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Abstract. A semelparous organism reproduces only once in its life and dies thereafter. If there is only one
opportunity for reproduction per year, and all individuals born in a certain year reproduce k years
later, then the population can be divided into year classes according to the year of birth modulo k.
The dynamics is described by a discrete-time nonlinear Leslie matrix model, where the nonlinearity
enters through the density dependent fertility and mortality rates. When the reproduction ratio is
close to one, the full-life-cycle-map can be approximated by the solution of a differential equation
of Lotka–Volterra type, which inherits the cyclic symmetry that is present in the full-life-cycle-
map. The Lotka–Volterra equation can next be reduced to the replicator equation on the (k − 1)-
dimensional simplex. In this paper we classify the repertoire of dynamical behavior for k = 2, 3 and
derive an almost complete picture for k = 4, with some open problems identified. We pay special
attention to the single year class (SYC) state (all but one year class are absent), multiple year class
patterns (with several but not all year classes present), heteroclinic cycles, and periodic orbits.
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1. Introduction. In this paper we study the system of ordinary differential equations

(1.1) u̇i =

(

−(Au)i +
∑

j

uj(Au)j

)

ui, i = 1, . . . , k,

where u is a k-vector that belongs to the (k − 1)-dimensional simplex Σ, defined by

(1.2) Σ =

{

u ∈ Rk :
k∑

j=1

uj = 1, uj ≥ 0, j = 1, . . . , k

}

,

and A is a circulant matrix, i.e.,

(1.3) A =





a1 a2 . . . ak

ak a1 . . . ak−1
...

...
...

a2 a3 . . . a1
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with

(1.4)
k∑

1

ai = 1,

or, in words, the rows of A are obtained from the first normalized row by cyclic permutation.
Let S be the shift defined by

(1.5) S =





0 0 . . . 0 1
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0




.

One easily verifies that AS = SA, that u · v = Su ·Sv (with u · v =
∑k

j=1 ujvj), and that, as a
consequence, f(Su) = Sf(u), where f : Rk → Rk is componentwise defined by the right-hand
side of (1.1). So S maps orbits of (1.1) onto orbits of (1.1), or, in more technical jargon, (1.1)
is equivariant with the representation of the cyclic group generated by S. Accordingly we
call (1.1) the cyclic replicator equation (see [12] for a motivated introduction to the replicator
equation as well as a survey of the known results).

Our aim is to classify the repertoire of dynamical behavior that solutions to the replicator
equation exhibit. We will succeed for k = 2 and k = 3 and almost succeed for k = 4. The
study of higher values of k is left for the future (a Ph.D. student has just embarked on this
subject). Our findings so far are summarized in the concluding section.

Of course the classification is greatly simplified by the restriction to cyclic symmetry. We
refer the reader to [3, 6, 7, 8, 9, 10, 11] for classification under no or other restrictions.

In our way of thinking, the components of the vector u describe the relative magnitudes
of k competing subpopulations. Indeed, one can deduce (1.1) from the cyclic logistic equation

(1.6) ẏi = (1 − (Ay)i) yi, i = 1, . . . , k,

by writing yi = ui
∑k

j=1 yj and next performing an implicit rescaling of the time to eliminate
the scalar

∑k
j=1 yj from the equation for u. Equation (1.6) is nongeneric in two ways: all

subpopulations have the same intrinsic growth rate, viz. 1, and the competitive interaction
matrix A is a circulant. In section A.2 we show that both of these features occur naturally when
we derive (1.6), by way of a limiting procedure, from a discrete-time model for a semelparous
population.

