ + tmma—y(x,y)z Vy| + a—y(x,y)z =0 in Q,

z=0 onT.

But we have already proved the uniqueness of solution of (2.16); the fact of including
tmae in the equation does not matter for the proof. Therefore Z = 0, which contradicts

the fact that its norm in L7-2 (Q) is one.
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Finally we prove that t,,,, = 1. If it is false, then let us consider the operators
Tey Tmax € L(HE (), H~1(Q)) for any & > 0 with ¢4, + € < 1, defined by

. da af
T.z = —div |a(z,y)Vz + (tmaee + ) =— (2, y) 2 Vy| + =—(x,9)z,
)2 (b + ) )2 V] + 5 )

. Oa of
Tmaez = — ) max o 4 ., 4 .
z div [a(a: y)Vz+t 9y (z,y)z Vy] + By (x,y)z

Then we have

7= — TmazHL‘(Hg(Q),Hfl(Q)) = sup (7% - Tmaz)z||H*1(Q)

HZHHé(Q)Sl

<Dy sup 6||ZHL%(Q)||V9HLP<Q> < Ce.

”Z”Hé(g)gl

Since Tinqz is an isomorphism, if Ce < 1, then T: is also an isomorphism, which
contradicts the fact that t,,4. is the supremum of S. 0

THEOREM 2.10. Let us suppose that (Al), (A2), and (A4) hold. We also assume
that a : Q x R +— R is continuous and T' is of class C*. Then the control-to-state
mapping G : W=1P(Q) — Wol’p(Q), G(u) = yu, is of class C*. Moreover, for any
v,v1,v2 € WEP(Q) the functions z, = G'(u)v and zy, 0, = G"(u)[v1,v2] are the

unique solutions in W, P(Q) of the equations

—div [a(x,yu)Vz + @(x,yu)z Vyu] + ﬁ(oc,y) z=v 1n ),

(2.21) dy Ay

z=0 onT
and

(2.22)

. oa af B 82f
~div [a(x, bV + 5o yu>zvyu] + Loz = - Lz

0 0?
+ div {a—Z(x, Yu) (2o, Vi, + Vg, 20,) + —a(a:, Yu) 2oy Z0s ViYu| 10 Q,

Oy?
z=0 onT,

respectively, where z; = G'(u)v;, i = 1,2.
Proof. We introduce the mapping F : W, P(Q) x W~17(Q) — W~1P(Q) by

F(y,u) = —div]a(,y)Vy] + f(y) —u.

Because of the assumptions (A2) and (A4), it is obvious that F' is well defined, of
class C2, and F(y,,u) = 0 for every u € Wy? (). If we prove that
oF
) W P(52) — Whe(9)
Y
is an isomorphism, then we can apply the implicit function theorem to deduce the
theorem, getting (2.21) and (2.22) by simple computations. Let us remark that

OF . Oa of
8—y(yu,u)z = —div |a(z,y.)Vz + a—y(x,yu)z Vyu.| + a—y(x,yu) z.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/05/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

698 EDUARDO CASAS AND FREDI TROLTZSCH

According to Theorem 2.7, for any v € H1(Q), there exists a unique element z €
H(Q) such that

OF
8—y(yu, u)z = v.

It is enough to prove that z € Wy (Q) if v € W=1P(Q) ¢ H~(Q). More precisely,
this means that the unique solution of (2.16) in Hg () belongs to W, *(£2). First of
all, let us note that

Oa af
al-,y,) € L), —(-,y4)Vy, € LP(Q)", —
(s Yu) ()ay(y)y ()3y

(,yu) € L®(Q), and v € W HP(Q).
Therefore, we can apply a result by Stampacchia [30, Theorem 4.1 and Remark 4.2]
about L>(2)-estimates of solutions of linear equations to get that z € L*°(£2). Now
we have that

_diV[CL(ZE, yu)Vz] = v +div l:g—Z(ZIZ, yu)szu:| — %’;(ZE’ yu)z c W—l,p(Q)

and x — a(z, ¥, (z)) is a continuous real-valued function defined in Q. Finally, as in the
proof of Theorem 2.4, we can use the VVO1 P(Q)-regularity results for linear equations
(see [18, Chap. 4, p. 73] or [25, pp. 156-157]) to deduce that z € W, ?(Q). O

From Theorem 2.5 we know that the states y corresponding to controls u €
L(Q), with ¢ > n/2, can have an extra regularity under certain assumptions. In this
situation, a natural question arises. Can we prove a result analogous to Theorem 2.10
with G : L9(Q) — W24(Q)? The answer is positive if we assume some extra regularity
of the function a.

(A5) For all M > 0, there exists a constant da; > 0 such that the following
inequality is satisfied:
J j
(2.23) %(xlayl) - g—;(@,yﬂ <dyr {lrr — x2| + y1 — yal}
forall z; € Q, y; € [-M,M],i=1,2and j =1,2.

THEOREM 2.11. Suppose that (A1)~(A5) hold and T is of class C*1. Then the
control-to-state mapping G : L1(2) — W24(Q), G(u) = yu, is of class C*. For any
v,v1,v2 € L1(Y), the functions z, = G'(w)v and zy, v, = G (u)[v1,v2] are the unique
solutions in W24(Q) N W, %(Q) of (2.21) and (2.22), respectively.

Proof. The proof follows the same steps as in the previous theorem, with obvious
modifications. Let us note the main differences. This time, the function F is defined
by the same expression as above and acts from (W29(Q)NW,*9(Q)) x L4(Q) to LI(NQ).
We have to check that F' is well defined, and we must determine the first- and second-
order derivatives. By using the assumptions (A3)—(A5), we have for j = 0,1,2 and
y € W29(Q) N Wy 4(Q) that

ia g itlg
div | 55yl | = |92 5] (nte) - V(o) + G @) Tyl
(2.24) +%(m,y(az))Ay(m) € LiQ).
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We have used the fact that (87a/dy’) is Lipschitz in z and y, and therefore differen-
tiable a.e., and that the chain rule is valid in the framework of Sobolev spaces.
On the other hand, (A2) and (A4) imply that

of

oy’
From these remarks, it is easy to deduce that F is of class C2. Let us prove that (2.16)
has a unique solution z € W24(Q) W, %(2) for any v € L4(£2). The uniqueness is an
immediate consequence of the uniqueness of solution in Hg(Q2) N L°°(£2). It remains
to prove the W29-regularity. We argue similarly to the proof of Theorem 2.4. From
(2.16) we get

—Az:l{v—i—div[
a

(y) € LI(Q) for j=0,1,2.

