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Abstract

A family of k-subsets A1, A2, . . . , Ad on [n] = {1, 2, . . . , n} is called a
(d, c)-cluster if the union A1 ∪A2 ∪ · · · ∪Ad contains at most ck elements
with c < d. Let F be a family of k-subsets of an n-element set. We show
that for k ≥ 2 and n ≥ k + 2, if every (k, 2)-cluster of F is intersecting,
then F contains no (k−1)-dimensional simplices. This leads to an affirma-
tive answer to Mubayi’s conjecture for d = k based on Chvátal’s simplex
theorem. We also show that for any d satisfying 3 ≤ d ≤ k and n ≥ dk

d−1 , if

every (d, d+1
2 )-cluster is intersecting, then |F| ≤

(

n−1
k−1

)

with equality only
when F is a complete star. This result is an extension of both Frankl’s
theorem and Mubayi’s theorem.

Keywords: Clusters of subsets, Chvátal’s simplex theorem, d-simplex, Erdős-
Ko-Rado Theorem

AMS Classification: 05D05.

1 Introduction

This paper is concerned with the study of families of subsets with intersecting
clusters. The first result is a proof of an important case of a conjecture recently
proposed by Mubayi [7] on intersecting families with the aid of Chvátal’s simplex
theorem. The second result is an extension of both Frankl’s theorem and Mubayi’s
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theorem. It should be noted that we have used these two theorems themselves as
a starting point to prove this extension.

Let us review some notation and terminology. The set {1, 2, . . . , n} is usually
denoted by [n] and the family of all k-subsets of a finite set X is denoted by Xk

or
(

X

k

)

. A family F of sets is said to be intersecting if every two sets in F have
a nonempty intersection. A family F of sets in Xk is called a complete star if F
consists of all k-subsets containing x for some x ∈ X .

The classical Erdős-Ko-Rado (EKR) theorem [3] is stated as follows.

Theorem 1.1 (The EKR Theorem) Let n ≥ 2k and let F ⊆
(

[n]
k

)

be an in-

tersecting family, then |F| ≤
(

n−1
k−1

)

. Furthermore, for n > 2k, the equality holds
only when F is a complete star.

The following generalization of the EKR theorem is due to Frankl [4].

Theorem 1.2 (Frankl) Let k ≥ 2, d ≥ 2, and n ≥ dk/(d − 1). Suppose that
F ⊆ [n]k such that every d sets of F have a nonempty intersection. Then |F| ≤
(

n−1
k−1

)

with equality only when F is a complete star.

The following conjecture due to Erdős on triangle free families implies Frankl’s
theorem for d ≥ 3. Recall that a d-dimensional simplex, or a d-simplex for short,
is defined to be a family of d+ 1 sets A1, A2, . . . , Ad+1 such that every d of them
have a nonempty intersection, but A1 ∩ A2 ∩ · · · ∩ Ad+1 = ∅. A 2-dimensional
simplex is called a triangle. This conjecture has been proved by Mubayi and
Verstraëte [9]

Conjecture 1.3 (Erdős) For n ≥ 3k
2
, if F ⊆ [n]k contains no triangle, then

|F| ≤
(

n−1
k−1

)

with equality only when F is a complete star.

However, as generalization of Erdős’ conjecture, Chvátal [1] proposed the
following conjecture which remains open in general case.

Conjecture 1.4 (Chvátal’s Simplex Conjecture) Let k ≥ d + 1 ≥ 3, n ≥
k(d + 1)/d, and F ⊆ [n]k. If F contains no d-dimensional simplex, then |F| ≤
(

n−1
k−1

)

with equality only when F is a complete star.

Chvátal [1] has shown that it is true for d = k − 1, which we call Chvátal’s
simplex theorem.

Theorem 1.5 (Chvátal’s Simplex Theorem) For n ≥ k+2 ≥ 5, if F ⊆ [n]k

contains no (k − 1)-dimensional simplices, then |F| ≤
(

n−1
k−1

)

with equality only
when F is a complete star.
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Frankl and Füredi [5] have shown that Chvátal’s conjecture holds for suffi-
ciently large n.

