
A posteriori error control for discontinuous Galerkin methods for

parabolic problems

EMMANUIL H. GEORGOULIS, OMAR LAKKIS, AND JUHA M. VIRTANEN

Abstract. We derive energy-norm a posteriori error bounds for an Euler
time-stepping method combined with various spatial discontinuous Galerkin

schemes for linear parabolic problems. For accessibility, we address first the

spatially semidiscrete case, and then move to the fully discrete scheme by
introducing the implicit Euler time-stepping. All results are presented in an

abstract setting and then illustrated with particular applications. This enables

the error bounds to hold for a variety of discontinuous Galerkin methods, pro-
vided that energy-norm a posteriori error bounds for the corresponding elliptic

problem are available. To illustrate the method, we apply it to the interior

penalty discontinuous Galerkin method, which requires the derivation of novel
a posteriori error bounds. For the analysis of the time-dependent problems we

use the elliptic reconstruction technique and we deal with the nonconforming

part of the error by deriving appropriate computable a posteriori bounds for
it. We illustrate the theory with a series of numerical experiments indicating

the reliability and efficiency of the derived a posteriori estimates.

Finite element, discontinuous Galerkin, error analysis, a posteriori, time depen-
dent problems, parabolic PDE’s, upper bounds, nonconforming methods, time step-
ping, Euler scheme

1. Introduction

Adaptive methods for partial differential equations (PDE’s) of evolution type
have become a staple in improving the efficiency in large scale computations. Since
the 1980’s many adaptive methods have been increasingly based on a posteriori
error estimates, which provide a sound mathematical case for adaptive mesh refine-
ment, which can be decomposed in spatially and temporally local error indicators.
In the context of parabolic equations, a posteriori error estimates have been derived
for various norms since early 1990’s [17, 36]. Inspired by the milestones set recently
for the mathematical theory of convergence for adaptive methods in elliptic prob-
lems [33, 8, 13], there has been a recent push for similar results for parabolic prob-
lems calling to a closer understanding of a posteriori error estimates [15, 41, 7, 29,
e.g.]. Most results in this area cover simple time-stepping schemes and a conforming
space discretization. The extant literature on a posteriori error control for noncon-
forming spatial methods can be grouped in a handful of works [40, 18, 43, 34, 14].
In [40] a posteriori L2(H1)-norm error bounds for a spatially semidiscrete method
via interior penalty discontinuous Galerkin (IPDG) methods are derived and used
heuristically in the implementation of the fully discrete scheme. In [18, 43] L2(L2)-
norm error bounds for IPDG are obtained using duality techniques, while in [34],
a posteriori error bounds are presented for a fully discrete method consisting of a
backward Euler time-stepping and linear Crouzeix–Raviart elements in space. Note
that none of the papers in the literature, to our knowledge, cover the case of a
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posteriori energy-norm error bounds for fully discrete schemes with discontinuous
Galerkin methods, which is the chief objective of our paper.

Discontinuous Galerkin (DG) methods are an important family of nonconform-
ing finite element methods for elliptic, parabolic and hyperbolic problems dating
back to 1970’s and early 1980’s [35, 37, 5, 42, 3]. DG methods have undergone
substantial development in the recent years [16, 4, 39, 38, 24, e.g., and references
therein]. The practical interest in DG methods owes to their flexibility in mesh
design and adaptivity, in that they cover meshes with hanging nodes and/or locally
varying polynomial degrees. DG methods are thus ideally suited for hp-adaptivity
and provide good local conservation properties of the state variable. Moreover,
in DG methods the local elemental bases can be chosen freely for the absence
of interelement continuity requirements, yielding very sparse—in many cases even
diagonal—mass matrices even with high precision quadrature. Note also that DG
methods are popular due to their very good stability properties in transport- or
convection-dominated problems [16]; the a posteriori error analysis of convection-
dominated problems is, however, beyond the scope of our study and we concentrate
on diffusion-only parabolic equations.

Our main results are a posteriori error bounds in the energy norm for a family
of fully discrete approximations of the following PDE problem—in §2 we gather the
functional analysis notation and background.

1.1. Problem (linear parabolic boundary-initial value problem). Given an open
(possibly curvilinear) polygonal domain Ω ⊆ R

d, d = 2, 3, a real number T > 0,
two (generalized) functions

f ∈ L∞(0, T ; L2(Ω)) and a ∈ L∞(Ω × (0, T ))d×d, (1.1)

such that a(x, t) is symmetric positive definite for almost all (x, t) ∈ Ω× [0, T ], find
a function u ∈ L2(0, T ; H1

0(Ω)),

∂tu ∈ L∞(0, T ; H−1(Ω)) (1.2)

and such that

∂tu−∇ · (a∇u) = f on Ω × (0, T ] ,

u(0) = u0 on Ω, and u|∂Ω (t) = 0, for t ∈ (0, T ] .
(1.3)

In §2 we propose a class of numerical methods for solving this problem. These
methods consist in a backward Euler time-stepping scheme in combination with
various choices of spatial DG methods. Our emphasis is on the widely applied
IPDG method [3, 39, 24].

We consider the notation of Problem 1.1 to be valid throughout the paper and u
denotes the solution of problem (1.3). Although the assumption f ∈ L∞(0, T ; L2(Ω))
may be weakened—provided a posteriori error estimates for the corresponding spa-
tial finite element method can be obtained for such weak data—we refrain from
doing it for simplicity’s sake. In fact, we consider f to be piecewise continuous in
time with a finite number of time-discontinuities and with the implied constraints
on the time partition, to be discussed in §2.4. The matrix-valued function a(·, t),
for each t ∈ (0, T ) is allowed to have jump discontinuities; the set of spatial dis-
continuities of a will be considered to be aligned with the finite element meshes.
For simplicity, we shall assume that a is continuous in time, but a finite number
of discontinuities can be accounted for easily, as long as these occur at the points
of the time partition in the fully discrete scheme. The PDE (1.3) is assumed to be
uniformly elliptic in the sense that the supremum and the infimum of the set{

(a(x, t)ζ) · ζ/|ζ|2 : ζ ∈ Rd, (x, t) ∈ Ω × (0, T ]
}

(1.4)



A POSTERIORI CONTROL IN PARABOLIC DISCONTINUOUS GALERKIN 3

are both positive real numbers. As for the boundary values, we remark that our
approach can be appropriately modified in order to extend homogeneous to general
time-dependent Dirichlet boundary values. Under the assumptions made so far,
we have that the solution to (1.3) exists and satisfies u ∈ C(0, T ; H1

0(Ω)) and
∂tu ∈ L2(0, T ; L2(Ω)) [28].

In line with a unified approach to a posteriori error analysis for elliptic-problem
DG methods [1, 2, 12] our discussion will be presented first in an abstract setting.
Our results are then shown to be applicable to a wide class of DG methods pro-
vided that a posteriori error bounds for the corresponding steady-state problem are
available.

We stress that, although we focus on a posteriori error bounds for spatial DG
methods, our abstract results can be applied to a wider class of nonconforming
methods (other than DG methods), provided they satisfy certain requirements.
More specifically, given a particular nonconforming finite element space Sh, assume
that:

(a) for each Z ∈ Sh it is possible to decompose it as

Z = Zc + Zd such that Zc ∈ H1
0(Ω) ∩ Sh, (1.5)

where Zc and Zd are called Z’s conforming part and the nonconforming part, respec-
tively. This decomposition is an analytic device and is not needed for computational
purposes. The only requirement on this decomposition is the ability to quantify cer-
tain norms of Zd in terms of Z, as found in the literature [6, 26, 23, e.g.], as well
as our Lemma 4.3.

(b) Given a function z ∈ H1
0(Ω), and let Z ∈ Sh be the corresponding Ritz-

projection via the finite element method, it is possible to bound the norm of the
error Z − z, using a posteriori error estimators for the steady state problem.

A key tool in our a posteriori error analysis is the elliptic reconstruction tech-
nique [32]. Roughly speaking, the elliptic reconstruction technique, as far as energy
estimates are concerned, allows to neatly separate the time discretization analysis
form the spatial one. This technique, which has been adapted to tackle fully-discrete
schemes via energy methods for conforming methods [29], is extended in this work
to the nonconforming setting, to all methods that meet the two requirements above.
Briefly said, the idea of elliptic reconstruction—denoting by u the solution of (1.3)
and by U that of the discrete problem—consists in building an auxiliary function
w, called the elliptic reconstruction of U , which satisfies two key properties: (a) a
PDE-like relation binds the parabolic error u−w with data quantities only involv-
ing w − U and the problem’s data, f , a, and u0, (b) the function U is the Ritz
projection of w onto Sh. Note that w is an analysis-only device that, despite its
name, it is not a computable object. Fortunately, computing w is not needed in
practice, as it does not appear in the resulting a posteriori bounds.

We believe that it is possible to obtain similar a posteriori error estimates, for
each single method at hand, by working directly, i.e., without using an elliptic re-
construction technique, but this will inevitably lead to further complications which
may render the analysis quite involved, especially for the fully discrete scheme. This
prejudice of ours is testified by the somewhat surprising lack of previous rigorous
results in the literature. Finally, we point out that it is possible to follow a simi-
lar approach to ours in order to derive a posteriori error estimates in lower order
functional spaces such as L∞(0, T ; L2(Ω)).