_ 1 of, _ Ja_ _
(z,y)z Vy —8—y(x,y)z+v}—l—Vma-Vz—i—a—yVy-Vz

da

dy

2
zl{v—a—f(a:,y)z—kvm@z-v 0a

da da
J+ == 2|Vy]?+ —=Vz-Vi+ — 2 Ay
" 3y 3y y+ay2z| gl© + z-Vy+ z y}

dy dy

)
1Vea Vit 2V vy
dy

The right-hand side is an element of L4(2). To verify this, consider, for instance, the
term with the lowest regularity, i.e., the term Vi - Vz:

(/Q quwz'qd"”)% : (/Q |V§|”dar)% (/Q |VZ|"qud33)nT_qq

n—gq
SC(/ |Vg|n_—qqdfv) " lz]] 1 e
Q W, "T(Q)

< c|lgllwza(e) ||Z|\W01,nn__qq(m,

ng
where we have used that z € VVO1 ""=7(Q)), which is a consequence of the embedding
L) C W_l’"n_—qq(ﬂ) along with Theorem 2.10. Notice that we have assumed ¢ >
n/2. This inequality is equivalent to ng/(n — ¢q) > n and is also behind the estimate
of the integral containing V. 0

Remark 2.12. If ¢ = 2, then Theorem 2.11 remains true for n =2 or n = 3 if we
replace the C1'!-regularity of I' by the convexity of Q. This is a consequence of the

H?-regularity for the elliptic problems in convex domains; see Grisvard [20].

3. The control problem. Associated to the state equation (1.1), we introduce
the control problem

min J(u) = / L(z,yy (), u(x)) dz,
Q
(P) we L=(Q),
a(z) <wu(z) < B(x) for ae. z € Q,

where L : O x (RxR) — R is a Carathéodory function, p > n, and «, 8 € L>®(f), with
B(z) > a(x) for a.e. z € Q. A standard example for the choice of L is the quadratic
function

La,y,u) = (v~ yal@)) + 5 o,

where yq € L9(Q) is given fixed.
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First of all, we study the existence of a solution for problem (P).

THEOREM 3.1. Let us assume that (Al) and (A2) hold. We also suppose that L
is convex with respect to u and, for any M > 0, there exists a function ¥y € LY(Q)
such that

|L(z,y,u)| < Ya(z) for ae.xe€Q and |y|,|ul < M.

Then (P) has at least one optimal solution .

Proof. Let {ug}p2, C L>°(Q2) be a minimizing sequence for (P). Since {ux}p,
is bounded in L*(Q2) ¢ W~1P(Q), Theorem 2.4 implies that {y,, }3, is bounded
in VVO1 'P(Q) and, taking a subsequence, denoted in the same way, we get ur — «
weakly* in L>(Q), and hence strongly in W~1P(§2). Therefore, 3., — . in W, ?(Q).
Moreover, it is obvious that a < @ < 3, and hence @ is a feasible control for (P). Let
us denote by 7 the state associated to @. Now we prove that @ is a solution of (P). It
is enough to use the convexity of L with respect to u along with the continuity with
respect to (y,u) and the Lebesgue dominated convergence theorem as follows:

J(u) = /S)L(x,y(x),ﬂ(x)) dx < likrriioréf QL(x,g(x),uk(x)) dx

<timsup [ |LGe.g(e). wx(0) = Lo (o). (o) do

k—o0

+ lim Sup/ L(z, Yo, (x),ug(z)) dz = klim J(ug) = inf (P). O
Q — 00

k—oo

Our next goal is to derive the first-order optimality conditions. We get the opti-
mality conditions satisfied by @ from the standard variational inequality J'(@)(u—a) >
0 for any feasible control u. To argue in this way, we need the differentiability of .J,
which requires the differentiability of L with respect to u and y. Since we also wish to
derive second-order optimality conditions, we require the existence of the second-order
derivatives of L. More precisely, our assumption is the following.

(A6) L:Qx (R xR)— R is a Carathéodory function of class C? with respect
to the last two variables and, for all M > 0, there exist a constant Cr, ar > 0
and functions 1, ar € L2(Q) and 1y a € LI(S2), such that

< 1/’y,M(33)a ||D(2y,u)L(may7u)H < CL,M;

oL
)

oL
Swu,M(x)v ‘a_y(mayvu)
D3, .y L (@, y2, us) — D, oy L, y1,un) || < Cron(Jy2 — ya| + Jug — ual)

for a.e. x € Q and |yl, |yil, |ul, |Jui| < M, i = 1,2, where D(Qy)u)L denotes
the second derivative of L with respect to (y,u), i.e., the associated Hessian
matrix.
By applying the chain rule and introducing the adjoint state as usual, an elemen-
tary calculus leads to the following result.
THEOREM 3.2. Let us assume that a : Q x R — R is continuous, I is of class
C', and (A1), (A2), (A4), and (A6) hold. Then the function J : L=(Q) — R is of

class C%. Moreover, for every u,v,v1,ve € L°(Q), we have

(3.1) J (u)v = /Q (g—i(x,yu,u) + tpu) vdz
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and
27 2L
J" (w)vyvg = /Q {g?(a:, Yuy W) 2y 2oy + %(az,yu, w)(2y, V2 + 2u,01)
9%L 0?
(3.2 o o = 0 G )2

da 0%a
_v‘pu |:8_y($7yu)(zv1vzv2 + vzvlzvz) + a—yz(xvy)zvl zv2vyu:| } dJE,

where ¢, € Wol’p(Q) is the unique solution of the problem

(3.3)

. da of L |
—div [a(x,yu)Vgo] + a_y(xa yu)vyu : V(p + a_y(xa yu)SD - ay (xvyua u) mn Qa

p=0o0onT,

where z,, = G'(u)v; is the solution of (2.21) for y =1y, and v =v;, i =1,2.

