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ON ZERO-SUM STOCHASTIC DIFFERENTIAL GAMES WITH

JUMP-DIFFUSION DRIVEN STATE: A VISCOSITY SOLUTION

FRAMEWORK

IMRAN H. BISWAS

Abstract. A zero-sum differential game with controlled jump-diffusion driven
state is considered, and studied using a combination of dynamic programming
and viscosity solution techniques. We prove, under certain conditions, that the
value of the game exists and is the unique viscosity solution of a fully nonlinear
integro-partial differential equation. In addition, we formulate and prove a verifi-
cation theorem for such games within the viscosity solution framework for nonlocal
equations.

1. Introduction

In this article we analyze a two-player zero-sum stochastic differential game (SDG
henceforth) where the state is governed by controlled jump-diffusions. For problems
related to controlled degenerate diffusions, viscosity solution setup provides an ap-
propriate framework for analysis. We mention [16, 17, 19, 34] to name a few of the
available studies addressing this connection. In one such article [16], the authors used
a combination of viscosity solution and dynamic programming techniques to pioneer
a comprehensive study of zero-sum SDG. We extend these results to jump-diffusion
driven games and in addition, we use viscosity solution framework for nonlocal equa-
tions to formulate and prove a verification theorem, which is influenced by similar
results in [19] related to optimal control problems for diffusions.

For a fixed positive constant T and t ∈ [0, T ), let
(

Ωt,Ft, Pt,Ft,·

)

be a filtered
probability space satisfying usual hypotheses. The SDG consists of the following
controlled stochastic dynamics, defined on

(

Ωt,Ft, Pt,Ft,·

)

,

dX(s) =b(s,X(s); Y (s), Z(s))ds+ σ(s,X(s); Y (s), Z(s))dW (s)(1.1)

+

∫

E

η(s,X(s−); Y (s), Z(s);w)Ñ(ds, dw)

where s ∈ (t, T ]; with the initial condition

X(t) = x (∈ R
d),
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and the pay-off functional

J(t, x; Y, Z) = Et,x
[

∫ T

t

f(s,X(s); Y (s), Z(s))ds+ g
(

X(T )
)

]

.(1.2)

The σ-algebra Ft consists of subsets of Ωt, Pt is a probability measure on
(

Ωt,Ft

)

,

and Ft,· is the shorthand notation for a filtration
(

Ft,s

)

t≤s≤T
. Furthermore, E =

Rm\{0} for a positive integer m and W (s) is a k-dimensional Brownian motion
on the same probability space. σ’s are d × k matrices, b’s and η’s are Rd valued
functions. N(ds, dw) is a Poisson random measure on E with intensity measure ν(dw)
and Ñ(ds, dw) = N(ds, dw) − ν(dw)ds; Y (·) and Z(·) are two predictable control
processes with values in Y and Z respectively. The sets Y and Z are two compact
metric spaces, respectively representing the control sets of the two players I and II.
Et,x[·] means the expected value of the quantity inside the brackets, and t, x at the
superscript signifies that the state process X(s) starts at time t from the point x. The
precise assumptions on σ, b, η, f, g will be stated later but roughly speaking, these
are Lipschitz continuous in the state-variable and the possibly singular (at origin)
Radon measure ν, the so-called Lévy measure, satisfies usual growth restriction. In
the zero-sum scenario we conventionalize player I to be the minimizing player and
player II to be the maximizing player. Before the players could start playing the
game additional set of rules have to be specified, which we describe in the next
section. Given that the players agree on this set of rules, a value of the game could
then be defined.

In the deterministic case (σ = η = 0), it is shown under Isaacs condition that
the value of the game exists and it is the unique viscosity solution of the un-
derlying Bellman-Isaacs equation ( see [6, 15, 32]). In the stochastic case with
η = 0 (pure diffusion), the study of SDGs prior to [16] was mainly restricted to
problems where state is governed by non-degenerate diffusions and value functions
were linked to classical solutions of second order equations (cf. [7, 18]). In [16],
Fleming & Souganidis adressed the degenerate case and proved under similar Isaacs
condition that the value of the game exists and is the unique viscosity solution of
the underlying Isaacs equation which is fully nonlinear, second order, and possibly
degenerate.

In recent years, the use of jump-diffusions to realistically model price dynamics in a
financial market is becoming increasingly popular (see [11] and references therein). In
such market models, the activities of market participants could often be formulated
as differential games, where the states follow controlled jump-diffusions . We refer
to [27, 26] for more in this direction. These recent developments mainly focus on
proving verification theorems in terms smooth solutions of underlying Bellman-Isaacs
equations. With this attempt here, we extend the methodology of [16] to look beyond
the smooth solution setup and provide a rigorous and robust analysis for zero-sum
SDGs related to controlled jump-diffusions.

From an intuitive point of view, Bellman-Isaacs equation for the SDG (1.1)-(1.2)
is a fully nonlinear integro-partial differential equation of the type

ut + F (t, x,Du(t, x), D2u(t, x), u(t, ·)) = 0 in [0, T )× R
d,(1.3)
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along with the terminal condition

u(T, x) = g(x) x ∈ R
d.(1.4)

The term u(t, ·) is of special importance to the present article as it represents the
nonlocal-ness of the equation, which results directly from the jumps in the dynamics
(1.1). In our context, the equation (1.3) would primarily assume the two following
forms

ut +H−(t, x,Du,D2u, u(t, ·)) = 0 in [0, T )× R
d,(1.5)

ut +H+(t, x,Du,D2u, u(t, ·)) = 0 in [0, T )× R
d,(1.6)

where, for (q, x, t, A) ∈ Rd × Rd × [0, T ]× Sd and a smooth function ϕ,

H−(t, x, q, A, ϕ(t, ·)) = sup
z∈Z

inf
y∈Y

[

L(t, x, q, A; y, z) + J (t, x; y, z)ϕ
]

H+(t, x, q, A, ϕ(t, ·)) := inf
y∈Y

sup
z∈Z

[

L(s, x, q, A; y, z) + J (t, x; y, z)ϕ
]

and

L(t, x, q, A; y, z) :=Tr(a(t, x; y, z).A) + b(t, x; y, z).p + f(t, x; y, z),

J (t, x; y, z)ϕ :=

∫

E

(

ϕ(t, x+ η(t, x, ; y, z;w))− ϕ(t, x)

− η(t, x; y, z;w).Dϕ(t, x)
)

ν(dw)

with a = 1
2
σσT and Sd is the set of all symmetric d× d matrices.

The fully nonlinear integro-PDEs of type (1.5) or (1.6) are called degenerate for
the following reasons. The matrices a’s are assumed to be merely nonnegative def-
inite and may vanish at some points. Similarly, the jump vectors η’s may as well
vanish. Consequently, there are no regularizing effects in these equations coming
from the second order operator (“Laplacian smoothing”) or from the integral oper-
ator (“fractional Laplacian smoothing”). As a result, the equations (1.3)-(1.4) will
in general not have classical solutions, and a suitable notion of viscosity solutions is
needed. In the past few years, there have been some efforts to extend the theory of
viscosity solution to the integro-partial differential equations [1, 3, 4, 5, 23, 24]. This
theory is not as developed as its (pure) PDE counterpart, but the available results
suffice to ensure the existence, uniqueness, comparison principles, and some regular-
ity estimates. Next, we mention a few points describing the technical differences in
our problem with the existing literature.

In [16] the game problem is defined on the Wiener space C0

(

[t, T ] : Rd
)

and the
structural richness of this space plays a very crucial role in the analysis. When the
stochastic evolutions are driven by Lévy processes, the underlying sample space is
required to reflect that. In our view, the so-called Wiener-Poisson space would be
a proper choice for the underlying probability space space. Part of the subtlety for
our analysis of the SDG lies in justifying necessary technical assertions related to
the sample space.
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Classically, verification theorems (see [17] for ν = 0 and [25, 27] for jump-diffusions)
are formulated in terms of smooth solutions of the underlying Bellman-Isaacs equa-
tion and set up criterion for a set of controls for the players to be optimal. But, as
has already been pointed out, the Bellman-Isaacs equation does not have classical so-
lutions in general, solutions have to be interpreted in the viscosity sense. Therefore,
a verification criterion in terms of viscosity solutions will have wider applicability.
A verification theorem in the framework viscosity solutions for first order Bellman
equation first appeared in [35]. In the context of pure diffusions, a similar result
appeared in [36] for optimal control problems, but with some technical inconsisten-
cies, which was later corrected in [19, 20]. We follow the ideas from [19, 36], and
formulate a nonlocal version of this result for SDGs. Even when the jumps are ab-
sent, we point out that such a verification theorem is new for differential games. We
also mention that discontinuities of the sample paths and non-locality of the Isaacs
equation makes the problem more involved, and new techniques are employed to
overcome the added difficulties.

The rest of the paper is organized as follows: in Section 2 we state the full set
of assumptions, relevant technical details and state the main results. Sections 3 &
4 respectively contains the proof of dynamic programming principle and verification
theorem.

2. Technical framework and the statements of the main results

We use the notations QT and Q̄T respectively for [0, T ) × Rd and [0, T ] × Rd.
For various constants depending on the data we mainly use N,K,C with/without
subscripts. For a bounded Lipschitz continuous function h(x) defined on R

d, its
Lipschitz norm |h|1 is defined as

|h|1 := sup
x∈Rd

|h(x)|+ sup
x,y∈Rd

|h(x)− h(y)|
|x− y| .

We denote the space of all h so that |h|1 < ∞ by W 1,∞(Rd) or sometimes only by
W 1,∞. We also define

C
1

2
,1

b (Q̄T ) :=
{

h(t, x) : sup
(t,x)∈Q̄T

|h(t, x)|+ sup
(t,x),(s,y)∈Q̄T

|h(t, x)− h(s, y)|
|t− s| 12 + |x− y|

<∞
}

.

Furthermore, |h(t, ·)|1 simply stands for | · |1 norm of h(t, x) as a function of x
alone with t being fixed. Let C1,2(QT ) be the space of ‘once in time’ and ‘twice
in space’ continuously differentiable functions. We denote the set of all upper and
lower semicontinuous functions on Q̄T respectively by USC(Q̄T ) and LSC(Q̄T ). A
subscript would mean polynomial growth at infinity, therefore the spaces USCp(Q̄T ),
LSCp(Q̄T ), C

1,2
p (QT ) contain the functions h respectively from USC(Q̄T ), LSC(Q̄T ),

C1,2(QT ) satisfying the growth condition

|h(x)| ≤ C(1 + |x|p) for all x ∈ R
d (uniformly in t if h depends on t).

We identify the spaces USC0(Q̄T ) and LSC0(Q̄T ) respectively with USCb(Q̄T ) and
LSCb(Q̄T ); the subscript ‘b’ signifies boundedness.

Now we list the precise set of assumptions.
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(A.1) The spaces Y and Z are compact metric spaces; the functions σ, f, b and η

are continuous both on Y and Z, uniformly with respect to (t, x) ∈ [0, T ]×Rd

and additionally with respect to w ∈ Rm for η.
(A.2) f, b, σ, η are bounded and continuous with respect to t (and w for η), uniformly

in other entries, and there exists a positive constant K such that
(

|f |1 + |b|1 + |σ|1
)

(t, ·; y, z) + |g|1 ≤ K,

uniformly in (t; y, z;w) and

|η(t, ·; y, z;w)|+ |η(t, ·; y, z;w)|1 ≤ Kmin(|w|, 1).
(A.3) In concurrence with (A.2), in this case the Lévy measure ν is a positive

Radon measure on E and satisfies
∫

E

min(|w|2, 1)ν(dw) <∞.(2.1)

Remark. The assumptions (A.1)-(A.3) are natural except for the boundedness con-
straint. However, it is possible to allow certain growth properties and the results of
this paper are still valid in a properly modified form. The jump vectors η can also
enjoy some polynomial growth at infinity in w, in which case the Lévy measure has
to have appropriate decay property at infinity.

2.1. Viscosity Solutions for Integro-PDEs. The notion of viscosity solution for
nonlocal equations ( such as (1.3)) could be defined in various ways (e.g. [2, 23]),
but it is not very hard to establish the equivalence. We use the following definition
from [23].

Definition 2.1. For F = H+ or H−, v ∈ USCp(Q̄T )(v ∈ LSCp(Q̄T )) is a viscosity
subsolution (supersolution) of (1.3) if for every (t, x) ∈ QT and φ ∈ C1,2

p (QT ) such
that (t, x) is a global maximum (global minimum) of v − φ,

φt + F (t, x,Dφ,D2φ, φ(t, ·)) ≥ 0(≤ 0).

We say that v is a viscosity solution of (1.3) if v is both a sub- and supersolution of
(1.3).

The following wellposedness theorem holds, a proof of which can be found in [23].

Theorem 2.1. Assume (A.1), (A.2) and (A.3). Then, for F = H+ or F = H−,
there exists unique viscosity solution u to the terminal value problem (1.3)-(1.4) and
a constant N depending only on d,K, T such that

|v| 1
2
,1 ≤ N.(2.2)

Furthermore, a comparison principle holds: If u and ū are bounded sub- and super-
solutions of (1.3)-(1.4) with F = H+ or H− and u(T, ·) ≤ ū(T, ·), then u ≤ ū in
Q̄T .

The case H+ = H− is of special interest to the present context. We formally say
that the Isaacs condition is satisfied if, for all (q, x, t, A) ∈ Rd ×Rd × [0, T ]× Sd and
for every smooth function ϕ,

H+(t, x, q, A, ϕ(t, ·)) = H−(t, x, q, A, ϕ(t, ·)).(2.3)
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2.2. The Canonical Sample Space. The structural properties of the underlying
probability space play an important role in dealing with the technical subtleties
involved in the game problem. Contrary to [16], there are jumps in the controlled
evolution and we find it convenient to follow [9, 21] and work in a canonical Wiener-
Poisson space which is described as follows.