Theorem 1.6 (Frankl and Füredi) For k ≥ d + 2 ≥ 4, there exists n0 such
that for n > n0, if F ⊆ [n]k contains no d-dimensional simplices, then |F| ≤

(

n−1
k−1

)

with equality only when F is a complete star.

As will be seen, a recent conjecture proposed by Mubayi [7] is related to
Chvátal’s simplex theorem. Here we introduce the terminology of clusters of
subsets. A family of k-subsets A1, A2, . . . , Ad of [n] is called a (d, c)-cluster if
|A1 ∪ A2 ∪ · · · ∪ Ad| ≤ ck, where c < d is a constant that may depend on d. A
cluster is said to be intersecting if their intersection is nonempty.

Conjecture 1.7 (Mubayi’s Conjecture) Let k ≥ d ≥ 3 and n ≥ dk/(d − 1).
Suppose that F ⊆ [n]k such that every (d, 2)-cluster of F is intersecting i.e., for
any A1, A2, . . . , Ad ∈ F , |A1∪A2 ∪ · · · ∪Ad| ≤ 2k implies A1 ∩A2 ∩ · · · ∩Ad 6= ∅.
Then |F| ≤

(

n−1
k−1

)

with equality only when F is a complete star.

Mubayi [7] has shown that this conjecture holds for d = 3 (Theorem 1.8). He
has also proved that his conjecture holds for d = 4 when n is sufficiently large [8].

Theorem 1.8 (Mubayi) Let k ≥ 3 and n ≥ 3k
2
. Suppose that F ⊆ [n]k is a

family such that every (3, 2)-cluster A1, A2, A3 ∈ F is intersecting, then |F| ≤
(

n−1
k−1

)

with equality only when F is a complete star.

In this paper, we study the case d = k of Mubayi’s conjecture in connection
with Chvátal’s simplex theorem. We show that in this case the conditions for
Mubayi’s conjecture imply the nonexistence of any (k − 1)-dimensional simplex.
Therefore, Chvátal’s simplex theorem leads to Mubayi’s conjecture for d = k.
As the main result of this paper, we present a theorem on families of subsets
with intersecting clusters which can be viewed as an extension of both Frankl’s
Theorem (Theorem 1.2) and Mubayi’s Theorem (Theorem 1.8).

2 Families of Subsets with Intersecting Clusters

In this section, we first consider a special case of Mubayi’s conjecture for k = d.
We show that this case can be deduced from Chvátal’s simplex theorem (Theorem
1.5). Then we study families of k-subsets with intersecting (d, d+1

2
)-clusters and

obtain a theorem as an extension of both Frankl’s theorem (Theorem 1.2) and
Mubayi’s theorem (Theorem 1.8). Our proof is based on the EKR Theorem and
Frankl’s Theorem. We will also use a similar strategy as in the proof of Mubayi’s
theorem [7].
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Theorem 2.1 Let k ≥ 3 and n ≥ k + 2. Suppose that F ⊆ [n]k is a family of
subsets of [n] such that every (k, 2)-cluster is intersecting. Then F contains no
(k − 1)-dimensional simplices.

Proof. Suppose to the contrary that A1, A2, . . . , Ak ∈ F form a (k−1)-dimensional
simplex, namely, every k − 1 of them have a nonempty intersection but

A1 ∩A2 ∩ · · · ∩ Ak = ∅. (2.1)

It follows that two distinct families {Ai1, Ai2 , . . . , Aik−1
} and {Aj1 , Aj2, . . . , Ajk−1

}
cannot have a common element, because the union of these two families equals
{A1, A2, . . . , Ak}. Without loss of generality, let

i ∈ A1 ∩ · · · ∩Ai−1 ∩ Ai+1 ∩ · · · ∩ Ak.

That is, i belongs to every subset Aj other than Ai. It follows that that {1, . . . , i−
1, i + 1, . . . k} ⊂ Ai. Since Ai is a k-subset, Ai must contain an element in
{k + 1, . . . , n}. So we have

|A1 ∪A2 ∪ · · · ∪Ak| ≤ 2k.