Proof. The only delicate point in the proof of the previous theorem is the existence
and uniqueness of a solution of the adjoint state equation (3.3). To prove this, let us
consider the linear operator T' € L(HE (), H1()) given by

. Oa of
Ts=— Vet 28 vy| + 2 .
z div |a(z,y)Vz ay(a:,y)z y| + By (x,y) z

According to Remark 2.8, T' is an isomorphism and its adjoint operator is also an
isomorphism T* € L(H}(Q), H~1(Q)) given by

da

I = —divia(@, ) Vel + 5@ yu)Vyu - Vi + g—i(x, Yu)P-

This is exactly equivalent to the well-posedness of the adjoint equation (3.3) in Hg ().
Finally, Theorems 2.2 and 2.4 along with assumption (A6) imply that the adjoint state
¢ belongs to the space WO1 P(Q), as claimed in the theorem, provided that the term

Oa
8—y(w, Yu) VY - Voo

belongs to W~1P(€2). Let us prove this fact. Thanks to the boundedness of y, and
the assumption (A4), it is enough to prove that Vy, - Vi € L"(Q) C W~=1P(Q) holds
for some r large enough. By using that Vy, € LP(2), Vi € L?(Q) and invoking the
Holder inequality, we get that Vi, - Vo € L#/®+2)(Q). For n = 2, L*/(®+2)(Q) ¢
W=LP(Q). Let us consider the case n > 2. In this case, we have

2pn

L2/ (P12) () Wt (Q ithr= ————.
@) (@), with r p(n —2)+2n

Therefore it turns out that ¢ € Wol’o(Q), with ¢ = min{p,r}. If ¢ = p, then the
proof is complete. If it is not true, then let us notice that

4(p—n)

=2 ith ¢ = ———F——.
r +e, withe pn—2) + 2n
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The proof proceeds by induction: For k& > 1, we assume that ¢ € VVO1 2k () and
then we prove that ¢ € W,7(Q), with o = min{p, 2 + (k + 1)e}. Consequently, for k
large enough, we have that ¢ = p. By using the embedding of Sobolev spaces in L"
spaces and after performing some obvious computations, we get that

Vy, € LP(Q) and Vo € L**(Q) = Vy, - Vo € W17(Q),
with

B pn(2 + ke)
"= pln— (2+ke)]+ 2+ ke)n

We have to prove that r — (2 + ke) > ¢, which is equivalent to

(p—n)(2 + ke)?
pln— @+ ko) + 2+ ken = ©

From the definition of €, we obtain that the previous inequality is equivalent to

(=2 +ke)? > - Ap—n)

3§ 2 Pl G+ k)] 2+ ken)

if and only if
[p(n —2) +2n](2 + ke)* > 4{p[n — (2 + ke)] + (2 + ke)n}.
Let us set for every p > n

p(p) = [p(n — 2) + 2n)(2 + ke(p))?, u(p) = 4{pln — (2 + ke(p))] + (2 + ke(p))n}

and

~_4lp—n)
elp) = p(n—2)+2n’

Using that e(n) = 0, we get that p(n) = 4n? = p(n). If we prove that p/(p) > 1/(p)
for every p > n, then the inequality p(p) > u(p) will be true for all p > n and the
proof of the theorem is concluded. Using that &'(p) > 0 and (p) > 0 for p > n, we
get

P (p) = (n—2)(2+ ke(p))* + 2k[p(n — 2) + 2n](2 + ke(p))e'(p) > 4(n — 2)

and
' (p) = 4(n — 2 — ke(p)) + 4(—kpe'(p) + kne'(p))
= 4(n —2) — 4k[e(p) + (p — n)e'(p)] < 4(n - 2),
which leads to the desired result. a

Remark 3.3. By using the expression given by (3.2) for J”(u), it is obvious that
J"(u) can be extended to a continuous bilinear form J”(u) : L?(Q) x L*(Q) — R.

By using the inequality J'(@)(u — @) > 0 and the differentiability of J given by
(3.1) and (3.3) we deduce the first-order optimality conditions.
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THEOREM 3.4. Under the assumptions of Theorem 3.2, if u is a local minimum
of (P), then there exists @ € Wy* () such that

. S ®a, . af oL,
—dIV[a(x,y)Vso]-i-a—y(x,y)VyVgo-l—a—y(x,y)(p— ay (x,y,u) mn Qa

p=0o0onT,

(3.4)

35 [ (Gewseha) + o) ()~ a(e) de 20 Vasusp

where § is the state associated to .
From (3.5) we get as usual

for almost all x € €, where

(37) d(w) = 9@, (), 5(a)) + Pla).

We finish this section by studying the regularity of the optimal solutions of (P).
THEOREM 3.5. Under the assumptions of Theorem 3.4 and assuming that
oL ‘ ‘
(3.8) 0 QO x (R xR) — R is continuous,
U
2

L
(3.9)  3JAL > 0 such that %(az,y,u) > A for a.e. x € Q and Vy,u € R?,

then the equation

(3.10) Z—i(x,gj(x), )+ ¢(x)=0

has a unique solution t = 5(x) for every x € Q. The function 5 : Q — R is continuous
and is related to @ by the formula

(3.11) U(x) = Projia(z) p(x)(5(2)) = max{min{3(z), $(z)}, a(x)}.

