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A GALERKIN-CHARACTERISTIC METHOD FOR LARGE-EDDY
SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER∗
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Abstract. This work aims at the development of a nonoscillatory Galerkin-characteristic method
for large-eddy simulation of turbulent flow and heat transfer. The method is based on combining the
modified method of characteristics with a Galerkin finite element discretization of the incompressible
Navier–Stokes/Boussinesq equations in primitive variables. It can be interpreted as a fractional step
technique where the convective part and the Stokes/Boussinesq part are treated separately. A limiting
procedure is implemented for the reconstruction of numerical solutions at the departure points. The
main feature of the proposed Galerkin-characteristic method is that, due to the Lagrangian treatment
of convection, the standard Courant–Friedrichs–Levy condition is relaxed, and the time truncation
errors are reduced in the Stokes/Boussinesq part. To solve the generalized Stokes/Boussinesq problem
we implement a conjugate gradient algorithm. This method avoids projection techniques and does
not require any special correction for the pressure. We verify the method for an advection-diffusion
equation with a known analytical solution and for the benchmark problem of mixed convection flow
in a squared cavity. We also present numerical results for a problem of heat transport in the Strait
of Gibraltar. The Galerkin-characteristic method has been found to be feasible and satisfactory.

Key words. Galerkin-characteristic method, large-eddy simulation, heat transfer, finite element
method, mixed convection, sea-surface temperature

AMS subject classifications. 76F35, 74S05, 65M25

DOI. 10.1137/080720711

1. Introduction. The large-eddy simulation (LES) equations for incompress-
ible thermal flows are obtained by applying a spatial filtering to the Navier–Stokes
equations subject to the Boussinesq approximation; see [5, 4, 17, 23, 16, 12] and the
references therein. However, this procedure introduces a term called a subgrid stress
tensor which needs to be modelled. This term has to be seen as the interaction between
the large and small scales in the system. In the current study, we will concentrate
on a subgrid problem based on the Smagorinsky model [27]. The LES is normally
performed on grids that are just fine enough to resolve the large flow scales, and nu-
merical errors on such grids can have large effects on the simulation results. Although
in the literature (see [12] and references therein) many numerical schemes have been
presented, it is still not clear what the effect of the numerical and modelling errors in
the LES is. However, it is commonly known that implicit time-stepping schemes are
important in LES because they offer a mean to obtain accurate solutions with larger
time steps that may be required for explicit methods. It is well-established that
the numerical treatment of the LES equations often present difficulties due to their
nonlinear form, incompressibility condition, the presence of the convective term, cou-
pling between the energy equation, and the equations governing the fluid motion. In
the LES problems, convective terms are distinctly more important than the diffusive
terms; particularly when the Reynolds numbers reach high values, these convective
terms are a source of computational difficulties and nonphysical oscillations.
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Spain (mofdi.elamrani@urjc.es).
‡School of Engineering, University of Durham, South Road, Durham DH1 3LE, UK (m.seaid@

durham.ac.uk).
2734

D
ow

nl
oa

de
d 

03
/2

0/
18

 to
 1

29
.2

34
.3

9.
10

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A GALERKIN-CHARACTERISTIC METHOD FOR LES 2735

The Galerkin-characteristic (known also by semi-Lagrangian) methods have been
largely studied and have proved their efficiency for convection-dominated flow prob-
lems. The central idea in these methods is to rewrite the governing equations in terms
of Lagrangian coordinates as defined by the particle trajectories (or characteristics)
associated with the problem under consideration. The time derivative and the advec-
tion terms are combined as a directional derivative along the characteristics, leading
to a characteristic time-stepping procedure. Consequently, these methods are known
to be unconditionally stable, independent of the diffusion coefficient, and optimally
accurate at least when the inner products in the Galerkin procedure are calculated ex-
actly. A Galerkin-characteristic has been investigated in references [6, 21, 29], among
others. In [21], a first-order Galerkin-characteristic method combined with a finite el-
ement method has been analyzed for the Navier–Stokes equations. It has been shown
that the method is unconditionally stable provided the characteristics are transported
by the divergence-free field that is deduced from the flow velocity. The case where the
characteristics are transported by a discrete velocity field which is not divergence-free
has been studied in [29]. An analysis of a Galerkin-characteristic method using finite
difference discretization has been treated in [6] for convection-diffusion equations. In
all of these references the convergence and stability of the method are proven under
the assumption that all of the inner products are calculated exactly. Furthermore, the
evaluation of the fluid particles at the departure points in [6, 21, 29] is performed using
an L2-projection on the finite element space. In many applications, the evaluation of
integrals in the L2-projection is the most difficult part of these approaches. For the
Galerkin-characteristic method proposed in the current work, the solutions at char-
acteristic feet are approximated by interpolation from finite element basis functions.
An advantage of combining the finite element method with the Galerkin-characteristic
method is that interpolation procedures at the characteristic feet can be performed
using the finite element basis functions. Obviously, this reduces the computational
cost and requires less implementation work than using the L2-projection on the cor-
responding finite element spaces. Furthermore, the method is suitable for complex
geometries, independent of the sizes and arrangement of the mesh elements, and can
easily combine different polynomial orders of elements. These properties are very use-
ful when coupling the LES equations to complex components to simulate applications,
for instance, in multiphase flows and transport in porous media.

In LES problems, the convection process is repeated continuously. Thus, some
artifacts which can be tolerated for one step might become a serious issue as the errors
start building up after several steps. For this reason, in most Galerkin-characteristic
methods linear interpolation procedures result in an oscillation-free solutions. How-
ever, applied to LES equations a Galerkin-characteristic method would require higher
interpolation for higher accuracy. The main problem with the high-order interpo-
lation procedures is that high-degree polynomials they use might show oscillatory
behavior as they are forced to satisfy the continuity condition at the nodal points.
In order to avoid the principal drawback of the conventional Galerkin-characteristic
methods, that is, the failure to preserve monotonicity, we incorporate limiters into
our algorithm to convert the method to nonoscillatory and shape preserving at minor
additional computational cost. The procedure consists of writing the local solution as
a convex combination of a high-order and low-order interpolant solutions in the host
element where the characteristic foot is localized. These solutions use two different
basis functions of high-order and low-order, respectively. This adjustment procedure
removes the oscillations as it stabilizes the system towards a monotone solution. The
method uses ideas of the flux-corrected transport algorithm [32]. A rigorous error
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2736 MOFDI EL-AMRANI AND MOHAMMED SEAID

analysis of this nonoscillatory Galerkin-characteristic method was performed in [9]
for the incompressible Navier–Stokes equations. In addition, numerical results and
comparisons between this method and the conventional modified method of charac-
teristics are shown in [26, 25] for finite difference discretization and in [24] for finite
element discretization. It should be stressed that a similar Galerkin-characteristic
method has been successfully implemented by the authors for solving laminar incom-
pressible viscous flows in [10, 7, 11].