We remark that new estimators arise in the derivation of fully discrete a posteriori
error bounds, due to the time-dependent diffusion tensor considered in this work,
compared to [29] where only time-independent diffusion coefficients are addressed.
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The following is an outline of this article. After introducing the notation and the
method in §2, the elliptic reconstruction is used to develop an abstract framework
for spatially semidiscrete schemes in §3 and their fully discrete counterpart in §5.
The actual error estimators for each particular method are then consequences of our
abstract framework and specific elliptic error estimators such as the ones presented
in [6, 26, 11, 23, 25, 19]. Moreover, in §4 we prove a posteriori bounds for the cor-
responding steady state problem of (1.1) for IPDG, thus extending existing results
[6, 26, 23, 25] to the case of general (non-diagonal) diffusion tensor, with minimal
regularity assumptions on the exact solution [19, cf.]. These a posteriori bounds
are then combined with the general framework presented in in §3 and §5 to deduce
fully computable bounds for the DG-approximation error of the parabolic problem.
Last in §6 we summarize results from computer experiments aimed at exhibiting
the reliability (derived theoretically) and efficiency of the error estimators in the
special case of the IPDG method.

2. Preliminaries

2.1. Functional analysis tools. Given an open subset ω ⊆ R
d, we denote by

Lp(ω), 1 ≤ p ≤ ∞, the Lebesgue spaces of functions with summable p-powers on
ω. The corresponding norms ‖ · ‖Lp(ω); the norm of L2(ω) will be denoted by ‖·‖ω
for brevity; by 〈·, ·〉ω we write the standard L2-inner product on ω. When ω = Ω
we omit the subindex.

We denote by Hs(ω), the standard Hilbert Sobolev space of index s ∈ R; H1
0(ω)

signifies the subspace of H1(ω) of functions with vanishing trace on the boundary
∂ω. The Poincaré–Friedrichs inequality

‖v‖Ω ≤ CPF‖∇v‖Ω for v ∈ H1
0(Ω) (2.1)

turns the H1(Ω) seminorm into a norm on H1
0(Ω). We consider thus ‖∇·‖Ω to be

the norm on H1
0(Ω). We will use also H−1(Ω), the dual space of H1

0(Ω), equipped
with the duality brackets 〈· | ·〉. Namely, if f ∈ H−1(Ω) then for each φ ∈ H1

0(Ω) its
value on φ is denoted by 〈g |φ〉 which coincides with 〈g, φ〉 if g ∈ L2(ω). Thus the
norm of g is given by

‖g‖H−1(Ω) := sup
φ∈H1

0(Ω)r{0}

〈g, φ〉
‖∇φ‖ . (2.2)

The duality pairing
(
H−1,H1

0

)
allows us to define, for each fixed t ∈ (0, T ] the

elliptic operator A (t) : H1
0(Ω)→ H−1(Ω) where

〈A (t)v |φ〉 := 〈a(t)∇v,∇φ〉
(

=

∫
Ω

(a(x, t)∇v(x)) · ∇φ(x) dx

)
(2.3)

for φ, v ∈ H1
0(Ω). Here, and throughout the paper, we use the shorthand f(t) =

f(·, t), for a function f : [0, T ]×Ω → R. Note that thanks to the uniform parabolic
assumption given by (2.13) and the Lax–Milgram Theorem, the definition of the
operator A (t) is well defined and yields an isomorphism between H−1(Ω) and
H1

0(Ω) [21]. In other words, the operator A (t) induces a bounded coercive bilinear
form

(v, w) ∈ H1
0(Ω)×H1

0(Ω) 7→ 〈A (t)v |w〉 ∈ R, (2.4)

which we will extend later to a larger nonconforming space. We stress from the
outset that although the bilinear form in (2.4) will be extended later to larger spaces,
the operator A (t) will not and it will only act on H1

0(Ω) functions throughout the
discussion.
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For 1 ≤ p ≤ +∞, we also define the spaces Lp(0, T,X), with X being a real
Banach space with norm ‖·‖X , consisting of all measurable functions v : [0, T ]→ X,
for which

‖v‖Lp(0,T ;X) :=
(∫ T

0

‖v(t)‖pXdt
)1/p

< +∞, for 1 ≤ p < +∞,

‖v‖L∞(0,T ;X) := ess sup0≤t≤T ‖v(t)‖X < +∞, for p = +∞.
(2.5)

Finally, we denote by C(0, T ;X) the space of continuous functions v : [0, T ] → X
with norm ‖v‖C(0,T ;X) := max0≤t≤T ‖v(t)‖X < +∞.

2.2. Finite element spaces. Let T be a subdivision of Ω into disjoint open sets,
which we call elements. We assume T to be parametrized by mappings Fκ, for
each κ ∈ T , where Fκ : κ̂ → κ is a diffeomorphism and κ̂ is the reference element
or reference square. The above mappings are such that Ω̄ = ∪κ∈T κ̄. We often
use the word mesh for subdivision, and we say that a mesh is regular if it has no
hanging nodes; otherwise the mesh is irregular. Unless otherwise stated, we allow
the mesh to be 1-irregular, i.e., for d = 2, there is at most one hanging node per
edge, typically its center; for d = 3 a corresponding concept is available.

For an integer p ≥ 1, we denote by Pp(κ̂), the set of all polynomials on κ̂ of
degree p, if κ̂ is the reference simplex, or of degree p in each coordinate direction,
if κ̂ is the reference cube. We consider the discontinuous Galerkin finite element
space

S = Sp(T ) := {v ∈ L2(Ω) : vκ ◦ Fκ ∈Pp(κ̂), κ ∈ T }. (2.6)

By Γ we denote the union of all sides of the elements of the subdivision T
(including the boundary sides). We think of Γ as the union of two disjoint subsets
Γ = Γ∂ ∪ Γint, where Γ∂ is the union of all boundary sides.

Let two elements κ+, κ− ∈ T have a common a side e := κ̄+ ∩ κ̄− ⊂ Γint. Define
the outward normal unit vectors n+ and n− on e corresponding to ∂κ+ and ∂κ−,
respectively. For functions q : Ω → R and φ : Ω → R

d uniformly continuous on
each of κ±, but possibly discontinuous across e, we define the following quantities.
For q+ := q|∂κ+ , q− := q|∂κ− and φ+ := φ|∂κ+ , φ− := φ|∂κ− , we set

{{q}}e :=
1

2
(q+ + q−), {{φ}}e :=

1

2
(φ+ + φ−),

JqKe := q+n+ + q−n−, JφKe := φ+ · n+ + φ− · n−;
(2.7)

if e is a boundary side (e ⊂ Γ∂) these definitions are modified to

{{q}}e := q+, {{φ}}e := φ+, JqKe := q+n+, JφKe := φ+ · n+. (2.8)

We introduce the mesh-size as the function h : Ω → R, by h(x) = diamκ, if x ∈ κ
and h(x) = {{h}}, if x ∈ Γ . The shape-regularity of the subdivision T is defined as

µ(T ) := sup
κ∈T

hκ
rκ
, (2.9)

where rκ is the radius of the largest ball that fits entirely in κ.
We shall use the gradient’s regular part operator, ∇T , of an elementwise differ-

entiable function v defined by

(∇T v)|κ := ∇(v|κ) for κ ∈ T . (2.10)

Note that the full distributional gradient, ∇v, consists of an extra term taking into
account the jumps of v across the edges (with a − sign for historic reasons):

∇v = ∇T v − JvK δΓint
, (2.11)
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with δΓint
denoting the Dirac distribution on the interior skeleton Γint. Finally, we

consider some shorthand notation for quantities involving the diffusion tensor a. In
particular, we define the elementwise constant functions a[, a] : Ω × [0, T ]→ R by

a](·, t)|κ := ‖|√a(·, t)|2‖2L∞(κ) and a[(·, t)|κ := ‖|(√a(·, t))−1|2‖−2L∞(κ), (2.12)

for κ ∈ T , and a] = {{a]}}, a[ = ({{1/a[}})−1, on Γ , where |·|2 denotes the Euclidean-
induced matrix norm. Finally, let

α](t) := max
x∈Ω

a](x, t) and α[(t) = min
x∈Ω

a[(x, t). (2.13)

2.3. Spatial DG discretization. Introduce the DG space S := S + H1
0(Ω), and

a corresponding DG bilinear form B : S × S → R, which we assume to be an
extension of the bilinear form defined by (2.4), viz.,

B(t; v, z) = 〈A (t)v | z〉 for all v, z ∈ H1
0(Ω), t ∈ (0, T ] . (2.14)

Though B is time-dependent, we do not write it explicitly in the semidiscrete case
and omit the t.

The space S is equipped with a DG norm, denoted |‖·|‖ and depending on the
method at hand, which extends the energy norm, i.e.,

|‖v|‖ = ‖
√
a(·, t)∇v‖ for all v ∈ H1

0(Ω), (2.15)

for t ∈ [0, T ]. Also here, the norm is time-dependent, but this dependence is not ex-

plicitly written. A norm equivalence between the energy norm |‖·|‖ and ‖
√
a(·, t)∇·‖

in H1
0(Ω), uniformly with respect to t, suffices for all the bounds presented below

to hold, modulo a multiplicative constant; but, we eschew this much generality for
clarity’s sake.