Moreover, if o, 3 are contained in C(S)), then @ belongs to C(S2), too. Finally, if I s
CH1, (A3) holds, ¢ > n is taken in the assumptions (A2) and (A6), o, 3 € C*1(Q),
and for every M > 0 there exists a constant Cr, ar > 0 such that

oL oL
(3.12) %(xg,y,u) - %(xl,y,u) < Cpmlze — x| Yo, € Q and V|yl, Ju| < M,

then 5,u € C*H(Q).
Proof. Given x € 2, let us define the function g : R — R by

)

9(t) = 5 (@,5(2),t) + o(2).
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Then g is of class C! and from (3.9) we know that it is strictly increasing and

lim ¢(t) = —oco and lim g(t) = +oo.

t——o0 t——+o0

Therefore, there exists a unique element ¢ € R such that g(f) = 0.
Taking d as defined by (3.7) and using (3.6) along with the strict monotonicity of
(OL/0u) with respect to the third variable, we obtain

if d(z) > 0, then a(x)
if d(z) <0, then 3()
if d(z) = 0, then u(x)

u(z) > 5(z),
u(z)

5(z),

VATV
—~

>
<

(),

which implies (3.11).
Let us prove that 5§ is a bounded function. By using the mean value theorem
along with (3.8), (3.9), and (3.10), we get

0L oL

Adls(o)] < | GE o301, 5(0) = G210, 0) = o) + G o 5(0),0)]
and hence
5(0)] < - me (o) + G 5(0).0)] < o0

The continuity of 5 at every point 2 € Q follows easily from the continuity of 4 and
(OL/0u) by using the inequality

Asls(@) = 5()| < | =, 5(0!), 5(a)) — oo la), 5"
313) < lole) - ol +| G690, 5(0) - SE o p(o)5(0)).

If o, 8 € C(), then the identity (3.11) and the continuity of 5 imply the conti-
nuity of % in Q.

Finally, if I is C1'! and (A3) and (A6) hold with ¢ > n, then §,p € W29(Q) C
C%1(Q). Then we can get from (3.13), the boundedness of 5, and (3.12) that 5 €
C%1(Q). Once again, (3.11) allows us to conclude that 4 € C%1({), assuming that «
and 8 are also Lipschitz in Q. Indeed, it is enough to realize that

|a(w2) — a(21)] < max{|B(w2) — Bla1)], |a(we) — alz1)], [5(w2) — 5(1)[}

S Ina,X{Lﬁ, La, L§}|$2 - $1|7

where Lg, Lo, and Lz are the Lipschitz constants of «, 3, and 5, respectively. d

4. Pontryagin’s principle. The goal of this section is to derive the Pontryagin
principle satisfied by a local solution of (P). We need this principle for our second-
order analysis. There is already an extensive list of contributions about Pontryagin’s
principle, but none of them was devoted to quasilinear equations of nonmonotone type.
This lack of monotonicity requires an adaptation of the usual proofs to overcome this
difficulty. For this purpose, we will make the following assumption.
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(A7) L:Qx(RxR)— Risa Carathéodory function of class C* with respect to
the second variable and, for all M > 0, there exists a function ¢, € LI(Q2),

with ¢ > pn/(p + n), such that
oL
a—(x,y,u) < ¢p(x) for ae. z € Q, |u| < M, and |y] < M.

Y

Associated with the control problem (P), we define the Hamiltonian as usual by

H(a:,y,u, (,0) = L(a:,y,u) + (p[u - f(a:,y)]

The Pontryagin principle is formulated as follows.

THEOREM 4.1. Let @ be a local solution of (P). We assume that a : Q x R +— R is
continuous, I' is of class C1, and (A1), (A2), (A4), and (A7) hold. Then there exists
@ € WyP(Q) satisfying (3.4) and

(4.1) H(z,g(x),u(z),p(x)) = : I(ni)nﬁ ( )]H(x,g(x),s,@(x)) for a.e. © €,
s€laey (x),0e4 (T

where
ae, () = max{a(x), u(x) —ea} and Be,(z) = min{f(x),a(x) +ea},

eaz > 0 is the radius of the L™ () ball where J achieves the minimum value at @
among all feasible controls.

Relation (4.1) is an immediate consequence of (3.5) if L is convex with respect to
the third variable, but this assumption is not made in the above theorem. To prove
(4.1), we will use the following lemma whose proof can be found in [13, Lemma 4.3].

LEMMA 4.2. For every 0 < p < 1, there exists a sequence of Lebesgue measurable
sets { E}72, C 2 such that

1
(4.2) |Ex| = p|Q and =xg, =1 in L®(Q) weakly”",
p

where | - | denotes the Lebesgue measure.

PROPOSITION 4.3. Under the assumptions of Theorem 4.1, for any u € L>()
there exist a number 0 < p < 1 and measurable sets E, C Q, with |E,| = p|Q| for all
0 < p < p, that have the following properties: If we define

[ ulz) ifreQ\Ey,
up(w) = { u(zr) ifxe kB,

then
_ 1
(4.3) Yp =+ pz+ 7, g%;nrpuwg,pm) -0,
_ 1
(4.4) J(up) = J(u) + p2° +r), gli% ;|7"2| =0

hold true, where § and y, are the states associated to @ and u,, respectively, z is the
unique element of WOLP(Q) satisfying the linearized equation

. ~ da, 1 of, _ .
4. — - =y — QO
(4.5) div |a(z,§)Vz + 3y (z,9)2Vy| + 3y (,§)z=u—1u 1inQ,
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and

o) 2= [ {‘Z—j@,y(x),u(x))z(x)+L<x,y<x>,u<x>>—L(x,yw),u(x»}dx.

Proof. Let us define the function g € L'(Q2) by

9(x) = L(z,y(x), u(z)) — L(z, y(z), u(z)).

Given p € (0,1), we take a sequence {E}72, as in Lemma 4.2. Since L*°(Q) is
compactly embedded in W~1?(Q), there exists k, such that

[ (- ) sl + | (1 2o ) @

Let us denote £, = Ej,. Let us introduce z, = (y, — 9)/p. By subtracting the
equations satisfied by y, and y and dividing by p we get

(4.7)

<p Vk>k,
W-17(Q)

—div |:a(x7y)vzp + a(xayp) - a(ﬁag) vyp:| + f(xayp)p_ f(xag) upp_ u in Q.

Now setting

1

ola) = [ g—;@,m 0y, (x) — () do,
1

o) = [ g—iu,y(w 6y, (x) — g(x))) db

we deduce from the above identity

. _ 1 .
(4.8) —div [a(z, §)Vz, + ap(x)2, VY| + folx)2, = ;XEp (u—1a) in Q.
Let us define T, T, : Wy P (Q) — W~1P(Q) by

0 0
T¢ = ~div |a(e.3)VE + 5o (@ 0)E Vi | + 5—5@:, DE.
T,¢ = —div [a(z,§)VE + a,(2)€ Vy,| + fo(2)E.