For a positive constant T and 0 ≤ s < t ≤ T , let Ω1
s,t be the standard Wiener

space i.e. the set of all functions from [s, t] to Rd starting from 0 and topologized by
the sup-norm. We denote the corresponding Borel σ-algebra by B0

1 and let P 1
s,t be

the Wiener measure on
(

Ω1
s,t,B0

1

)

.

In addition, upon denoting Q∗
s,t = [s, t] ×

(

Rm\{0}
)

, let Ω2
s,t be the set of all

N∪{∞}-valued measures on (Q∗
s,t,B(Q∗

s,t)) where B(Q∗
s,t) is the usual Borel σ-algebra

of Q∗
s,t. We denote B0

2 to be the smallest σ-algebra over Ω2
s,t so that the mappings

q ∈ Ω2
s,t 7→ q(A) ∈ N ∪ {∞} are measurable for all A ∈ B(Q∗

s,t). Let the co-ordinate

random measure Ns,t be defined as Ns,t(q, A) = q(A) for all q ∈ Ω2
s,t, A ∈ B(Q∗

s,t) and

denote P 2
s,t to be the probability measure on (Ω2

s,t,B0
2) under which Ns,t is a Poisson

random measure with Lévy measure ν satisfying (A.3).
Next, for every 0 ≤ s < t ≤ T , we define Ωs,t ≡ Ω1

s,t × Ω2
s,t, Ps,t ≡ P 1

s,t ⊗ P 2
s,t and

Bs,t ≡ B0
1 ⊗ B0

2 i.e. the completion of B0
1⊗B0

2 with respect to the probability measure
Ps,t. We will follow the convention that Ωt,T ≡ Ωt and Bt,T ≡ Ft. A generic element
of Ωt is denoted by ω = (ω1, ω2), where ωi ∈ Ωi

t,T for i ∈ {1, 2}, and we define the
coordinate functions

W t
s(ω) = ω1(s) and N t(ω,A) = ω2(A)

for all 0 ≤ t ≤ s ≤ T, ω ∈ Ω, A ∈ B(Q∗
t,T ). The process W t is a Brownian motion

starting at t andN t is a Poisson random measure on the probability space (Ωt,Ft, Pt),
and they are independent.

Also, for t ∈ [0, T ], the filtration Ft,· = (Ft,s)s∈[t,T ] is defined as follows:

F̂t,s ≡ σ{W t
r , N

t(A) : A ∈ B(Q∗
t,r), t ≤ r ≤ s}, where t ≤ s ≤ T.

We make F̂t,· to be right-continuous and denote it by F+
t,·. Finally, we augment F+

t,·

by Pt-null sets and call it Ft,·. As and when it necessitates, we extend the filtration
Ft,· for s < t by choosing Ft,s as the trivial σ algebra augmented by Pt-null sets.
We follow the convention that Ft,T = Ft. When the terminal time T is replaced by
another time point, say τ , the filtration we have just described is denoted by F τ

t,· .
Finally, note that the space Ωs,t is defined as the product of canonical Wiener space

and Poisson space. Therefore, for any τ ∈ (t, T ), we can identify the probability
space

(

Ωt,Ft,·, Pt

)

with
(

Ωt,τ × Ωτ ,F τ
t,· ⊗ Fτ,·, Pt,τ ⊗ Pτ

)

by the following bijection

π : Ωt → Ωt,τ ×Ωτ . For a generic element ω = (ω1, ω2) ∈ Ωt = Ω1
t,T ×Ω2

t,T , we define

ωt,τ =
(

ω1|[t,τ ], ω2|[t,τ ]
)

∈ Ωt,τ

ωτ,T =
(

(ω1 − ω1(τ))|[τ,T ], ω2|[τ,T ]

)

∈ Ωτ,T

π(ω) = (ωt,τ , ωτ,T )

The description of the inverse map π−1 is also apparent from above.
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2.3. Rule of the game. The player I controls Y (·) and player II chooses Z(·)
respectively to minimize and maximize J . At any given time s ∈ (t, T ), the players
know

(

X, Y, Z
)

(r) for r < s and instantaneous switching at s is possible. Therefore
the player who acts first at s is apparently at disadvantage. We follow [16] to tackle
this problem and formalize two approximate games, namely the upper and lower
game. For the lower-game, the player I is allowed to know Z(s) before choosing
Y (s), and for the upper-game, player II has the upper hand of knowing Y (s) before
choosing Z(s). Next step would be to define upper and lower value of the game.
Before that, we need to define the concepts of admissible controls and strategies for
the players.

Definition 2.2 (admissible control). An admissible control process Y (·)(resp. Z(·))
for player I(resp. player II) on [t, T ] is a Y(resp. Z)-valued process which is Ft,·-
predictable. The set of all admissible controls for player I(resp. II) on [t, T ] is
denoted by M(t)(resp. N(t)). We say the controls Y, Ỹ ∈M(t) are the same on [t, s]

and we write Y ≈ Ỹ on [t, s] if Pt

(

Y (r) = Ỹ (r) for a.e. r ∈ [t, s]
)

= 1. A similar
convention is followed for members of N(t).

Finally, if Y ∈ M(t), then for every s ∈ [t, T ] there exists Y s(·) : [t, s]× Ωt,s → Y
such that Y (r, ω) = Y s(r, ωs) where r ∈ [t, s], ω ∈ Ωt, ω

s = ω|[t,s] and Y s(·) is a
F s

t,·-predictable process.

Remark. In comparison with [16], we require the control processes to be predictable
so that the integrand η(·) in (1.1) is also predictable. Also, as pointed out by one
reviewer, any Ft,·-predictable control process Y will have an F+

t,·-predictable version
which will have the representation as described above.

Definition 2.3 (admissible strategy). An admissible strategy α (resp β) for player
I (resp. II) is a mapping α : N(t) → M(t) (resp. β : M(t) → N(t)) such that if
Y (·) ≈ Ỹ (resp. Z ≈ Z̃) on [t, s], then α[Y ] ≈ α[Ỹ ] ( resp. β[Z] ≈ β[Z̃] ) on [t, s]
for every s ∈ [t, T ]. The set of admissible strategy for player I (resp. II) on [t, T ] is
denoted by Γ[t] (resp. ∆(t)).

Definition 2.4. (Value functions)

i.) The lower value of the SDG (1.1)-(1.2) with initial data (t, x) is given by

U(t, x) := inf
α∈Γ(t)

sup
Z∈N(t)

J
(

t, x;α[Z], Z
)

.(2.4)

ii.) The upper value of the game is defined as follows,

V (t, x) := sup
β∈∆(t)

inf
Y ∈M(t)

J
(

t, x; Y, β[Y ]
)

.(2.5)

We say that our game has a value in the sense of Elliot & Kalton [14] if V (t, x) =
U(t, x) and call this common value to be the value of the game. The upper and
lower values satisfy the following dynamic programming principle, a detailed proof
of which is given in Section 3.

Theorem 2.2. Let (A.1),(A.2),(A.3) hold and t, τ ∈ [0, T ] be such that t < τ . For
every x ∈ Rd, we have

V (t, x) = sup
β∈∆(t)

inf
Y ∈M(t)

Et,x
{

∫ τ

t

f(s,X(s); Y (s), β[Y ](s))ds+ V (τ,Xτ )
}

(2.6)
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where X(·) is the solution of (1.1) with Z(·) = β[Y ](·) for Y (·) ∈M(t), and

U(t, x) = inf
α∈Γ(t)

sup
Z∈N(t)

Et,x
{

∫ τ

t

f(s,X(s);α[Z](s), Z(s))ds+ U(τ,Xτ )
}

(2.7)

where X(·) is the solution of (1.1) with Y (·) = α[Z](·) for Z(·) ∈ N(t).

The proof of Theorem 2.2 is not based on probabilistic techniques alone. Following
[16] we first prove a part of the following viscosity solution connection, and then use
it to prove Theorem 2.2. The statement of the theorem reads is given below, a proof
of which is given in Section 3.

Theorem 2.3. Let (A.1),(A.2) and (A.3) hold. Then the upper-value V and the
lower-value U of the game (1.1)-(1.2) are respectively the unique viscosity solutions
of (1.5)-(1.4) and (1.6)-(1.4).

Remark. It is now obvious that if the Isaacs condition (2.3) holds, then uniqueness
of viscosity solution of IPDEs forces the upper and lower value of the game to coincide
in view of Theorem 2.3. This ensures existence of the value, in the sense of Elliot &
Kalton [14], of our SDG.

2.4. Stochastic Verification Theorem. Before the verification theorem could be
formulated, some further technical preparations are needed. Given a probability
space (Ω,F , P ) with a filtration Fa,· =

{

Fa,s : a ≤ s ≤ b
}

and a separable Banach
space B with norm | · |B and 1 ≤ p <∞, the space Lp

Fa,·
(a, b;B) is defined as follows:

L
p
Fa,·

(a, b;B) =
{

φ(s, ω), a ≤ s ≤ b|φ(s, ·) is an Fa,s − adapted,B− valued

measurable process on [a, b] and E
(

∫ b

a

|φ(s, ω)|p
B
ds
)

<∞
}

.

Definition 2.5. We say that a triplet (p, q, Q) ∈ R×R
d × S

d is in D1,2+
s+,xv(s, x), the

second order one-sided parabolic superdifferential of v at (s, x), if for all y ∈ Rd and
r ≥ s,

v(r, y) ≤ v(s, x) + p(s− r) + 〈q, y − x〉+ 〈Q(y − x), y − x〉+ o(|s− r|+ |y − x|2).
The second order one sided parabolic subdifferential of v at (s, x); D1,2−

s+,xv(s, x) is

defined by reversing the above inequality i.e. D1,2−
s+,xv(s, x) = −D1,2+

s+,x(−v(s, x))
We state the following lemma, well-known in context of viscosity solution theory,

characterizing super and subdifferentials.

Lemma 2.4. Let v ∈ USC([0, T ]× Rd) and (s0, x0) ∈ [0, T )× Rd. Then (p, q, Q) ∈
D

1,2+
s0+,x0

v(s0, x0) iff there exists a function ϕ ∈ C1,2([0, T ]× R
d) such that v − ϕ has

a strict global maximum at (s0, x0) relative to the set (s, x) such that s ≥ s0 and

[ϕ, ϕt, Dϕ,D
2ϕ](s0, x0) = [v(s0, x0), p, q, Q].(2.8)

Furthermore, if v(t, x) has polynomial growth, i.e. if

|v(s, x)| ≤ C(1 + |x|k) for some k ≥ 1 and (s, x) ∈ [0, T ]× R
d,(2.9)

then ϕ can be chosen so that ϕ, ϕt, Dϕ,D
2ϕ all satisfy the same growth condition

(2.9), possibly with a different constant in place of C.
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A detailed proof of Lemma 2.4 could be found in [34], (Lemma 5.4, Chapter 4.
to be precise). The following equivalent characterization of Definition 2.1 holds.
The proof is similar to the local case and follows by combining Lemma 2.4 and the
reasoning [19, p.2012]. For the sake of completeness of our presentaion, we sketch
the proof Lemma 2.5 in the Appendix.

Lemma 2.5. A v ∈ USC(Q̄T ) is a subsolution of (1.3) with F = H+ or H−, if and
only if, for all (t, x) ∈ QT and (p, q, Q) ∈ D

1,2+
t,x v(t, x)

p+ F (t, x, q, Q, ϕ(t, ·)) ≥ 0,

where ϕ = ϕ(p, q, Q) given by Lemma 2.4 satisfying (2.8) at (t, x).

With slight abuse of notation, for the rest of this section we denote the space of
all functions v ∈ C1,2(QT ) with v,Dv and D2v(t, x) satisfying (2.9) by C1,2

k (QT ). In

fact, C1,2
k (QT ) is a separable Banach space with respect to the usual weighted norm.

We are now ready to phrase the verification theorem.

Theorem 2.6 (Verification Theorem). Assume (A.1),(A.2), (A.3) and the condi-
tion (2.3) holds. Let u, v ∈ C1(Q̄T ) be respectively a sub and supersolution of (1.5)
satisfying (1.4). Fix any (t, x) ∈ QT . Let (Y ∗, Z∗) ∈ M(t) × N(t) be an admis-
sible control pair for the SDG (1.1)-(1.2) starting at (t, x) and X∗(·) be the corre-
sponding solution of (1.1). Suppose that there exist càdlàg processes (pi, qi, Qi; Φi) ∈
L2
Ft,·

(t, T ;R)×L2
Ft,·

(t, T ;Rd)×L2
Ft,·

(t, T ; Sd)×L2
Ft,·

(t, T ;C1,2
1 (QT )) for i ∈ {1, 2} with

Φi progressively measurable, for i ∈ {1, 2}, such that

a.) for a.e. s ∈ [t, T ] and i = 1

(p1(s), q1(s), Q1(s)) ∈ D
1,2+
s+ u(s,X∗(s)) and(2.10)

u − Φ1
s has a global maximum at (s,X∗(s)) with Φ1

s(s,X
∗(s)) = u(s,X∗(s))

Pt-a.s. and

Et,x
{

∫ T

t

[p1(s) + L(s,X∗(s), p1(s), q1(s), Q1(s); Y ∗(s), Z∗(s))(2.11)

+ J (s,X∗(s); Y ∗(s), Z∗(s))Φ1
s(s,X

∗(s))]ds
}

≤ 0.

b.) For a.e. s ∈ [t, T ] and i = 2

(p2(s), q2(s), Q2(s)) ∈ D
1,2−
s+ v(s,X∗(s)) and(2.12)

v − Φ2
s has a global minimum at (s,X∗(s)) with Φ2

s(s,X
∗(s)) = v(s,X∗(s))

Pt-a.s. and

Et,x
{

∫ T

t

[p2(s) + L(s,X∗(s), p2(s), q2(s), Q2(s); Y ∗(s), Z∗(s))(2.13)

+ J (s,X∗(s); Y ∗(s), Z∗(s))Φ2
s(s,X

∗(s))]ds
}

≥ 0.