This paper is devoted to investigating the performance of the nonoscillatory
Galerkin-characteristic method for the LES of turbulent flow and heat transfer. The
application of this method has been demonstrated using the standard benchmark
problem of mixed convection in a squared cavity and a problem of forced convection
flow and heat transport in the Strait of Gibraltar. Some results are presented as val-
idation examples, and others, to the best of our knowledge, are reported for the first
time. Numerical results presented in this study show that an interesting feature of
the nonoscillatory Galerkin-characteristic method is to allow large time steps without
deteriorating accuracy of the computed solutions.

The present paper is organized as follows. The description of the model employed
is presented in section 2. Section 3 is devoted to the formulation of the Galerkin-
characteristic method. This section includes an adjusted characteristics method for
the convection fractional stage and a conjugate gradient algorithm for the Stokes/Bo-
ussinesq stage. In section 4, we present numerical results and examples for LES of
turbulent flow and heat transfer. Our new approach is shown to enjoy the expected
accuracy as well as the robustness. Some concluding remarks are given in section 5.

2. Equations of turbulent flow and heat transfer. The description of the
evolution of a fluid in terms of velocity, the density and the temperature has proven to
be very successful. Obviously, this description cannot be valid for very small scales at
which the molecular nature of the medium has to be taken into account. In the present
work we consider the LES to model these small scales and also to analyze the subgrid
errors. The basic idea of LES is to compute a space-averaged flow field accurately. To
achieve this, each flow variable ω is decomposed into a large-scale component ω and a
subgrid scale component ω′. The large-scale component is obtained by an application
of a filter operator. In practice, this operator is a convolution integral of the form

ω(x, t) =

∫
R2

GΔ (|x − y|)ω(y, t) dy,

where x = (x, y)T is the space coordinate, t denotes the time, and GΔ is the filter
such as volume-average box-filter; see for example [23].

The governing equations for flow and heat transport are the equations of mass,
momentum, and energy for a viscous Newtonian fluid subject to the Boussinesq ap-
proximation. Here, the Newtonian assumption guarantees a linear dependence be-
tween the shear stress and the velocity gradient, while the Boussinesq approxima-
tion ensures that the density differences are confined to the buoyancy force with-
out violating the incompressibility condition. Hence, the filtered governing Navier–
Stokes/Boussinesq equations are expressed in vector form as

∇ · u = 0,

ρ∞

(
∂u

∂t
+ u · ∇u

)
+ ∇p = ∇ ·

(
2μS(u)

)
−∇ · T (u) + F,(2.1)

ρ∞cp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (κ∇T ) −∇ · H(T ),
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where the “overbar,” used to refer to filtered variables, has been omitted for ease in
notation. Here, u = (u, v)T is the velocity field, p the pressure, T the temperature,
ρ∞ the reference density, μ the viscosity, cp the specific heat at constant pressure,
and κ the thermal diffusivity coefficient. In (2.1),

(2.2) S(u) =
1

2

(
∇u + ∇uT

)
is the strain-rate tensor, and the force term F due to the Boussinesq approximation
is defined as

F = ρ∞ (1 − β(T − T∞))g,

with g is the gravity force, T∞ a temperature reference, and β the coefficient of thermal
expansion. The Reynolds subgrid-scale tensor T (u) and the heat subgrid-scale term
H(T ) are

T (u) = u ⊗ uT − u ⊗ uT , H(T ) = uT − uT.

To model these subgrid-scales in terms of filtered velocity field u and filtered temper-
ature T , we use the Smagorinsky model [27] i.e.,

(2.3) T (u) ≈ −μtS(u), H(T ) ≈ −κt∇T.

The turbulent viscosity μt and the turbulent thermal diffusivity κt are

(2.4) μt = (cs Δ)2 ‖S(u)‖ , κt =
μt

σT
,

where

(2.5) ‖S(u)‖ =
(
S(u):S(u)

) 1
2 ,

and cs is a model constant which has to be chosen a priori, Δ is the grid filter width
taken to be proportional to the grid size h, and σT is the turbulent Prandtl number
set to 0.9 in our LES results. Substituting (2.3) into (2.1) we obtain

∇ · u = 0,

ρ∞
Du

Dt
+ ∇p = ∇ ·

(
(2μ + μt)S(u)

)
+ F,(2.6)

ρ∞cp
DT

Dt
= ∇ ·

(
(κ + κt)∇T

)
,

where Dω
Dt is the material derivative of any flow variable ω defined by

(2.7)
Dω

Dt
=

∂ω

∂t
+ u · ∇ω.

Notice that Dω
Dt measures the rate of change of the function ω following the trajectories

of the flow particles. The main idea behind the Galerkin-characteristic method is to
impose a regular grid at the new time level and to backtrack the flow trajectories
to the previous time level. At the old time level, the quantities that are needed are
evaluated by interpolation from their known values on a regular grid.

The LES equations (2.6) have to be solved for a fixed time interval in a bounded
space domain Ω. Boundary and initial conditions have to be inserted in equations (2.6)
to provide a well-posed mathematical problem. These conditions strongly depend on
the problem under consideration, and their discussion is postponed for section 4 where
numerical examples are presented.
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Low−order solution element High−order solution elementTaylor−Hood element

Pressure nodes

Velocity/Temperature nodes

*
*

*

*

Fig. 3.1. Taylor–Hood element, low-order and high-order finite elements used in the simulations.