The semidiscrete DG method in space for problem (1.3), reads as follows:

Find U ∈ C0,1(0, T ;Sh) such that

〈∂tU, V 〉+B(U, V ) = 〈f, V 〉 for V ∈ S, t ∈ [0, T ].
(2.16)

We stress that these assumptions are satisfied by many DG methods for second
order elliptic problems available in the literature, possibly by using inconsistent
formulations [4]. Moreover, (2.14) and (2.15) are satisfied by IPDG (along with the
corresponding energy norm) considered below as a paradigm.

Assumption (2.14) implies the consistency of the bilinear form B on H1
0(Ω), i.e.,

〈∂tu, v〉+B(u, v) = 〈f, v〉, for all v ∈ H1
0(Ω), (2.17)

where u is the exact (weak) solution to the initial-boundary value problem (1.3).
Note that this is the same as writing

∂tu+ A u = f. (2.18)

2.4. Fully discrete solution. To further discretize in time, consider an increasing
time partition {tn}n=0,...,N , and the corresponding time-steps τn = tn − tn−1, for
n = 1, . . . , N . For each n = 0, . . . , N , we consider that Sn is a DG finite element
space of fixed degree p built on a partition Tn, which may be different from Tn−1
when n ≥ 1. In §5.3, we will say more about the sequence of meshes and the
compatibility relations among them.

Let fn(x) := f(x, tn) and let U0 be the projection (or an interpolation) of u0 onto
the finite element space S0. We say that {Un}n=0,...,N is a fully discrete solution of

(1.3) if, for each n = 1, . . . , N we have that Un ∈ Sn satisfies〈
(Un − Un−1)/τn, V

〉
+Bn(Un, V ) = 〈fn, V 〉 for all V ∈ Sn, (2.19)
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Since the elliptic operator A (and the bilinear form B) depend on time, in the
fully discrete setting, we denote their value at time t by A (t) and B(t), respectively
and when t = tn we take A n := A (tn) and Bn := B(tn).

Noting that the term Un−1 can be replaced by ΠnUn−1, where Πn : L2(Ω)→ Sn

is the orthogonal projection, we consider a slightly more general situation where
ΠnUn−1 in (2.19) is replaced by InUn−1; here In : Sn−1 → Sn is a general data
transfer operator, depending on the particular implementation. The operator In

may coincide with Πn, but it may be an interpolation operator for example. The
general fully discrete Euler scheme then reads〈

(Un − InUn−1)/τn, V
〉

+Bn(Un, V ) = 〈fn, V 〉 for all V ∈ Sn. (2.20)

We have taken fn = f(tn), but we could take a more general approximation than

f(tn), for example, a good choice is also given by fn :=
∫ tn
tn−1

f(s) ds, for which a

suitable modification of our arguments leads to similar results.

3. Abstract a posteriori bounds for the semidiscrete problem

We derive next an abstract a posteriori error bound for the quantity

‖u− U‖L2(0,T ;S ) :=
(∫ T

0

|‖u(t, ·)− U(t, ·)|‖2
)1/2

, (3.1)

where |‖·|‖ denotes the appropriate (space) energy norm.
In the a posteriori error analysis below, we shall make use of the idea of ellip-

tic reconstruction operators introduced in [32] for the semidiscrete problem and
extended to fully discrete (conforming-in-space) methods in [29].

3.1. Definition (elliptic reconstruction and discrete operator). Let U be the
(semidiscrete) DG solution to the problem (2.16). We define the elliptic reconstruc-
tion w ∈ H1

0(Ω) of U to be the solution of the elliptic problem

B(w, v) = 〈AU −Πf + f, v〉 for all v ∈ H1
0(Ω), (3.2)

where Π : L2(Ω) → S denotes the orthogonal L2-projection on the finite element
space S, and A : S → S denotes the discrete DG operator defined by

〈AZ, V 〉 = B(Z, V ) for all V ∈ S, (3.3)

for each Z ∈ S. Note that this is valid on [0, T ].

3.2. Remark (the role of the elliptic reconstruction). The elliptic reconstruction
is well defined. Indeed, AU ∈ S is the unique L2-Riesz representation of a linear
functional on the finite dimensional space Sh and the existence and uniqueness
of (weak) solution of (3.2), with data AU − Πf + f ∈ L2(Ω), follows from the
Lax–Milgram Theorem in view of (2.14).

The key property of w is that the DG solution U of the semidiscrete time-
dependent problem (2.16) is also the DG solution of the steady-state boundary-
value problem (3.2). Indeed, let W ∈ S be the DG-approximation to w, defined by
the finite dimensional linear system

B(W,V ) = 〈AU −Πf + f, V 〉, (3.4)

for all V ∈ S, which implies B(W,V ) = 〈AU, V 〉 = B(U, V ) for all V ∈ S, i.e.,
W = U .

3.3. Definition (error, elliptic and parabolic parts). We shall decompose the
error as follows:

e := U − u = ρ− ε, where ε := w − U, and ρ := w − u, (3.5)

where w = w(t) denotes the elliptic reconstruction of U = U(t) at time t ∈ [0, T ].
We call ε the elliptic error and ρ the parabolic error.
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3.4. Lemma (semidiscrete error relation). Let u be the solution of Problem 1.1,
U denote the solution of the DG scheme (2.16). Then, we have

〈∂te, v〉+B(ρ, v) = 0 for all v ∈ H1
0(Ω). (3.6)

Proof. For each v ∈ H1
0(Ω) we have

〈∂te, v〉+B(ρ, v) =〈∂tU, v〉+B(w, v)− 〈f, v〉
=〈∂tU, v〉+ 〈AU −Πf + f, v〉 − 〈f, v〉
=〈∂tU,Πv〉+ 〈AU,Πv〉 − 〈f,Πv〉 = 0,

(3.7)

where in the first equality we used (2.17); in the second and fourth equalities, we
made use of Definition 3.1; in the third equality the properties of the orthogonal
L2-projection onto S are used; finally, the last equality follows from (2.16).

�

3.5. Definition (conforming-nonconforming decomposition). In the theory de-
veloped below, we shall consider the decomposition of the DG solution U ∈ S into
conforming (continuous) and nonconforming (discontinuous) parts as follows

U = Uc + Ud, (3.8)

where Uc ∈ Sc := H1
0(Ω) ∩ S and Ud := U − Uc ∈ S. Note that at this point

we do not specify any particular decomposition, thus keeping the choice of such a
decomposition at our disposal. Let

ec := e− Ud = Uc − u ∈ H1
0(Ω), and εc := ε+ Ud = w − Uc ∈ H1

0(Ω). (3.9)

3.6. Theorem (long-time a posteriori error bound for DG). Let u and U be the
exact weak solution of (1.3) and the DG solution of the problem (2.16), respectively.
Let w be the elliptic reconstruction of U as in Definition 3.1. Assuming (2.14) and
(2.15), and that a decomposition of the form (3.8) is available, then the following
error bound holds

‖U − u‖L2(0,T ;S ) ≤3‖w − U‖L2(0,T ;S ) + 2‖Ud‖L2(0,T ;S )

+ 2‖∂tUd/
√
α[‖L2(0,T ;H−1(Ω)) + 2‖u0 − Uc(0)‖. (3.10)

Proof. Set v = ec in (3.6); then, in view of (3.9), we have

〈∂tec, ec〉+B(ρ, ρ) = B(ρ, εc)− 〈∂tUd, ec〉. (3.11)

Recalling (2.14), (2.15) and that ρ, ec ∈ H1
0(Ω) for every t ∈ [0, T ], using the

Cauchy–Schwarz inequality, and the duality pairing
(
H−1,H1

0

)
, we arrive to

1

2
dt‖ec‖2 + |‖ρ|‖2 ≤ |‖ρ|‖ |‖εc|‖+ ‖∂tUd‖H−1(Ω)‖∇ec‖. (3.12)

Also, (3.9) implies

‖ec‖H1(Ω) ≤ (|‖εc|‖+ |‖ρ|‖)/√α[. (3.13)

Setting I1 := |‖εc|‖, I2 := ‖∂tUd/
√
α[‖H−1(Ω) in (3.12) and rearranging lead to

1

2
dt‖ec‖2 + |‖ρ|‖2 ≤ |‖ρ|‖(I1 + I2) + I1I2, (3.14)

which implies

dt‖ec‖2 + |‖ρ|‖2 ≤ 4(I21 + I22 ). (3.15)

Integration on [0, T ] and taking square roots yields

‖ρ‖L2(0,T ;S ) ≤ ‖ec(0)‖ + 2‖εc‖L2(0,T ;S ) + 2‖∂tUd/
√
α[‖L2(0,T ;H−1(Ω)). (3.16)

The assertion follows using triangle inequality on (3.5) and (3.9).
�
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3.7. Theorem (short-time a posteriori error bound for DG). Let the assump-
tions of Theorem 3.6 hold. Then the following error bound holds:

‖u− U‖L2(0,T ;S ) ≤(
√

3/2 + 1)‖w − U‖L2(0,T ;S ) +
√

3/2‖Ud‖L2(0,T ;S )

+ 2‖∂tUd‖L1(0,T ;L2(Ω)) +
√

2‖u0 − Uc(0)‖.
(3.17)

Proof. Let T0 ∈ [0, T ] be such that

‖ec(T0)‖ = max
0≤t≤T

‖ec(t)‖ =: Ec. (3.18)