This means that {A1, A2 . . . , Ak} is a (k, 2)-cluster that is not intersecting, con-
tradicting to the assumption of the theorem. So we conclude that F does not
contain any (k − 1)-dimensional simplex. This completes the proof.

The following theorem is the main result of this paper.

Theorem 2.2 Let k ≥ d ≥ 3 and n ≥ dk
d−1

. Suppose that F ⊆ [n]k is a fam-

ily of subsets of [n] such that every (d, d+1
2
)-cluster is intersecting (i.e., for any

A1, A2, . . . , Ad ∈ F , |A1 ∪A2 ∪ · · · ∪ Ad| ≤
d+1
2
k implies that ∩d

i=1Ai 6= ∅). Then

|F| ≤
(

n−1
k−1

)

with equality only when F is a complete star.

The next lemma gives an upper bound on the number of edges in a graph
with intersecting clusters, and it will be used in the proof of Theorem 2.2.

Lemma 2.3 Let n > d ≥ 3. Suppose that F ⊆ [n]2 is a family of 2-subsets of
[n] such that every (d, d+1

2
)-cluster is intersecting. Then |F| ≤ n−1 with equality

only when F is a complete star.

Proof. Since F is a family of 2-subsets, we may consider it as a graph G with
vertex set [n]. The conditions in the lemma imply that any d edges A1, A2, . . . ,
Ad of G either intersect at a common vertex or cover at least d + 2 vertices (for
d = 3, G does not contain any triangle because every (3, 2)-cluster is intersecting).

We proceed by induction on n. For n = d+1, since any d edges cover at most
n = d+1 vertices, any d edges of G must intersect at a common vertex and thus
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form a star. This implies that |F| = |E(G)| ≤ d = n−1 with equality only when
F (or G) is a complete star.

Assume that n ≥ d + 2 and that the lemma holds for n − 1. We first claim
that G must contain a vertex of degree one. Otherwise, every vertex of G has
degree at least two which implies that for every connected component C of G we
have

|V (C)| ≤ |E(C)|. (2.2)

Let C1, C2, . . . , Cm be the connected components of G ordered by the condition

|E(C1)| ≥ |E(C2)| ≥ · · · ≥ |E(Cm)|.

We aim to find d edges that form a non-intersecting (d, d+1
2
)-cluster to reach

a contradiction. Let us consider two cases.

Case 1. |C1| ≥ d. Since C1 is not a star, it contains a path P with three edges.
Since d ≥ 3, we can add d − 3 edges to P to obtained a connected subgraph H
of C1. Let A1, A2, . . . , Ad be d edges of H . Then we have

|A1 ∪ A2 . . . ∪Ad| = |V (H)| ≤ |E(H)|+ 1 = d+ 1.

Since H is not a star, we obtain A1 ∩ A2 . . . ∩Ad = ∅.

Case 2. |C1| < d. Let r ≥ 1 be the integer such that

b =

r
∑

i=1

|E(Ci)| < d and

r+1
∑

i=1

|E(Ci)| ≥ d.

It is clear that Cr+1 has at least d−b edges. We now take any connected subgraph
H of Cr+1 with d− b edges. Since H is connected, we have

|E(H)| ≥ |V (H)| − 1. (2.3)

Let A1, A2, . . . , Ad be the d edges in C1, C2, . . . , Cr, H . From (2.2) and (2.3) it
follows that

|A1 ∪A2 · · · ∪Ad|

= |V (C1)|+ |V (C2)|+ · · ·+ |V (Cr)|+ |V (H)|

≤ |E(C1)|+ |E(C2)|+ · · ·+ |E(Cr)|+ |E(H)|+ 1

= d+ 1.

Noting that C1, C2, . . . , Cr and H are disjoint, we have A1 ∩ A2 · · · ∩ Ad = ∅.