3. The Galerkin-characteristic method. The spatial discretization of (2.6)
is performed using the finite element discretization. Thus, we cover the space domain
Ω, with a quasi-uniform partition Ωh of small elements Kj such that Ω =

⋃Ne
j=1 Kj ,

where Ne is the number of elements in Ωh. In the present study, the conforming
finite element spaces for velocity/temperature and pressure that we use are Taylor–
Hood finite elements P2/P1 (see the left plot in Figure 3.1), i.e., polynomial of second
degree for the velocity/temperature and polynomial of first degree for the pressure,
respectively. It is known that for such elements the discrete velocity/temperature and
pressure fields satisfy the inf-sup condition. This property guarantees the stability
and convergence of the approximate solutions; compare [2, 31]. These finite elements
can be defined as

Vh =
{
vh ∈ C0(Ω) vh

∣∣
Kj

∈ S(Kj) ∀ Kj ∈ Ωh

}
,

Qh =
{
qh ∈ C0(Ω) : qh

∣∣
Kj

∈ R(Kj) ∀ Kj ∈ Ωh

}
,

where C0(Ω) denotes the space of continuous and bounded functions in Ω, S(Kj) and
R(Kj) are polynomial spaces defined in Kj as S(Kj) = P2(Kj) and R(Kj) = P1(Kj).

For the time integration of (2.6) we discretize the time interval into subintervals
[tn, tn+1], with length Δt and tn = nΔt. We use the notation ωn to denote the value
of a generic function ω at time tn. Hence, we formulate the finite element solutions
to un(x), Tn(x), and pn(x) as

(3.1) un
h(x) =

M∑
j=1

Un
j φj(x), Tn

h (x) =

M∑
j=1

T n
j φj(x), pnh(x) =

N∑
j=1

Pn
j ψj(x),

where M and N are, respectively, the number of velocity/temperature and pressure
mesh points in the partition Ωh. The functions Un

j , T n
j , and Pn

j are the corresponding
nodal values of un

h(x), Tn
h (x), and pnh(x), respectively. They are defined as Un

j =

un
h(xj), T n

j = Tn
h (xj), and Pn

j = pnh(yj), where {xj}Mj=1 and {yj}Nj=1 are the set of
velocity/temperature and pressure mesh points in the partition Ωh, respectively, so
that N < M and {y1, . . . ,yN} ⊂ {x1, . . . ,xM}. In (3.1), {φj}Mj=1 and {ψj}Nj=1 are
the set of global nodal basis functions of Vh and Qh, respectively, characterized by
the property φi(xj) = δij and ψi(yj) = δij , with δij denoting the Kronecker symbol.

The Galerkin-characteristic method we propose for approximating solutions to
the LES equations (2.6) can be interpreted as a fractional step technique where the
convective part is decoupled from the generalized Stokes/Boussinesq part in the time
integration process. Thus, at each time step the new velocity, temperature, and
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pressure are updated by first solving the convection equations

ρ∞
Du

Dt
= 0,

(3.2)

ρ∞cp
DT

Dt
= 0,

followed by the generalized Stokes/Boussinesq equations

∇ · u = 0,

ρ∞
∂u

∂t
+ ∇p = ∇ ·

(
(2μ + μt)S(u)

)
+ F,(3.3)

ρ∞cp
∂T

∂t
= ∇ ·

(
(κ + κt)∇T

)
.

The above procedure can be viewed as a stabilization technique for the conventional
Galerkin finite element method where the LES equations (2.6) are integrated along the
characteristic curves rather than in the time direction. In what follows, we formulate
the numerical procedures for solving (3.2) and (3.3).

3.1. Formulation of convection fractional stage. To solve the convection
equations (3.2) two steps are required, namely, the computation of characteristic tra-
jectories and the interpolation procedure. Both steps are crucial to the overall accu-
racy of the Galerkin-characteristic method. For each mesh point xj , j = 1, . . . ,M , the
characteristic curves Xn

hj := Xh(xj , tn+1; tn) associated with (2.7) are the solutions
of the initial-value problem

dXh(xj , tn+1; t)

dt
= uh (t,Xh(xj , tn+1; t)) ,

(3.4)
Xh(xj , tn+1; tn+1) = xj ,

where uh(t,x) is the approximate flow velocity at time t. The solutions of (3.4) are
known by departure points at time t of a fluid particle passing through the mesh point
xj at time t = tn+1. To compute the departure points {Xn

hj}, j = 1, . . . ,M , we write
the solution of (3.4) as

(3.5) Xn
hj = xj − αhj ,

where the displacement αhj is calculated by the iterative procedure

α
(0)
hj =

Δt

2

[
3un

h (xj) − un−1
h (xj)

]
,

(3.6)

α
(k+1)
hj =

Δt

2

[
3un

h

(
xj −

1

2
α

(k)
hj

)
− un−1

h

(
xj −

1

2
α

(k)
hj

)]
, k = 0, 1, . . . ,

where the velocity values un
h

(
xj − 1

2α
(k)
hj

)
and un−1

h

(
xj − 1

2α
(k)
hj

)
are computed by the

finite element interpolation (3.1) on the mesh element Kj where xj − 1
2α

(k)
hj belongs.

This procedure was first proposed in [30] for finite difference semi-Lagrangian methods
and studied for finite elements in [7, 8], among others. It is also known that

(3.7)
∥∥∥α− α(k+1)

∥∥∥ ≤ 1

4

∥∥∥α− α(k)
∥∥∥ ‖∇u‖Δt, k = 0, 1, . . . ,
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where ‖ · ‖ denotes the Euclidean norm. Hence, a necessary condition for the conver-
gence of iterations (3.6) is that the velocity gradient satisfies

(3.8) ‖∇u‖Δt < 1.

It should be stressed that, in our numerical results, the iterations in (3.6) were con-
tinued until the trajectory changed by less than 10−5. However, in practice it is not
recommended to repeat the iteration process more than a few times due to efficiency
considerations.

Assuming that, for all j = 1, . . . ,M , the pairs (Xn
hj , K̂j), with K̂j is the mesh ele-

ment where the characteristic foot Xn
hj is located, and the mesh point values {Un

j , T n
j }

are known, we compute the values {Ûn
j , T̂ n

j } as

(3.9) Ûn
j := un

h(Xn
hj) =

M∑
k=1

Ukφk(X
n
hj), T̂ n

j := Tn
h (Xn

hj) =

M∑
k=1

Tkφk(X
n
hj).

Then, the solution {ûn
h(x), T̂n

h (x)} of the convection stage (3.2) is obtained as

(3.10) ûn
h(x) =

M∑
j=1

Ûn
j φj(x), T̂n

h (x) =

M∑
j=1

T̂ n
j φj(x).

