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On Avoider-Enforcer games

József Balogh∗ Ryan Martin†
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Abstract

In the Avoider-Enforcer game on the complete graph Kn, the players (Avoider and Enforcer)
each take an edge in turn. Given a graph property P , Enforcer wins the game if Avoider’s graph
has the property P . An important parameter is τE(P), the smallest integer t such that Enforcer
can win the game against any opponent in t rounds.

In this paper, let F be an arbitrary family of graphs and P be the property that a member of
F is a subgraph or is an induced subgraph. We determine the asymptotic value of τE(P) when F
contains no bipartite graph and establish that τE(P) = o(n2) if F contains a bipartite graph.

The proof uses the game of JumbleG and the Szemerédi Regularity Lemma.

1 Introduction

An unbiased positional game is one in which two players alternately select a vertex from a hy-
pergraph. In the most common formulation of the game, one player is Maker and the other Breaker.
Maker attempts to occupy all vertices in some hyperedge and Breaker attempts to occupy at least
one vertex in every hyperedge. In the graph context, players select edges of a complete graph Kn or
possibly some other graph, such as a random graph [9]. Here Maker attempts to create a graph with
a given monotone property and Breaker attempts to prevent Maker from achieving this.

Hefetz, Krivelevich and Szabó [7] recently investigated the so-called Avoider-Enforcer game.
The players are, unsurprisingly, Avoider and Enforcer. In the context of graph games, Avoider at-
tempts to prevent having her edges induce a graph with a property P for as many rounds as possible.
Enforcer selects his edges in such a way as to force Avoider’s graph to have property P as early as
possible.

At the end of r rounds, Avoider and Enforcer each have chosen exactly r edges. Let τE(P) be
the smallest integer t such that Enforcer can win the P-property game in t rounds. Let Ck

n denote
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the property that an n-vertex graph is k-colorable and let NCk
n denote the property that an n-vertex

graph is not k-colorable.
In [5] (see also [6] for similar questions on Maker-Breaker games), Hefetz, Krivelevich, Stojaković

and Szabó establish that
n2

8
+

n− 2

12
≤ τE(NC2

n) ≤
n2

8
+

n

2
+ 1,

but for k ≥ 3 show only that

(1− o(1))
(k − 1)n2

4k
≤ τE(NCk

n) <
1

2

(

n

2

)

.

They state that it “seems reasonable” that τE(NCk
n) ≤ (1 + o(1)) (k−1)n2

4k .
In this paper, we prove that this is the case, as a consequence of a stronger result.

1.1 Main Results

Let t(n, k) denote the Turán number, which is the maximum number of edges in a graph on n vertices

with no Kk+1. In particular, Turán’s theorem gives
(

k−1
k

)

n2

2 − k
8 ≤ t(n, k) ≤

(

k−1
k

)

n2

2 .

Definition 1 For a family of graphs, F , denote Pn(F) to be the property that a graph on n vertices
has a copy of some member of F as a subgraph and let P ind

n (F) be the property that a graph on n
vertices has a copy of some member of F as an induced subgraph.

Theorem 2 Let F be a family of graphs such that k = min{χ(F ) : F ∈ F} ≥ 3. In the Avoider-
Enforcer game for properties Pn(F) and P ind

n (F), for n large enough, we have

(

k − 2

k − 1

)

n2

4
−O(k) =

⌊

1

2
t(n, k − 1)

⌋

≤ τE(Pn(F)) ≤ τE(P
ind
n (F)) ≤

(

k − 2

k − 1

)

n2

4
+ o(n2).

In addition, the last two inequalities hold if k = 2.

The last inequality in Theorem 2 is our main result. Enforcer’s strategy is simple, he tries to
achieve to maintain that the board “looks like a random graph” after each round. We simply show

that in this case Avoider’s graph when it has k−2
k−1

(

n2

4

)

+ o(n2) edges, will satisfy property P ind
n (F).

The answer to the question of Hefetz, Krivelevich, Stojaković and Szabó is a corollary of Theorem 2:

Theorem 3 Let k ≥ 2 be an integer and let NCk
n be the property that a graph is not k-colorable. In

the Avoider-Enforcer game,
(

k − 1

k

)

n2

4
−O(k) =

⌊

1

2
t(n, k)

⌋

≤ τE(NCk
n) ≤

(

k − 1

k

)

n2

4
+ o(n2).

In addition, the last two inequalities hold if k = 1.
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Let F = {Kk+1}. The upper bound for Theorem 3 is an immediate consequence of Theorem 2.
The lower bound comes from the same trivial strategy that establishes the lower bound in Theorem 2.