A species is called semelparous if individuals reproduce only once in their lives (simply
because reproduction has death as an inevitable consequence). Examples include annual
and biennial plants, Pacific salmon, cicadas, and many other insects. If there is only one
reproduction opportunity per year, the length of the life cycle is necessarily an integer number
of years. In earlier work [14, 16, 17] with Natalia Davydova, we have extensively investigated
a discrete-time model incorporating two key assumptions (see also [18, 19, 20]):

• The period between being born and reproducing is exactly k years.
• Interaction is by way of feedback to a scalar quantity describing the environmental

condition.
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The first of these guarantees that all individuals born in some year will, provided they survive,
mate and reproduce k years later and hence are reproductively isolated from individuals born
in other years. Let us call the subpopulation of individuals that reproduce in year j (modulo k)
the jth year class. Then clearly year classes may be missing from the population. Bulmer [2]
calls an insect periodical if all but one year class are missing. The most famous examples are
certain cicada species in North America (see, e.g., [13] and the references therein).

Even though the year classes are reproductively isolated, they still interact by way of
feedback to the environmental condition. How many year classes will coexist? How many
are driven to extinction? How does the answer depend on the age-specific impact on the
environmental condition and on the age-specific sensitivity to the environmental condition?
And what kind of bifurcations mark the transition?

Note that year classes are identical except for the timing of birth. Yet, as implicated by
the questions above, there can be winners and losers. The distinction is made by the phase in
the life cycle at which certain environmental conditions are experienced (for instance, if food
is plentiful when you need little, but scarce when you need a lot, you do have bad luck). If
the environmental condition fluctuates periodically, the correspondence between the phase in
the life cycle and the phase in the environmental cycle can have a decisive influence on the
outcome of the competitive interaction!

The discrete-time dynamics is generated by a map which is the nonlinear analogue of
a positive linear map which is irreducible but periodic, in the sense that the kth iterate
is diagonal. The linearization at zero has eigenvalues R0 · (roots of unity of order k) =

R0 expi
2πm

k (m = 0, 1, . . . , k−1), where R0 is the basic reproduction number, i.e., the expected
number of offspring per newborn individual when density dependence is simply ignored. For
R0 < 1, all year classes become extinct; for R0 > 1, every year class will persist if all the
others are missing. From a mathematical point of view, the bifurcation at R0 = 1 is highly
degenerate. In particular, it is unclear what dynamics we should expect for R0 slightly larger
than one.

The derivation of (1.6) in section A.2 involves the following steps:
• consider the full-life-cycle-map, i.e., the kth iterate;
• assume R0 = 1 + ε with ε positive but small; then the full-life-cycle-map is a near-

identity map;
• zoom in on an ε-neighborhood of the origin in the state space;
• let ε tend to zero.

We therefore view (1.1) as a normal form description of the dynamics of a semelparous pop-
ulation with R0 slightly bigger than one and a life cycle of precisely k years.

2. The cyclic replicator equation: Some general observations. Before we start analyzing
(1.1) in low dimensions, we first state some facts that hold in any dimension. That (1.1) is
equivariant with respect to S is the content of the first lemma. Next we observe that we may
reduce the number of parameters by one: only the differences ai − a1, i = 2, . . . , k, matter for
the dynamics of (1.1) on the simplex (1.2).

Lemma 2.1. The replicator equation is equivariant with respect to S.
Proof. Using the fact that A commutes with S, we find
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d

dt
(Su)i = (Su̇)i = u̇i−1 = (−(Au)i−1 + u · Au)ui−1

= (−(SAu)i + (Su · SAu))(Su)i
= (−(ASu)i + (Su · ASu))(Su)i,

which shows that Su satisfies (1.1).
Adding a constant to a column of A does not change (1.1) on the simplex.
Lemma 2.2. Let B be the matrix obtained from A by subtracting the constant c from every

element of the jth column, i.e., bil = ail for l %= j and bij = aij − c, i = 1, . . . , k. Let u be a
function of t satisfying (1.2). Then u satisfies (1.1) iff u satisfies (1.1) with A replaced by B.

Proof. We look at the ith equation,

u̇i = ui

(
−

k∑

l=1

ailul +
k∑

m,l=1

umamlul

)

= ui

(

−
k∑

l=1

bilul − cuj +
k∑

m,l=1

umbmlul +
k∑

m=1

umcuj

)

= ui

(
−

k∑

l=1

bilul +
k∑

m,l=1

umbmlul

)
,

which proves the assertion.
Note that we did not use the normalization (1.4). So we may apply this lemma with c = a1

successively to all columns. Thus we obtain the replicator equation with A replaced by B,

(2.1) u̇i =

(

−(Bu)i +
∑

j

uj(Bu)j

)

ui, i = 1, . . . , k,

where

(2.2) B =





0 b1 . . . bk−1

bk−1 0 . . . bk−2
...