Remark 1. It is worth remarking that the above convection fractional stage fol-
lows the flow by tracking the characteristics backward from a point x in a fixed mesh
at the time step tn+1 to a point X at the previous time step tn. Hence, the proposed
procedure avoids the grid distortion problems present in forward-tracking methods.
We should also mention that the Galerkin-characteristic method presented in [6, 21]
suggests the evaluation of ûn

h and T̂n
h in (3.10) using an L2-projection on the space of

the velocity Vh × Vh and of temperature Vh, respectively. In many applications, the
evaluation of integrals in the L2-projection is difficult and computationally very de-
manding. An alternative approach was studied in [3] for convection-diffusion problems
and was recently proposed in [24] for the shallow water equations.

Naturally, a Lagrangian interpolation of degree higher than one would not pre-
serve monotonicity of the approximate solutions. In order to overcome this drawback,
we incorporate to the Galerkin-characteristic solution (3.10) a limiting procedure.
This implies that a solution value, obtained by interpolating in a grid element, lies
between the maximum and minimum values in the vertices of this grid element. In
this way we obtain a nonoscillatory algorithm at minor additional computational cost
that possesses good shape preserving of the advected fields in the vicinity of strong
gradients and maintains the order of convergence in regions where the solution is
sufficiently smooth. Further details on this limiting procedure can be found in [7, 8].

Next, we formulate the resulting nonoscillatory algorithm for the solution of con-
vective stage (3.2). For the simplicity of presentation, we formulate the algorithm
only for the temperature variable, and similar work can be done for the velocity field.
Thus, the numerical procedure to approximate the temperature solution T̂n in (3.2)
is carried out in the following steps:

1. Calculate the departure point Xn
hj using the procedure (3.5)-(3.6).

2. Identify the element K̂j , where the characteristic foot Xn
hj is located.

3. Evaluate the high-order gridpoint approximation

(3.11) T̂n
Hj =

NH∑
k=1

Tkφk

(
Xn

hj

)
,
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where {φ1, . . . , φNH} are the quadratic local basis functions of the mesh ele-
ment K̂j .

4. Evaluate the low-order gridpoint approximation

(3.12) T̂n
Lj =

NL∑
k=1

Tkϕk

(
Xn

hj

)
,

where {ϕ1, . . . , ϕNL} are the linear local basis functions of the element K̂j .
Observe that the linear interpolation preserves the monotonicity of the so-
lution. Therefore, the numerical solution obtained by linear interpolation is
free of oscillations and artificial extrema.

5. Update the solution T̂n
j according to

(3.13) T̂n
j = θnj T̂

n
Hj + (1 − θnj )T̂n

Lj ,

where θnj ∈ [0, 1], is a limiting coefficient chosen to control the amount of cor-
rection in the low-order approximation (3.12) in order to obtain a nonoscil-
latory solution. In the current study, it is defined as

(3.14) θnj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
1,

T+
j − T̂n

Lj

T̂n
Lj − T̂n

Hj

)
, if T̂n

Lj − T̂n
Hj > 0,

min

(
1,

T−
j − T̂n

Lj

T̂n
Lj − T̂n

Hj

)
, if T̂n

Lj − T̂n
Hj < 0,

1, if T̂n
Lj − T̂n

Hj = 0,

where T+
j and T−

j are, respectively, the maximum and minimum solution

values at the element K̂j which consist of the node j and its nearest neighbors
at time tn, i.e.,

T+
j = max

(
Tn
j1, . . . , T

n
jNH

)
, T−

j = min
(
Tn
j1, . . . , T

n
jNH

)
.

Note that, by considering the limiting procedure (3.11)–(3.14), we force the interpo-
lated value to remain within the largest and the smallest values of the solution in
a set of points surrounding the feet of the characteristics, so that the interpolation
procedure does not generate any extrema which is not possessed by the solution in a
neighborhood of the departure points.

Remark 2. We should point out that the key idea used by the adjusted Galerkin-
characteristic procedure (3.11)–(3.14) is inspired by the Zalesak flux-corrected trans-
port technique reported in [32]. This technique consists of computing the mesh point
values of the numerical solution by adding to the values of a low-order solution, which
is monotone, a correction term that contains the contribution of a high-order solu-
tion and does not violate the monotonicity properties of the low-order solution. An
example of low-order and high-order solution elements used in our computations is
shown in Figure 3.1. In this case, the numbers of low-order and high-order local basis
functions are NL = 3 and NH = 6, respectively.
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3.2. Formulation of diffusion fractional step. To complete the implemen-
tation of the adjusted Galerkin-characteristic method for solving the LES equations
(2.6), we consider a direct-type procedure to solve the Stokes/Boussinesq problem.
The solution procedure consists of solving (3.3) for the velocity, pressure and temper-
ature directly at each time step using a conjugate gradient method. Therefore, our
method avoids projection techniques and does not require any special correction for
the pressure. Note that, since the temperature is decoupled from the velocity using
the convection fractional step, the conjugate gradient method is only adopted for the
coupled pressure-velocity equations.

Hence, given a tolerance ε and using superscripts in parenthesis to indicate the
iteration numbers, the Stokes/Boussinesq problem (3.3) is solved as follows:

1. Solve for Tn+1
h ∈ Vh such that, for all vh ∈ Vh,

ρ∞cp
Δt

∫
Tn+1
h vh dΩ +

∫
(κ + κt)∇Tn+1

h · ∇vh dΩ =

ρ∞cp
Δt

∫
T̂n
h vh dΩ,(3.15)

with μt = (cs Δ)2 ‖S(un
h)‖ and κt = μt

σT
.

2. Given p
(0)
h = pnh, solve for u

(0)
h ∈ Vh × Vh such that, for all vh ∈ Vh × Vh,

ρ∞
Δt

∫
u

(0)
h vh dΩ +

∫
(2μ + μt)S(u

(0)
h ) · ∇vh dΩ =

ρ∞
Δt

∫
ûn
hvh dΩ +∫

p
(0)
h ∇ · vh dΩ +

∫
Fn+1

h vh dΩ.(3.16)

Then, compute

r
(0)
h = ∇ · u(0)

h .

3. Solve for ψ
(0)
h ∈ Qh such that, for all φh ∈ Qh,∫

Ω

∇ψ
(0)
h · ∇φhdΩ =

∫
Ω

r
(0)
h φhdΩ,

and set

g
(0)
h =

ρ∞
Δt

ψ
(0)
h + (2μ + μt) r

(0)
h , ω

(0)
h = g

(0)
h .