This result is weaker than that in [5] for k = 2, but gives the correct asymptotic approximation
for all k ≥ 2.

This paper is organized as follows: In Section 2, we describe the game of JumbleG [4], along with
important consequences thereof. In Section 3, we state the version of the Szemerédi Regularity Lemma
that is useful for our purposes. Section 4 contains the proofs of the theorems. Section 5 contains some
concluding remarks.

2 The game of JumbleG

The game of JumbleG is a traditional Maker-Breaker game. The goal of Maker is to create a pseudo-
random graph. Frieze, Krivelevich, Pikhurko and Szabó [4] use two different conditions for pseudo-
randomness. We will use their first definition, including the use of “ǫ-regular” to describe a graph,
which is not to be confused with ǫ-regular pairs, as defined by Szemerédi’s Regularity Lemma.

Definition 4 If G is a graph and S, T are disjoint vertex sets in V (G), then denote by eG(S, T ) to be
the number of edges which have one endpoint in S and the other in T .

A pair of disjoint vertex sets (S, T ) is ǫ-unbiased if

∣

∣

∣

∣

eG(S, T )

|S||T |
−

1

2

∣

∣

∣

∣

≤ ǫ.

A graph G on n vertices, with minimum degree δ(G), is ǫ-regular if both:

P1 δ(G) ≥ (1/2− ǫ)n.

P2 Any pair S, T of disjoint subsets of V (G) with |S|, |T | > ǫn is ǫ-unbiased.

Formally, the game of JumbleG(ǫ) is won by Maker if Maker can ensure that his graph is an
ǫ-regular graph.

Theorem 5 ([4]) Maker has a winning strategy in JumbleG(ǫ), provided ǫ ≥ 2(log n/n)1/3 and n is
sufficiently large.

In our proofs, Enforcer will simply play as Maker in the game of JumbleG(ǫ). Note that the game
stops before all the edges are claimed. So Theorem 5 is used so that if the game were continued
further, then from the resulting graph, Enforcer could win the game. As a result, between any pair of
disjoint sets, both of them large enough, Avoider cannot occupy too many of the edges. We formalize
this as follows.
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Definition 6 After round r in the game, let eB(S, T ; r) denote the number of edges that Breaker
(Avoider) occupies in the pair (S, T ) and eM (S, T ; r) denote the number of edges that Maker (Enforcer)
occupies.

Lemma 7 Let S, T ⊂ V (G) be disjoint sets and |S|, |T | ≥ ǫn. If Maker plays a strategy to win
JumbleG(ǫ), then for every r

eB(S, T ; r)− eM (S, T ; r) ≤ 2ǫ|S||T |+ 1.

Proof. Fix any integer r > 0. Suppose eB(S, T ; r)− eM (S, T ; r) > 2ǫ|S||T | + 1. From this point on,
we let Breaker to occupy edges only between S and T whenever possible. When the game concludes,
the number of edges that Breaker occupies between S and T is at least

eB(S, T ; r) +

⌊

1

2
(|S||T | − eB(S, T ; r)− eM (S, T ; r))

⌋

≥ eB(S, T ; r) +
1

2
(|S||T | − eB(S, T ; r)− eM (S, T ; r))−

1

2

>
1

2
|S||T |+

1

2
(2ǫ|S||T | + 1)−

1

2

≥

(

1

2
+ ǫ

)

|S||T |.

This contradicts the assumption that Maker played a winning strategy for JumbleG(ǫ). �

3 The Regularity Lemma

Definition 8 Let A and B be disjoint vertex sets. The number of edges with one endpoint in A and
the other in B is denoted by e(A,B). The density of (A,B) is denoted by

d(A,B) =
e(A,B)

|A||B|
.

A pair (A,B) is α-regular if, for every X ⊆ A and Y ⊆ B with |X| > α|A| and |Y | > α|B|,

|d(A,B) − d(X,Y )| < α.

A partition V1, . . . , Vℓ is an equipartition of V if for every i, j we have ||Vi| − |Vj || ≤ 1.

We use a form of the Szemerédi Regularity Lemma, introduced by Alon, Fischer, Krivelevich and
M. Szegedy [1]. Lemma 9 is a simplified version.
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Lemma 9 (Regularity Lemma [1]) For every integer m and constant E > 0, there is an S =
S(m, E) which satisfies the following: For any graph G on n ≥ S vertices, there exists an equipartition
A = {Vi : 1 ≤ i ≤ ℓ} of V (G) and an induced subgraph U of G, with an equipartition B = {Ui : 1 ≤
i ≤ ℓ} of the vertices of U , that satisfy:

• m ≤ ℓ ≤ S.