...
b1 b2 . . . 0





with
bi = ai+1 − a1, i = 1, . . . , k − 1.

In conclusion, the dynamics generated by (1.1) on the simplex is exactly the same as the
dynamics generated by (2.1).

Remark 2.3. Note that
∑k−1

j=1 bj = 1−ka1. Hence the inverse parameter transformation is
given by a1 = 1

k

(
1−

∑k−1
l=1 bl

)
, aj = bj−1 +a1 for j ≥ 2, and the constraints on the parameters

bj are accordingly

(2.3)
k−1∑

l=1

bl ≤ 1, bj + 1
k

(
1 −

k−1∑

l=1

bl

)
≥ 0, j = 1, . . . , k − 1.
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Remark 2.4. Note that (1.1) is invariant under (A, t) → (−A,−t). This parameter sym-
metry also holds when A is replaced by B. When drawing phase portraits, we can restrict our
attention to half of the parameter space.

We will use the symbol to denote the column vector with all ones. The dimension should
be clear from the context.

Remark 2.5. If ū is an internal equilibrium of (1.1), i.e., ū /∈ ∂Σ, then

−Bū +
k∑

j=1

ūj(Bū)j = 0.

If B is invertible, then ū ∈ span {B−1 }. By inspection we see that ū = 1
k is an internal

equilibrium. This equilibrium is unique, on the simplex, if B is invertible.
The linearized equation about this equilibrium is given by

(2.4) żi = −1
k
(Bz)i +

1
k2

k∑

j=1

(Bz)j

for vectors z satisfying
∑k

j=1 zj = 0.
Remarkably, it turns out that one can determine the eigenvalues corresponding to the

linear system (2.4) explicitly. The key observation is that B is a polynomial in S−1:

B =
k−1∑

i=1

biS
−i.

Since
Sξn = λnξn, n = 0, 1, . . . , k − 1,

where
λn = en2πi

k

and

ξn =





1
λ−1

n
...

λ−k+1
n




,

we obtain a precise determination of the eigenvalues of B as a direct corollary.
Lemma 2.6. Bφ = µφ iff µ = p(λ−1

n ) and φ = ξn for some n ∈ {0, 1, . . . , k − 1}. Here p is
the polynomial

p(z) = b1z + · · · + bk−1z
k−1.

Proof. Bξn = p(λ−1
n )ξn, so ξn is an eigenvector corresponding to eigenvalue p(λ−1

n ). As
we find k independent eigenvectors in this manner, there are no other linearly independent
eigenvectors.
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The matrix associated with the right-hand side of (2.4) is C defined by

Cz = −1
k
Bz +

1
k2

k∑

j=1

(Bz)j .

Now observe that for n %= 0

k∑

j=1

ξn,j =
k−1∑

j=0

λ−j
n =

1 − λ−k
n

1 − λ−1
n

= 0

and that consequently
k∑

j=1

(Bξn)j = p(λ−1
n )

k∑

j=1

ξn,j = 0.

In combination with Lemma 2.6, this observation leads to the characterization of the eigen-
values and eigenvectors of C.

Lemma 2.7. For n = 1, . . . , k − 1 we have

Cξn = −1
k
p(λ−1

n )ξn.

These are the eigenvalues and eigenvectors associated with the invariant subspace {z :∑k
j=1 zj = 0} of (2.4); for completeness we observe that Cξ0 = 0, so ξ0 spans an orthogonal

invariant one-dimensional subspace corresponding to eigenvalue 0.
We finally observe that at a boundary equilibrium with k−m components equal to 0 there

are k−m eigenvalues with corresponding eigenvectors that, after translation to the equilibrium,
lie on the boundary of the simplex and m eigenvalues with corresponding eigenvectors that,
after translation to the equilibrium, point into the simplex.