For m ≥ 0, assume that p
(m)
h , u

(m)
h , r

(m)
h , g

(m)
h , w

(m)
h are known, we compute

p
(m+1)
h , u

(m+1)
h , r

(m+1)
h , g

(m+1)
h , w

(m+1)
h as follows:

(a) Solve for ūh ∈ Vh × Vh such that, for all vh ∈ Vh × Vh,

ρ∞
Δt

∫
ū

(m)
h vh dΩ +

∫
(2μ + μt)S(ū

(m)
h ) · ∇vh dΩ =∫

ω
(m)
h ∇ · vh dΩ,(3.17)

with μt = (cs Δ)2
∥∥∥S(u

(m)
h )

∥∥∥. Then, set

r̄
(m)
h = ∇ · ū(m)

h .
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(b) Compute

ρm =

∫
r
(m)
h g

(m)
h dΩ∫

r̄
(m)
h ω

(m)
h dΩ

.

(c) Set

p
(m+1)
h = p

(m)
h − ρmω

(m)
h , u

(m+1)
h = u

(m)
h − ρmū

(m)
h ,

r
(m+1)
h = r

(m)
h − ρmr̄

(m)
h .

(d) Solve for ψ̄
(k)
h ∈ Sh such that, for all φh ∈ Sh,∫

∇ψ̄
(m)
h · ∇φh dΩ =

∫
r̄
(m)
h φh dΩ,

and set

g
(m+1)
h = g

(m)
h − ρm

(ρ∞
Δt

ψ
(m)
h + (2μ + μt) r

(m)
h

)
.

i. If

∫
r
(m+1)
h g

(m+1)
h dΩ∫

r
(0)
h g

(0)
h dΩ

≤ ε, then

pn+1
h = p

(m+1)
h , un+1

h = u
(m+1)
h ,

stop.
ii. Else, compute

ηm =

∫
r
(m+1)
h g

(m+1)
h dΩ∫

r
(m)
h g

(m)
h dΩ

, ω
(m+1)
h = g

(m+1)
h + ηmω

(m)
h ,

change m ←− m + 1, return to step (a) and repeat.
iii. End if.

Note that (3.17) and (3.15) have to be solved subject to appropriate boundary condi-
tions associated with the LES equations (2.6). Furthermore, the above time stepping
is only first-order accurate, and a second-order accuracy in time can be achieved by
using the Crank–Nicolson method. A detailed formulation of this method for laminar
incompressible Navier–Stokes has been described in [7, 10], whereas its analysis of
convergence and stability has been carried out in [9].

Remark 3. It is noteworthy that the above iterative process requires a solution of
uncoupled elliptic problems such that their finite element discretization leads to well-
conditioned linear systems of algebraic equations for which very efficient solvers can
be implemented. Therefore, by taking advantage of these properties, we can solve the
linear systems in the Galerkin-characteristic algorithm by conjugate gradient solvers
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using an incomplete Cholesky factorization. This yields a very powerful and efficient
method for solving this class of linear systems of algebraic equations.

The finite element discretization of (3.17)–(3.15) is trivial and is omitted here.
It is described in many text books; compare [15], among others. In addition, the
detailed integration of similar equations for triangular elements was presented in [3]
for convection-diffusion problems and in [24] for shallow water equations.

4. Numerical examples. We present numerical results for two examples in
turbulent convection flows and heat transport. The main goals of this section are
to illustrate the numerical performance of the Galerkin-characteristic algorithm de-
scribed above and to numerically verify its capability to solve turbulent convection
flow problems. In all of the computations reported herein, the linear systems of
algebraic equations are solved using the conjugate gradient solver with incomplete
Cholesky decomposition. In addition, all stopping criteria for iterative solvers were
set to 10−5, which is small enough to guarantee that the algorithm truncation error
dominated the total numerical error. In our Galerkin-characteristic algorithm, the
number of iterations to reach this tolerance do not overpass 20 iterations in the ex-
amples considered. All of the computations are performed on a Pentium personal
computer with one processor of 2.2 GB of RAM and 1.8 GHz.

4.1. Accuracy example. As a first example, we consider the advection-diff-
usion problem of rotating a Gaussian pulse in an uniform rotating flow field. This
problem was presented in [28] and has been widely used to quantify the errors in
characteristics-based methods. The problem statement is given by

(4.1)
∂u

∂t
+ v · ∇u− νΔu = 0,

equipped with the following initial data

(4.2) u(x, y, 0) = 100 exp
(
− (x− x0)

2 + (y − y0)
2

2σ2

)
.

The computational domain is a 3200 km×3200 km squared domain, the velocity field
v = (v1, v2)

T , where v1 = −ωy and v2 = ωx, with ω = 10−5/s being the angular
velocity. Here, initial and boundary conditions are derived from the analytical solution

u(x, y, t) =
100

1 + 2νt
σ2

exp
(
− x̄2 + ȳ2

2(σ2 + 2νt)

)
,

where x̄ = x−x0 cosωt+y0 sinωt, ȳ = y−x0 sinωt−y0 cosωt, (x0, y0) = (−800 km, 0)
is the center of the initial Gaussian hill and σ2 = 2×104 km2. The diffusion coefficient
ν is allowed to take the values 104 m2/s and 0 m2/s, whereas the time step Δt is
set to Δt = 4 × 104 s. We denote by GC the conventional Galerkin-characteristic
method obtained by setting θnj = 1 in (3.13), while by GCA we refer to the Galerkin-
characteristic method with adjustment (3.13)–(3.14).

In Table 4.1 we list the CPU time (in seconds), relative root mean square error
(RMS), minimum (Min), maximum (Max), and mass (Mass) of the numerical solution.
We present results after 10 revolutions of the Gaussian hill and for two time steps using
meshes with a different number of gridpoints. Note that the time period required for
one complete rotation is 2π

ω . As can be seen from this table, for the mesh with 32×32
gridpoints, the GC method goes unstable (—— in Table 4.1 corresponds to runs where
the GC method becomes unstable). In terms of RMS error the results obtained using
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Table 4.1

Results for advection-diffusion of the rotating Gaussian pulse after 10 revolutions using different
meshes and two time steps with Δt = 4 × 104 s. Remark that the analytical maximum is 99.37 and
100 for ν = 104 m2/s and ν = 0 m2/s, respectively. Here, the CPU time is given in seconds.