• Ui ⊆ Vi and |Ui| = L ≥ ⌈n/S⌉, for all i ≥ 1.

• In the equipartition B, all pairs are E-regular.

• All but at most E
(ℓ
2

)

of the pairs 1 ≤ i < j ≤ ℓ are such that |d(Vi, Vj)− d(Ui, Uj)| < E.

Since we want to establish that a large enough density in G will enable us to apply Turán’s
Theorem, we need to bound e(U) in terms of e(G).

Lemma 10 Let m be an integer, and E be a constant such that m ≥ E−1 and let S = S(m, E) be the
integer provided by Lemma 9. Let n ≥ 2S/E and G be a graph on n vertices. Let U an the induced
subgraph and an equipartition of V (U) be {Ui}

ℓ
i=1 with |U1| = . . . = |Uℓ| = L, provided by Lemma

9. Let Ũ be the graph formed by deleting all edges which have both endpoints in the same set Ui for
i = 1, . . . , ℓ. In this case,

e(U) ≥ e(Ũ ) ≥ e(G)
ℓ2L2

n2
− 3Eℓ2L2.

Proof. First, we bound e(G), using the conditions in Lemma 9.

e(G) ≤
∑

i

(

|Vi|

2

)

+
∑

1≤i<j≤ℓ

e(Vi, Vj)

≤ ℓ
⌈n/ℓ⌉2

2
+ E

(

ℓ

2

)

⌈n

ℓ

⌉2
+

⌈n

ℓ

⌉2 ∑

1≤i<j≤ℓ

[d(Ui, Uj) + E ]

≤
ℓ

2

⌈n

ℓ

⌉2
+ 2E

(

ℓ

2

)

⌈n

ℓ

⌉2
+

⌈n

ℓ

⌉2 ∑

1≤i<j≤ℓ

d(Ui, Uj)

≤
ℓ

2

⌈n

ℓ

⌉2
+ Eℓ2

⌈n

ℓ

⌉2
+

⌈n/ℓ⌉2

L2
e(Ũ). (1)
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Recall that L = |U1| = . . . = |Uℓ|. The calculations below, use the fact that ℓ−1 ≤ m−1 ≤ E and
ℓ/n ≤ S/n ≤ E/2. By rearranging the terms in inequality (1), we get a lower bound for e(Ũ).

e(Ũ ) ≥ e(G)
L2

⌈n/ℓ⌉2
−

ℓL2

2
− Eℓ2L2

≥ e(G)
ℓ2L2

n2
− e(G)

(

ℓ2L2

n2
−

L2

⌈n/ℓ⌉2

)

−
1

2ℓ
ℓ2L2 − Eℓ2L2

≥ e(G)
ℓ2L2

n2
−

n2

2

(

ℓ2L2

n2
−

ℓ2L2

(n + ℓ)2

)

−
E

2
ℓ2L2 − Eℓ2L2

= e(G)
ℓ2L2

n2
−

(

1−
n2

(n+ ℓ)2

)

ℓ2L2

2
−

E

2
ℓ2L2 − Eℓ2L2

≥ e(G)
ℓ2L2

n2
− 3Eℓ2L2.

Trivially, e(U) ≥ e(Ũ ) and this concludes the proof. �

Lemma 11 establishes that a regular f -tuple will induce any graph on f vertices, given necessary
density conditions. We take the version from Alon and Shapira [2]. (It has appeared previously in
other forms, see [8] and [3].)

Lemma 11 For every real η, 0 < η < 1, and integer f ≥ 1, there exists a γ = γ(η, f) with the
following property: Suppose that H is a graph on f vertices v1, . . . , vf , and that U1, . . . , Uf is an f -
tuple of disjoint nonempty vertex sets of a graph G such that for every 1 ≤ i < j ≤ f , the pair (Ui, Uj)
is γ-regular. Moreover, whenever (vi, vj) ∈ E(H) we have d(Ui, Uj) ≥ η and whenever (vi, vj) 6∈ E(H)
we have d(Ui, Uj) ≤ 1 − η. Then, some f -tuple u1 ∈ U1, . . . , uf ∈ Uf spans an induced copy of H,
where each ui plays the role of vi.

The Slicing Lemma (Fact 1.5 in [8]) is a basic fact of regular pairs, common in proofs involving
the Regularity Lemma.