Then (Y ∗, Z∗) is an ‘optimal’ control-pair for the SDG in the sense that

U(t, x) = V (t, x) = J(t, x; Y ∗, Z∗).(2.14)
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Remark. The redundancy in the above statement is apparent for following reasons.
Given the assumptions (A.1),(A.2) and(A.3), if Φi is progressively measurable, the
integrability condition on (pi, qi, Qi) is automatically satisfied and one can replace
them by derivatives of Φi

· at (·, X∗(·)). Therefore, it is possible to equivalently
state the theorem without introducing (pi, qi, Qi). However, we adopt this particular
format on purpose. As has already been mentioned, even for pure diffusions, so
far no verification theorem has been formulated for SDG using viscosity solution
framework. In such a scenario, an appropriate formulation would be to drop Φi and
leave the statement in terms of semijets only.

3. Proof of dynamic programming principle

We start this section with the following observation as an immediate consequence
of the definition of admissible controls and the remark following the definition. We
state this as a lemma for later reference.

Lemma 3.1. Let 0 ≤ t̄ < t < T and Y (·) ∈M(t̄). Then, for Pt̄,t-a.e. ω
1 ∈ Ωt̄,t, the

map Y (ω1) : [t, T ]×Ωt → Y defined by Y (ω1)(r, ω2) := Y (r, π−1(ω1, ω2)) is a version
of an Ft,·-predictable process. A similar assertion holds for members of N(t̄).

As has been pointed out in Section 2, on the probability space
(

Ωt,F ,Ft,·, Pt

)

,
there exists unique solution Xt,x(·) of the SDE (1.1) for any 4-tuple (t, x, Y, Z) ∈
[0, T )× Rd ×M(t)×N(t) i.e.

Xt,x(s) = Xt,x(τ) +

∫ s

τ

b(r,Xt,x(r); γ(r))dr +

∫ s

τ

σ(r,Xt,x(r); γ(r))dW
t(r)(3.1)

+

∫ s

τ

∫

E

η(r,Xt,x(r
−); γ(r);w)dÑ t(dr, dw),

where τ ≤ s ≤ T and γ(·) is a shorthand for the pair (Y (·), Z(·)). For any τ ∈ (t, T ]
and ωt,τ ∈ Ωt,τ , ω

τ,T ∈ Ωτ , we define

γ̃(r, ωt,τ , ωτ,T ) ≡ γ(r, π−1(ωt,τ , ωτ,T ))

and X̃(s, ωt,τ , ωτ,T ) = Xt,x(s, π
−1(ωt,τ , ωτ,T )).

In addition, for Pt,τ -a.e. ω
t,τ ∈ Ωt,τ , we wish to have

X̃(s, ωt,τ , ·) = Xt,x(τ) +

∫ s

τ

b(r, X̃(r, ωt,τ , ·); γ̃(r, ωt,τ , ·))dr(3.2)

+

∫ s

τ

σ(r, X̃(r, ωt,τ , ·); γ̃(r, ωt,τ , ·))dW τ(r)

+

∫ s

τ

∫

E

η(r, X̃(r−, ωt,τ , ·); γ̃(r, ωt,τ , ·);w)dÑ τ(dr, dw).

For τ ∈ [t, T ], it follows straight from the definition that

W t
s

(

π−1(ωt,τ , ωτ,T )
)

−W t
τ

(

π−1(ωt,τ , ωτ,T )
)

= ωτ(s).

For the Poisson random measure, it also follows from the definition that
(

π−1(ωt,τ , ωτ,T )
)

(A) = ω
τ,T
2 (A)
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where A is any Borel subset of [τ, T ] × R
m\{0}. Therefore, for Pt,τ -a.e ω

t,τ ∈ Ωt,τ ,
the processes W t

s

(

π−1(ωt,τ , ωτ,T )
)

− W t
τ

(

π−1(ωt,τ , ωτ,T )
)

and the random measure

N t(π−1(ωt,τ , ωτ,T )) respectively coincides with the canonical Brownian motion W τ
s

and the canonical Poisson random measure N τ on the probability space (Ωτ ,Fτ,·, Pτ).
Therefore, for Pt,τ -a.e. ωt,τ ∈ Ωt,τ , the equality (3.2) holds as a consequence of
(3.1). We invoke the uniqueness for the SDE (1.1) to conclude that the paths of
X̃(s, ωt,τ , ·)s∈[τ,T ] will coincide with those of the solution of (1.1) on Ωτ with initial
condition (τ,Xt,x(τ)) and control pair [as declared in Lemma 3.1] (Y (ωt,τ ), Z(ωt,τ))(·)
, for Pt,τ -almost all ωt,τ . Unless otherwise mentioned, we use the same notation Xt,x

when it is considered as a process on (Ωτ , Pτ ) and we actually mean the process X̃
on (Ωτ , Pτ ).

Lemma 3.2. Let Xt,x(·) be the solution of (1.1) for any 4-tuple (t, x, Y (·), Z(·)) ∈
[0, T ) × R

d ×M(t) × N(t). For any bounded continuous function ψ, and s ∈ [τ, T ]
(deterministic), it holds that

Et,x[ψ(Xt,x(s), γ(s))|Ft,τ ](π
−1(ωt,τ , ωτ,T ))(3.3)

=Eτ,Xt,x(τ)[ψ(Xt,x(s), γ̃(s, ω
t,τ , ωτ,T ))], Pt,τ − a.s.

Proof. For a bounded and measurable function ϕ, we have

EPt
[

ϕ(ω)|Ft,τ

]

(π−1(ωt,τ , ωτ,T ))(3.4)

=EPt,τ⊗Pτ
[

ϕ(π−1(ωt,τ , ωτ,T ))|F τ
t,τ ⊗F0

τ,τ

]

(ωt,τ , ωτ,T ),

where F0
τ,τ is the trivial σ algebra on the proability space (Ωτ , Pτ ). Therefore

EPt
[

ϕ(ω)|Ft,τ

]

(π−1(ωt,τ , ωτ,T )) is F τ
t,τ ⊗F0

τ,τ measurable. Thereby applying Fubini’s

theorem we conclude that, for Pt,τ -a.e. ω
t,τ ∈ Ωt,τ , the map ωτ,T 7→ EPt

[

ϕ(ω)|Ft,τ

]

(π−1(ωt,τ , ωτ,T )) is F0
τ,τ measurable. In other words, EPt

[

ϕ(ω)|Ft,τ

]

(π−1(ωt,τ , ·)) is a
constant function on Ωτ for Pt,τ -a.e. ω

t,τ ∈ Ωt,τ . For A ∈ F τ
t,τ we can write

∫

A

EPt
[

ϕ|Ft,τ

]

(π−1(ωt,τ , ·))dPt,τ

=

∫

Ωτ

∫

A

EPt
[

ϕ|Ft,τ

]

(π−1(ωt,τ , ωτ,T ))dPt,τdPτ

=

∫

π−1(A×Ωτ )

EPt
[

ϕ(ω)|Ft,τ

]

dPt(ω)

=

∫

π−1(A×Ωτ )

ϕ(ω)dPt(ω)

=

∫

A

∫

Ωτ

ϕ(π−1(ωt,τ , ωτ,T ))dPτ (ω
τ,T )dPt,τ (ω

t,τ )

=

∫

A

EPτ
[

ϕ(π−1(ωt,τ , ωτ,T ))
]

dPt,τ(ω
t,τ ).

Therefore, for Pt,τ -a.e. ω
t,τ ∈ Ωt,τ , we have

EPt
[

ϕ|Ft,τ

]

(π−1(ωt,τ , ωτ,T )) = EPτ
[

ϕ(π−1(ωt,τ , ωτ,T ))
]

.(3.5)
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Now define ϕ(ω) = ψ(Xt,x(s, ω), γ(s, ω)), use (3.5) and invoke the description of
Xt,x(·) next to Lemma 3.1 to conclude, for Pt,τ -a.e. ω

t,τ ∈ Ωt,τ , that

Et,x[ψ(Xt,x(s), γ(s))|Ft,τ ](π
−1(ωt,τ , ωτ,T ))

= EPt [ϕ(ω)|Ft,τ ](π
−1(ωt,τ , ωτ,T ))

= EPτ
[

ϕ(π−1(ωt,τ , ωτ,T ))
]

= EPτ
[

ψ(Xt,x(s, π
−1(ωt,τ , ωτ,T )), γ̃(s, ωt,τ , ωτ,T )

]

= Eτ,Xt,x(τ)[ψ(Xt,x(s), γ̃(s, ω
t,τ , ωτ,T ))].

�

Lemma 3.3. Let (A.1),(A.2),(A.3) hold. Then

a.) for every Y ∈M(t), Z ∈ N(t), α ∈ Γ(t) and β ∈ ∆(t), the pay-off functionals
J(t, ·; Y, β[Y ]) and J(t, ·;α[Z], Z) are bounded and Lipschitz continuous in x,
uniformly in t, Y, Z, α, β.

b.) The value functions U and V are bounded and Lipschitz continuous in x.

This lemma is a consequence of Lipschitz continuity and boundedness of the data,
moment estimates for the stochastic processes, and Gronwall’s inequality. The details
of the proof will be given in the Appendix.

In order to prove the DPP, it does not seem to be possible to replicate the same
strategy available for proving DPP for deterministic games. There will be serious
measurability issues. We follow [16] and work around this problem with a restricted
class of strategies for both the players which we name as r-strategies, keeping in line
with [16].

Definition 3.1. An r − strategy β for player II on [t, T ] is an admissible strategy
with the following additional property: For every t̄ < t < T and Y (·) ∈ M(t̄),
the map (r, ω) 7−→ β[Y (ω t̄,t)](r, ωt,T ) is Ft̄,·-predictable, where Y (ω

t̄,t) is defined in
Lemma 3.1. The set of all r − strategies for player II on [t,T] is denoted by ∆1(t).

The r−strategies for player I are similarly defined on [t, T ] and the set is denoted
by Γ1(t). We restrict the choices of the players only to the r-strategies and define
the r-upper value and r-lower value of the game as follows:

Definition 3.2 (r-values).

i.) The r-lower value of the SDG (1.1)-(1.2) with initial data (t, x) is given by

U1(t, x) := inf
α∈Γ1(t)

sup
Z∈N(t)

J
(

t, x;α[Z], Z
)

.(3.6)

ii.) The r-upper value of the game is defined as follows,

V1(t, x) := sup
β∈∆1(t)

inf
Y ∈M(t)

J
(

t, x; Y, β[Y ]
)

.(3.7)

As a corolllary to Lemma 3.3, one can derive the following regularity properties
of the r-value functions.

Corollary 3.4.

a.) The r-value functions U1 and V1 are bounded and Lipschitz continuous in x,
uniformly in t.
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b.) For every (t, x) ∈ [0, T ]× R
d

U1(t, x) ≥ U(t, x) and V1(t, x) ≤ V (t, x).

Proof. The proof of part [b.)] is obvious. The argument for part [a.)] is exactly the
same as Lemma 3.3. �

The r-value functions do not satisfy the equalities in Theorem 2.2 (dynamic pro-
gramming principle), each of them instead satisfies an inequality. We have the fol-
lowing theorem.

Theorem 3.5. Let (A.1),(A.2),(A.3) hold and t, τ ∈ [0, T ] be such that t < τ . For
every x ∈ Rd, we have

V1(t, x) ≥ sup
β∈∆1(t)

inf
Y ∈M(t)

Et,x
{

∫ τ

t

f(s,X(s); Y (s), β[Y ](s))ds+ V1(τ,X(τ))
}

(3.8)

where X(·) is the solution of (1.1) with Z(·) = β[Y ](·) for Y (·) ∈M(t), and

U1(t, x) ≤ inf
α∈Γ1(t)

sup
Z∈N(t)

Et,x
{

∫ τ

t

f(s,X(s);α[Z](s), Z(s))ds+ U1(τ,X(τ))
}

(3.9)

where X(·) is the solution of (1.1) with Y (·) = α[Z](·) for Z(·) ∈ N(t).

Proof. The proofs of (3.8) and (3.9) are similar to one another, we only provide the
details for (3.8). Fix (t, x) ∈ QT and define

W (t, x) = sup
β∈∆1(t)

inf
Y ∈M(t)

Et,x
{

∫ τ

t

f(s,X(s); Y (s), β[Y ](s))ds+ V1(τ,Xτ )
}

.(3.10)

For every ǫ > 0, then there exists βǫ ∈ ∆1(t) such that

W (t, x) ≤ Et,x
{

∫ τ

t

f(s,X(s); Y (s), βǫ[Y ](s))ds+ V1(τ,Xτ )
}

+ ǫ,(3.11)

for every Y (·) ∈ M(t). Recall the definition of V1(t, x) and argue for every ξ ∈ Rd

that there exists βξ ∈ ∆1(τ) such that

V1(τ, ξ) ≤ J
(

τ, ξ; Y, βξ[Y ]
)

+ ǫ for every Y ∈M(τ).(3.12)

Next consider a partition
(

Bi

)

i∈N
of Rd where Bi’s are Borel sets and fix ξi ∈ Bi.