Since y, — ¥ in W,y P() € C(Q), we deduce from our assumptions on a and f that
da, _ of _ . . &
(4.9) ay(z) — 8—(x,y(x)) and f,(x) — a—(x,y(x)) uniformly in Q,
Y Y
and consequently
1T =Tl cower ), w-rwy < C {Iyp = llwrr

(410)  tap(e) - §—Z<x,g<x»nc@ 1) — g—iu,y(xm(m} ~0.
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Since T is an isomorphism, by taking p small enough, we have that 7}, is also an
isomorphism and 7,' — T~ in L(W=1P(Q), WP (Q)) too. Taking into account
(4.7), we obtain

|z — zp||W01,p(Q) = HT_l(u — 1) — Tp_1 {;XEP (u— @)

S ‘

_ 1 _ _ _ _
(1= ) ema| e - Ol
P Wy P ()

cel(i- by

W-12(0)
T = T pwpr oy w-ro g 1t = @l w0 — 0.

Now it is enough to notice that, by definition of 2, and the convergence z, — z in
WP (), we have

5p:u_z_>0’
p

and hence y, = § + pz + pe,. By putting r, = pe, we get (4.3). Finally, let us prove
(4.4). Similarly to the definitions of a, and f,, we introduce

~[toL

Ly(x) = ; 9y (D@ + 0y, (@) = §(z)), u,(x) db.

Then we have
J(up) — J(u) _/ L(z, yp(2), up()) — L(2,5(2), u(z)) ,
P Q P
_ [ Hetple) ole)) = L u,(2) o,
Q P

+/ Lz, y(2), up(2)) — L(z,§(2), u(z)) ,
Q P

T

X

; g—j(%?(x)ﬂ(w))zw) dx + /Q[L(a:, y(x), u(@)) — L(z, y(z), u(z)))dz = 2°,
which implies (4.4). O

Proof of Theorem 4.1. Since 4 is a local solution of (P), there exists e > 0
such that J achieves the minimum at @ among all feasible controls of B Leo (@) (U, €q)-
Let us take u € Bre(q)(t,eq) with a(z) < u(x) < B(z) ae. z € Q. Following
Proposition 4.3, we consider the sets {E,},50} such that (4.3) and (4.4) hold. Then
Uy € Breo(q)(t,eq) and therefore (4.4) leads to

0 < lim M = 50
PN\0 P
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By using (4.5) and the adjoint state given by (3.4), we get from the previous inequality
after an integration by parts

0< ; {p(2)(u(z) —u(z)) + Lz, y(z), u(z)) — L(z,y(x), u(r))} dz

(4.11) =/Q[H($7§($),U($),¢($))—H(%?(ﬁ?),a(ﬂf%@(%))]dﬂ%

Since u is an arbitrary feasible control in the ball By q)(u,€g), taking into account
the definitions of ., and [, given in the statement of Theorem 4.1, we deduce
from (4.11)

(4.12) /H x,y(z),u(x), p(z))de =  min / [H(z,g(x),u(z), p(x)) dz.

Qey <u<ﬁEu

To conclude the proof, we will show that (4.12) implies (4.1). Let the sequence {q;}52,
exhaust the rational numbers contained in [0, 1]. For every j we set u; = gja., + (1 —
¢;)Bes- Then every function u; belongs to L>®(Q) and a., (z) < u;(x) < Be,(x) for
every = € ). Now we introduce functions Fp, F} :  — R by

Fo(l‘) = H(x,g(x),a(x),@(x)) and Fj(x) = H(l‘,ﬂ($),1,bj($), @(ZIJ)), Jj= 1,...,00

Associated to these integrable functions we introduce the set of Lebesgue regular

points Eg and {£;}32;, which are known to satisfy | Ej| = [ for j = 0,1,..., 00, and
4.13 lim x)dx = Fj(xo) Vzog € Ej, j=0,1,...,00,
w19 e [ B@ = ) e < B g

where B;(zg) is the Euclidean ball in R" of center zy and radius r. Let us set
E = N32,E;. Then it is obvious that |E| = || and (4.13) holds for every xg € E.
Given xg € E and r > 0 we define

) — 11(33) ifajfBT($0),
i ( )—{ uj(z) ifz € Bp(xg), j=1,...,00.

From (4.12) and the above definition we deduce

/H ), (), 3(z) M</me>w4>@»d

and therefore
1
|Br(z0)| /B, (20)
1
= B (o)l /5, (20)

and passing to the limit when r — 0 we get

H(xo,y(x0), u(x0), p(0)) < H (0, y(w0), uj(0), P(20)).

Since the function s — H(zo,y(z0), s, ¢(z0)) is continuous and {u;(z0)}52, is dense
in [ae, (20), Bz, (20)], we get

H(xo,9(x0), u(x0), p(w0)) < H(z0,Y(0), 8, p(0)) Vs € [ac, (20), Be, (0)]-
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Finally, (4.1) follows from the previous inequality and the fact that ¢ is an arbitrary
point of E. 0

Remark 4.4. If we consider that @ is a global solution or even a local solution of
(P) in the sense of the LP(Q) topology, then (4.1) holds with ez = 0. More precisely

H(z, y(x), u(z), p(z)) = . H(z,y(x),s,p(x)) for ae z e

The proof is the same. The only point we have to address is that the functions u,
defined in Proposition 4.3 corresponding to feasible controls u satisfy

ltp — @l oy = ( /
FE

<18 = al| oo (o [P P

1/p
lu(z) — a(x)[? dw) < lu — @l poo o) | B, |7

P

Therefore for p small enough the functions u, are in the corresponding ball of L?(2)
where % is the minimum.

5. Second-order optimality conditions. The goal of this section is to prove
first necessary and next sufficient second-order optimality conditions. For it we will
assume that (A1), (A2), (A4), and (A6) hold, the function a : Q@ x R — R is
continuous, and I is of class C'.