Lemma 12 (Slicing Lemma) Let (Ui, Uj) be an α-regular pair with density d and |Ui| = |Uj | = L0.
If X ⊆ Ui and Y ⊆ Uj with |X| ≥ Li and |Y | ≥ Lj , then (X,Y ) is α′-regular, where

α′ = max

{

2α,
L0

Li
α,

L0

Lj
α

}

,

with density in (d− α, d+ α).

4 Proof of Theorem 2

As in many proofs involving the Regularity Lemma, there is a sequence of constants. Fix an F ∈ F
with chromatic number k and order f . With a ≪ b meaning that a is small enough relative to b, the

6



constants are
ǫ ≪ E0 ≪ E1 ≪ η ≪ δ ≪ f−1.

We will determine the precise relationships later.
Let k ≥ 3. In order to establish the lower bound for τE(Pn(F)), Avoider equipartitions the

n vertices into k − 1 clusters, and chooses edges only between different clusters. By this strategy,
Avoider’s graph will always be (k − 1)-colorable, thus, have no member of F as a subgraph. Avoider
can make at least ⌊(1/2)t(n, k − 1)⌋ moves. Careful calculations establish that

t(n, k) =

(

k − 1

k

)

n2

2
−

k

2

(⌈n

k

⌉

−
n

k

)(n

k
−

⌊n

k

⌋)

.

Having established the first inequality of Theorem 2 for k ≥ 3, we assume for the rest of the proof
that k ≥ 2. Since the existence of an induced copy of some F ∈ F implies the existence of a copy of
F as a subgraph, it is trivial that τE(Pn(F)) ≤ τE(P

ind
n (F)).

Finally, we shall prove the upper bound. Among all F ∈ F choose an F with χ(F ) = k and
let f = |V (F )|. Enforcer will play the game JumbleG(ǫ), and we shall prove that Avoider’s graph,

after
(

k−2
4(k−1) + o(1)

)

n2 rounds will contain F as an induced subgraph. Assume, for the sake of

contradiction, that for (a small) δ > 0, Avoider managed to build a graph G of order n (where n is

sufficiently large) and
(

k−2
4(k−1) + 2δ

)

n2 edges. Apply the Regularity Lemma (Lemma 9) to Avoider’s

graph with parameters E0 and m := max{k, ⌈E−1
0 ⌉}, (where E0 will be determined later) which yields

the subsets U1, . . . , Uℓ0 and a constant S0 = S0(m, E0) so that |U1| = . . . = |Uℓ0 | = L0 ≥ n/S0.
Construct an auxiliary graphH on the vertex set {1, . . . , ℓ0} where i ∼ j if and only if d(Ui, Uj) ≥ δ+ǫ.
Let Ũ be the graph induced by U1 ∪ . . . ∪ Uℓ0 , with the edges inside of each cluster deleted. We use
e(Ũ ) in order to compute e(H). Observe that Lemma 7 gives that d(Ui, Uj) ≤ (1/2 + ǫ) as long as
L0 ≥ n/S0 > ǫn.

e(Ũ ) ≤ e(H)

(

1

2
+ ǫ

)

L2
0 +

[(

ℓ0
2

)

− e(H)

]

(δ + ǫ)L2
0

≤ e(H)

(

1

2
− δ

)

L2
0 +

δ + ǫ

2
ℓ20L

2
0.

We use Lemma 10 to bound e(Ũ) by e(G).

e(H) ≥
e(Ũ )− δ+ǫ

2 ℓ20L
2
0

(

1
2 − δ

)

L2
0

≥
e(G)

ℓ2
0

n2 − 3E0ℓ
2
0 −

δ+ǫ
2 ℓ20

1/2 − δ
. (2)

If

δ ≥ 2E0 +
ǫ

3
, which is equivalent to 2δ ≥

δ

2
+ 3E0 +

ǫ

2
, (3)

7



then

e(G) ≥

(

k − 2

4(k − 1)
+ 2δ

)

n2 >

(

k − 2

4(k − 1)
+ 3E0 +

δ + ǫ

2

)

n2.

Plugging this into (2), we obtain that e(H) >
(

k−2
k−1

)

ℓ2
0

2 . Therefore, H contains a Kk by Turán’s

Theorem. Without loss of generality, this copy of Kk is spanned by (U1, . . . , Uk). Each pair (Ui, Uj)
is E0-regular with density in the interval (δ + ǫ, 1/2 + ǫ).