Δt = Δt

GC method GCA method

ν Mesh Min Max RMS Mass CPU Min Max RMS Mass CPU

104 32 × 32 —– —– —– —– —– 0 37.72 0.5316 98.94 0.71

64 × 64 −0.57 79.52 0.1390 85.95 2.42 0 73.97 0.1604 99.17 2.53

128 × 128 −0.03 97.89 0.0123 90.99 9.46 0 96.93 0.0123 99.29 9.58

256 × 256 −0.0001 99.27 0.0008 95.77 40 0 98.83 0.0011 99.33 41

0 32 × 32 —– —– —– —– —– 0 37.79 0.5333 99.01 0.69

64 × 64 −0.58 79.87 0.1405 87.03 2.47 0 74.26 0.1618 99.77 2.46

128 × 128 −0.06 98.52 0.0125 92.14 9.47 0 97.43 0.0126 99.95 9.84

256 × 256 −0.004 99.89 0.0009 98.86 40 0 99.38 0.0011 99.99 42

Δt = Δt
2

GC method GCA method

ν Mesh Min Max RMS Mass CPU Min Max RMS Mass CPU

104 32 × 32 —– —– —– —– —– 0 21.89 0.7390 98.23 1.26

64 × 64 −2.39 106.99 0.7908 80.09 4.58 0 63.47 0.2888 98.99 4.64

128 × 128 −0.86 96.46 0.0235 88.63 18 0 94.98 0.0251 99.19 18.35

256 × 256 −0.002 99.13 0.0029 93.71 77 0 98.55 0.0032 99.28 79

0 32 × 32 —– —– —– —– —– 0 21.91 0.7402 98.99 1.27

64 × 64 −2.56 130.59 0.9430 83.88 4.57 0 63.66 0.2906 99.75 4.75

128 × 128 −2.46 97.04 0.0250 91.59 18 0 95.52 0.0254 99.86 18.4

256 × 256 −0.12 99.75 0.0030 96.23 78 0 99.13 0.0033 99.93 79

the GC and GCA methods are roughly similar. From the values of Min and Max
in Table 4.1, we observe higher and negative values for the GC method which are
avoided in GCA results. Concerning the mass conservation, Table 4.1 shows that, for
pure advection at mesh of 128× 128 gridpoints, the GC method lost more than 7% of
the initial mass after the 10 rotations, whereas the GCA method is mass conserving
at the machine precision. This clearly demonstrates that the limiting procedure does
not deteriorate the accuracy of the GC method. An examination of the CPU time in
Table 4.1 reveals that, on coarse meshes, there is no noticeable difference between the
computational cost required for both methods. In all results given in Table 4.1, the
CPU time needed for the GCA method is less than 1.1 times more than that needed
for the GC method. It is evident that the additional computational effort used by
the limiting procedure has been kept to the minimum that the GCA algorithm is still
effective.

Taking all factors into account, we conclude that, for the considered test example,
the GCA method demonstrates higher monotone and nonoscillatory properties than
the GC method. More importantly, a balance between efficiency and accuracy in
both algorithms benefits the GCA method, since the additional cost required for the
limiting procedure in GCA algorithm is minimal while the results obtained by the
GCA method are more accurate than those obtained by the GC method. Therefore,
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Table 4.2

Comparison of average Nusselt numbers on the cavity walls at different Reynolds numbers.

Re = 5 × 104 Re = 2 × 105 Re = 4 × 105

GCA method Ref. [20] GCA method Ref. [20] GCA method Ref. [20]

Nul 67.827 68.560 108.227 109.696 128.1350 128.550

Nur 41.774 39.422 82.508 80.558 105.502 99.412

Nub 18.472 18.854 58.401 59.133 78.253 78.844

Nut 17.096 15.426 57.395 56.562 76.051 75.416

hereafter we shall focus our attention on numerical simulations carried out using only
the GCA method.

4.2. Mixed convection in a cavity. Our second example is the problem of
turbulent mixed convection in a lid-driven squared cavity with length L = 1. This
test problem has been numerically studied in [20], and experimental data have also
been provided in [19]. The left and right vertical walls are maintained at dimensionless
hot temperature T = 1 and cold temperature T = 0, respectively. The bottom and
top horizontal walls are insulated. According to [20], the left wall is moving with a
velocity v = 1, for which the Reynolds number Re = 1/ν. The problem is tested with
the Prandtl number Pr := ν/κ = 0.71, the Smagorinsky constant cs = 0.1, and for
Reynolds numbers Re = 5 × 104, 105, and 2 × 105. The spatial domain is discretized
into 128 × 128 gridpoints, and numerical results are presented at steady-state time
using a time step Δt = 0.1.

The purpose of this example is to present a quantitative study of the GCA method
by a comparison of the computed results to those provided from experimental data.
To this end, we summarize in Table 4.2 a comparison between published results for
average Nusselt numbers on the cavity walls and results obtained with the GCA
method. Recall that the average Nusselt numbers Nul and Nur on the left and right
walls of the cavity are calculated as

Nul = −
∫ L

0

κ
∂T

∂x

∣∣∣∣
x=0

dy and Nur = −
∫ L

0

κ
∂T

∂x

∣∣∣∣
x=L

dy,

respectively. A similar formula has been used to calculate the average Nusselt numbers
Nub and Nut on the bottom and top walls. The obtained results mostly compared
favorably with all of the model results from references [20, 19]. As it is obvious
from the Table 4.2, the small differences in comparison with other methods can be
attributed to the nature of the turbulence model used in computations. It should be
noted that the authors in [20] used the Reynolds-averaged Navier–Stokes model to
compute the effective viscosity and the thermal conductivity.

Figure 4.1 shows the streamlines, velocity vectors, and isotherms obtained for
different Reynolds numbers. As can be seen, the flow exhibits recirculating regions in
the cavity corners and the structure of these recirculating regions is strongly influenced
by the values of Reynolds numbers. In addition, the vertex center is very close to the
geometrical center of the cavity for all of the Reynolds numbers. The convective heat
transfer in recirculating flow is also affected by Reynolds numbers. There is excellent
agreement between the presented numerical results and the numerical predictions [20]
and the experimental results [19] available in the literature. Note that the performance
of our numerical model is very attractive, since the computed solutions remain stable
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Fig. 4.1. Streamlines (left column), velocity field (middle column), and isotherms (right col-
umn) for lid-driven cavity flow. From top to bottom: Re = 5 × 104, Re = 105, and Re = 2 × 105.

and highly accurate even for relatively coarse grids without solving nonlinear systems
or requiring special stabilization techniques.