In summary, we have reached the conclusion that G has a vertex with degree
one. Let v be a vertex of degree one in G and let G′ be the induced graph obtained
from G by deleting the vertex v. Clearly, G′ is a graph with n − 1 vertices in
which every d edges A1, A2, . . . , Ad either intersect at a common vertex or cover
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at least d+2 vertices. By the inductive hypothesis, we have |E(G′)| ≤ n−2 with
equality only if G′ is a complete star. Hence

|F| = |E(G)| = |E(C)|+ 1 ≤ n− 1

with equality only if F (or G) is a complete star.

The following lemma is an extension of Lemma 3 of Mubayi [7]. While the
proof of Mubayi relies on the EKR theorem, our proof is based on the above
Lemma 2.3 and Frankl’s theorem (Theorem 1.2). We will also use a similar
framework as in the proof of Mubayi’s theorem [7].

Lemma 2.4 Let k ≥ d ≥ 2, t ≥ 2, and 2 ≤ l ≤ k. Let S1, S2, . . . , St be pairwise
disjoint k-subsets and X = S1 ∪ S2 ∪ · · · ∪ St. Suppose that F is a family of
l-subsets of X satisfying the conditions (1) Si ∈ F for all i if l = k; (2) For
every A1, A2, . . . , Ad ∈ F and 1 ≤ i ≤ t, A1 ∩ A2 · · · ∩ Ad ∩ Si = ∅ implies
|A1 ∪A2 · · · ∪Ad − Si| >

dl
2
. Then we have |F| <

(

tk−1
l−1

)

.

Proof. For d = 2, the above lemma reduces to Lemma 3 in [7]. So we may assume
that d ≥ 3. Let n = |X| = tk. We consider the following two cases.

Case 1. Assume l = 2. We claim that any (d, d+1
2
)-cluster of F is intersecting,

namely, for any A1, A2, . . . , Ad ∈ F , we have either A1 ∩ A2 ∩ · · · ∩ Ad 6= ∅ or
|A1 ∪A2 ∪ · · · ∪Ad| ≥ d+2. To this end, we assume that A1 ∩A2 ∩ · · · ∩Ad = ∅.
This gives A1 ∩ A2 ∩ · · · ∩ Ad ∩ Si = ∅ for any Si. Since X = ∪Si is the ground
set of F , there exists Sm such that A1 ∩ Sm 6= ∅. As A1 ∩A2 ∩ · · · ∩Ad ∩ Sm = ∅
and l = 2, in view of Condition 2 we get

|A1 ∪ A2 ∪ · · · ∪Ad − Sm| > d.

Furthermore, the condition A1 ∩ Sm 6= ∅ yields

|A1 ∪ A2 ∪ · · · ∪ Ad| > d+ 1.

So the claim holds.

Since d ≥ 3, by Lemma 2.3, we find that |F| ≤ n − 1, where n = tk. So
it remains to show that it is impossible for |F| to reach the upper bound n −
1. Assume that |F| = n − 1. Again, by Lemma 2.3, F must be a complete
star, namely, F consists of all 2-subsets of X for some x in X . Without loss of
generality, we may assume that x ∈ S1. Let A1 be a 2-subset from F such that
A1 ⊆ S1. Since d − 1 ≤ k, we may choose d − 1 2-subsets A2, A3, . . . , Ad such
that Ai ∈ F and Ai − x ⊆ S2 for 2 ≤ i ≤ d. This implies that

A1 ∩ A2 ∩ · · · ∩Ad ∩ S2 = ∅

and
|(A1 ∪ A2 ∪ · · · ∪ Ad)− S2| = 2 < d,
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contradicting Condition (2). Thus we have |F| < n− 1 = tk − 1. So the lemma
is proved for l = 2.

Case 2. Assume l ≥ 3. So we have k ≥ l ≥ 3. We use induction on t.

We first consider the case t = 2, namely, X = S1 ∪ S2. We will show that
A1 ∩ A2 ∩ · · · ∩ Ad 6= ∅ for any A1, A2, . . . , Ad ∈ F . If this were not true, there
would exist subsets A1, A2, . . . , Ad ∈ F for which

A1 ∩ A2 ∩ · · · ∩ Ad = ∅. (2.4)

Let A = A1∪A2∪ · · ·∪Ad. It is clear that A contains at most dl elements. Since
S1 and S2 are disjoint, so are A ∩ S1 and A ∩ S2. Therefore, either A ∩ S1 or
A ∩ S2 contains at most half of the elements in A. We may assume without loss
of generality that

|A ∩ S1| ≤
dl

2
.