Lemma 2.8. Let û = (û1, . . . , ûm, 0, . . . , 0)T be an equilibrium of (2.1). The linearization
about this equilibrium takes the form

(2.5) η̇i =
{

ûi(−(Bη)i + η · Bû + û · Bη), i = 1, . . . ,m,
ηi(−(Bû)i + û · Bû), i = m + 1, . . . , k.

Hence the following hold:
(i) There are k − m eigenvectors that have k − m − 1 out of the last k − m components

equal to 0, and the corresponding eigenvalues are given by

−(Bû)i + û · Bû, i = m + 1, . . . , k.

(ii) û · Bû is an eigenvalue with corresponding adjoint eigenvector given by .
(iii) The subspace

Z :=




 η :
m∑

j=1

ηj = 0 and ηi = 0 for i = m + 1, . . . , k
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is invariant. For η ∈ Z we have η · Bû = 0 and

η̇i = ûi (−(Mη)i + û · Mη) ,

where M denotes the m-truncation of B.
Proof. The statement (i) is a direct consequence of the block diagonal form of (2.5) and

the fact that the lower right block is diagonal. To prove (ii), we first note that
∑m

i=1 ûi = 1
and that (Bû)i = û · Bû for i = 1, . . . ,m. By summation we deduce from (2.5) that

k∑

i=1

η̇i = −
m∑

i=1

ûi(Bη)i + η · Bû + û · Bη

−
k∑

i=m+1

ηi(Bû)i + û · Bû
k∑

i=m+1

ηi.

The first and the third term on the right-hand side cancel. Hence

k∑

i=1

η̇i =
m∑

i=1

ηi(Bû)i + û · Bû
k∑

i=m+1

ηi

= û · Bû
k∑

i=1

ηi.

This establishes (ii) but also shows that the subspace
{

η :
k∑

i=1

ηi = 0

}

is invariant. Z is the intersection of this invariant subspace with another invariant subspace,
viz.,

{ η : ηi = 0 for i = m + 1, . . . , k } .

Since (Bû)i is independent of i for i = 1, . . . ,m, we have that η ·Bû = 0 for η ∈ Z, and hence
the last statement follows directly from (2.5).

Remark 2.9. The eigenvalues mentioned in (i) correspond to directions in which one new
year class is introduced. They are called external eigenvalues in [12]. In our earlier discrete
time work we called them transversal eigenvalues.

3. k = 2: Either coexistence or competitive exclusion. For k = 2 the system is com-
pletely described by the scalar equation

(3.1) u̇1 = 2b1u1(u1 − 1
2)(1 − u1),

and so there are two generic situations:
(i) b1 > 0. One of the two year classes outcompetes the other.
(ii) b1 < 0. The two year classes coexist with equal population size.
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b1 < 0

0 11/2

b1 > 0

The transition is by way of a vertical bifurcation: for b1 = 0 the two year classes can
coexist with any ratio between the two population sizes.

4. k = 3: A heteroclinic cycle as yet another possibility. If we reformulate the strict
dichotomy that we found for k = 2 as “either coexistence in steady state or convergence to
the boundary of the simplex,” then we shall find the same dichotomy for k = 3. But now
there are other candidate ω-limit sets at the boundary, in addition to the single year class
(SYC) equilibria. Double year class equilibria may or may not exist, but, as it turns out, they
are always unstable. For a substantial parameter region a heteroclinic cycle of stone-scissors-
paper type attracts all interior orbits (apart from the coexistence steady state). Again the
transition between the two generic possibilities is by way of a vertical bifurcation—this time
a Hopf bifurcation. For the critical parameter values the vector field is Hamiltonian and a
one-parameter family of periodic coexistence orbits “fills” the simplex.

When k = 3, the matrix B in (2.1) takes the form

(4.1) B =




0 b1 b2

b2 0 b1

b1 b2 0





with eigenvalues b1 + b2 and −1
2(b1 + b2) ± 1

2

√
3i(b2 − b1).