If @ is a feasible control for problem (P) and there exists ¢ € W, ** () satisfying
(3.4) and (3.5), then we introduce the cone of critical directions

>0 ifa(z) =alz)
(5.1) Ca=he Q) :hx)=¢ <0 ifu(r)=p(x) foraec zcQy,
=0 ifd(z)#0

where d is defined by (3.7). In the previous section, we introduced the Hamiltonian
H associated to the control problem. It is easy to check that

OH

S (@ 9(@), 1), §(z)) = d(@).

In what follows, we will use the notation

2
(@) = L 2, 5(),(0), @(0)) and Hu() = S0 (0, (), 7(a), 3(a).

Now we prove the necessary second-order optimality conditions.
THEOREM 5.1. Let us assume that @ is a local solution of (P). Then the following
inequalities hold:
(5.2) J"(u)h? >0 Vh € Cy,
' Hou(z) >0 for a.a. x with H,(x) = 0.

Proof. Let us take h € Cy arbitrarily and 0 < € < €5. Then we define

he () = { 0 if a(z) <a(r) <alz)+eor Bz)—e<u(zr) < f(z),

max{— % , min{—i—% ,h(z)}} otherwise.
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It is clear that h. € Cy N L*(Q2) and h. — h in L?(Q). Moreover, we have
a(z) < a(z) + the(z) < B(x) forae z€Q and 0 <t < e
Therefore, if we define g. : [0,2] — R by g-(t) = J(@ + th.), we have

9:(0) =, min, 9e ().

From our assumptions it is clear that g. is a C? function. From the fact h. € Cyz we
deduce that

g.(0) = J'(@)h, = /Q Ao (2)ho(z) da = 0.

Now, an elementary calculus and Theorem 3.2 yield

1 " 2 82 82 JEE—
0< 20 = "2 = [ { G2 + 20 (@ a)nh
82L _0? _
(5.3) 8 - (7,9, 1 u)h? — @a—y‘é(x,y)zz
0 0?
-Ve@- [ aZ(x Y)zn.Vzn, + 9 Z(x y)z,%EVy}} dx

where z,. € Hj(Q) is the solution of (2.16) corresponding to v = h.. Moreover,
the convergence h. — h in L?(2) implies that z;, — 2, in H}(Q), where 2, is the
solution of (2.16) for v = h; see Remark 2.8. Now we estimate the terms of (5.3).
Arguing as in Remark 2.8, and taking into account the embedding H{ (£2) C L Q)
and assumption (A4), we get

/ Oa
Q

Vo(a) - (@, 9)zn. (2)Van, (2)
Y
Analogously we have

J

The rest of the terms in the integral (5.3) are easy to estimate with the help of
assumptions (A4) and (A6). Therefore, we can pass to the limit in (5.3) and deduce

dr < Dum||[VE| Lol 2n. || 2p_

2(Q)H zh. |2 ()

< CDM @l ey l20. @)

0%a
V() - 9 —— (2, 9)2;;_(2)Vy(x)

dr < Dy || Vollooyllen|® 2 IVillLeo)
LP=-2(Q)

= ODM”@”W(}vp(Q)ths (33)H§{3(9)||?3HW01’P(Q)-

0 < lim J"()h? = J" (u)h?.
E—

This proves the first inequality of (5.2). Finally, the second inequality is an obvious
consequence of (4.1). Indeed, it is a standard conclusion of (4.1) that
>0 ifa(z) = alz),
H,(x) =4 <0 ifa(x)=p5(x), for a.e. x € Q2
=0 if a(z) <a(x) < B(x)
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and
Hyu(x) >0 if Hy(z) =0 for ae. z € Q. O
Let us consider the Lagrangian function associated to the control problem (P),
L:L=(Q) x WyP(Q) x WP (Q) — R,

given by the expression
L(u,y, ) / {olu = f(z,y)] —alz,y)Ve - Vy} do

- / {H(z,y(x), u(@). o(z)) — ale, y(x)) Velz) - Vy(a)} dr.
where we denote
j(yvu)Z/QL(a:,y(a:),u(a:))dx.

Defining H,, H,,, and H,, similarly to H, and H,,, after obvious modifications, we
can write the first- and second-order derivatives of £ with respect to (y,u) as follows:

Dy £(0, 7. 8) (2, h) = /Q (H,(@)=(2) + Ha(2)h(z)} de

_ _ da, _ _
- [ Vet {a<x,y<x>>vZ<a:> n a—y(x,ym)z(:fc)w(m)} dr.

If we assume that z is the solution of (2.16) associated to v = h, then by using the
adjoint state (3.4) we get

(5.4) Dy £, 7, 3) (2, 1) = /Q Ao (2)h(z) dz

Moreover, we find

D2, L1, 5, 5)( / (H,,(2)2(x) + 28, (2)2(2)h(z) + Hou(@)h (@)} da

_ a _ Oa B
- [ veta)- {@<x,y<x>>z2<x>v (@) + 255w, y(x))z(sz(x)}dx.

Once again if we take z as the solution of (2.16) associated to v = h, we deduce from
(3.2) that

(5.5) J"(@h? = D2, , L(u,5,0)(=, h)>.
Therefore the necessary optimality conditions (5.2) can be written as follows:

(5.6) D¢, u)ﬁ(u 7,8)(z,h)* >0 Y(z,h) € Hy(Q) x Cy satisfying (2.16),
' Hyu(z) >0 if Hy(x) =0 forae. x€Q.

We finish this section by establishing the sufficient second-order optimality con-
ditions.
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THEOREM 5.2. Let us assume that @ is a feasible control for the problem (P) and
that there exists @ € Wy P(Q) satisfying (3.4) and (3.5). If, in addition, there exist
w>0 and T > 0 such that

J"(@)h?* >0 Vhe Cy\{(0,0)},

(5.7) Hyw(x) > p if |Hy(z)| <71 for ae. z € Q,

then there exist € > 0 and § > 0 such that
.0 _
(5.8) J(a) + 5||u — al|72 ) < J(u)

for every feasible control u € L>°(Q) for (P) such that ||u — | (o) < €.