Note that (2.4) implies A1 ∩ A2 ∩ · · · ∩ Ad ∩ S2 = ∅. Since X = S1 ∪ S2, we get

|A− S2| = |A ∩ S1| ≤
dl

2
,

contradicting Condition (2). Thus we deduce that A1 ∩A2 ∩ · · · ∩Ad 6= ∅ for any
A1, A2, . . . , Ad ∈ F . By Frankl’s Theorem (Theorem 1.2) we obtain

|F| ≤

(

2k − 1

l − 1

)

. (2.5)

Next we prove that the equality in (2.5) can never be reached. Let us assume
that

|F| =

(

2k − 1

l − 1

)

. (2.6)

Since d ≥ 3, by Frankl’s theorem, F is a complete star, that is, F consists of
all l-subsets of [2k] containing an element x for some x in [2k]. Without loss of
generality, we may assume that x ∈ S1. Thus F contains every subset Ai which
is either of the form B ∪ {x} for B ∈ [S1 − x]l−1 or of the form C ∪ {x} for
C ∈ [S2]

l−1. Since d ≤ k and 3 ≤ l ≤ k, we have

d− 1 ≤ k ≤

(

k

l − 1

)

.

Now we may choose A1 ∈ F with A1 ⊆ S1 and d − 1 sets A2, A3, . . . , Ad ∈ F
with Ai − x ⊆ S2 for each i ≥ 2. Since A1 ∩ S2 = ∅, A1 ∩ A2 · · · ∩ Ad ∩ S2 = ∅.
Moreover, since Ai − x ⊆ S2 for i = 2, 3, . . . , d, we have

|(A1 ∪A2 ∪ · · · ∪Ad)− S2| = |A1| = l <
dl

2
,

contradicting Condition (2). It follows that |F| <
(

2k−1
l−1

)

and hence the lemma is
valid for t = 2.
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Next suppose that t ≥ 3 and the result holds for t − 1. We first show that
there exists at most one set Sm such that

|F ∩ [Sm]
l| ≥

d

2
.

Suppose, to the contrary, that there exist two sets, say S1 and S2 , such that

|F ∩ [Si]
l| ≥

d

2
,

for i = 1, 2. Then we have

|F ∩ [S1]
l|+ |F ∩ [S2]

l| ≥ d.

Since |F ∩ [S1]
l| ≥ d

2
≥ 1 and |F ∩ [S2]

l| ≥ d
2
≥ 1, we are able to choose d sets

A1, A2, . . . , Ad from (F ∩ [S1]
l) ∪ (F ∩ [S2]

l) such that A1 ⊆ S1 and A2 ⊆ S2.
Since |(A1 ∪ A2 ∪ · · · ∪ Ad)| ≤ dl and S1 ∩ S2 = ∅, we have either

|(A1 ∪A2 ∪ · · · ∪Ad) ∩ S1| ≤
dl

2
(2.7)

or

|(A1 ∪ A2 ∪ · · · ∪ Ad) ∩ S2| ≤
dl

2
. (2.8)

Without loss of generality, assuming that (2.7) is valid. We see that

|(A1 ∪A2 ∪ · · · ∪ Ad)− S2| = |(A1 ∪ A2 ∪ · · · ∪Ad) ∩ S1| ≤
dl

2
.

However, the choice of A1, A2, . . . , Ad ensures that A1 ∩ A2 · · · ∩ Ad ∩ S2 = ∅,
contradicting Condition (2). This leads to the conclusion that there exists at
most one set Sm such that

|F ∩ [Sm]
l| ≥

d

2
.

Without loss of generality, let us assume that m = t. Thus we have

|F ∩ [Si]
l| ≤

d− 1

2
,

for i = 1, . . . , t− 1. Set

Hi = {F ∈ F : |F ∩ Si| = l − 1}

and
degHi

(B) = |{F ∈ Hi : B ⊂ F}|

for each 1 ≤ i ≤ t.