We adopt the convention that the symbol En denotes an equilibrium with n nonvanishing
year classes.

The eigenvalues associated with the linearization about the internal equilibrium E3 = 1
3

are
1
6(b1 + b2) ± i

√
3

6 (b2 − b1),

and so the stability character of E3 is determined by the sign of b1 + b2. In order to show that
the sign of b1 + b2 has a strong impact on the global dynamics, we introduce the Lyapunov
function

(4.2) V (u) = u1u2u3.

A straightforward but lengthy computation shows that on the invariant simplex, where u3 =
1 − u1 − u2,

V̇ (u) = −(b1 + b2)V (u)(1 − 3u1 − 3u2 + 3u2
1 + 3u1u2 + 3u2

2)

= −(b1 + b2)V (u){(u1 − 1
3)2 + (u1 − 1

3)(u2 − 1
3 ) + (u2 − 1

3)2}.

The function u (→ (u1 − 1
3)2 + (u1 − 1

3)(u2 − 1
3) + (u2 − 1

3 )2 takes its minimum zero at E3 but
is strictly positive everywhere else on the simplex.

Remark 4.1. The use of this Lyapunov function goes back to [4].
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Theorem 4.2. (i) If b1 + b2 > 0, the function V strictly decreases along every interior orbit
that is not E3. Consequently, the ω-limit set of any such orbit belongs to the boundary of the
simplex.

(ii) If b1 + b2 < 0, the function V strictly increases along every interior orbit that is not
E3. Consequently, E3 is globally asymptotically stable in the sense that it is the ω-limit set of
any orbit starting in the interior of the simplex.

(iii) If b1 + b2 = 0, the system is Hamiltonian with

(4.3) H(u) = b1u1u2(1 − u1 − u2).

For b1 %= 0 the level sets of H are closed curves, and so the simplex is “filled” with (foliated
by) a one-parameter family of periodic orbits with E3 in the “middle” and a heteroclinic cycle
at the boundary.

Proof. The statements (i) and (ii) follow directly from the formula for V̇ (u) presented
above, so we concentrate on (iii). If b1 + b2 = 0, then u · Bu = 0 and

u̇1 = b1u1(1 − u1 − 2u2) =
∂H

∂u2
,

u̇2 = b1u2(−1 + 2u1 + u2) = −∂H

∂u1
.

The statement about the level curves follows directly from the fact that H has a maximum
or a minimum at E3, depending on the sign of b1, while there are no other critical points in
the interior of the simplex. Note that the boundary of the simplex is precisely the level set of
H corresponding to the value zero.

Next we investigate the boundary dynamics. Because of the cyclic symmetry, we can
restrict our attention to the invariant line segment

{u : u3 = 0, u2 = 1 − u1, 0 ≤ u1 ≤ 1},

on which the dynamics is generated by

(4.4) u̇1 = u1(1 − u1){(b1 + b2)u1 − b1}.

The steady states u1 = 0 and u1 = 1 are both of the E1 category. If b1 and b2 have the same
sign, there is a steady state

u1 =
b1

b1 + b2

with corresponding

u2 =
b2

b1 + b2
,

which is of the E2 category. In order for this steady state to be stable within the invariant
line segment, we need that b1 and b2 are negative, and according to Theorem 4.2(ii), the E2

equilibria are unstable in this case. We conclude that the E2 equilibria cannot be stable.
We can now supplement Theorem 4.2(i) and characterize the ω-limit set of interior orbits

more precisely:
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• If both b1 > 0 and b2 > 0, the ω-limit set is one of the three E1 equilibria. The
domains of attraction of these three attractors are separated by the stable manifolds
of the E2 equilibria.

• If b1 and b2 are of different sign (or one is zero), but b1 + b2 > 0, the ω-limit set is
a heteroclinic cycle connecting the three E1 equilibria (in the direction 1 → 2 → 3 if
b1 ≤ 0 and the other way around if b1 > 0).