By Lemma 3.3 and Corollary 3.4, J ’s and V1 are Lipschitz continuous in x uniformly
with respect to other variables. Therefore it is possible to choose the diameter of
Bi’s small enough such that, for all p ∈ Bi, Y ∈M(τ) and β ∈ ∆1(τ),

|J(τ, ξi; Y, β[Y ])− J(τ, p; Y, β[Y ])| ≤ ǫ(3.13)

and

|V1(τ, ξi)− V1(τ, p)| ≤ ǫ.(3.14)

We now define a strategy δ for the player II as follows: for (r, ω) ∈ [t, T ]× Ωt and
Y ∈ M(t),

δ[Y ](r) =

{

βǫ[Y ](r, ω) if r ∈ [t, τ ]
∑

i∈N χBi
(Xt,x(τ))β

ξi[Y (ωt,τ)](r, ωτ,T ) if r ∈ (τ, T ],
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where π(ω) = (ωt,τ , ωτ,T ) ∈ Ωt,τ × Ωτ , Y (ω
t,τ)(·) ∈ M(τ) is the Fτ,·-predictable

version mentioned in Lemma 3.1 and X(·) is the solution of (1.1) with the control
pair (Y, βǫ[Y ]). If Y is predictable, then by very definition δ[Y ](·) is also predictable.
All other defining properties of an r-strategy is built within the definition of δ. In
other words, δ ∈ ∆1(t). For i ∈ N such that X(τ) ∈ Bi, we must have

V1(τ, ξi) ≤ J(τ,X(τ); βξi[Y (ωt,τ)], Y (ωt,τ )) + 2ǫ,(3.15)

for all Y (·) ∈M(t) and for Pt,τ -a.e. ω
t,τ ∈ Ωt,τ . Also

J(t, x; Y, δ[Y ])

=Et,x
{

∫ τ

t

f(s,X(s); Y (s), δ[Y ](s))ds

+
∑

i∈N

χBi
(X(τ))

[

∫ T

τ

f(r,X(r); Y (r), δ[Y ](r))dr + g(XT )
]

}

=Et,x
{

∫ τ

t

f(s,X(s); Y (s), βǫ[Y ](s))ds

+
∑

i∈N

χBi
(X(τ))E

[

∫ T

τ

f(r,X(r); Y (r), δ[Y ](r))dr + g(XT )|Ft,τ

]

}

=Et,x
{

∫ τ

t

f(s,X(s); Y (s), βǫ[Y ](s))ds

+
∑

i∈N

χBi
(X(τ))J

(

τ,X(τ); Y (ωt,τ ), βξi[Y (ωt,τ)]
)

}

≥Et,x
{

∫ τ

t

f(s,X(s); Y (s), βǫ[Y ](s))ds+
∑

i∈N

χBi
(X(τ))V1(τ, ξi)

}

− 2ǫ

≥Et,x
{

∫ τ

t

f(s,X(s); Y (s), βǫ[Y ](s))ds+ V1(τ,X(τ))
}

− 3ǫ,

where we have used Lemma 3.2 to deduce the third equality and the inequalities
(3.13), (3.14) and (3.15) from above for the rest. Finally, invoke (3.11) to conclude

W (t, x) ≤ J(t, x; Y, δ[Y ]) + 4ǫ

implying

W (t, x) ≤ V1(t, x) + 4ǫ,

which leads to the desired conclusion (3.8) by letting ǫ ↓ 0.
�

As a corollary to Theorem 3.5, we derive the following Hölder continuity estimate
in time for U1 and V1.

Corollary 3.6. There exists a constant C > 0, depending on the data, such that

|V1(t, x)− V1(s, x)|+ |U1(t, x)− U1(s, x)| ≤ C|t− s| 12

for every t, s ∈ [0, T ] and x ∈ Rd.
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Proof. Without loss of generality we may assume 0 ≤ s < t ≤ T and |t− s| < 1. It
follows as a consequence of (3.9) that

U1(s, x)− U1(t, x)

≤ inf
α∈Γ1(t)

sup
Z(·)∈N(t)

Es,x
{

∫ t

s

f(r,Xs,x(r);α[Z](r), Z(r))dr+ U1(t, Xs,x(t))− U1(t, x)
}

≤C
(

|t− s|+ Es,x(|Xs,x(t)− x|)
)

,

where we have used the uniform Lipschitz continuity of U1(t, x) in x and the bound-
edness of the data. Also, the usual first-moment estimate (Lemma A.1) for SDE
(1.1) implies

Es,x(|Xs,x(t)− x|)
)

≤ K
√

|t− s|.

We combine the above estimates to conclude

U1(s, x)− U1(t, x) ≤ C
√

|t− s|.(3.16)

For any Z(·) ∈ N(t), we define Z̃(·) ∈ N(s) as

Z̃(r, ω) =

{

Z(t, ωs,t) if r ∈ [s, t]

Z(r, ωs,t) if r ∈ (t, T ].

For any α̃ ∈ Γ1(s), we define α ∈ Γ1(t) as

α[Z] =
(

α̃[Z̃]
)

(ωs,t) (as described in Lemma 3.1.)

and it is easy to see that α does not depend on ωs,t. For α̃ ∈ Γ1(s), we now have

J(s, x; α̃(Z̃), Z̃) = Es,x
[

∫ T

s

f(s, x; α̃[Z̃](r), Z̃(r))dr + g(Xs,x(T ))
]

= Es,x
[

∫ t

s

f(s, x; α̃[Z̃](r), Z̃(r))dr + J(t, Xs,x(t);α[Z], Z)
]

≥ −C
(

|s− t|+ Es,x(|Xs,x(t)− x|) + J(t, x;α[Z], Z)
)

,

where we have used Lemma (3.3). This implies

sup
Z∈N(s)

J(s, x; α̃[Z], Z) ≥ −C
(

|s− t|+ Es,x(|Xs,x(t)− x|) + U1(t, x)

i.e. U1(s, x)− U1(t, x) ≥ −C
√

|t− s|,
which, in combination with (3.16), proves the Hölder continuity estimate for U1. A
similar set arguments works for V1 as well.

�

The Corollary 3.6, along with Lemma 3.3, ensures that U1 and V1 are continuous in
(t, x). The inequalities (3.9) and (3.8) are referred to as dynamic subprogramming and
superprogramming principles in the literature. These terminologies are also consistent
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with the following fact: (3.9) will imply that U1 is a subsolution to the integro-PDE
(1.6) and (3.8) will imply that V1 is a supersolution to the integro-PDE (1.5). We
prove this fact in the next theorem.

Theorem 3.7. The r-upper value (resp. lower value) function V1 (resp. U1) is a
viscosity supersolution (resp. subsolution) of (1.6) (resp. (1.5)).

Proof. We only prove that U1 is a subsolution to the IPDE (1.5), the proof of V1
being a supersolution is similar. Let ϕ be a test function and U1 − ϕ has a global
maximum at (t0, x0) ∈ [0, T )× Rd. Since the value function U1 is bounded, without
any of generality, we may assume that the test function is bounded and has bounded
derivatives up to second order. In view of definition (2.1), we must show

∂tϕ(t0, x0) +H−
(

t0, x0, Dϕ(t0, x0), D
2ϕ(t0, x0), ϕ(t0, ·)

)

≥ 0.(3.17)

Let us assume the contrary, i.e. (3.17) fails to hold, which means there exists a
constant λ > 0 such that

−∂tϕ(t0, x0)−H−
(

t0, x0, Dϕ(t0, x0), D
2ϕ(t0, x0), ϕ(t0, ·)

)

≥ λ > 0.(3.18)

Set

Λ(t, x; y, z) = ∂tϕ(t, x) + b(t, x; y, z).Dϕ(t, x)

+
∑

i,j

aij(t, x; y, z)ϕxixj
(t, x) + f(t, x; y, z).

We rewrite (3.18) as

−max
z∈Z

min
y∈Y

(

Λ(t0, x0; y, z) + J (t0, x0; y, z)ϕ
)

≥ λ > 0,

where the definition of J is given immediately next to (1.5)-(1.6). Therefore, for
each z ∈ Z, there exists y(z) ∈ Y such that

Λ(t0, x0; y(z), z) + J (t0, x0; y(z), z)ϕ ≤ −λ.(3.19)

The continuity of Λ + J in z, uniformly in all other variables, implies

Λ(t0, x0; y(z), ζ) + J (t0, x0; y(z), ζ)ϕ ≤ −2

3
λ,

for all ζ ∈ Z ∩B(z, r) and some r = r(z) > 0. Obviously,
{

B(z, r(z)) : z ∈ Z
}

is an
open cover of Z. The compactness of Z ensures the existence of a finite subcover. In
other words, there are finitely many points {z1, z2, ....., zn} ⊂ Z, {y1, y2, ....., yn} ⊂ Y
and r1, r2, ...rn > 0 such that Z ⊂

⋃

iB(zi, ri) and

Λ(t0, x0; yi, ζ) + J (t0, x0; yi, ζ)ϕ ≤ −2

3
λ for ζ ∈ B(zi, ri).

Define ̺ : Z → Y as follows: ̺(z) = yk if z ∈ B(zk, rk)\ ∪k−1
i=1 B(zi, ri). Clearly, ̺ is

Borel measurable and

Λ(t0, x0; ̺(z), z) + J (t0, x0; ̺(z), z)ϕ ≤ −2

3
λ.

Now use the continuity of J +Λ in (t, x), uniformly in z, to find a ϑ > 0 such that

Λ(t, x; ̺(z), z) + J (t, x; ̺(z), z)ϕ ≤ −λ
3

(3.20)
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for all z ∈ Z and max(|t− t0|, |x− x0|) ≤ ϑ. The Borel measurable function ̺ could
be used to define a strategy α̂ for player I on [t0, T ] as

α̂[Z](r, ω) = ̺(Z(r, ω)),

where Z ∈ N(t0) and (r, ω) ∈ [t0, T ]× Ωt0 .
It is easy to see that α̂ maps a simple predictable process to a simple predictable

process, therefore by standard limiting argument it follows that α̂ is an r-strategy.
For the test function ϕ, we have

ϕ(τ,X(τ))− ϕ(t0, x0) ≥ U1(τ,X(τ))− U1(t0, x0).

This, along with (3.9), implies

sup
Z(·)∈N(t0)

Et0,x0

{

∫ τ

t0

f(s,X(s), α̂[Z](s), Z(s))ds+ ϕ(τ,X(τ))− ϕ(t0, x0)
}

≥ 0,

(3.21)

where X(·) is the solution of (1.1) with the control pair (α̂[Z](r), Z(r)) and initial
condition (t0, x0). We use Itô-Lévy formula and conclude

sup
Z(·)∈N(t0)

Et0,x0

{

∫ τ

t0

[

Λ(r,X(r); α̂[Z](r), Z(r))(3.22)

+ J (r,X(r); α̂[Z](r), Z(r))ϕ(r,X(r))
]

dr
}

≥ 0.

For ǫ > 0, (3.22) means that there exists Zǫ ∈ N(t0) such that

Et0,x0

{

∫ τ

t0

[

Λ(r,X(r); α̂[Zǫ](r), Zǫ(r))(3.23)

+ J (r,X(r); α̂[Zǫ](r), Zǫ(r))ϕ(r,X(r))
]

dr
}

≥ −ǫ(τ − t0).

We indroduce

G(r) = Λ(r,X(r); α̂[Zǫ](r), Zǫ(r)) + J (r,X(r); α̂[Zǫ](r), Zǫ(r))ϕ(r,X(r)),

and rewrite (3.23) as

Et0,x0

{

∫ τ

t0

G(r)1||X(·)−x0||τ∞>ϑdr +

∫ τ

t0

G(r)1||X(·)−x0||τ∞≤ϑdr
}

≥ −ǫ(τ − t0).

1This implies, in combination with (3.20), that

Et0,x0
{

∫ τ

t0

G(r)1||X(·)−x0||τ∞>ϑdr
}

− λ

3
(τ − t0)Pt0

(

||X(·)− x0||τ∞ ≤ ϑ
)

≥ −ǫ(τ − t0).

(3.24)

Next, apply Cauchy-Schwartz inequality relative to the measure space
(

[t0, τ ]×Ωt0

)

and get

Et0,x0
(

∫ τ

t0

G(r)1||X(·)−x0||τ∞>ϑdr
)

≤
(

Et0,x0

∫ τ

t0

1||X(·)−x0||τ∞≥ϑdr
)

1

2 .
(

Et0,x0

∫ τ

t0

(G(r))2dr
)

1

2

1
Notation: ||h||τ

∞
stands for the L∞-norm of a function h(·) defined on [t0, τ ].
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=(τ − t0)
1

2

(

Pt0(||X(·)− x0||τ∞ ≥ ϑ
)

1

2
(

Et0,x0

∫ τ

t0

(G(r))2dr
)

1

2 .

Since the test function ϕ has bounded derivatives2, we must have

Et0,x0
(

(G(r))2
)

≤ C(x0, t0, K, T ),

where C(x0, t0, K, T ) is a constant depending only on x0, t0, K, T . Therefore (3.24)
gives

Et0,x0
{

∫ τ

t0

G(r)1||X(·)−x0||τ∞≥ϑdr
}

≤ C(τ − t0)Pt0

(

||X(·)− x0||τ∞ ≥ ϑ
)

1

2 .(3.25)

Next define the Ito-Lévy process ξ(s) as

ξ(s) =

∫ s

t0

σ
(

r,X(r); α̂[Zǫ](r), Zǫ(r)
)

dW (r)

+

∫ s

t0

∫

E

η(r,X(r); α̂[Zǫ](r), Zǫ(r);w)Ñ(dr, dw),

which means ξ(s) is a martingale. Note that

X(s)− x0 = ξ(s) +

∫ s

t0

b(r,X(r); α̂[Zǫ](r), Zǫ(r))dr.