Remark 5.3. 1. If we compare the first inequality of (5.7) with the analogous
inequality of (5.2), we see that the gap is minimal between the necessary and sufficient
conditions, as is usual in finite dimensions. However, the second inequality of (5.7)
is stronger than the corresponding one of (5.2). This is a consequence of the infinite
number of constraints on the control: one constraint for every point of €. In general
we cannot take 7 = 0. The reader is referred to Dunn [17] for a simple example
proving the impossibility of taking 7 = 0.

2. Let us recall that Hy,(z) = (0*L/0u?)(z,y(z), i(x)). Therefore, the second
condition of (5.7) is satisfied if we assume that the second derivative of L with respect
to u is strictly positive. A standard example is given by the function

N
L(z,y,u) = Lo(z,y) + 5u2, with N > 0.

3. The sufficient optimality conditions (5.7) can be written as follows:

??y)u)ﬁ(a,y,@)(zlh)z >0 VY(z,h) € (H}Q) x Ca)\ {(0,0)} verifying (2.16),
Hyy(z) > p if |Hy(z)] <7 for a.e. z € Q.

Once again this is an obvious consequence of (5.5).

Proof.

Step 1: Preparations. We will argue by contradiction. Let us assume that there
exists a sequence of feasible controls for (P), {ur}72; C L>°(£), such that

1 1
(59) HUk — aHLoo(Q) < E and J(ﬂ) + EHUk — ﬂ”%2(9) > J(Uk)
Let us define

1
(5.10) yx = G(uk) = yuy,, ¥ = G(4) = ya, pr = |[ur—ul12(0) and v; = E(uk_ﬂ)'

Then

(5.11) klgrolo lyx — ngWOLp(Q) =0, klgrolo pr =0 and [lvg|z2@) =1 Vk.
By taking a subsequence, if necessary, we can assume that vy — v weakly in L?().
We will prove that v € Cy. Next, we will use (5.7). In this process we will need the

following result:

(5.12) lim i(yk —y) =z in Hy(Q),
k—oo Pk
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where z € H}(Q) is the solution of (2.16) corresponding to the state §. Let us prove
it. We will set 2z = (yx — ¥)/pr- By subtracting the state equations satisfied by
(yk,ur) and (g,u), dividing by pg, and applying the mean value theorem, we get
(5.13)

. 0 B B B 0 _ _
~div [am,ywm + 2w+ Oul y>>zkw} gt - e = o

Taking into account that z; € Wy (), we can multiply (5.13) by z, and make an
integration by parts to get, with the aid of (2.1) and (5.11), that

aO/ |Vzk(x)|2da:§/a(a:,yk)|Vzk(a:)|2dx
Q Q

0 15]
= / Uz — —f(587§+ vie(yi — 7))z — —a(fmg +0r(yr — 9))2k V- Vi p dz
Q dy dy

< okllzz@llzkll L2 @) + C||Zk|\L% IVllL20) [ V2rl L2 )

(Q)|

We have used that the term —0f/dy 27 is nonpositive. Therefore,
Vel < O {1+ Dl b

As in the proof of Theorem 2.7, {z;}7° ; must be bounded in Lo (Q); otherwise we
could obtain a nonzero solution of (2.16). Then the above inequality leads to the
boundedness of {z}72; in Hg (). Therefore we can extract a subsequence, denoted

in the same way, such that z;, — z weakly in Hg (£2) and strongly in Lvs (©). Thanks
to this convergence and to (5.10), we get the strong convergences in L?(Q):

13) 0 0 0
G010 ~0)5V5 — 5 (2.9)2Vg and 8—§<x,y+uk(yk—g>>zk - 8—§<x,y>z.

Therefore we can pass to the limit in (5.13) and deduce

(5.14) —div [a(x,y)Vz + Z—Z(x, y)sz} + g—;(x, g)z =v.

Moreover by using (5.13), (5.14), and the uniform convergence y, — 7 it is easy to
prove that

/a(a:,gj)|Vzk|2dx—>/a(a:,gj)|Vz|2da:.
Q Q

This fact, along with the weak convergence of {2;}3° | in H{ (), implies the strong
convergence zj, — z in Hg (€2).

Step 2: v € Cy. Since a(z) < ug(z) < B(x) a.e., we have that vi(z) > 0 if
u(x) = a(zr) and vg(x) < 0 if @(z) = B(x) a.e. Since the set of functions satisfying
these sign conditions is convex and closed in L?(Q), then it is weakly closed, and
therefore the weak limit v of {v,}7°, satisfies the sign condition too. It remains to

prove that v(z) = 0 for a.a.  such that d(z) # 0. From (5.9), by using the mean
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value theorem we obtain

PE_ L J(ux) = J(u)
o kpkHuk ul|72(q) > o

OL . _

7y — (2, 7+ Ok(yx — ), 0 + O (ur, — 0))2zx dx

+/ 8—(96733 + 0k (yr — §), u + O (ug — ))vy dx.
Q u

Taking limits in both sides of the inequality, using (3.4), (5.14), the already proved
convergence 2 — z in Hg(2), and integrating by parts, we get

oL oL
- - oL,
0/{8y( TR +3u(w,y7U)v}dw

- [{o+ Sewnn}oie= [ dwpwas = [ i) i

the last equality being a consequence of proved signs for v and (3.6). The previous
inequality implies that |d(x)v(z)| = 0 holds a.e., and hence v(z) = 0 if d(x) # 0, as
we wanted to prove.