We claim that there exists at least one set Si (i ∈ {1, . . . , t}) such that

|Hi| ≤

(

k

l − 1

)

and |F ∩ [Si]
l| ≤

d− 1

2
.
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Suppose that the above claim is not true. Then

|Hi| ≥

(

k

l − 1

)

+ 1, (2.9)

for i = 1, · · · , t− 1. Moreover, if |F ∩ [St]
l| ≤ d−1

2
, then

|Ht| ≥

(

k

l − 1

)

+ 1.

By (2.9), there exists a (l − 1)-subset B of S1 such that

degH1
(B) ≥ 2. (2.10)

Assume that A1, A2 ∈ H1 are chosen subject to the conditions B ⊂ A1 and
B ⊂ A2. Since

|H2| ≥

(

k

l − 1

)

+ 1 > d− 2,

we can choose A3, . . . Ad from H2. Since A1 ∩ A2 = B ⊆ S1,

A1 ∩ · · · ∩ Ad ∩ S2 = ∅

and

|A1 ∪ · · · ∪Ad − S2| ≤ (l + 1) + (d− 2) = l + d− 1 ≤
dl

2

for d ≥ 4 and l ≥ 3. So we have reached a contradiction to Condition (2) when
d ≥ 4.

Consider the case d = 3. Let {xi} = Ai − B for i = 1, 2. Since A1, A2 ∈ H1,
we have xi 6∈ S1. Let x1 ∈ Si0 for some i0 ≥ 2. Choose A3 to be either in Hi0 or
F ∩ [Si0 ]

l. Since A1 ∩ A2 = B ∈ S1 and S1 ∩ S2 = ∅, we have

A1 ∩A2 ∩ A3 ∩ Si0 = ∅

and

|A1 ∪A2 ∪A3 − Si0| ≤ (l − 1) + 1 + 1 = l + 1 ≤
dl

2

for l ≥ 3 and d = 3, contradicting Condition (2) again. Thus the claim is verified.

Without loss of generality, we assume that

|{F ∈ F : |F ∩ S1| = l − 1}| = |H1| ≤

(

k

l − 1

)

and |F ∩ [S1]
l| ≤

d− 1

2
.

For any F ∈ F , we may express F as F1∪F2, where F1 = F ∩S1 and F2 = F−F1.
For a fixed F1 of size l − r (1 ≤ r ≤ l), let Fr be the family of all r-sets
F2 ⊂ S2 ∪ S3 ∪ · · · ∪ St such that F1 ∪ F2 ∈ F .

We claim that Fr satisfies the conditions of the lemma. For otherwise, we
may assume that there exist A1, A2, . . . , Ad ∈ Fr and i ∈ {2, · · · , t} such that
A1 ∩ A2 ∩ · · · ∩ Ad ∩ Si = ∅ and

|(A1 ∪ A2 ∪ · · · ∪ Ad)− Si| ≤
d

2
r.
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Now, let A′
j = Aj ∪ F1 for 1 ≤ j ≤ d. Clearly, A′

1, A
′
2, . . . , A

′

d ∈ F and

A′

1 ∩ A′

2 ∩ · · · ∩ A′

d ∩ Si = ∅. Recalling that l ≥ r, we find

|(A′

1 ∪ A′

2 ∪ · · · ∪A′

d)− Si| = |F1|+ |(A1 ∪A2 ∪ · · · ∪ Ad)− Si|

≤ l − r +
dr

2
= l +

d− 2

2
r ≤ l +

d− 2

2
l =

dl

2
,

contradicting Condition (2). Thus we have shown that Fr satisfies the conditions
of the lemma. For r ≥ 2, by the inductive hypothesis, we see that

|Fr| <

(

(t− 1)k − 1

r − 1

)

.

Since l ≥ 3 and d ≤ k, it is easy to check that

l
∑

r=2

(

k

l − r

)

− d ≥ 0.