Then, (3.11) implies

1

2
dt‖ec‖2 + |‖ρ|‖2 ≤ |‖ρ|‖ |‖εc|‖+ Ec‖∂tUd‖, (3.19)

which, after integration on [0, T0], yields

1

2
E2
c + ‖ρ‖2L2(0,T0;S ) ≤

1

2
‖ec(0)‖2 + ‖ρ‖L2(0,T0;S )‖εc‖L2(0,T0;S )

+ Ec‖∂tUd‖L1(0,T0;L2(Ω)),
(3.20)

or
1

4
E2
c ≤

1

2
‖ec(0)‖2 +

1

4
‖εc‖2L2(0,T ;S ) + ‖∂tUd‖2L1(0,T ;L2(Ω)). (3.21)

Going back to (3.19), upon integration with respect to t between [0, T ], we obtain

1

2
‖ρ‖2L2(0,T ;S ) ≤

1

2
‖ec(0)‖2 +

1

2
‖εc‖2L2(0,T ;S ) +

1

4
E2
c + ‖∂tUd‖2L1(0,T ;L2(Ω)), (3.22)

which, in conjunction with (3.21) gives

‖ρ‖2L2(0,T ;S ) ≤ 2‖ec(0)‖2 +
3

2
‖εc‖2L2(0,T ;S ) + 4‖∂tUd‖2L1(0,T ;L2(Ω)); (3.23)

the final bound now follows using the triangle inequality on (3.5) and (3.9).
�

3.8. Remark (long- versus short-time bounds). We note that the crucial differ-
ence between bounds (3.10) and (3.17) is that in the latter the L1-accumulation
term ‖∂tUd‖L1(0,T ;S ) is present; this implies

‖∂tUd‖L1(0,T ;L2(Ω)) ≤
√
T‖∂tUd‖L2(0,T ;L2(Ω)), (3.24)

which may be preferable if T < 1, but can be inefficient for long-time integration.
On the other hand, the corresponding term in (3.10) is ‖∂tUd/

√
α[‖L2(0,T ;H−1(Ω)),

which can be a bit less inefficient when the diffusion tensor a varies substantially
on Ω. We note, however, that it is possible to avoid dividing by the factor α[,
by equipping H−1(Ω) with the dual norm of the energy norm (2.15) in H1

0(Ω).
In practice, however, this improvement is relevant only if the dual norm is calcu-
lated explicitly [30]. Alternatively, one can apply a Poincaré–Friedrichs inequality
to bound the dual norm by the L2-norm, which results into the reappearance of the
factor α[.

3.9. Remark (elliptic a posteriori error estimates). The bounds (3.10) and (3.17)
are not (yet) explicitly a posteriori bounds: ‖w − U‖L2(0,T ;S ) still needs to be
bounded by a computable quantity. To this end, given g ∈ L2, consider the el-
liptic problem:

find z ∈ H1
0(Ω) such that

−∇ · (a∇z) = g in Ω, z = 0 on ∂Ω,
(3.25)
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whose solution can be approximated by the following DG method:

find Z ∈ S such that

B(Z, V ) = 〈g, V 〉 for all V ∈ S. (3.26)

If assume that an a posteriori estimator functional E exists, i.e.,

|‖z − Z|‖ ≤ E (Z,a, g,T ), (3.27)

then we can computably bound ‖w − U‖L2(0,T ;S ) in (3.10) and (3.17) through

‖w − U‖L2(0,T ;S ) ≤
(∫ T

0

E (U,a, AU −Πf + f,T )2
)1/2

. (3.28)

A posteriori bounds for various DG methods have been studied, under different
assumptions on data and admissible finite element spaces, by many authors [6, 26,
23, 2, 25, 19, 12]. Thus Theorems 3.6 and 3.7 can be applied to any DG—and
more generally to any non-conforming—method satisfying (2.14) and (2.15), and
for which (3.27) is available. The object of §4 is to address this for IPDG.

4. A posteriori error bounds for the interior penalty DG method

Here we extend the energy-norm a posteriori bounds for the family IPDG meth-
ods cf.[6, 26, 23] for the Poisson problem, to the case of the general diffusion prob-
lem (3.25). A similar analysis has recently appeared also in [19], while a related
DG method based on weighted averages for anisotropic and high-contrast diffusion
problems can be found in [20]. We stress that our results can be generalized as to
allow for inhomogeneous or mixed boundary conditions following [23, 26, resp.].

4.1. Definition (IPDG method). For z, v ∈ S , the bilinear formB : S×S → R

for the IPDG method for the problem (3.25) can be written as

B(z, v) :=

∫
Ω

(a∇T z)·∇T v+

∫
Γ

(
θ{{aΠ∇v}}·JzK−{{aΠ∇z}}·JvK+σ JzK·JvK

)
, (4.1)

for θ ∈ {−1, 0, 1}, where Π : [L2(Ω)]d → Sd denotes also the orthogonal L2-
projection operator onto Sd, and the penalty function σ : Γ → R is defined by

σ :=
Ca,µ(T ){{a]}}

h
, (4.2)

where the constant Ca,µ(T ) > 0 depends on the shape-regularity of the mesh T
and on the smallest possible Ca > 1 such that

C−1a ≤ a]|κ+

a]|κ−
≤ Ca, (4.3)

for every pair of elements κ+ and κ− sharing a common side.
We also define the corresponding energy norm |‖·|‖ for the IPDG method by

|‖v|‖ :=
(
‖
√
a∇T v‖2 + ‖√σ JvK‖2Γ

)1/2
, (4.4)

for v ∈ S . Note that for v ∈ S, we have Π∇v = ∇v and, therefore, B can be
reduced to the more familiar form

B(z, v) :=

∫
Ω

(a∇T z) · ∇T v +

∫
Γ

(
θ{{a∇v}} · JzK− {{a∇z}} · JvK + σ JzK · JvK

)
, (4.5)

for z, v ∈ S [3, 4, 39, 24, cf.]. Observe that both (2.14) and (2.15) hold for the
particular B and |‖·|‖ defined above.



A POSTERIORI CONTROL IN PARABOLIC DISCONTINUOUS GALERKIN 11

4.2. Remark (conforming part of a nonconforming finite element function). The
space-discontinuous finite element space S contains the conforming (continuous) fi-
nite element space Sc = S∩H1

0(Ω) as a subspace. The approximation of functions in
S by functions in Sc will play an important role in our derivation of the a posteriori
bounds. This can be quantified in the following result, which is an extension of [27,
Thm. 2.1]. For other similar results we refer to [40, 6, 23, 10].

4.3. Lemma (bounding the nonconforming part via jumps). Suppose T is a
regular mesh and a is elementwise (weakly) differentiable. Then, for any function
Z ∈ S there exists a function Zc ∈ Sc such that

‖Z − Zc‖ ≤ C1‖
√
h JZK‖Γ , (4.6)

and

‖
√
a∇T (Z − Zc)‖ ≤ C2‖

√
σ JZK‖Γ , (4.7)

where C1, C2 > 0 constants depending on the shape-regularity, on the maximum
polynomial degree of the local basis and on Ca.

The proof, omitted here, follows closely that of [26, Thm. 2.2]. Lemma 4.3 can
be proved for irregular (i.e., with hanging-nodes) meshes [26, Thm. 2.3], in which
case C1 and C2 depend on the maximum refinement and coarsening levels Lmax.

4.4. Lemma (a posteriori bounds for IPDG method for elliptic problem). Let
T be a regular and a is elementwise (weakly) differentiable. Let z and Z be given
by (3.25) and (3.26). Then

|‖z − Z|‖ ≤ EIP(Z,a, g,T ), (4.8)

where

EIP(Z,a, g,T ) := CKT
a

(
‖h/√a[(g +∇T · (a∇T Z))‖

+ ‖
√
h/a[ Ja∇T ZK‖Γint

+ ‖√σ JZK‖Γ
)
,

(4.9)

and KT
a := maxΩ

√
a]/a[, where C > 0 depends only on µ(T ) and Ca.

Proof. Our proof is inspired by [26, 23]. Denoting by Zc ∈ Sc the conforming part
of W as in Lemma 4.3, we have

e := z − Z = ec + ed, where ec := z − Zc, and ed := Zc − Z, (4.10)

yielding ec ∈ H1
0(Ω). Thus, we have B(z, ec) = 〈g, ec〉. Let Π0 : L2(Ω)→ R denote

the orthogonal L2-projection onto the elementwise constant functions; then Π0ec ∈
S and we define η := ec −Π0ec.

We also have

B(e, ec) = B(z, ec)−B(Z, ec) = 〈g, ec〉 −B(Z, η)−B(Z,Π0ec) = 〈g, η〉 −B(Z, η),
(4.11)

which implies

‖√a∇ec‖2 = B(ec, ec) = 〈g, η〉 −B(Z, η)−B(ed, ec). (4.12)

For the last term on the right-hand side of (4.12), we have

|B(ed, ec)| ≤ ‖
√
a∇T ed‖‖

√
a∇ec‖+

1

2

∑
s⊂Γ

∑
κ=κ+,κ−

a]|κ‖
√
h(Π∇ec)|κ‖e‖JedK /

√
h‖s,

(4.13)
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where κ+ and κ− are the (generic) elements having e as common side. Using the

inverse estimate of the form ‖
√
hV ‖e ≤ C‖V ‖κ for V = Π∇ec, and the stability of

the L2-projection, we arrive to

|B(ed, ec)| ≤ ‖
√
a∇T ed‖‖

√
a∇ec‖ + CKT

a ‖
√
a∇ec‖‖

√
σ JedK‖Γ . (4.14)

Finally, noting that JedK = JZK, and making use of (4.7) we conclude that

|B(ed, ec)| ≤ CKT
a ‖
√
a∇ec‖ ‖

√
σ JW K‖Γ . (4.15)

To bound the first two terms on the right-hand side of (4.12), we begin by an
elementwise integration by parts yielding

〈g, η〉 −B(Z, η) =

∫
Ω

(
g +∇T · (a∇T Z)

)
η −

∫
Γint

{{η}} Ja∇ZK ds

+

∫
Γ

θ{{aΠ∇η}} · JZK ds−
∫
Γ

σ JZK · JηK ds.