The profiles of the u-velocity component along the vertical center line and the
v-velocity component along the horizontal center line are shown in Figure 4.2 for
Re = 2 × 105. In this figure, we have also included numerical predictions from [20]
and experimental data from [19]. The boundary layers for the velocity components can
be clearly observed. There is excellent agreement between the computed results and
those published in [20, 19]. Furthermore, computed vortex strengths and temperature
distribution on the cavity walls are found to be consistent with those obtained for
lid-driven squared cavity flow at corresponding Reynolds numbers. These features
clearly demonstrate the high accuracy achieved by the proposed GCA method for
solving turbulent mixed convection flows in the lid-driven squared cavity.

4.3. Mixed convection flow in the Strait of Gibraltar. Our final test ex-
ample is the mixed convection flow and heat transport in the Strait of Gibraltar. The
mean flow in the Strait of Gibraltar has been the subject of numerous numerical inves-
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Fig. 4.2. The velocity component u at vertical center line (left plot), and the velocity component
v at horizontal center line (right plot) for Re = 2 × 105.
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Fig. 4.3. Schematic description of the Strait of Gibraltar along with some well-known locations
in the Strait (left), and the domain configuration used in the numerical simulations (right).

tigations; we refer to [1] for a survey and more details. Most of the studies carried out
on the Strait of Gibraltar used the shallow water equations to model the mean flow,
and no thermal effects have been taken into account. However, observations reported
in [18] indicate that water level in the sea surface is driven by temperature changes,
while the deeper layer’s salinity also become important. Furthermore, authors in [22]
claimed that the sea-surface temperature is considered to play an important role in the
Mediterranean circulation through the Strait of Gibraltar. The sea-surface temper-
atures are maxima in summer (August–September) with average values of 23–24◦C
and minima in winter (January–February) with averages of 11–12◦C. The North At-
lantic water is about 5–6◦C colder than the Mediterranean water; elaborate details
are available in [22, 18], among others. The purpose of this example is twofold, on
one hand to test the capability of the GCA method to handle complex geometry
and moving fronts, and, on the other hand, to develop mathematical tools to study
convective heat transport in the Strait of Gibraltar.

The Strait of Gibraltar (see Figure 4.3) is bounded to the north and south by the
Iberian and African continental forelands, and to the west and east by the Atlantic
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Table 4.3

Dimensional quantities used in mixed convection flow and heat transport in the Strait of Gibraltar.

Quantity Symbol Unit Typical reference value

Reference density ρ∞ kg/m3 1000 kg/ms3

Viscosity μ kg/ms 1.14 · 10−3 kg/ms

Specific heat cp kJ/kgK 4180 kJ/kgK

Coefficient of thermal expansion β /C 210 · 10−6 /C

Thermal diffusivity κ m2/s 0.14 · 10−6 m2/s

Gravity acceleration g m/s2 9.81 m/s2

Average cold temperature TC
◦C 17 ◦C

Average hot temperature TH
◦C 23 ◦C

Reference temperature T∞ ◦C 20 ◦C

Reference height x∞ km 14 km

Reference velocity u∞ m/s 0.54 m/s

Simulation time interval T h 24 h

Ocean and the Mediterranean Sea, respectively. The Mediterranean circulation is
forced by water exchange through the Strait of Gibraltar, by wind stresses, and by
buoyancy flux at the surface due to fresh-water and heat fluxes. In general, the
basic circulation in the Strait of Gibraltar consists on an upper layer of cold, fresh
surface Atlantic water and an opposite deep current of warmer, salty Mediterranean
outflowing water; see, for example, [1]. The system is about 60 Km long between its
west Barbate–Tangier section and its east Gibraltar–Sebta section. Its width varies
from a minimum of about 14 Km at Tarifa–Punta Cires section and a maximum of
44 Km at Barbate–Tangier section. The topography of the Strait is very complex
with a maximum depth less than 1 Km; compare [1, 14, 13]. Here we assume that
the flow is two-dimensional, and the Bousinesq approximation is valid. Indeed, the
validity of these assumptions is supported by the fact that the depth of the Strait
of Gibraltar is smaller than its width, and the temperature difference between the
Mediterranean water and the Atlantic water is small. In addition, Mediterranean
outflow is much less buoyant than Atlantic water at the same depth, and therefore it
cascades down to around one Km depth in the Atlantic Ocean.

Hence, the problem statement consists of solving (2.6) in the computational do-
main shown in the right plot of Figure 4.3. The model is started from warm rest,
i.e., T = TC and u = 0. Here, the temperature fields of the Atlantic and Mediter-
ranean waters have been obtained from an average of the spring data [22]. At the
left and right boundary regions we use cold temperature TC and hot temperature TH ,
respectively. The top and bottom coastlines are considered as adiabatic boundaries.
For the water flow, a well-developed velocity profile, with a maximum velocity u∞ is
imposed at the western entrance of the Strait of Gibraltar. This profile corresponds
to the annual mean of the Atlantic input flux [1], and it is also comparable to the flow
generated by the main semidiurnal M2 tide; see, for example, [14, 13]. At the eastern
exit of the Strait of Gibraltar, we impose the pseudostress condition

−pn + μ
∂u

∂n
= 0,

where n denotes the unit outward normal vector on the boundary. On the remaining
boundaries we impose no-slip boundary conditions. The dimensional quantities in
(2.6) and the reference values are summarized in Table 4.3. Note that, unlike the
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Fig. 4.4. Results for mixed convection flow and heat transport in the Strait of Gibraltar at time
t = T/4 (left), t = T/2 (middle), and t = T (right). From top to bottom: temperature snapshots
(first row), velocity vectors (second row), streamlines (third row), and pressure contours (fourth
row).

previous test example, the considered mixed convection is a problem unsteady in
nature with moving regions of strong gradients, and therefore good numerical accuracy
is required in order to capture the different phenomena present in its evolving solution.
As a consequence, the later turbulent flow is more difficult to handle; the results shown
here illustrate the robustness of the GCA method.