Hence |F| can be bounded as follows,

|F| ≤
l

∑

r=2

(

k

l − r

)

|Fr|+ |{F ∈ F : |F ∩ S1| = l − 1}|+ |F ∩ [S1]
l|

≤
l

∑

r=1

(

k

l − r

)(

(t− 1)k − 1

r − 1

)

−
l

∑

r=1

(

k

l − r

)

+

(

k

l − 1

)

+
d− 1

2

<

(

tk − 1

l − 1

)

−
l

∑

r=2

(

k

l − r

)

+ d ≤

(

tk − 1

l − 1

)

.

This completes the proof.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. For d = 3, the result follows from Theorem 1.8. So we
assume d ≥ 4. Let S1, S2, . . . , St be a maximum subfamily of pairwise disjoint
k-subsets from F . We proceed by induction on t. If t = 1, then F is intersecting
and the result follows from Theorem 1.1 when n ≥ 2k. When dk

d−1
≤ n < 2k, for

any A1, . . . , Ad ∈ F , |A1 ∪ · · · ∪ Ad| ≤ n < 2k, it follows that their intersection
is nonempty from the condition of the theorem. Hence the theorem reduces to
Theorem 1.2 in this case. Now we may assume that t ≥ 2 and the theorem holds
for t− 1. Note that t = 1 is the only case when F can be a complete star. It will
be shown that |F| <

(

n−1
k−1

)

.

If n = tk, we set l = k. The condition on F in Theorem 2.2 implies the
conditions on F in Lemma 2.4 with d replaced by d − 1. In fact, suppose that
there exist A1, A2, . . . , Ad−1 ∈ F for which A1 ∩ A2 · · · ∩ Ad−1 ∩ Si = ∅. Since
every (d, d+1

2
)-cluster of F is intersecting, we see that

|A1 ∪A2 ∪ · · · ∪ Ad−1 ∪ Si| >
d− 1

2
k,
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hence

|A1 ∪A2 ∪ · · · ∪ Ad−1 − Si| >
d+ 1

2
k − k =

d− 1

2
k.

Hence the theorem follows from Lemma 2.4 in this case.

We now assume n > tk and let

Y = [n]−
t
⋃

i=1

Si. (2.11)

Given the choice of S1, S2, . . . , St, Y does not contain any subset A ∈ F . Set

F ′ = {F ∈ F : |F ∩ Y | = k − 1}.

We claim that if |Y | = n− tk ≥ k, then

|F ′| ≤

(

n− tk

k − 1

)

. (2.12)

If the claim is not true given the condition, then we have

|F ′| ≥

(

n− tk

k − 1

)

+ 1 ≥ k + 1 > d.

Therefore, there exists a (k − 2)-subset B ⊂ Y such that

degF ′(B) ≥ |Y | − k + 3 = (n− tk)− k + 3. (2.13)

Otherwise, we would have

|F ′| ≤
((n− tk)− k + 2)

(

n−tk

k−2

)

k − 1
=

(

n− tk

k − 1

)

.

Since the number of (k − 1)-subsets of Y containing B is equal to |Y | − k + 2,
there exists = (k − 1)-subset C in Y containing B such that degF ′(C) ≥ 2. Let
A1, A2 ∈ F ′ be such that A1 ∩ A2 = C ⊂ Y . It is easy to see that

A1 ∩A2 ∩ Si = ∅

for each 1 ≤ i ≤ t. Let A3, A4, . . . , Ad−1 be additional subsets in F ′ such that
B ⊆ Ai for each i if |Y | − k + 3 ≥ d− 1. We deduce that

A1 ∩ · · · ∩Ad−1 ∩ Si = ∅

for each 1 ≤ i ≤ t. Moreover,

|A1 ∪ · · · ∪ Ad−1| ≤ k − 2 + 2(d− 2) + 1 = k + 2d− 5, if |Y | − k + 3 ≥ d− 1

and

|A1 ∪ · · · ∪Ad−1| ≤ |Y |+ d− 1 ≤ k + 2d− 6, if |Y | − k + 3 < d− 1.