Hence

|X(s)− x0| ≤ |ξ(s)|+
∫ s

t0

|b(r,X(r); α̂[Zǫ](r), Zǫ(r))|dr,

which implies

||X(·)− x0||τ∞ ≤ ||ξ(·)||τ∞ +K(τ − t0)

≤ ||ξ(·)||τ∞ +
ϑ

2

if |τ − t0| < ϑ
2(K+1)

. In conclusion, if |τ − t0| < ϑ
2(K+1)

and ||ξ(·)||τ∞ < ϑ
2
, then

||X(·)− x0||τ∞ < ϑ. In other words, if |τ − t0| < ϑ
2(K+1)

, we must have

Pt0

(

||X(·)− x0||τ∞ ≥ ϑ
)

≤ Pt0

(

||ξ(·)||τ∞ ≥ ϑ

2

)

.(3.26)

By Itô-isometry, along with (A.1),(A.2) and (A.3),

Et0,x0
(

|ξ(τ)|2
)

=

∫ τ

t0

Et0,x0
(

|σ
(

r,X(r); α̂[Zǫ](r), Zǫ(r)
)

|2
)

dr

+

∫ τ

t0

∫

E

Et0,x0(|η(r,X(r); α̂[Zǫ](r), Zǫ(r);w)|2)ν(dw)dr

≤C(τ − t0).

2 This is the only place where boundedness assumption. It is possible to work without this
assumption, in which case we have to use the moment estiamtes for Lévy driven SDE.
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Now we use Doob’s martingale inequality and conclude

Pt0

(

||ξ(·)||τ∞ ≥ ϑ

2

)

≤ C

ϑ2
Et0,x0

(

|ξ(τ)|2
)

(3.27)

≤ C

ϑ2
(τ − t0).

Now combine the above inequalities (3.24),(3.25), (3.26),(3.27) and divide through-
out by τ − t0 and get

−N ′
√

(τ − t0) +
λ

3
Pt0

(

||X(·)− x0||τ∞ ≤ ϑ
)

≤ ǫ

for some constant N ′, which is clearly a contradiction to the stochastic continuity3

of X(·) for (τ − t0) small.
�

The following lemma is a consequence of the above theorem.

Lemma 3.8. Let (A.1),(A.2) and (A.3) hold. If u and v are respectively the unique
viscosity solutions of (1.5)-(1.4) and (1.6)-(1.4). Then, for every (t, x) ∈ [0, T ]×Rd,
we have

u(t, x) ≥ U1(t, x) ≥ U(t, x) and v(t, x) ≤ V1(t, x) ≤ V (t, x).

Proof. The proof is immediate after combining Theorem 3.7, the comparison princi-
ple (Theorem 2.1) and Corollary 3.4 [b.)].

�

To complete the proof of Theorem 2.3, it is still required to show U(t, x) ≥ u(t, x)
and V (t, x) ≤ v(t, x). Our proof of this requirement closely resembles [16, 32], except
only the fact that the state processes can have discontinuities and the controls are
predictable. The main idea is to approximate the value function with the help of
“piecewise constant” strategies/controls, and next follows the description of this
methodology.

Let π = {0 = t0 < t1 < t2 < · · · < tn−1 < tn = T} be a partition of [0, T ]
and ||π|| be the norm of the this partition defined by ||π|| = max1≤i≤n(ti − ti−1).
The concepts of the π-admissible strategies and π-admissible controls are defined as
follows:

Definition 3.3 (π-admissible controls). A π-admissible control Y for player I on
[t, T ] is an admissible control with the following additional property: If
i0 ∈ {0, 1, ....., n − 1} is such that t ∈ [t0, ti0+1], then Y (s) = y for s ∈ [t, ti0+1]
and Y (s) = Ytk for s ∈ (tk, tk+1] for k = i0+1, ..., n−1 where Ytk is Ft,tk measurable.

The set of all π-admissible controls for player I on [t, T ] is denoted by Mπ(t).
A π-admissible control Z(·) for player II is similarly defined and the set of all π-
admissible controls for player II is denoted by Nπ(t).

Definition 3.4 (π-admissible strategies). A π-admissible strategy α for player I on
[t, T ] is an α ∈ Γ(t) such that α[N(t)] ⊂ Mπ(t) and the following conditions are
satisfied: If t ∈ [ti0 , ti0+1) then for every Z(·) ∈ N(t), α[Z]|[t,ti0+1] is independent of

3See the proof of Lemma 4.3 to conclude that X(·) is stochastically continuous.
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Z. Furthermore, if Z(·) ≈ Z̃(·) on [t, tk] then α[Z](tk+) = α[Z̃](tk+)-Pt a.s. for
every k ∈ {i0 + 1, ...., n}. The set of all π-admissible strategies for player I on [t, T ]
is denoted by Γπ(t). The π-admissible strategies for player II are similarly defined
and the collection of all such strategies is denoted by ∆π(t).

For every ψ ∈ W 1,∞(Rd), (t, x) ∈ [0, T ) and τ ∈ (t, T ] define

S(t, τ)ψ(x) = inf
y∈Y

sup
Z∈N(t,τ)

Et,x
{

∫ τ

t

f(s,X(s); y, Z(s))ds+ ψ(X(τ))
}

,(3.28)

where N(t, τ) is the set of all admissible control for player II and X(·) is the solution
of (1.1) with the control pair (y, Z(·)) and initial condition (t, x) on [t, τ ]. It is easy
to see that if ψ ∈ W 1,∞ then S(t, τ)ψ ∈ W 1,∞. Therefore, given the assumptions
(A.1),(A.2) and (A.3), the function Vπ : Rd × [0, T ] → R, given by Vπ(T, x) = g(x)
and

Vπ(t, x) = S(t, ti0+1)

n
∏

k=i0+2

S(tk−1, tk)g(x) if t ∈ [ti0 , ti0+1),(3.29)

is well defined. Vπ also has a stochastic game representation, the precise form is
stated as the following lemma.

Lemma 3.9. For every (t, x) ∈ [0, T ]× Rd, the function Vπ has the following form:

Vπ(t, x) = sup
β∈∆(t)

inf
Y ∈Mπ(t)

J(t, x; Y, β[Y ]).(3.30)

Proof. The main idea behind the proof is the same as for controlled diffusions (no
jump) [16, Proposition 2.3]. The only exception remains into the fact that we need to
take the discontinuities of the sample paths and predictability of the control processes
into consideration. Following [16, Proposition 2.3], the characterization (3.30) is a
consequence of the following fact: for every (t, x) ∈ [0, T ]× R

d and for every ǫ > 0,
there exists αǫ ∈ Γπ(t) and βǫ ∈ ∆(t) such that for all Y ∈Mπ(t) and Z ∈ N(t),

J(t, x;αǫ[Z], Z)− ǫ ≤ Vπ(t, x) ≤ J(t, x; Y, βǫ[Y ]) + ǫ.(3.31)

The left half of the inequality in (3.31) implies the ′ ≤′ in (3.30). To prove the other
half of (3.30), we can make use of the right half of (3.31) if we show that for any
β ∈ ∆(t), there exist Y ǫ ∈Mπ(t) and Z

ǫ ∈ N(t) such that

J(t, x;αǫ[Z
ǫ], Zǫ) = J(t, x; Yǫ, β[Y

ǫ]).(3.32)

The controls Y ǫ and Zǫ could be defined as follows. Without loss of generality, we
may assume that t = ti0 and z0 ∈ Z. To this end, we let Yi0 = α[z0] and Zi0 = β[Yi0]
and successively define Yk ∈ Mπ(t), Zk ∈ N(t) for k = i0 + 1, ....., n as

Zk = β[Yk] and Yk = αǫ[Zk−1].

One must show Yk+1 ≈ Yk and Zk+1 ≈ Zk on [ti0 , tk] for k = i0 + 1, ....., n − 1.
We employ the method of induction. For k = i0 + 1, the conclusion is immediate
from the definition of αǫ and βǫ as αǫ is independent of z-control on [ti0 , ti0+1].
Next assume Yk ≈ Yk−1 and Zk ≈ Zk−1 on [ti0 , tk−1]. Note that Yk+1 = αǫ[Zk] and
Yk = αǫ[Zk−1], and from the definition of π-admissible strategies we have Y (tk−1+) =
Y (tk+). Since Yk, Yk+1 are constants on (tk−1, tk], we must have Yk+1 ≈ Yk on [ti0 , tk].
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Consequently, Zk = β[Yk] and Zk+1 = β[Yk+1] implies Zk+1 ≈ Zk on [ti0 , tk]. It is
now straightforward to check (3.32) with Zǫ = Zn and Y ǫ = Yn.

For simplicity we choose f = 0. For G ∈ W 1,∞(Rd), y ∈ Y, t ∈ [0, T ] and
τ ∈ (t, T ], let

φ(y; t, τ ; x,G) = sup
Z∈N(t,τ)

Et,xG(X(τ)),

where X(·) is the solution of (1.1) with the control pair (y, Z). In view of the
assumptions (A.1),(A.2) and (A.3), it follows as a consequence that φ(·; t, τ, ·, G) ∈
Cb(R

d × Y) ∩W 1,∞(Rd). Furthermore

S(t, τ)G = inf
y∈Y

φ(y; t, τ ; x,G).

If t ∈ [ti0,ti0+1
] for i0 ∈

{

0, 1, ....., n − 1
}

, let Gn = g, Gj = S(tj , tj+1)Gj+1 for
j = i0 + 1, ....., n− 1 and Gi0 = S(t, ti0+1)Gi0+1, and thereby Gi0(x) = Vπ(t, x)

Next, partition the spaces Rd and Y respectively into Borel sets {Ak : k =
1, 2, 3, 4, ....} and {Bℓ : ℓ = 1, 2, .., L} of diameters less than δ, to be specified later.
Choose xk ∈ Ak and yℓ ∈ Bℓ. Given γ > 0, we can choose δ small enough and
y∗kj = yℓ(kj) ∈ Y for k = 1, ...., n and j = i0 + 1, ..., n, so that

φ(y∗kj; tj−1, tj ; xk, Gj) < S(tj−1, tj)Gj(xk) + γ.(3.33)

Furthermore, pick Zkℓj ∈ N(tj−1, tj) such that, for the controls Ys = yℓ and Zkℓj,

Exk,tj−1Gj(X
kℓj
tj

) > φ(yℓ; tj−1, tj; xk, Gj)− γ.(3.34)

The superscripts signify the dependence of the solution Xkℓj of (1.1) on the intital
data (tj−1, xk) and the control yℓ. We recall the description of canonical probability
space to see

EPtj−1 ≡ Etj−1,x.

The strategies αǫ and βǫ can now defined as

αǫ[Z](r) = χ[ti0 ,ti0+1](r)
∑

k

y∗ki0χAk
(x) +

n−1
∑

j=i0+1

χ(tj ,tj+1](r)
∑

k

y∗kjχAk
(X(tj)),(3.35)

where the process X(·) is defined successively on intervals [t, ti0+1], [tj, tj + 1] for
j = i0+1, ..., n− 1 as the solution to (1.1) with Y = αǫ[Z]. For Y ∈M(t), we define

βǫ[Y ] =χ[ti0 ,ti0+1](r)
∑

k,ℓ

Z̃kℓi0(r)χAk
(x)χBℓ

(Y (r))(3.36)

+

n−1
∑

j=i0+1

∑

k,ℓ

χ(tj ,tj+1](r)Z̃kℓj(r)χAk
(X(tj))χBℓ

(Y (r)),

where X(·) is defined on successive intervals as the solution to (1.1) with Z = βǫ[Y ]

and Z̃kℓj(r, ω) = Zkℓj(r, ω
tj−1,T ).

For any Z ∈ N(t) and Y = αǫ[Z] or Y ∈Mπ(t) and Z = βǫ[Y ], it now follows that

vπ(t, x)− J(t, x; ·, ·) = Gi0(x)− EPt(g(X(T )))
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=

m
∑

j=i0+1

[

EPt
(

Gj−1(X(tj−1))
)

− EPt
(

Gj(X(tj))
)]

= EPt

[

m
∑

j=i0+1

[

Gj−1(X(tj−1))−EPt
{

Gj(X(tj))
∣

∣Ft,tj−1
}
]

]

,

where J(t, x; ·, ·) stands for either J(t, x;αǫ[Z], Z) or J(t, x; Y, βǫ[Y ]). To conclude
(3.31) now we only need to show the following:

For any Z ∈ N(t) and Y = αǫ[Z]

Gj−1(X(tj−1)) ≥ EPt
[

G(X(tj))|Ft,tj−1

]

− ǫ(tj − tj−1) P t − a.s.,(3.37)

and for any Y ∈ M(t) and Y = βǫ[Y ]

EPt
[

G(X(tj))|Ft,tj−1

]

≥ Gj−1(X(tj−1))− ǫ(tj − tj−1) P t − a.s.(3.38)

Recall the Lemma 3.2 and the discussion preceding it to see that the conditional ex-
pectations in (3.37) and (3.38) could now be considered as expectations with respect
to Ptj−1

. Also, X(ωt,tj−1 , ·) is a solution of (1.1) with initial condition
(

tj−1, X(tj−1)
)

for Pt,tj−1
-a.e ωt,tj−1 . Hence, for X(tj−1) ∈ Ak and Y (tj−1) ∈ Bℓ, we have

max
{

|X(tj−1)− xk|, EPtj−1 |X(tj)−Xkℓj(tj)|, |Gj−1(Xtj−1
−Gj−1(xk)|,

|EPtj−1G(X(tj))− EPtj−1G(X(tkℓjj ))|
}

= O(δ),

where O(δ) → 0 as δ → 0. By (3.33), we must have

Gj−1(xk) ≥ Et,xGj(X
kℓ(jk)j(tj))− γ

for each k. Again by Lemma 3.1, Z ∈ N(t) gives rise to Z(ωt,tj−1)(·) ∈ N(tj−1) and
we conclude

Gj−1(X(tj−1)) ≥ G(xk)−O(δ)

≥ Gj

(

Xkℓ(jk)j(tj)
)

− γ −O(δ)

≥ Gj(X(tj))− γ − 2O(δ),

which implies (3.37) if γ + 2O(δ) ≤ ǫ||π||. The reasoning for proving (3.38) is
similar. �

Lemma 3.10. Given the assumptions (A.1), (A.2) and (A.3), there exists a constant
C, depending only on the data, such that

|Vπ(t, x)| ≤ C and |Vπ(t, x)− Vπ(s, p)| ≤ C(|x− p|+ |t− s| 12 )
for all (t, x), (s, p) ∈ [0, T ]× Rd.