(4.16)

The first term on the right-hand side of (4.16) can be bounded as follows:∣∣∣ ∫
Ω

(
g +∇ · (a∇Z)

)
η
∣∣∣ ≤ ‖h/√a[(g +∇T · (a∇T Z))‖‖√a[h−1η‖; (4.17)

upon observing that ‖h−1η‖κ ≤ C‖∇ec‖κ, this becomes∣∣∣ ∫
Ω

(
g +∇ · (a∇Z)

)
η
∣∣∣ ≤ CKT

a ‖h/
√
a[(g +∇T · (a∇T Z))‖‖

√
a∇ec‖. (4.18)

For the second term on the right-hand side of (4.16), we use a trace estimate, the
bound ‖h−1η‖κ ≤ C‖∇ec‖κ and we observe that ∇η = ∇ec, to deduce∣∣∣ ∫

Γint

{{η}} Ja∇ZK ds
∣∣∣ ≤ CKT

a ‖
√
a∇ec‖ ‖

√
h/a[ Ja∇T ZK‖Γint

. (4.19)

For the third term on the right-hand side of (4.16), we use ∇η = ∇ec and,
working alike to (4.13), we obtain∣∣∣ ∫

Γ

θ{{aΠ∇η}} · JZK
∣∣∣ ≤ CKT

a |θ|‖
√
a∇ec‖ ‖

√
σ JZK‖Γ , (4.20)

and finally, for the last term on the right-hand side of (4.16), we get∣∣∣ ∫
Γ

σ JηK · JZK
∣∣∣ ≤ CKT

a ‖
√
a∇ec‖ ‖

√
σ JZK‖Γ . (4.21)

The result follows combining the above relations.
�

4.5. Theorem (a posteriori bounds for IPDG method for parabolic problem).
Let u, U be the exact weak solution of (1.3), and the IPDG solution of the problem
(2.16), respectively, and let a be elementwise (weakly) differentiable. Then, the
following error bound holds:

‖u− U‖2L2(0,T ;S ) ≤C
∫ T

0

(
E 2
IP(U,a, AU −Πf + f,T ) + α−1[ ‖

√
h J∂tUK‖2Γ

)
+ C

(
‖u0 − U(0)‖ + ‖

√
h JU(0)K‖

)2
.

(4.22)
If we assume also that u, U ∈ C(0, T ; H1

0(Ω)) ∩H1(0, T ; L2(Ω)), then the following
bound also holds:

‖u− U‖2L2(0,T ;S ) ≤C
∫ T

0

E 2
IP(U,a, AU −Πf + f,T ) + C

(∫ T

0

‖
√
h J∂tUK‖Γ

)2
+ C

(
‖u0 − U(0)‖ + ‖

√
h JU(0)K‖

)2
.

(4.23)
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Proof. The results follow immediately from combining Theorems 3.6 and 3.7 with
Lemma 4.4, in conjunction with (4.6).

�

Finally, we give a result on useful properties of the IPDG bilinear form and of
the norm, which will be useful in §5.

4.6. Lemma (continuity of B and stability of the L2-projection). Consider the
notation of §4 and let B and |‖·|‖ denote the IPDG bilinear form (4.5) and the
DG-norm (4.4). Then for Z, V ∈ Sh we have

B(Z, V ) ≤ CKT
a |‖Z|‖|‖V |‖. (4.24)

Moreover, for v ∈ H1
0(Ω), the L2-projection is DG-norm-stable, i.e.,

|‖Πv|‖ ≤ CKT
a |‖v|‖. (4.25)

Proof. We omit the proof of (4.24) which mimics that of (4.15). For stability, note

|‖Πv|‖2 =‖
√
a∇T (Πv −Π0v)‖2 + ‖√σ Jv −ΠvK‖2Γ

≤C
(
‖a

1
2

] h
−1(Πv −Π0v)‖2 + ‖a

1
2

] h
−1(v −Πv)‖2 + ‖a

1
2

] ∇T (v −Πv)‖2
)

≤C
(
‖a

1
2

] h
−1(v −Π0v)‖2 + ‖a

1
2

] ∇T (v −Πv)‖2
)

≤C‖(a]/a[)
1
2
√
a∇T v‖2,

(4.26)
which implies (4.25).

�

5. A posteriori error bound for the fully discrete scheme

In this section we discuss the abstract error analysis for the fully discrete scheme
defined in §2.4.

5.1. The elliptic reconstruction and the basic error relation. Extend the
sequence {Un} into a continuous piecewise linear function of time:

U(0) = U0 and U(t) = ln(t)Un + ln−1(t)Un−1, (5.1)

for t ∈ [tn−1, tn], and n = 1, . . . , N , where the functions ln and ln−1 are the La-
grange basis functions

ln(t) :=
t− tn−1
τn

1[tn−1,tn] +
tn+1 − t
τn+1

1[tn,tn+1]. (5.2)

Using these time extensions and the (time and mesh dependent) discrete elliptic
operator An of Definition 3.1 with respect to Sn, defined by

AnZ ∈ Sn such that 〈AnZ, V 〉 = Bn(Z, V ) for all V ∈ Sn, (5.3)

we can write the scheme (2.20) in the following pointwise form:

∂tU(t) +AnUn = (InUn−1 − Un−1)/τn +Πnfn, (5.4)

for all t ∈ (tn−1, tn) , n = 1, . . . , N .
We like to warn at this point that we use the same symbol U(t) to indicate the

fully discrete solution time-extension in this section, and the semidiscrete solution
in §3. This should cause no confusion as long as the two cases are kept in separate
sections.

For each fixed t ∈ [0, T ], and the corresponding n = 1, . . . , N such that t ∈
(tn−1, tn], we define the time-dependent elliptic reconstruction to be the function
w(t) ∈ H1

0(Ω) satisfying

w(t) = ln(t)wn + ln−1(t)wn−1+ , (5.5)
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where wn ∈ H1
0(Ω) is the elliptic reconstruction of Un defined implicitly as the

(weak) solution of the elliptic problem with data AnUn, i.e., wn satisfies

A nwn = AnUn, (5.6)

and wn−1+ is the forward elliptic reconstruction of Un−1, defined as the solution of
the problem

A n−1wn−1+ = An−1+ InUn−1, (5.7)

where the operator An−1+ : Sn → Sn is defined by

An−1+ Z ∈ Sn such that
〈
An−1+ Z, V

〉
= Bn−1+ (Z, V ) for all V ∈ Sn, (5.8)

Bn−1+ being the nonconforming bilinear form corresponding to A n−1, but with
respect to the space Sn (in contrast to Bn−1 which is defined with respect to
Sn−1). For instance, for IPDG, we have

Bn−1+ (Z, V ) :=
∑
κ∈Tn

∫
κ

(a(tn−1)∇Z) · ∇V

+

∫
Γn

(
θ{{a(tn−1)Πn∇V }} · JZK− {{a(tn−1)Πn∇Z}} · JV K + σn JZK · JV K

)
. (5.9)

Using this definition of w on [tn−1, tn], the equation (5.4), implies

∂tU(t) + A (t)w(t) = (InUn−1 − Un−1)/τn + fn + A (t)w(t)−A nwn. (5.10)

Subtracting the exact equation from this identity we obtain

∂t[U − u] + A [w − u] = (InUn−1 − Un−1)/τn +(fn − f) +(A w −A nwn) (5.11)

for all t ∈ (tn−1, tn) and n = 1, . . . , N , this leads to the following technical basis of
this section.

5.2. Lemma (fully discrete error relation). With the notation introduced in this
section, let e = U − u (full error), ρ := w − u (parabolic error) and ε := w − U
(elliptic error). Then we have

∂te+ A ρ = (InUn−1 − Un−1)/τn + fn − f + A w −A nwn, (5.12)

on [tn−1, tn], for all n = 1, . . . , N .

Proof. Replace the new notation for the errors in (5.11).
�

5.3. Mesh interaction, DG spaces and decomposition. The domain Ω’s sub-
divisions (also known as meshes) {Tn}n=0,...,N are assumed to be compatible in
the sense that for any two consecutive meshes, say Tn and Tn−1, we have that
Tn is a constructed from Tn−1 in two main steps: (1) Tn−1 is locally coarsened by
merging a chosen subset of elements then (2) the resulting coarsened mesh is locally
refined[29, 30]. This procedure leads to meshes which are locally a refinement of one
another. For example, in the following diagram the mesh Tn−1 has some elements
marked (in red) for coarsening and (in blue) for refinement and the mesh Tn can
be thus obtained in the two steps:

Tn−1=
coarsen refine

= Tn

(5.13)

For each n = 1, . . . , N , we denote by Ťn the coarsest common refinement of Tn−1
and Tn. The finite element space corresponding to Tn being Sn, we shall be using
the space Šn which is the finite element space with respect to Ťn. Furthermore

we denote by Sn := Sn + H1
0(Ω) and by S :=

∑N
n=0 Sn, the minimal space that
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contains all these spaces. These spaces are equipped with the same type of norms
given as in Section 2.3.