Note: At this stage of the proof, we could use, say, the Blow-up lemma (see [8]) to show that if n is
large enough, a not necessarily induced copy of F occurs as a subgraph in (U1, . . . , Uk), hence in G.
This provides an upper bound for τE(Pn(F)). However, we want the stronger result that produces an
upper bound for τE(P

ind
n (F)). To prove such a result, we will apply Szemerédi’s Regularity Lemma

inside the clusters that were formed by its first application. An alternative way to finish the proof
would have been to use the Erdős-Stone Theorem instead of Turán’s Theorem.

So, we apply the Regularity Lemma (Lemma 9) to the portion of Avoider’s graph in Ui with
parameters E1 and m = f , for each i = 1, . . . , k (where E1 will be determined later), which yields the
constants ℓi, the subclasses Ui,1, . . . , Ui,ℓi and a constant S1 = S1(m, E1) so that |Ui,1| = . . . = |Ui,ℓi | =
Li ≥ L0/S1 ≥ n/(S0S1). If

ǫ ≤ S−1
0 S−1

1 (4)

then each pair (Ui,x, Uj,y) has density at most 1/2 + ǫ, by Lemma 7.
Each pair (Ui,x, Ui,y) is E1-regular. Now consider a pair (Ui,x, Uj,y) where i 6= j. The pair (Ui, Uj)

is E0-regular with density at least δ + ǫ. Using the Slicing Lemma (Lemma 12), the pair (Ui,x, Uj,y) is
E0L0 ·max{L−1

i , L−1
j }-regular. Since Li, Lj ≥ L0/S1, the pair (Ui,x, Uj,y) is E0S1-regular with density

at most 1/2 + ǫ and at least δ/2, as long as

E0 ≤ δ/2 + ǫ. (5)

Finally, we apply Lemma 11 with η = δ/2 to F and the tuple {Ui,x}1≤i≤k,1≤x≤ℓi . This implies the
existence of the constant γ = γ (f, δ/2). As F is k-colorable graph of order f , and f ≤ ℓi for every i,
all pair of classes are E0S1-regular. In order to apply Lemma 11, it is sufficient to have

E0S1 ≤ γ (f, δ/2) . (6)

This way F can be embedded into G, Avoider’s graph.

The order of choosing the constants. First, a forbidden graph F with chromatic number k,
and order f is fixed, and an arbitrary δ > 0 is chosen, assuming that Avoider built a graph with
(

k−2
4(k−1) + 2δ

)

n2 edges, where n > n(f, δ). Note that if δ is too large, i.e.,
(

k−2
4(k−1) + 2δ

)

n2 >
(n
2

)

/2,

then our theorem is true by default. Then from Lemma 11, with η = δ/2 we obtain the existence

8



of a γ, which is less than m−1. The Regularity Lemma (Lemma 9) is applied to the classes Ui with
E1 = γ and m = f . This also implies the existence of an S1 = S1(E1,m). We need that the pairs
(Ui,x, Uj,y) are γ-regular, hence E0S1 ≤ γ needed, so a positive constant E0 < γ/S1 is chosen. The
Regularity Lemma (Lemma 9) is applied to G with E0 and m = f . This also implies the existence
of an S0 = S0(E0,m). For JumbleG(ǫ), we use ǫ = S−1

0 S−1
1 . In order to apply all these Lemmas, we

need to assume that n is sufficiently large. This specific choice of constants satisfies the inequalities
(3), (4), (5) and (6).

To summarize, we proved that for every δ > 0, if the Avoider-Enforcer induced-F-avoidance game

is played for
(

k−2
4(k−1) + 2δ

)

n2 rounds, then the Avoider’s graph will contain an induced F , and the

Enforcer will win. Thus, τE(P
ind
n (F)) ≤

(

k−2
k−1

)

n2

4 + o(n2). �

5 Concluding remarks

The game NC1
n is trivial, but the Pn(F) question is not for k = 2. That is, the case in which F

contains a bipartite graph. Theorem 2 gives only that, if k = 2 and {F} contains a bipartite graph,
then

τE(Pn(F)) ≤ τE(P
ind
n (F)) ≤ o(n2),

which is not very helpful. And certainly in the non-induced case, we have trivially

τE(Pn(F)) ≤ t(n, F ),

where t(n, F ) denotes the maximum number of edges in a graph with n vertices with no F as a
subgraph.

The authors believe the approach needed to prove Theorem 2 may solve some other problems in
the area of positional games, as our proof is the first instance of Szemerédi’s Regularity Lemma being
used in the context of positional game theory.

Finally, we remark that one can prove the non-induced case of k = 3 without the use of the Sze-
merédi Regularity Lemma.
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