Proof. The boundedness of Vπ is immediate. The Lipschitz continuity of Vπ in x

follows from the Lipschitz continuity of J(· · ··)’s, which is a consequence of Lipschitz
continuity of the data. The argument is essentially the same as in Lemma 3.3. The
Hölder continuity estimate in t follows by suitably mimicking the steps of Corollary
3.6 after we invoke the stochastic game representation (3.30) of the π-value function
Vπ. We leave any further details of the proof to the interested readers.

�
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Thanks to Arzela-Ascoli theorem, in view of Lemma 3.10, the family (Vπ)π will
have locally uniformly convergent subsequences as ||π|| → 0. In fact, it would not be
difficult to show that any convergent subsequence of Vπ, as ||π|| → 0, will converge to
the viscosity solution (1.6)-(1.4) and the uniqueness of the viscosity solution would
imply that lim||π||→0 Vπ exists.

Theorem 3.11. Assume (A.1),(A.2), (A.3) and Vπ is given by (3.29). Then the
limit v = lim||π||→0 Vπ exists and it is the unique viscosity solution of (1.6)-(1.4).

Proof. In view of the preceding remark, we only need to show that any subsequential
limit of (Vπ)π as ||π|| → 0 converges to the viscosity solution of (1.6). Let v be
a locally uniform limit of a subsequence of the family (Vπ)π. We will show that v
is a subsolution of (1.6), and the proof of v being a supersolution is similar. The
argument is classical in viscosity solution methods. If ϕ is a test function and v− ϕ

has a strict global maximum at (t0, x0), we wish to show that

ϕt(t0, x0) +H+(t0, x0, Dϕ,D
2ϕ, ϕ(t0, ·)) ≥ 0.

Since the subsequence Vπ → v locally uniformly as ||π|| → 0, there exists (tπ, xπ) such
that (tπ, xπ) → (t0, x0) as ||π|| → 0 and (tπ, xπ) is a gobal maximum of Vπ−ϕ. At the
same time, if tπ ∈ [tπi0 , t

π
i0+1), then (3.29) gives Vπ(tπ, xπ) = S(tπ, t

π
i0+1)Vπ(t

π
i0+1, ·)(xπ).

Therefore

ϕ(tπ, xπ) ≤ S(tπ, t
π
i0+1)ϕ(t

π
i0+1, ·)(xπ).

The rest of the argument is now trivial, once we notice the following fact: For any
test function ϕ,

lim
s↓t

S(t, s)ϕ(·)− ϕ(·)
s− t

= H+(t, ·, Dϕ,D2ϕ, ϕ(·))

holds as a consequence of Itô-Lêvy formula.
�

We now piece together above results to conclude Theorem 2.2 and Theorem 2.3.

Proof of Theorem 2.3 . By Lemma 3.9, we have

Vπ(t, x) ≥ V (t, x)

for all (t, x) ∈ [0, T ] × Rd and any partition π of [0, T ]. Now we pass to the limit
||π|| → 0 and invoke Theorem 3.11 to conclude v ≥ V . The other half of the
equality has already been obtained in Lemma 3.8, therefore V = v. A similar line of
arguments could be employed to conclude U = u.

�

Remark. We can use Theorem 2.3 to conclude from Theorem 2.1 that the value
functions are Hölder continuous in time.

Proof of Theorem 2.2 . It is sufficient to argue for (2.6), proof of (2.7) is similar. Fix
τ ∈ (0, T ] and denote the right hand side of (2.6) by V ∗(t, x) for (t, x) ∈ [0, τ)×Rd.
Without any difficulty, in 2.6, it is enough to consider the controls Y ’s and the
strategies β’s defined on [t, τ ], in place of the full interval [t, T ]. Then by Theorem
2.3, V ∗ is the viscosity solution of (1.6) in [0, τ ] with V ∗(τ, x) = V (τ, x). On the
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other hand, V (t, x) is the viscosity solution of the same problem. We conclude by
uniqueness that V = V ∗, and thereby proving the theorem. �

4. Proof of the verification theorem.

We begin this section with some essential technicalities related to Lebesgue points
of a measurable function with values in a Banach space. Some of these facts are
discussed in [19], rest are added here to tackle the additional subtleties due to the
nonlocal nature of Isaacs equation.

Definition 4.1. Let B be a Banach space and γ : [a, b] → B be measurable and
Bochner integrable at the same time. A point s ∈ [a, b] is said to be a right Lebesgue
point of γ if

lim
h↓0

1

h

∫ s+h

s

|γ(r)− γ(t)|B dr = 0.

The following result holds (see [12] for the proof).

Lemma 4.1. Let γ : [a, b] → B be measurable and Bochner integrable. Then almost
every point in [a, b] is a right Lebesgue point of γ.

From now onward we drop the subscript t from (Ωt, Pt) and simply write (Ω, P ).
For a positive integer n, the next lemma ensures that any member of L1

Ft,·
(t, T ;Rn)

can be thought of as Bochner integrable when viewed as a map from [t, T ] to
L1(Ω;Rn).

Lemma 4.2. Any γ ∈ L1
Ft,·

(t, T ;Rn) is Bochner integrable when regarded as a func-

tion from [t, T ] to L1(Ω;Rn).

Proof. Except the null sets, the sigma algebra Ft,T is generated by a càdlàg process.
As an implication it follows that, excluding the null sets, Ft,T is generated by a
countable family of subsets of Ω. We combine this fact with separability of Rn and
argue along the lines of ([13]; p. 92) to conclude that L1(Ω,Rn) is separable. It
follows from the definition of L1

Ft,·
(t, T ;Rn) that

∫ T

t

|γ(r, ·)|L1(Ω;Rn)dr <∞.

Hence, it only remains to show that the map s→ γ(s, ·) is measurable as a function
from [t, T ] to L1(Ω;Rn). To this end, we invoke the separability of L1(Ω;Rn) and con-
clude that measurability is equivalent to weak measurability. This means it is enough
to prove r 7→ E(γ(r, ω).ρ(ω)) is Lebesgue measurable for every ρ ∈ L∞(Ω;Rn), but
this is obvious once we apply the Fubini theorem as

E

∫ T

t

|γ(r, ω).ρ(ω)|dr ≤ ||ρ||L∞(Ω;Rn)

∫ T

t

|γ(r, ·)|L1(Ω;Rn)dr <∞.

�

A crucial technical difference we have here, in comparison with [19], is the discon-
tinuity of the state processes. However, these processes are stochastically continuous
and the next lemma is consequence of this property.
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Definition 4.2 (stochastic continuity). A stochastic process (X(s))a≤s≤b, defined
on a probability space (Ω,F , P ), is called stochastically continuous if for every ǫ > 0
and s ∈ [a, b]

lim
r→s

P (|X(r)−X(s)| > ǫ) = 0.

We have the following lemma.

Lemma 4.3. Let X(·) be the solution of (1.1) for a pair of admissible controls
(Y, Z), then X(·) is stochastically continuous and for a continuous function ψ ∈
Cp

(

[0, T ]× Rd
)

, for p = 1 or p = 2, it holds that

lim
h↓0

E
(1

h

∫ s+h

s

ψ(r,X(r))dr
)

= E
(

ψ(s,X(s))
)

Proof. The stochastic continuity X(·) is a consequence of

X(τ)−X(s) =

∫ τ

s

b(r,X(r); Y (r), Z(r))dr +

∫ τ

s

σ(r,X(r); Y (r), Z(r))dW (r)

+

∫ τ

s

∫

E

η(r,X(r−); Y (r), Z(r);w)Ñ(dr, dw),

and the assumptions on the data. It follows from the above realtionship that

E|X(τ)−X(s)|2

≤3E
[

∫ τ

t

(b(r,X(r); Y (r), Z(r)))dr
]2

+ 3

∫ τ

s

E(σ2(r,X(r); Y (r), Z(r))dr

+ 3

∫ τ

s

∫

E

E(η2(r,X(r); Y (r), Z(r);w))ν(dw)dr

≤K(|s− τ | + |s− τ |2),
where we have used Itô-Lévy isometry. Therefore by Chebyshev’s inequality, we have

P
(

|X(τ)−X(s)| > ǫ
)

≤ K

ǫ2
(|s− τ |+ |s− τ |2),

which proves the stochastic continuity of X(r).
Set L(r) = ψ(r,X(r)) and F (r) = E[L(r)]. Assume that ψ ∈ C1

(

[0, T ] × Rd
)

.
Thanks to the continuity of ψ, L(r) is also stochastically continuous. By Itô-Lèvy
isometry, it is trivial to check that X(r) has finite second second moment for all
r ∈ [t, T ], and the bound is independent of r. Therefore F (r) is a bounded function
on [t, T ].

|F (r)− F (s)| ≤
∫

|L(r)−L(s)|≤δ

|L(r)− L(s)|dP +

∫

|L(r)−L(s)|>δ

|L(r)− L(s)|dP

≤ δ + E
[

|L(r)− L(s)|1|L(r)−L(s)|>δ

]

≤ δ +
[

E(|L(r)− L(s)|2)
]

1

2
[

P (|L(r)− L(s)| > δ)
]

1

2

≤ δ + C
[

P (|L(r)− L(s)| > δ)
]

1

2 ,
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which goes to 0 as s → r and δ → 0. Therefore F (r) is continuous in r and
hence every point is a lebesgue point. Now, after using Fubini’s theorem, dominated
convergence theorem and the continuity of F , we have

lim
h↓0

E
(1

h

∫ s+h

s

ψ(r,X(r))dr
)

= lim
h↓0

1

h

∫ s+h

s

F (r)dr = F (s),

and this proves the lemma. �

Alternative proof of Lemma 4.3 for p ∈ {1, 2}. Since X(·) is Càdlàg ( i.e. right con-

tinuous ) and ψ is continuous, one must have 1
h

∫ s+h

s
ψ(r,X(r))dr = ψ(s,X(s)). If

ψ ∈ Cp([0, T ]×Rd), for p = 1 or 2, and since X(·) has finite second moment, we can
apply dominated convergence theorem and conclude

lim
h↓0

E
(1

h

∫ s+h

s

ψ(r,X(r))dr
)

= lim
h↓0

1

h

∫ s+h

s

F (r)dr = F (s).

�

Remark. The first proof of Lemma 4.3 also works for any p ∈ N, as it is possible to
prove boundedness of any 2p-th moment of X(·). It also says that F (·) is continuous.
However, the alternative proof is much more compact and to the point. Though the
second proof is enough conclude the lemma, but it only establishes right continuity
of F (·).
Lemma 4.4. Let the assumptions (A.1), (A.2) and (A.3) be satisfied and for (t, x) ∈
[0, T ]×R

d,
(

Y (·), Z(·)
)

be an admissible pair of controls, and X(·) be the correspond-
ing solution of (1.1). Define the processes

z1(r) = b(r,X(r); Y (r), Z(r)), z2(r) := σσT (r,X(r); Y (r), Z(r)),

z3(r, w) = η(r,X(r); Y (r), Z(r);w)ηT(r,X(r); Y (r), Z(r);w),

z4(r, w) = η(r,X(r); Y (r), Z(r);w).

Then

lim
h↓0

E
1

h

∫ s+h

s

|zi(r)− zi(s)|dr = 0 for a.e. s ∈ [t, T ] for i ∈ {1, 2},(4.1)

lim
h↓0

E
1

h

∫ s+h

s

|z4(r, w)− z4(s, w)|dr = 0 for a.e. s ∈ [t, T ], for all w ∈ R
m,(4.2)

and

lim
h↓0

E
1

h

∫ s+h

s

∫

E

|z3(r, w)− z3(s, w)|ν(dw)dr = 0 for a.e. s ∈ [t, T ].(4.3)

Proof. Fix w ∈ Rm. Then, by (A.1),(A.2) and (A.3), z1, z2, z4(·, w) ∈ L1
Ft,·

(t, T ;B)

for B := Rd, Sd,Rd respectively. By Lemma 4.2, each of them is Bochner integrable,
when viewed as L1(Ω,B)-valued maps and we conclude that the set of right Lebesgue
points of zi’s, as maps from [t, T ] to L1(Ω,B), is of full measure in [t, T ]. This gives
(4.1), and (4.2) except “for all w” part. This implies that (4.2) holds for any ‘any
countable dense subset of Rm’. As z4(r, w) is continuous in w uniformly in other
entries, we have the full conclusion.
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We now prove (4.3). Define Ω′ = Ω × R
m\{0} and µ = P ⊗ ν. Then (Ω′, µ) is

measure space with the sigma algebra F ×B(Rm\{0}) and z3(r, ·) ∈ L1
(

(Ω′, µ); Sd
)

.
For the same reasoning detailed in Lemma 4.2, z3 is Bochner integrable when con-
sidered as a map from [t, T ] to L1

(

(Ω′, µ); Sd
)

. Therefore we can apply Lemma 4.1
to conclude the result.