In Figure 4.4 we display the temperature distribution, velocity vectors, stream-
lines field, and pressure contours at three different times, namely, t = T/4, t = T/2,
and t = T using a fixed time step Δt = 100 s and the Smagorinsky constant cs = 0.18.
At an earlier time of the simulation, the cold Atlantic front entering the Strait of
Gibraltar starts to develop and is advected later on by the flow at the far exit of the
Strait of Gibraltar. The interaction between the heat transfer and the water flow is
detected across the Strait of Gibraltar during the simulation time. It can be clearly
seen that the complicated temperature and flow structures being captured by the
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GCA method. Particularly, we can see that two major vortices are located near the
Tarifa narrow and Sebta basin. Inside these vortices, there is a more complex vortex
pattern. The decrease and increase of the strengths of vortices with time can be seen
in Figure 4.4.

From the computed results we can observe that, for the considered flow and heat
conditions, the temperature is transported towards the Spanish coast. The cold front
follows the stream induced by the mean flow entering the Strait of Gibraltar from
the Atlantic Ocean. During its advection, the thermal plume alerts the flow structure
developing recirculation zones with a different order of magnitude in the vicinity of
Tarifa narrow. The downstream recirculation zone near Sebta basin is mainly due to
the temperature differences at the region near the exit boundary. In summary, the
heat transport is captured accurately, the flow field is resolved reasonably well, and
the temperature front is shape preserving. All of these features have been achieved
using time steps larger than those required for Eulerian-based methods in convection-
dominated flows. The presented results demonstrate that the GCA method is suited
for the prediction of an LES of sea-surface temperature dispersion in the Strait of
Gibraltar. It should be stressed that results from the proposed LES model should be
compared with observations of real sea-surface temperatures in the Strait of Gibraltar.
However, there is no data available until now to carry out this work. Thus, at the
moment we can only perform simulations and verify that results are plausible and
consistent.

We now turn our attention to the sensibility of the LES on the Smagorinsky
constant cs. To this end, we perform a series of simulations using different values of
cs, and we report in Figure 4.5 the time evolution of the corresponding kinetic energy
at the Tarifa narrow. This figure gives an idea of the evolution of the kinetic energy
as the thermal plume moves with time subject to different Smagorinsky constants in
the LES model. It is clear that larger values of Smagorinsky constant results in longer
fluctuations in the kinetic energy before this later stabilizes to a stationary state. It is
evident that further investigations on the influence of the Smagorinsky constant and
the filter width on the LES results are needed.

As a final remark we want to comment on the numerical results (not reported here)
obtained using the conventional Galerkin algorithm (GA) method. Using this method,
the temperature variable exhibits larger values than TH and smaller values than TC .
The relevance of the property that T ∈ [TC , TH ] for this problem is twofold. Firstly,
since no thermal source is present in the LES system, to obtain larger values than TH

and smaller values than TC is physically unacceptable. Secondly, when the thermal
diffusivity is as small as the one of the current problem, having larger values than TH

and smaller values than TC may cause a breakdown in the iterations of the conjugate
gradient solver used to solve the linear systems for the Stokes/Boussinesq stage in
the conventional GC algorithm. In the opposite, results obtained using the proposed
GCA method are free from any spurious oscillations, and the computed temperature
is found to be monotone and bounded in [TC , TH ] during the time integration process.
In fact, the GCA solution reveals the physics well in this test example.

Finally, we give an average distribution of the CPU time spent for each stage of
the GCA algorithm for this problem: convection fractional stage 17% and diffusion
fractional step 79%; within the convection fractional stage, only 4% of the CPU time
is consumed by the limiting process in the GCA method. It should be pointed out that
most of the computational effort goes into solving the linear systems in the generalized
Stokes/Boussinesq stage of the GCA algorithm. Therefore, reducing the CPU time
in the GCA method can be achieved by constructing a more efficient preconditioned
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Fig. 4.5. Time evolution of the kinetic energy at the Tarifa narrow using different values of cs.

iterative solver for these linear systems. Multigrid techniques are known to be the
most efficient methods for solving linear systems and can therefore be the suitable
tools to increase the efficiency of the GCA method. Needless to say, that the CPU
time in the proposed GCA method can be drastically reduced if parallel computers
were used.

5. Summary and conclusions. A Galerkin-characteristic method has been
developed for LES of turbulent flow and heat transfer. The equations are based on
thermal incompressible Navier–Stokes equations subject to the Boussinesq approxi-
mation. For turbulence effects we have considered the Smagorinsky subgrid model.
The method combines the modified method of characteristics with a Galerkin finite el-
ement discretization in primitive variables. A conjugate gradient algorithm has been
implemented for the solution of the generalized Stokes/Boussinesq problem. This
method avoids projection techniques and does not require any special correction for
the pressure. We have also showed how a limiting process can be implemented for
the Galerkin-characteristic algorithm in order to preserve monotonicity of the com-
puted solution. Numerical results presented in this work have shown the ability of
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the current Galerkin-characteristic algorithm to perform very well in the presence of
strong gradients and discontinuities without nonphysical oscillations and numerical
diffusion; even coarse meshes and large timesteps are used in computations.

Numerical experiments were conducted to solve the advection-diffusion example
of a Gaussian hill and the example of mixed convection flow in a lid-driven cavity. The
proposed method has also been verified for the numerical simulation of turbulent flow
and heat transport in the Strait of Gibraltar. In the first example, the accuracy and
efficiency of conventional and adjusted Galerkin-characteristic methods have been
compared, whereas the computed results from the adjusted Galerkin-characteristic
method have been compared to measurements in the second test problem. The
last example represents a practical demonstration of the capabilities of the Galerkin-
characteristic method in simulations of coupled turbulent flow and heat transfer for
two major reasons. Firstly, the computational domain in the Strait of Gibraltar is a
large-scale domain including well-defined shelf regions. Secondly, the Strait of Gibral-
tar contains complex fully two-dimensional eddy viscosity and moderate temperature
difference, which present a challenge for most numerical methods used in thermal flow
modelling. For all of these examples, the algorithm exhibited good shape and high
accuracy; excellent agreement has been found between the computed results and those
published on mixed convection in a squared cavity, with stability behavior even large
timesteps are used in computations. The presented results demonstrate the capability
of the Galerkin-characteristic method that can provide insight to complex turbulent
thermal flow behaviors.

Finally, it should be stressed that the stability limitations of the Galerkin-char-
acteristic method are usually due to errors in the approximation of the trajectories,
specifically in the location of the departure points at the feet of the characteristic
curves. Future work will concentrate on the extension of this method to coupled
turbulent flow and heat transfer problems in three space dimensions.
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