11



Let Sh be such that Sh ∩ A1 6= ∅. Since k ≥ d ≥ 4, we see that

|(A1 ∪ · · · ∪ Ad−1) ∪ Sh| ≤ k + 2d− 5 + (k − 1) = 2k + 2d− 6 ≤
d+ 1

2
k,

contradicting the assumption of the theorem. So the claim is justified.

Note that for any member F in F , we can write it as F = F1 ∪ F2, where
F1 = F ∩ Y and F2 = F − F1. We now consider all possible ways to construct
F in the above form. Let F1 be a given subset of Y size k − l (1 ≤ l ≤ k).
By the definition of Y in (2.11), F2 is a subset ∪t

i=1Si. Let Fl be the family
of all l-sets F2 ⊂ ∪t

i=1Si such that F1 ∪ F2 ∈ F . It remains to prove that Fl

satisfies the conditions in Lemma 2.4 with d replaced by d − 1. For l = k,
the assumption of the theorem implies that for every A1, A2, . . . , Ad−1 ∈ Fk, if
A1 ∩ A2 ∩ · · · ∩ Ad−1 ∩ Si = ∅, then

|A1 ∪ A2 ∪ · · · ∪ Ad−1 ∪ Si| >
d+ 1

2
k

which yields that

|A1 ∪ A2 ∪ · · · ∪ Ad−1 − Si| >
d− 1

2
k.

Therefore, the assertion holds when l = k. For l < k, if the assertion is not valid,
then there exist A1, A2, . . . , Ad−1 ∈ Fl such that A1 ∩A2 · · · ∩Ad−1 ∩ Si = ∅ and

|A1 ∪A2 ∪ · · · ∪ Ad−1 − Si| ≤
d− 1

2
l.

Setting A′

i = Ai∪F1 for i ≤ d−1, we deduce that A′

i ∈ F , A′

1∩A
′

2 · · ·∩A
′

d−1∩Si =
∅, and

|(A′

1 ∪A′

2 ∪ · · · ∪ A′

d−1) ∪ Si| = |F1|+ |(A1∪ =2 ∪ · · · ∪Ad−1)− Si|+ |Si|

≤ k − l +
d− 1

2
l + k = 2k +

d− 3

2
l ≤ 2k +

d− 3

2
k =

d+ 1

2
k,

contradicting the assumption of the theorem. Up to now, we have shown that Fl

satisfies the conditions in Lemma 2.4. For l ≥ 2, by Lemma 2.4 we find that

|Fl| <

(

tk − 1

l − 1

)

.

Evidently, for |Y | = n− tk ≤ k − 2, we have

|{F ∈ F : |F ∩ Y | = k − 1}| = 0.

For the case |Y | = k − 1, we have

|{F ∈ F : |F ∩ Y | = k − 1}| < d− 1 ≤ k − 1.
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Otherwise we can choose d−1 sets A1, . . . , Ad−1 ∈ F together with S1 in violation
of the assumption of theorem. When |Y | ≥ k, It follows from (2.12) that

|{F ∈ F : |F ∩ Y | = k − 1}| ≤

(

n− tk

k − 1

)

,

which implies

|{F ∈ F : |F ∩ Y | = k − 1}| <
k

∑

l=1

(

n− tk

k − l

)

.

Finally,

|F| ≤
k

∑

l=2

(

|Y |

k − l

)

|Fl|+ |{F ∈ F : |F ∩ Y | = k − 1}|

≤
k

∑

l=2

(

|Y |

k − l

)[(

tk − 1

l − 1

)

− 1

]

+ |{F ∈ F : |F ∩ Y | = k − 1}|

=

k
∑

l=1

(

|Y |

k − l

)[(

tk − 1

l − 1

)

− 1

]

+ |{F ∈ F : |F ∩ Y | = k − 1}|

=

k
∑

l=1

(

n− tk

k − l

)(

tk − 1

l − 1

)

−
k

∑

l=1

(

n− tk

k − l

)

+ |{F ∈ F : |F ∩ Y | = k − 1}|

<

(

n− 1

k − 1

)

,

as required. This completes the proof.
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