Step 3: v = 0. The next step consists of proving that v does not satisfy the first
condition of (5.7). This will lead to the identity v = 0. By using (5.9), the definition
of £, and the fact that (7, 4) and (yg, ux) satisfy the state equation, we get

1
L(ur, g @) = T (yrs we) < T (§,3) + llwr — 72 )

1
(5.15) = L(a,5,8) + 7 lwe = @720
Performing a Taylor expansion up to the second order, we obtain
L(uk,Yi, @) = L(T+ prvi, ¥+ przr, @) = L(0, Y, @) + prD(y,u) L(; §, §) 2k, Vi)
Py

_|—7ICD(2y,u)‘C(ﬂ =+ Hkpk’Uk, y+ okpkzkv @)(Zk’ Uk)z'
This equality, along with (5.15) and (5.9), leads to
Pk
k )
where we have put & = §+ Orprzr and wy, = u+ O prvk. It is obvious that £ — 7 in

WO1 P(Q) and wg, — @ in L°°(). Dividing the previous inequality by p7 and taking
into account the expressions obtained for the derivatives of £, we obtain

1
ka(y;u,)‘C(ﬂvga @)(Zk,vk) + = D2 u)‘C(wkafka 7)(2]@,1)]@)2 < E”uk - aH%%Q) <

1

o Hy(x)vp(x) dx + = /{ —|—2H (@) 2k (v (x) + HE, (2)vi ()} do
2

(5.16) —%/Q{g—;(x,ék)szzk—i—g—y(;(x,ﬁk)z,%VSk}Vgodx< %,

where

HE (2) = Hyy (@, & (2), wi (@), §(2)),
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with analogous definitions for H}, and H},. It is easy to check that

for a.e. z € Q

{ (Hy, (x), Hy, (2), Hy, (2)) = (Hyy(2), Hyu(2), Huu ()
| Hy, (@)] + [Hy, ()] + |H}, (2)] < C

for some constant C' < co. We also have the following convergence properties:

da da
a9y ﬁ(x 9)zVep, =12,

Vzry — Vz and 2z, V&, — zV7y.

93 T &R AV G = in L2(Q)".

Using these properties we can pass to the limit in (5.16) as follows:

lilzrisotip{pk/H x)vg(z)dr + = / d;v}
= /Q [y (2)22(2) + 2Hy () 2(2)0()] do

Oa 0%a
1 —= ) <0.
(5.17) 5 /Q {ay(x 7)zVz + — RYE 5 (7, 7)2 Vy} Vodx <0

The rest of the proof is devoted to verifying that the above upper limit is bounded
from below by 3 [ Huuv? dx. If this is proved, then from (5.17) and (5.5) we deduce
that J” (u)v? = Dy, L1, 7,9)(z, v)?2 < 0. According to (5.7) this is possible only
if v = 0. The proot of the mentioned lower estimate is quite technical, which makes
an important difference with respect to the finite dimension. In our framework the
difficulty is due to the fact that we only have a weak convergence vy, — v. To overcome
this difficulty we use a convexity argument. In order to achieve this goal the essential
tool is the second condition of (5.7).

From (A4) and (A6) we get

| Huw — Hyll o) < C {110 — vkl (o) + 18— urll =0y } — 0.

Using this property, ||vg|lr2(0) = 1, and the identity H.,(z)vp(z) = |Hy(2)||vg ()], we

obtain
: 1 7 1 k 2
limsup — | Hy(x)vg(z)de + = | H,,(x)vg(z)dz
k—oo Pk JQ 2 Q

- 1 . 1 [ -
Zhgsogp{ﬁ /Q | Hu(@)lJok ()] dz + 5 /Q Hypy ()07 (2) dx}
im su i 7 () e (2 l* 02 (z .

Zlk*mp{pk[{m(w)m} ['H“( M@} 5 Hu(z)eid )} d

1 _
5.18 - Hyo ()02 (2) da ,
(5.18) +2/{|Hu(w)<7} ()0} (a) }

where 7 is given by (5.7).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/05/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

716 EDUARDO CASAS AND FREDI TROLTZSCH

Remembering that py vk (o) = [[ur — @ L) < 1/k, we deduce the existence
of an integer ko > 0 such that

Hﬁuu||L°°(Q)pkHUk||L°°(Q) < ||HuuHL°°(Q)

<1 Vk > ko,
T kTt

and therefore

l|vk(x)| > || Huull L () vi(z) for ae. z € Q Vk > ko.
Pk

Then we have, with the help of the second condition of (5.7),

1 _ 1= 1 _
lim sup —/ [|Hu||vk| + —Huuvi} dx + —/ Hv? dx
k— o0 Pk {|Hu\>7'} 2 2 {‘Hu‘ST}

_ 1_ 1 =
> lim sup {/ ) |:||Huu|Loo(Q) + 3 uu] vidr + 5/ ) H,uv} d;v}
k—o0 {|Hu\>7} {|Hu‘§7'}
_ 1_
> / ~ |:||Huu|Loo(Q) + 5 uu:| ’U2 dx
{|Hu\>7}

1 _ 1 _
+—/ ) Hyv? de > _/HuuUQd:C-
2 J{ia. <7} 2 Ja

Combining (5.18) and (5.19) we get the sought-after lower estimate.
Step 4: Final contradiction. Using that ||vk|r2(q) = 1 along with (5.16), (5.17),
(5.18), (5.19), the second condition of (5.7), and the fact that v = 0, we deduce

_ 1 1 —
0 > lim sup {/ ) |:||Huu||Loo(Q) + —Huu] v? dx + —/ ) H,,v} da:}
k—o0 {|Hu\>7} 2 2 {|Hu\§7}

Houull
Zlimsup{MiL(Q)/ ) v,%dx—FE/ ) v,%dx}
fe— 00 2 {17.>7} 2 J{ma, <}

(5.19)

min{ || H. < (Q)5 min{ || H. < ()5
> I Huull L (Q) ©} limsup/ Uﬁ de — I Huull Q) w} >0,
2 k—o0 Q 2
providing the contradiction that we were looking for. O

We finish this section by formulating a different version of the sufficient second-
order optimality conditions which is equivalent to (5.7); see [9, Theorem 4.4] for the
proof of this equivalence. This formulation is very useful for numerical purposes.

THEOREM 5.4. Let us assume that u is a feasible control for problem (P). We
also assume that there exists € W, P(Q) satisfying (3.4) and (3.5). Then (5.7) holds
if and only if there exist 6,0 > 0 such that

(5.20) J"(@)h? > 6||h||72q) Vhe CZ,
where
>0 if a(z)=az
CI={hel?Q):h(x)=<{ <0 if a(z)=p(x) forae x€Q
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