The conforming-nonconforming decomposition of U , that we shall be using is
performed as follows:

(a) For each given tn, with n = 1, . . . , N − 1 we assume that the following two
decompositions exist for Un,

Un = Und + Unc with respect to the mesh Ťn,

and Un = Und+ + Unc+ with respect to the mesh Ťn+1.
(5.14)

Note that if the mesh changes, in general, Und and Und+ need not be equal functions.

(b) For each t ∈ (tn−1, tn], n = 1, . . . , N , we define

Ud(t) := ln−1(t)Un−1d+ + ln(t)Und and Uc(t) := ln−1(t)Un−1c+ + ln(t)Unc . (5.15)

5.4. Definition (a posteriori error indicators). We set here some notation that is
useful to state the main results concisely. We make some assumptions in the process.
For each time interval [tn−1, tn], with n = 1, . . . , N , we introduce a posteriori error
indicators as follows.
(a) We assume that there exist Cels, Cdgc > 0 such that

‖Πnv‖a ≤ Cels ‖v‖a , for all v ∈ H1
0(Ω), (5.16)

and

Bn(Z, V ) ≤ Cdgc ‖Z‖a ‖V ‖a , for all Z, V ∈ Sn. (5.17)

The time-stepping indicator is given by

θn :=
CelsCdgc√

3

∥∥InUn−1 − Un∥∥
a
. (5.18)

(b) The time data-approximation indicator is

βn :=

(∫ tn

tn−1

‖f(tn)− f(s)‖2H−1(Ω)

τnα[(s)
ds

)1/2

. (5.19)

(c) The mesh-change (or coarsening) indicator is defined as

γn :=

∥∥InUn−1 − Un−1∥∥
H−1(Ω)

τn

(
1

τn

∫ tn

tn−1

1

α[

)1/2

. (5.20)

(d) The parabolic nonconforming part indicator is given by

δn :=

∥∥∥Und − Un−1d+

∥∥∥
H−1(Ω)

τn

(
1

τn

∫ tn

tn−1

1

α[

)1/2

, (5.21)

and the elliptic nonconforming part indicator defined as

δ̃n :=

(
‖Und ‖2a +

∥∥∥Un−1d+

∥∥∥2
a

)1/2

. (5.22)

(e) The space (or elliptic) error indicator is given by

εn := E (Un,a(tn), AnUn,Tn), (5.23)

where E is a particular choice of an energy-norm elliptic error estimator for the
given spatial method. Furthermore the forward elliptic error indicator, due to mesh
change, is given by

ε+n−1 := E (InUn−1,a(tn−1), An−1+ InUn−1,Tn). (5.24)
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(f) Consider first the auxiliary function of time

λa,n(s) :=

∥∥∥∥ ∣∣∣∣√a(s)a(tn)
−1 −

√
a(s)

−1
a(tn)

∣∣∣∣
2

∥∥∥∥
L∞(Ω)

, s ∈ [tn−1, tn] (5.25)

where the inner matrix norm is the Euclidean-induced one. This definition is possi-
ble thanks to a’s being symmetric positive definite. The function λa,n is identically
zero if the operator is time-independent, otherwise it acts like the numerator of
a’s normalized Hölder-continuity ratio.) Then we may define the following operator
approximation indicators

ζ ′n :=
‖AnUn‖H−1(Ω)

αn[

(
1

τn

∫ tn

tn−1

l2nλ
2
a,n

)1/2

, (5.26)

ζ ′′n :=

∥∥An−1+ InUn−1
∥∥
H−1(Ω)

αn−1[

(
1

τn

∫ tn

tn−1

l2n−1λ
2
a,n−1

)1/2

, (5.27)

ζ◦n :=
∥∥[An−1+ −An

]
InUn−1

∥∥
H−1(Ω)

(
1

τn

∫ tn

tn−1

l2n−1
α[

)1/2

, (5.28)

ζn := ζ◦n + ζ ′n + ζ ′′n . (5.29)

(g) Finally, the parabolic nonconforming part indicator of higher order is given by

κn :=

∥∥∥Und − Un−1d+

∥∥∥
τn

. (5.30)

5.5. Remark (computing the H−1(Ω) norm). The norm H−1(Ω) appearing in
the indicators is easily computable at the cost of inverting a stiffness matrix [30].
For many practical purposes, though this has to be replaced by the L2(Ω) norm
times the Poincaré–Friedrichs constant CPF defined in (2.1) which implies the dual
inequality

‖v‖H−1(Ω) ≤ CPF ‖v‖ , for all v ∈ L2(Ω). (5.31)

Note that this will not deteriorate most of the indicators. The only indicators that
may be affected by this change are δn and δ̃n, and it may be possible to provide a
sharp bound for negative Sobolev norms of Ud, but this seems to remain an open
question at the time of writing.

5.6. Remark (computing AnUn and similar terms). The operators An and An+
appearing in Definition 5.4, can be realized in two ways in practice:
(a) To save time, one can use the fully discrete scheme in pointwise form (5.4) to
evaluate some of these terms. For example

AnUn = Πnfn − (Un − InUn−1)/τn. (5.32)

(b) The corresponding stiffness matrix could be computed and applied to the
argument. This seems to be necessary for An+.

5.7. Remark (mesh-change prediction). The mesh-change indicator γn can be
precomputed in a given computation. Indeed, this term does not use explicitly any
quantity deriving from the solution of the n-th Euler time-step (2.20). This term
is usually computable when a precise operator In is available and it involves only
local matrix-vector operations on each group of elements to be coarsened.

5.8. Remark (an alternative time-stepping indicator). An equally valid defini-
tion for the time-stepping estimator θn can be given by

θn :=
1√
3

∥∥An−1+ InUn−1 −AnUn
∥∥
H−1(Ω)

. (5.33)
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This alternative definition has the advantage of having no constants, but it is more
complicated to compute and it must be reduced to the L2(Ω) norm by using the
Poincaré–Friedrichs inequality. A good side effect of this alternative choice is that
in this case the indicator ζ◦n vanishes; all other estimators remain unchanged.

5.9. Theorem (abstract a posteriori energy-error bound for Euler–DG). Let
{Un}n be the solution of (2.20) and U its time-extension as defined by (5.1) and w
the elliptic reconstruction as defined by (5.5). Then, with reference to Definition 5.4,
for each m = 1, . . . , N , we have

‖u− U‖L2(0,tm;S ) ≤‖u(0)− Uc(0)‖+ 3ηp,m +
√

2ηe,m

+

(
1

2

m∑
n=1

δ̃2nτn

)1/2

+

√
3

2

m−1∑
n=1

κnτn,
(5.34)

where the parabolic-error estimator is defined as

ηp,m :=

(
m∑
n=1

(θn + ζn + βn + γn + δn)
2
τn

)1/2

(5.35)

and the elliptic estimator is defined by

ηe,m :=

(
m∑
n=1

(
ε2n + ε+n−1

2
)
τn

)1/2

. (5.36)

We spread the proof in paragraphs 5.10–5.13.

5.10. The energy identity. As in the proof of Theorem 3.6 to get an energy
identity out of (5.12), we will test with the error’s conforming part

ec := e− Ud = ρ+ εc. (5.37)

Start with combining (5.12) and definition (5.5) to get

∂tec + A ρ = ∂tUd + (InUn−1 − Un−1)/τn + fn − f + A w −A nwn (5.38)

Testing the above relation with ec we obtain the following energy identity :

1

2
dt ‖ec‖2 + ‖ρ‖2a = 〈∂tec, ec〉+B(ρ, ρ)

=B(ρ, εc) + 〈∂tUd, ec〉+ 〈A w −A nwn | ec〉
+
〈
(InUn−1 − Un−1)/τn + fn − f, ec

〉
.

(5.39)

Integrating (5.39) from 0 to tm ∈ (0, T ], for an integer m, 1 ≤ m ≤ N fixed, we
may write the integral form of the energy identity

1

2
‖ec(tm)‖2 +

∫ tm

0

‖ρ‖2a =
1

2
‖ec(0)‖2 +

∫ tm

0

B(ρ, εc)

+

m∑
n=1

(∫ tn

tn−1

〈A w −A nwn | ec〉

+

∫ tn

tn−1

〈
(InUn−1 − Un−1)/τn + fn − f, ec

〉 )
+

∫ tm

0

〈∂tUd, ec〉+
1

2

m−1∑
n=1

( ∥∥u(tn)− Unc+
∥∥2 − ‖ec(tn)‖2

)
= : I0 + I1(tm) + I2(tm) + I3(tm) + I4(tm) + I5(tm).

(5.40)
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To obtain the a posteriori error bound for scheme (2.20), we now bound each of
Ii(tm), i = 1, . . . , 5 (I0 needs no bounding) appearing in relation (5.40), in terms
of either a-posteriori-computable or left-hand-side quantities.