�

Lemma 4.5. Let ψ : [t, T ] × Rd 7→ Rn be continuous and satisfy (2.9) with k = 1.
If (4.2) is satisfied for some s ∈ [t, T ], then

lim
h↓0

E
[1

h

∫ s+h

s

∫

E

|ψ(r,X(r) + z4(r, w))− ψ(s,X(s) + z4(s, w))|ν̂(dw)dr
]

= 0,

(4.4)

where ν̂(dw) := min(1, |w|2)ν(dw) is a bounded Radon measure.

Proof. The proof is done in two steps.

Step 1. Let ψ be Lipschitz continuous in s and continuously differentiable in x such
that

|ψ(s, x)|, |Dψ(s, x)| ≤ C(1 + |x|) for (s, x) ∈ [0, T ]× R
d.

Then

|ψ(r,X(r) + z4(r, w))− ψ(s,X(s) + z4(s, w))|
≤C

[

|r − s|+
(

|X(r)|+ |X(s)|+ |z4(r, w)|+ |z4(s, w)|
)

×
(

|X(r)−X(s)|+ |z4(r, w)− z4(s, w)|
)]

.

By Itô-Lèvy isometry, X(r) has bounded second moment for all r ∈ [t, T ]. With
this, we now use boundedness of η and Cauchy-Schwartz inequality to obtain

E
1

h

∫ s+h

s

∫

E

|ψ(r,X(r) + z4(r, w))− ψ(s,X(s) + z4(s, w))|ν̂(dw)dr

≤C 1

h

∫ s+h

s

∫

E

[

|r − s|+ (E|X(r)−X(s)|2) 1

2

)

ν̂(dw)dr

+ C ′ 1

h

[

E

∫ s+h

s

∫

E

|z4(r, w)− z4(s, w)|ν̂(dw)dr
]

1

2

.

We now use (4.2) and dominated convergence theorem to pass to the limit h ↓ 0 and
conclude (4.4).

Step 2. If ψ : [t, T ]× Rd 7→ Rn be continuous and satisfies (2.9) with k = 1. Then,
for every ǫ > 0, there exists ψǫ satisfying the conditions of the first step such that
|ψ(s, x)− ψǫ(s, x)| ≤ Cǫ(1 + |x|). Then

lim
h↓0

E
1

h

∫ s+h

s

∫

E

|ψ(r,X(r) + z4(r, w))− ψ(s,X(s) + z4(s, w))|ν̂(dw)dr

≤ lim
h↓0

E
1

h

∫ s+h

s

∫

E

|ψǫ(r,X(r) + z4(r, w))− ψǫ(s,X(s) + z4(s, w))|ν̂(dw)dr
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+ 2Cν̂(E)ǫ,

where the right hand side goes to zero as ǫ→ 0.
�

Proof of Theorem 2.6. For the sake of simplicity we use the following abbreviated
notations:

f ∗(s) = f(s,X∗(s); Y ∗(s), Z∗(s)), g∗(s) = g(X∗(s)),

b∗(s) = b(s,X∗(s); Y ∗(s), Z∗(s)), σ∗(s) = σ∗(s,X∗(s); Y ∗(s), Z∗(s)),

η∗(s, w) = η∗(s,X∗(s); Y ∗(s), Z∗(s);w).

Choose τ ∈ [t, T ] so that (4.1) holds at τ for z1(·) = b∗(·), z2(·) = σ∗(·)σ∗(·)T ;
(4.3) holds for z3(·, w) = η∗(·, w)η∗(·, w)T and (4.2) holds for z4(·, w) = η∗(·, w). By
Lemma 4.4, the set of all such τ ’s in [t, T ] is of full measure. From Section 2, recall
the identification

Ω = Ωt,τ × Ωτ and P = P1 ⊗ P2,

where P1 = Pt,τ and P2 = Pτ . We use EP1 and EP2 for expectations with respect to
P1 and P2 respectively. For any Ft,τ measurable function ϕ(ω) on (Ω, P ) we have

χ(ω) = EP [χ(ω1, ω2)|Ft,T ] = EP1×P2[ϕ(ω1, ω2)|Ft,τ ] = EP2(ϕ(ω1, ω2)), P1 − a.s.

i.e. P1-a.s. ϕ(ω) is deterministic in (Ωτ , P2) , where ω = (ω1, ω2) ∈ Ωt,τ ×Ωτ . There-
fore X∗(τ),Φ1(τ), p1(τ), q1(τ) and Q1(τ) are all P1 − a.s. deterministic in (Ωτ , P2).
It has already been pointed out in Section 3 that, on (Ωτ , P2), X

∗(s)s≥τ has the
dynamics

X∗(s) =X∗(τ) +

∫ s

τ

b∗(r)dr +

∫ s

τ

σ∗(r)dW τ(r)(4.5)

+

∫ s

τ

∫

E

η(X(r−); Y (r), Z(r);w)Ñ τ(dr, dw)

P1-a.s, where (W
τ , Ñ τ ) be the process driving the dynamics on (Ωτ , P2). We wish to

apply Ito-Lévy formula to Φ1
τ (s,X

∗(s)) on (Ωτ , P2), relative to the dynamics (4.5).
Firstly, Φ1

τ is deterministic on Ωτ (P1 − a.s.) and secondly it is C1,2, hence Itô-Lèvy
formula is applicable. To this end, we simply write φ for Φ1

τ and apply Ito-Lèvy
formula to conclude, for h > 0,

φ(τ + h,X∗(τ + h))− φ(τ,X∗(τ))

=

∫ τ+h

τ

[

∂sφ(r,X
∗(r)) + 〈Dφ(r,X∗(r)); b∗(r)〉+ 1

2
Tr

(

σ∗σ∗T (r)D2φ(r,X∗(r))
)

]

dr

+

∫ τ+h

τ

∫

E

(

φ(r,X∗(r) + η∗(r, w))− φ(r,X∗(r))− η∗Dφ(r,X∗(r))
)

ν(dw)dr

+

∫ τ+h

τ

〈Dφ(r,X∗(r); σ∗(r))dW τ(r)〉
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+

∫ τ+h

τ

∫

E

[

φ(r,X∗(r−) + η(· · ··))− φ(r,X∗(r−))
]

Ñ τ (dr, dw), P1 − a.s.

We divide the above equality by h, apply EP2 and use the fact that u − φ has a
global maximum at (τ,X∗(τ)) to obtain

EP2
1

h

[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]

(4.6)

≤EP2
1

h

[

∫ τ+h

τ

[

∂sφ(r,X
∗(r)) + 〈Dφ(r,X∗(r)); b∗(r)〉

+
1

2
Tr

(

σ∗(r)D2φ(r,X∗(r))σ∗(r)
)]

dr

+

∫ τ+h

τ

∫

E

(

φ(r,X∗(r) + η∗(r, w))− φ(r,X∗(r))

− η∗(r, w)Dφ(r,X(r))
)

ν(dw)dr
]

,

P1– a.s. We are interested in passing to the limit h ↓ 0 in (4.6), and we do so
by separately considering each term from the right-hand side. We begin with the
simplest one.

Since ∂sφ is continuous, we can apply Lemma 4.3 for ψ = ∂sφ [relative to (Ωτ , P2)]
and get

lim
h↓0

EP2
1

h

∫ τ+h

τ

∂sφ(r,X
∗(r))dr = ∂sφ(τ,X

∗(τ)), P1 − a.s.(4.7)

Next we treat the term resulting directly from the presence of jumps. Let us denote

I(r) =EP2

[

∫

E

(

φ(r,X∗(r) + η∗(r, w))− φ(r,X∗(r))

− η∗(r, w)Dφ(r,X(r))
)

ν(dw)
]

.

We use Fubini’s theorem to justify the identity
∫

E

(

φ(r,X∗(r) + η∗(r, w))− φ(r,X∗(r))− η∗(r, w)Dφ(r,X(r))
)

ν(dw)(4.8)

=

∫ 1

0

(1− ρ)
(

∫

E

〈D2φ(r,X∗(r) + ρη∗(r, w))η∗(r, w); η∗(r, w)〉ν(dw)
)

dρ

=

∫ 1

0

(1− ρ)
(

∫

E

Tr
[

η∗(r, w)η∗(r, w)TD2φ(r,X∗(r) + ρη∗(r, w))
]

ν(dw)
)

dρ,

where we have also used properties of trace. Therefore

I(r)− I(τ)(4.9)

=

∫ 1

0

(1− ρ)
(

∫

E

Tr
([

η∗(r, w)η∗(r, w)T − η∗(τ, w)η∗(τ, w)T
])

×D2φ(τ,X∗(τ) + ρη∗(τ, w))
)

ν(dw)
)

dρ
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+

∫ 1

0

(1− ρ)
(

∫

E

Tr
(

η∗(r, w)η∗(r, w)T
[

D2φ(r,X∗(r) + ρη∗(r, w))

−D2φ(τ,X∗(τ) + ρη∗(τ, w))
])

ν(dw)
)

dρ.

Since D2φ is continuous and ρη∗(r, w) satisfies (4.1) at τ , upon denoting

I ′(r, τ) =

∫

E

|D2φ(r,X∗(r) + ρη∗(r, w))−D2φ(τ,X∗(τ) + ρη∗(τ, w))|ν̂(dw)

where ν̂(dw) = min(1, |w|2)ν(dw), by Lemma 4.5, we must have

0 = lim
h↓0

E
1

h

∫ τ+h

τ

I ′(r, τ)dr(4.10)

= lim
h↓0

E
[

E
[1

h

∫ τ+h

τ

I ′(r, τ)dr
∣

∣Ft,τ

]

]

= lim
h↓0

EP1

[

EP2
[1

h

∫ τ+h

τ

I ′(r, τ)dr
]

]

,

where we have also used Lemma 3.2. Also note that z3(·, w) = η∗η∗T (·, w) satisfies
(4.3) at τ and hence, after a similar reasoning as above, we have

0 = lim
h↓
EP1

[

EP2
1

h

∫ τ+h

τ

∫

E

∣

∣

∣
Tr

[

η∗η∗T (r, w)− η∗η∗T (τ, w)
]

∣

∣

∣
ν(dw)dr

]

.(4.11)

We now recall the growth properties of η, φ and use them along with Fubini’s
theorem to get

EP2
1

h

∫ τ+h

τ

|I(r)− I(τ)|dr

≤ N(τ)
[ 1

h
EP2

∫ τ+h

τ

∫

E

|Tr
[

η∗η∗T (r, w)− η∗η∗T (τ, w)
]

|ν(dw)dr
]

(4.12)

+N

∫ 1

0

(1− ρ)EP2
[1

h

∫ τ+h

τ

I ′(r, τ)dr
]

dρ,

where N depends on data and N(τ) depends also on X∗(τ) . Fix any sequence {hj}j
such that hj ↓ 0. From (4.10) and (4.11), we observe that EP2

[

1
hj

∫ τ+hj

τ
I ′(r, τ)dr

]

and EP2 1
hj

∫ τ+hj

τ

∫

E

(

|Tr
[

η∗η∗T (r, w)−η∗η∗T (τ, w)
]

|ν(dw)dr goes to 0 in L1(Ωt,τ , P1).

This means there exists a subsequence (hl)l of (hj)j such that

lim
hl↓0

EP2
[ 1

hl

∫ τ+hl

τ

I ′(r, τ)dr
]

= 0,

lim
hl↓0

EP2
1

h l

∫ τ+hl

τ

∫

E

(

|Tr
[

η∗η∗T (r, w)− η∗η∗T (τ, w)
]

|ν(dw)dr = 0

P1-a.s. We use the above equalities along with (4.12) to conclude

lim
hl↓0

EP2
1

hl

∫ τ+hl

τ

|I(r)− I(τ)|dr = 0, P1 − a.s.(4.13)

Next we treat the term resulting from the drift of the dynamics.
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EP2
1

h

∫ τ+h

τ

∣

∣〈Dφ(r,X∗(r)); b∗(r)〉 − 〈Dφ(τ,X∗(τ)); b∗(τ)〉
∣

∣dr(4.14)

=||b||∞EP2
1

h

∫ τ+h

τ

|Dφ(r,X∗(r))−Dφ(τ,X∗(τ))|dr

+ |〈Dφ(τ,X∗(τ))|EP2
1

h

∫ τ+h

τ

|b∗(r)− b∗(τ)|dr.

We use continuity of Dφ to apply Lemma 4.3 and get

lim
h↓0

EP2
1

h

∫ τ+h

τ

|Dφ(r,X∗(r))−Dφ(τ,X∗(τ))|dr = 0, P1 − a.s.(4.15)

Also, by the choice of τ , z1(·) = b∗(·) satisfies (4.1) i.e.

0 = lim
h↓0

E
1

h

∫ τ+h

τ

|b∗(r)− b∗(τ)|dr

= lim
h↓0

E
(

E
[1

h

∫ τ+h

τ

|b∗(r)− b∗(τ)|dr
∣

∣Ft,τ

]

)

= lim
h↓0

EP1

(

EP2
[1

h

∫ τ+h

τ

|b∗(r)− b∗(τ)|dr
]

)

,

which implies that EP2 1
h

∫ τ+h

τ
|b∗(r)− b∗(τ)|dr converges to 0 in L1((Ωt,τ , P1);R).