A term that substantially distinguishes the fully discrete case from the semidis-
crete one discussed in §3 is the time-discretization term I2(tm), so we start by
bounding this term.

5.11. Time discretization estimate. To bound I2(tm) we start by working out
the first factor of the integrand as follows

A (s)w(s)−A nwn = A (s)
[
ln(s)wn + ln−1(s)wn−1+

]
−A nwn

=ln(s)[A (s)−A n]wn + ln−1(s)
[
A (s)−A n−1]wn−1+

+ ln−1(s)
(
A n−1wn−1+ −A nwn

) (5.41)

Since wn and ec are both in H1
0(Ω), we may bound the first term with

〈[A (s)−A n]wn | ec(s)〉 =

∫
Ω

((a(s)− a(tn))∇wn) · ∇ec(s)

=

∫
Ω

(√
a(s)

(√
a(s)a(tn)

−1 −
√
a(s)

−1
a(tn)

)√
a(tn)∇wn

)
· ∇ec(s)

≤
∥∥∥∥∣∣∣∣√a(s)a(tn)

−1 −
√
a(s)

−1
a(tn)

∣∣∣∣
2

∥∥∥∥
L∞(Ω)

∥∥∥√a(s)∇ec(s)
∥∥∥∥∥∥√a(tn)∇wn

∥∥∥
=λa,n(s) ‖wn‖a ‖ec(s)‖a .

(5.42)

The second factor above can be bounded as follows

‖wn‖2a = 〈A nwn |wn〉 = 〈AnUn, wn〉 = ‖AnUn‖H−1(Ω) ‖∇wn‖

≤
‖AnUn‖H−1(Ω)

αn[
‖wn‖a ,

(5.43)

where the last step owes to the fact that

αn[ ‖∇wn‖2 ≤ Bn(wn, wn) = ‖wn‖2a . (5.44)

Thus ‖wn‖a ≤ ‖AnUn‖H−1(Ω)/α
n
[ and we obtain∫ tn

tn−1

ln(s) 〈[A (s)−A n]wn | ec(s)〉 ds

≤
‖AnUn‖H−1(Ω)

αn[

(∫ tn

tn−1

ln(s)2λa,n(s)2 ds

)1/2(∫ tn

tn−1

‖ec‖2a

)1/2

= ζ ′n
√
τn ‖ec‖L2([tn−1,tn];S ) .

(5.45)

Similarly, we obtain∫ tn

tn−1

ln−1(s)
〈[

A (s)−A n−1]wn−1+ | ec(s)
〉

ds

≤
∥∥An−1+ InUn−1

∥∥
H−1(Ω)

αn−1[

(∫ tn

tn−1

ln−1(s)2λa,n−1(s)2 ds

)1/2(∫ tn

tn−1

‖ec‖2a

)1/2

= ζ ′′n
√
τn ‖ec‖L2([tn−1,tn];S ) .

(5.46)
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To estimate the resultant of the integrand’s third term in (5.41), we recall the
elliptic reconstruction’s definition and note that in view of (5.4) we may write, for
n ≥ 1 , that〈

A n−1wn−1+ −A nwn | ec
〉

=
〈
An−1+ InUn−1 −AnUn, ec

〉
=
〈[
An−1+ −An

]
InUn−1, ec

〉
+
〈
An
[
InUn−1 − Un

]
, Πnec

〉
(5.47)

given that AnInUn−1, AnUn ∈ Sn. The first term on the right-hand side of (5.47)
is simply bounded by〈[

An−1+ −An
]
InUn−1, ec

〉
≤
∥∥[An−1+ −An

]
InUn−1

∥∥
H−1(Ω)

‖∇ec‖ , (5.48)

and thus, recalling definition (5.28), we have∫ tn

tn−1

ln−1
〈[
An−1+ −An

]
InUn−1, ec

〉
≤ ζ◦n

√
τn ‖ec‖L2([tn−1,tn];S ) . (5.49)

The second term on the right-hand side of (5.47) can be given a simpler expres-
sion as follows:〈

An
[
InUn−1 − Un

]
, Πnec

〉
=Bn

(
InUn−1 − Un, Πnec

)
≤Cdgc

∥∥InUn−1 − Un∥∥
a
‖Πnec‖a

≤CdgcCels

∥∥InUn−1 − Un∥∥
a
‖ec‖a

(5.50)

thanks to the stability of Πn with respect to the energy norm ‖·‖a assumed in
(5.16). Therefore, recalling definition (5.18), we obtain∫ tn

tn−1

ln−1
〈
An
[
InUn−1 − Un

]
, Πnec

〉
≤ θn

√
τn ‖ec‖L2([tn−1,tn];S ) (5.51)

The time error estimate follows:

I2(tm) ≤
m∑
n=1

(ζn + θn)
√
τn

(
‖ρ‖L2(tn−1,tn;S ) + ‖εc‖L2(tn−1,tn;S )

)
. (5.52)

5.12. The other error estimates. To bound the spatial error term, I1(t) in
(5.40), we simply consider

I1(tm) =

∫ tm

0

B(ρ, εc) ≤
∫ tn

0

‖ρ‖a ‖εc‖a , (5.53)

with the aim of absorbing the first factor in the left-hand side of (5.40) and using
an elliptic error estimator to bound the second term.

The term I3(tm) in (5.40) which takes into account data approximation:

I3(tm) =

m∑
n=1

∫ tn

tn−1

〈
InUn−1 − Un−1

τn
+ fn − f, ec

〉
. (5.54)

The first term can be bounded by using the
(
H−1(Ω),H1

0(Ω)
)

pairing, as we did
with the time-estimator above:

m∑
n=1

∫ tn

tn−1

〈
(InUn−1 − Un−1)/τn + fn − f, ec

〉
≤

m∑
n=1

(γn + βn)
√
τn ‖ec‖L2(tn−1,tn;S ) , (5.55)

where we have used definitions (5.19) and (5.20).
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Hence we obtain the bound

I3(tm) ≤
m∑
n=1

(βn + γn)
√
τn

(
‖ρ‖L2(tn−1,tn;S ) + ‖εc‖L2(tn−1,tn;S )

)
. (5.56)

We estimate the second-last term on the right-hand side of (5.40). This term can
be bounded in two different ways. For concision’s sake we expose only the estimate
that yields smaller accumulation over long integration-times:

I4(tm) =

∫ tm

0

〈∂tUd, ec〉 ≤
m∑
n=1

∫ tn

tn−1

‖∂tUd‖H−1(Ω) ‖∇ec‖

≤
m∑
n=1

δn
√
τn

(
‖ρ‖L2(tn−1,tn;S ) + ‖εc‖L2(tn−1,tn;S )

)
,

(5.57)

by recalling (5.21).
Observing the identity∥∥u(tn)− Unc+

∥∥2 − ‖ec(tn)‖2 =
∥∥Und − Und+∥∥2 +

〈
Und − Und+, ec(tn)

〉
, (5.58)

we estimate the last term on the right-hand side of (5.40), as follows:

I5(tm) =
1

2

m−1∑
n=1

( ∥∥Und − Und+∥∥2 +
〈
Und − Und+, ec(tn)

〉 )
≤1

2

m−1∑
n=1

(
κ2nτ

2
n + max

1≤l≤m−1
‖ec(tl)‖κnτn

)
≤3

4

(m−1∑
n=1

κnτn

)2
+

1

4
max

1≤l≤m−1
‖ec(tl)‖2

(5.59)

5.13. Concluding the proof of Theorem 5.9. Combining the energy relation
(5.40) with the bounds (5.52), (5.53), (5.56), (5.57) and (5.59), we obtain

1

2
‖ec(tm)‖2 + ‖ρ‖2L2(tn−1,tn;S )

≤1

2
‖ec(0)‖2 +

3

4

(m−1∑
n=1

κnτn

)2
+

1

4
max

1≤l≤m−1
‖ec(tl)‖2

+

m∑
n=1

(θn + ζn + βn + γn + δn)
√
τn ‖εc‖L2(tn−1,tn;S )

+

m∑
n=1

(
(θn + ζn + βn + γn + δn)

√
τn + ‖εc‖L2(tn−1,tn;S )

)
‖ρ‖L2(0,tm;S ) .

(5.60)

Choosing m = m∗ so that ‖ec(tm∗)‖ = max1≤l≤m−1 ‖ec(tl)‖ in (5.60), yields a

bound on max1≤l≤m−1 ‖ec(tl)‖2 /4, which is then used again to bound the third
term on the right-hand of (5.60), resulting to

‖ρ‖2L2(tn−1,tn;S ) ≤ ‖ec(0)‖2 +
3

2

(m−1∑
n=1

κnτn

)2
+ 2

m∑
n=1

(θn + ζn + βn + γn + δn)
√
τn ‖εc‖L2(tn−1,tn;S )

+ 2

m∑
n=1

(
(θn + ζn + βn + γn + δn)

√
τn + ‖εc‖L2(tn−1,tn;S )

)
‖ρ‖L2(0,tm;S ) ,

(5.61)
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which is an inequality of the form

|a|2 ≤ c2 + d · b+(d+ b) · a, (5.62)

where a, b,d ∈ Rm+1 and c ∈ R are appropriately chosen. It follows that

|a| ≤ max {|c| , |d|}+ |d|+ |b| , (5.63)

which, using the notation introduced in the statement of the theorem, implies

‖ρ‖L2(0,tm;S ) ≤ ‖ec(0)‖+

√
3

2

m−1∑
n=1

κnτn + 3ηp,m + ‖εc‖L2(0,tm;S ) . (5.64)

To close the estimate, the last term on the right-hand side of (5.64) is bounded by

‖εc‖L2(0,tm;S ) ≤ ‖ε‖L2(0,tm;S ) + ‖Ud‖L2(0,tm;S ) . (5.65)

The first term yields

‖ε‖2L2(0,tm;S ) =

m∑
n=1

∫ tn

tn−1

∥∥ln−1(wn+ − Un) + lnε
n
c

∥∥2
a

≤
m∑
n=1

∫ tn

tn−1

ln−1ε
+

n−1
2 + lnε

2
n

≤1

2

m∑
n=1

(
ε+n−1

2 + ε2n
)
τn =

1

2
η2e,m.