Therefore, there exists subsequence (hl′) of (hl) such that

lim
hl′↓0

EP2
1

hl′

∫ τ+hl′

τ

|b∗(r)− b∗(τ)|dr = 0.(4.16)

We combine (4.15)-(4.16) to conclude, P1 − a.s.

lim
hl′↓0

EP2
1

hl′

∫ τ+h

τ

〈Dφ(r,X∗(r)); b∗(r)〉 − 〈Dφ(τ,X∗(τ)); b∗(τ)〉dr = 0.(4.17)

Finally, we consider the term resulting from the diffusions. We routinely use formulas
involving traces of matrices to write

EP2

[1

h

∫ τ+h

τ

1

2
Tr

(

σ∗(r)σ∗(r)TD2φ(r,X∗(r))− σ∗(τ)σ∗(τ)TD2φ(τ,X∗(τ))
)

dr
]

=EP2

[1

h

∫ τ+h

τ

1

2
Tr

(

σ∗(r)σ∗(r)T [D2φ(r,X∗(r))−D2φ(τ,X∗(τ))]
)

dr
]

+ EP2

[1

h

∫ τ+h

τ

1

2
Tr

(

[σ∗(r)σ∗(r)T − σ∗(τ)σ∗(τ)T ]D2φ(r,X∗(r))
)

dr

and then we invoke the same set of arguments used above to conclude that there
exists a subsequence (hl′′) of (hl′) such that, P1 − a.s.,

lim
hl′′↓0

EP2

[ 1

hl′′

∫ τ+hl′′

τ

1

2
Tr

(

σ∗σ∗T (r)D2φ(r,X∗(r))− σ∗σ∗T (τ)D2φ(τ, ·)
)

dr
]

= 0.

(4.18)
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Summing up (4.7),(4.13),(4.17) and (4.18), with (2.11) in mind, for any sequence
(hj) ↓ 0 there exists a subsequence (hl′′) such that, P1 − a.s.,

lim
hl′′↓0

EP2

[ 1

hl′′

∫ τ+h

τ

[

∂sφ(r,X
∗(r)) + 〈Dφ(r,X∗(r)); b∗(r)〉(4.19)

+
1

2
Tr

(

σ∗(r)D2φ(r,X∗(r))σ∗(r)
)]

dr

+

∫ τ+h

τ

∫

E

(

φ(r,X∗(r) + η∗(r, w))− φ(r,X∗(r))

− η∗(r, w)Dφ(r,X∗(r))
)

ν(dw)dr
]

=∂sφ(τ,X
∗(τ)) + 〈Dφ(τ,X∗(τ)); b∗(τ)〉+ 1

2
Tr

(

σ∗(τ)D2φ(τ,X∗(τ))σ∗(τ)
)

+

∫

E

(

φ(τ,X∗(τ) + η∗(τ, w))− φ(τ,X∗(τ))− η∗(τ, w)Dφ(τ,X∗(τ))
)

ν(dw).

Passing to the limit along a suitable subsequence for which lim sup is achieved in
(4.6) and using (2.10), we have

lim sup
h↓0

EP2
1

h

[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]

≤p1(τ) + 〈q1(τ), b∗(τ)〉+ 1

2
Tr(σ∗σ∗T (τ)Q1(τ))(4.20)

+ J
(

τ,X∗(τ); Y ∗(τ), Z∗(τ)
)

Φ1
τ (τ,X

∗(τ))
]

, P1 − a.s.

Note that
∫ T

t
E(||Φi

s||2C1,2
1

(Q̄T )
)ds < ∞, and therefore E(||Φi

s||2C1,2
1

(Q̄T )
) < ∞ for a.e.

s ∈ [t, T ] and i ∈ {1, 2}. Therefore, without loss of generality, we may assume
E(||Φ1

τ ||2C1,2
1

(Q̄T )
) <∞ i.e.

E(||φ||2
C

1,2
1

(Q̄T )
) <∞.(4.21)

Now use (4.6), and boundedness of the data to conclude

EP2

[u(τ + h,X∗(τ + h))− u(τ,X∗(τ))

h

]

≤C||φ||C1,2
1

(Q̄T )

1

h

∫ τ+h

τ

(1 + EP2|X∗(s)|)ds

≤C||φ||C1,2
1

(Q̄T )

1

h

∫ τ+h

τ

(1 + |X∗(τ)|+ C ′
√
τ − s)ds

≤C||φ||C1,2
1

(Q̄T )(1 + |X∗(τ)|+ C ′) := ρτ (ω),(4.22)

where h ≤ 1 and we have used Lemma A.1. Also, by Cauchy-Schwartz inequality
and (4.21), we have E(|ρτ (ω)|) <∞ as X∗(τ) has bounded second moments.

By (4.22), we can now apply Fatou’s lemma and use (4.20) to obtain

lim sup
h↓0

E
1

h

[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]

= lim sup
h↓0

E
1

h

[

E
[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]
∣

∣Ft,τ

]
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= lim sup
h↓0

E
[

EP2
1

h

[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]

]

≤E
[

lim sup
h↓0

EP2
1

h

[

u(τ + h,X∗(τ + h))− u(τ,X∗(τ))
]

]

≤E
[

p1(τ) + 〈q1(τ), b∗(τ)〉+ 1

2
Tr(σ∗σ∗T (τ)Q1(τ))

+ J
(

τ,X∗(τ); Y ∗(τ), Z∗(τ)
)

Φ1
τ (τ,X

∗(τ))
]

,

for almost every τ ∈ [t, T ]. To this end, we define G(τ) = E(τ,X∗(τ)) and observe

lim sup
h↓0

G(τ + h)−G(τ)

h
(4.23)

≤E
[

p1(τ) + 〈q1(τ), b∗(τ)〉+ 1

2
Tr(σ∗σ∗T (τ)Q1(τ))

+ J
(

τ,X∗(τ); Y ∗(τ), Z∗(τ)
)

Φ1
τ (τ,X

∗(τ))
]

,

for a.e. τ ∈ [t, T ]. We proceed similarly as in (4.22) and argue, for all h ≥ 0, that

G(τ + h)−G(τ)

h
≤ E

[Φ1
τ (τ + h,X∗(τ + h))− Φ1

τ (τ,X
∗(τ))

h

]

≤ C
1

h

∫ τ+h

τ

E
[

||Φ1
τ ||C1,2

1
(Q̄T )(1 + |X∗(s)|)

]

ds

≤ C
[1

h

∫ τ+h

τ

E
(

||Φ1
τ ||2C1,2

1
(Q̄T )

)

ds
]

1

2
[1

h

∫ τ+h

τ

E
(

1 + |X∗(s)|2
)

]
1

2

≤ CE
(

||Φ1
τ ||2C1,2

1
(Q̄T )

)
1

2 := ρ′(τ),(4.24)

where we have used Itô-Lèvy formula, Cauchy-Schwartz inequality, boundedness of
the data and boundedness of second moment of X∗(·). By our assumptions, the map
τ 7→ E

(

||Φ1
τ ||2C1,2(Q̄T )

)

is Borel measurable and a member of L1([0, T ]). Therefore the

map ρ′(τ) is in L2([0, T ]). We now apply Cauchy-Schwartz inequality once more and
conclude ρ′(τ) ∈ L1([0, T ]).

We now refer to the explanation in [20] and conclude, in view of (4.24), that the
Lemma 5.2 of [34, section 5.2] is valid for the function G(s). We apply this lemma
to G(s) and use (4.23) along with (2.11) to obtain

G(T )−G(t) ≤ −E
∫ T

t

f ∗(s)ds

i.e. E(g(X∗(T )))− u(t, x) ≤ −E
∫ T

t

f ∗(s)ds

or J(t, x; Y ∗, Z∗) ≤ u(t, x).

Since the Isaacs condition (2.3) holds and the value of the game exists i.e. V (t, x) =
U(t, x) , we use Theorem 2.3 and comparison principle from Theorem 2.1 to conclude

J(t, x; Y ∗, Z∗) ≤ u(t, x) ≤ V (t, x) = U(t, x),
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which gives half of the requirement for (2.14). The other half also follows after we
apply similar machinery to v(t, x) and the conditions (2.12),(2.13) .

�

Remark on optimality of (Y ∗, Z∗). It is perhaps misleading to call the con-
trol pair (Y ∗, Z∗) in Theorem 2.6 as optimal merely on the basis of the equal-
ity (2.14). If for all Z ∈ N(t), there exist (pZ , qZ , QZ ; ΦZ) ∈ L2

Ft,·
(t, T ;R) ×

L2
Ft,·

(t, T ;Rd) × L2
Ft,·

(t, T ; Sd) × L2
Ft,·

(t, T ;C1,2
1 (QT )) such that ΦZ is progressively

measurable and (2.10), (2.11) hold for (Y ∗, Z) , then the same proof works and
one can conclude J(t, x; Y, Z∗) ≤ u(t, x) ≤ V (t, x) = U(t, x). Also, for every
Y ∈ M(t), if conditions similar to (2.12)-(2.13) hold for the control pair (Y, Z∗)
then one can show that J(t, x; Y, Z∗) ≥ v(t, x) > U(t, x) = V (t, x). In such a sce-
nario, the pair (Y ∗, Z∗) will be a saddle-point control pair satisfying J(t, x; Y ∗, Z) ≤
J(t, x; Y ∗, Z∗) ≤ J(t, x; Y, Z∗) for all admissible control pair (Y, Z).

Appendix A. Proof of some techincal Lemmas

Proof of Lemma 2.5 . Fix (t, x) ∈ QT and (p, q, Q) ∈ D
1,2+
t,x v. Let ϕ = ϕ[p, q, Q]

(merely indicates the dependence on p,q and Q) such that

[ϕ, ϕt, Dϕ,D
2ϕ](t, x) = [v(t, x), p, q, Q]

so that, by Lemma 2.4, v − ϕ has strict global maximum at (t, x) relative to the set
of points (s, y) such that s ≥ t. Without loss of generality we may assume t = 0.
Now it is easy to see that, for small µ, the function v − ϕ− µ

s
will have strict global

maximum at (tµ, xµ) and (tµ, xµ) → (0, x) as µ→ 0. Therefore, from Definition 2.1,
it follows that

−ϕt(tµ, xµ)− F (tµ, xµ, Dϕ(tµ, xµ), D
2ϕ(tµ, xµ), ϕ(tµ, ·)) ≤ − µ

t2µ

for F = H+ or H−. We get the desired result by passing to the limit µ ↓ 0 and
invoking continuity of H+ or H−. This gives the ‘if’ part, the proof of ‘only if’
trivially follows from Lemma 2.4. �

Proof of Lemma 3.3. The Lipschitz continuity and boundedness of V and U are
straight forward consequences of uniform Lipschitz continuity and uniform bound-
edness of J(t, x; Y, Z) in x. As a result, it is enough to prove [a.)], in which case the
uniform boundedness is evident from the boundedness of the data. The Lipschitz
continuity will follow if we can prove, for x, y ∈ Rd,

EPt
(

|Xt,x −Xt,y|
)

≤ C|x− y|,(A.1)

where Xt,x and Xt,y are solutions of (1.1) starting at t, respectively from the points
x and y with the same control pair γ = (Y, Z). We proceed as follows:

Set Z(s) = Xt,x(s)−Xt,y(s). By applying Itô-Lèvy formula , we have

EPt
(

|Z(s)|2
)

=|x− y|2

+ EPt

{

∫ t

s

[

2Z(r).b̄(r,Xt,x(r), Xt,y(r); γ(r))

+ Tr(σ̄σ̄T )(r,Xt,x(r), Xt,y(r); γ(r))
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∫

E

|η̄(r,Xt,x(r), Xt,y(r), w; γ(r))|2ν(dw)
]

dr
}

,

where

b̄(r,Xt,x(r), Xt,y(r)); γ(r)) = b(r,Xt,x(r); γ(r))− b(r,Xt,y(r); γ(r)),

σ̄(r,Xt,x(r), Xt,y(r)); γ(r)) = σ(r,Xt,x(r); γ(r))− σ(r,Xt,y(r); γ(r)),

η̄(r,Xt,x(r), Xt,y(r)), w; γ(r)) = η(r,Xt,x(r); γ(r);w)− η(r,Xt,y(r); γ(r);w).

We invoke the Lipschtiz continuity assumption on the data and obtain

EPt
(

|Z(s)|2
)

≤|x− y|2 + C

∫ s

t

EPt(|Z(r)|2)dr,

where we have used Fubini’s theorem. Now we apply Gronwall’s inequality to deduce

EPt
(

|Z(s)|2
)

≤ (1 +

∫ s

t

eCrdr)|x− y|2.

In other words, we have just derived

EPt
(

|Xt,x(s)−Xt,y(s)|
)

≤ C|x− y|2,
which implies (A.1) after applying Cauchy-Schwartz inequality. �

We close this Appendix with the following known estimate for stochastic differen-
tial equations.

Lemma A.1. Let X(·) be the solution of (1.1) starting from a point x at time t,
corresponding to an admissible control pair (Y, Z). Then, it holds that

Et,x
(

|X(τ)− x|
)

≤ C
√
τ − t,(A.2)

where C is a constant depending on the data.

Proof. Without loss of generality we may assume |τ − t| ≤ 1. We have

X(τ)− x =

∫ τ

t

b(s,X(s); Y (s), Z(s))ds+

∫ τ

t

σ(s,X(s); Y (s), Z(s))dW (s)

+

∫ τ

t

∫

E

η(s,X(s−); Y (s), Z(s);w)Ñ(ds, dw).

Therefore, by Itô-Lèvy isometry, we conclude

E|X(τ)− x|2

≤3E
[

∫ τ

t

b(s,X(s); Y (s), Z(s))ds
]2

+ 3

∫ τ

t

E|σ(s,X(s); Y (s), Z(s))|2dsZ(s))ds

+ 3

∫ τ

t

∫

E

E|η(s,X(s); Y (s), Z(s);w)|2ν(dw)ds

≤K(|τ − t|+ |τ − t|2),
where we have used the bounded ness assumption on the data. Sine |τ−t| ≤ 1, (A.2)
follows trivially from above estimate after applying Cauchy-Schwartz inequality.

�
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