(5.66)

Similarly, the second term yields

‖Ud‖2L2(0,tm;S ) ≤
1

2

m∑
n=1

δ̃2nτn. (5.67)

Merging these inequalities with (5.64) and using the triangle inequality we obtain

‖e‖L2(0,tm;S ) ≤ ‖ε‖L2(0,tm;S ) + ‖ρ‖L2(0,tm;S ) (5.68)

we obtain (5.34).

5.14. Remark (short-time integration). In the spirit of Theorem 3.7, it is pos-
sible to modify Theorem 5.9 and the appropriate indicators as to accommodate
a short time-integration version of this result where L1-accumulation in time re-
places the L2-accumulation for certain estimators. Over shorter time-intervals this
provides a tighter bound.

5.15. Theorem (a posteriori energy-error bound for Euler–IPDG). Under the
same assumptions of Theorem 5.9, assuming we employ the IPDG method in space
as described in §4, the error bound (5.34) holds with the estimators ηp,m, ηe,m and∑m
n=1 δ̃

2
nτn explicitly computable as follows:

(a) for the elliptic indicators εn and ε+n−1, replace E by EIP, as defined in (4.9),
into (5.23) and (5.24), respectively;

(b) for the nonconforming part indicators δn and δ̃n, respectively, (cf. §5.3 and
Lemma 4.3), we replace∥∥∥Und − Un−1d+

∥∥∥
H−1(Ω)

, ‖Und ‖a and
∥∥∥Un−1d+

∥∥∥
a
, (5.69)

respectively, by

CPFC1

∥∥√ȟn q
Un − Un−1

y∥∥ , C2

∥∥√σ̌n JUnK
∥∥ , (5.70)

where ȟn is the mesh-size function of Ťn and σ̌n is related to it via (4.2);

(c) replace all H−1(Ω) norms by CPF times the L2(Ω) norm.



22 EMMANUIL H. GEORGOULIS, OMAR LAKKIS, AND JUHA M. VIRTANEN

6. Computer experiments

In this final section we summarize the results of computer experiments aimed at
testing the efficiency and reliability of the fully discrete estimators derived in § 5.
We built our code upon the free finite element software FEniCS [31] while Matlab©r

was used as an end-tool to visualize the time-behavior of various estimators.
All the computational examples are in space dimension d = 2 and their choice is

such as to illustrate as many aspect as possible of practical convergence rate (also
known as experimental order of convergence, in short EOC) and the effectivity index
(EI), on uniform space-time meshes, of the proposed a posteriori error indicators
defined in § 5.4.

6.1. Benchmark solutions. We consider three benchmark problems for which u0
and f are chosen so that the exact solution u of problem (1.3) coincides with one
of the following benchmark solutions:

u1(x, y, t) = sin(πt) sin2(πx) sin2(πy), (6.1)

u2(x, y, t) = û2(r, φ, t) = sin(πt)(r2 cos2(φ)− 1)2(r2 sin2(φ)− 1)2rz0g(φ), (6.2)

u3(x, y, t) = sin(20πt) sin2(πx) sin2(πy) (6.3)

for t ∈ [0, 1] and

(x, y) ∈
{

(0, 1)× (0, 1) in (6.1) and (6.3)

(−1, 1)2 \ [0, 1)× (−1, 0] in (6.2).
(6.4)

To complete the definition of u2 in (6.2) we consider

z0 := 0.544483736782464 such that sin2(z0ω) = z20 sin2(ω), with ω = 3π/2, (6.5)

and

g(φ) :=

(
1

z0 − 1
sin((z0 − 1)ω)− 1

z0 + 1
sin((z0 + 1)ω)

)
× (cos((z0 − 1)φ)− cos((z0 + 1)φ))

−
(

1

z0 − 1
sin((z0 − 1)φ)− 1

z0 + 1
sin((z0 + 1)φ)

)
× (cos((z0 − 1)ω)− cos((z0 + 1)ω)).

(6.6)

It is well-known [22, 9] that the gradient of u2 in (6.2) has a singularity at the
reentrant corner located at the origin of Ω.

Solution u1 is smooth and varies “slowly” in time. Solution u3 is also smooth by
it oscillates much faster and is used to emphasize the time-error indicator appearing
in the parabolic error estimator ηp,m, defined in (5.35).

Similar examples have been studied elsewhere, for example in [29, 30].
Note that the diffusion tensor, a(x, t), is a constant function (equal to 1) of

space-time and that the initial error ‖u(0)− U(0)‖a = 0 in all examples.

6.2. Computed quantities. In each of the examples, we compute the solution of
(2.20) using finite element spaces consisting of polynomials of degree p equal to 1, 2
and 3 with interior penalty parameter Ca,µ(T ) in (4.2) having values 40, 80 and 160
respectively which are sufficient to guarantee stability of the numerical scheme.

We study the asymptotic behavior of the indicators by setting all constants
appearing in Theorem 5.15 equal to 1 and monitoring the evolution of the values
and experimental order of convergence of the estimators and the error as well as
effectivity index over time on a sequence of uniformly refined meshes with a fixed
time step τ and polynomial degree p. For this purpose, we define experimental
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order of convergence, in symbols EOC, of a given sequence of positive quantities
a(i) defined on a sequence of meshes of size h(i) by

EOC(a, i) =
log(a(i+ 1)/a(i))

log(h(i+ 1)/h(i))
(6.7)

and the inverse effectivity index, EI, by

EI =
‖e‖L2(0,tm;T )

ηp,m + ηe,m
. (6.8)

We use the inverse effectivity index, instead of the (direct) effectivity index, be-
cause it is easier to visualize while conveying the same information. It also has the
advantage of relating directly to the constants appearing in Theorem 5.15.

6.3. Conclusions. The numerical experiments clearly indicate that the error esti-
mators are reliable (as expected from the theory) and efficient. This is clearly seen
by the match in EOC between the error and the two main estimators ηe,m and ηp,m
for each m.

Since we use time-invariant finite element spaces, the mesh-change estimators
are null and do not influence the estimators.

The nonconforming indicator ( 1
2

∑m
n=1 δ̃

2
nτn)1/2 was found to be of higher order

with respect the elliptic estimator, ηe,m. This is most likely to be an effect of using
time-invariant meshes and the nonconforming indicator can be safely ignored as
long as the mesh does not change.

Adding mesh change, space-time-dependent diffusion a, and variable time-step
to our numerical experiments will exhibit more properties of the estimators but
we eschew deeper numerical experiments in this paper for concision’s sake. For the
same reason, the derivation of adaptive methods based on our indicators is omitted
here.

Results for problem (6.1) with p = 1, problem (6.2) with p = 2 and problem (6.3)
with p = 3 are depicted and commented further in figures 1, 2 and 3 respectively.
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Figure 1. Example with exact solution u1, given by (6.1), ap-
proximated with piecewise polynomials of degree p = 1.
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(a) Mesh-size h(i) = 2−i/2, i = 2, . . . , 8, and timestep τ = 0.1h. On top we plot the EOC

of the single cumulative indicators ηp,m and ηe,m. Both indicators have the same asymptotic

EOC ≈ 1 as has the error. The effectivity index tends towards 1/0.12.
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Figure 2. Example (6.2) with piecewise polynomials of degree
p = 2.
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of the single cumulative indicators ηp,m and ηe,m. EOC < 1 for the error is due to lack of

H2-regularity. Note that the elliptic estimator has asymptotically the same EOC as the error.
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Figure 3. Example (6.3) with discontinuous piecewise polyno-
mials of degree p = 3.

0 0.5 1
0

2

4

6

8
EOC ‖|e |‖

time
0 0.5 1

0

2

4

6

8
EOC ηp , m

time
0 0.5 1

0

2

4

6

8
EOC ηe , m

time
0 0.5 1

0

0.02

0.04

0.06

0.08

0.1
EI ( tm)

time

0 0.5 1

10
−2

10
0

10
2

l og‖e‖L2( 0 , t m ; ‖| · |‖ )

time
0 0.5 1

10
−2

10
0

10
2

l ogηe , m

time
0 0.5 1

10
−2

10
0

10
2

l ogηp , m

time
0 0.5 1

10
−2

10
0

10
2

ηp , m+ ηe , m

time

(a) Mesh-size h(i) = 2−i/2, i = 2, . . . , 5 and timestep τ = 0.1h3. On top we plot the EOC

of the single cumulative indicators ηp,m and ηe,m. Both indicators have the same asymptotic

EOC ≈ 1 as has the error. The effectivity index tends towards asymptotic value 200.
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