Figure 1 summarizes the information derived above by showing how, for k = 3, the phase
portrait depends on the parameters b1 and b2.

cycle

b1

b2

stable

stable internal equilibrium

periodic solutions
continuum of

b1 + b2 = 0

three competing single year class attractors

heteroclinic

Figure 1. The phase portrait in the (b1, b2)-plane. For opposite values (−b1,−b2) of (b1, b2), the phase
portraits are related by reversal of all arrows.

5. The replicator equation in dimension four. When k = 4 we lose the strict dichotomy.
The attractors that occur in an open region in parameter space are E1, the SYC solution, E2a,
the two-consecutive-year classes solution, E2s, the two-nonconsecutive-year classes solution,
E4, the internal steady state with all year classes present, HCI, the heteroclinic cycle that
connects the four single-year class solutions, HCII, the heteroclinic cycle that connects the
four two-consecutive-year classes solutions, and finally periodic solutions.

Essential is a codimension two manifold in parameter space for which the whole state
space is filled with periodic orbits, equilibria, and heteroclinic cycles. The precise unfolding
of this codimension two bifurcation, even within the class of replicator equations considered
here, is beyond the scope of this paper.

5.1. Global aspects. When k = 4, the matrix B in (2.1) takes the form

(5.1) B =





0 b1 b2 b3

b3 0 b1 b2

b2 b3 0 b1

b1 b2 b3 0





with the constraints
b1 + b3 ≤ 1 − b2,

3b1 − b3 ≥ b2 − 1,
3b3 − b1 ≥ b2 − 1,
3b2 − b1 ≥ b3 − 1.

(5.2)
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There are two invariant subspaces

(5.3) V1 =










u1

u1

u1

u1





∣∣∣∣∣∣∣∣
u1 ∈ R





, V2 =










u1

u2

u1

u2





∣∣∣∣∣∣∣∣
u1, u2 ∈ R





.

The intersection of V1 with the simplex is the fixed-point E4 = 1
4 . The intersection of V2

with the simplex is the line segment

(5.4) L =





u = 1

2





0
1
0
1



 + u1





1
−1
1
−1





∣∣∣∣∣∣∣∣
0 ≤ u1 ≤ 1

2





,

and the dynamics on L is generated by the equation

(5.5) u̇1 = 1
2(b2 − b1 − b3)u1(2u1 − 1)(4u1 − 1).

As the analysis of the Lyapunov function was quite successful in the previous section, we
introduce here

(5.6) V (u) = u1u2u3u4.

A long but straightforward computation shows that

(5.7)
d

dt
V = 4V {(b2 − b1 − b3)(u1 + u3 − 1

2 )2 − b2((u1 + u2 − 1
2)2 + (u2 + u3 − 1

2)2)}.

From this identity we draw the following conclusions.
Theorem 5.1.
(i) If b1 + b3 < b2 < 0, then any orbit that does not start at the boundary of the simplex

has E4 as its limit for t → ∞.
(ii) If b1+b3 > b2 > 0, then any orbit that does not start at E4 has its ω-limit set contained

in the boundary of the simplex.
(iii) If b2 = 0, b1 + b3 < 0, and b1 %= b3, then any orbit that starts in the interior converges

to E4 as t → ∞.
(iv) If b2 = 0, b1 + b3 > 0, and b1 %= b3, then any orbit that does not start at E4 has its

ω-limit set contained in the boundary of the simplex.
(v) If b2 = 0 and b1 = b3 > 0, then any orbit that does not start in the planar set

(5.8) P = {u ∈ Σ | u1 + u3 = u2 + u4}

has its ω-limit set contained in ∂Σ. The set P consists of fixed points.
(vi) If b2 = 0 and b1 = b3 < 0, then any orbit that starts in the interior of the simplex has

its ω-limit set contained in the plane P, which consists of fixed points.
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(vii) If b2 − b1 − b3 = 0 and b2 < 0, then any orbit that does not start at the boundary of
the simplex has its ω-limit set contained in the fixed point line segment

L = {u ∈ Σ | u1 = u3 and u2 = u4}.

(viii) If b2 − b1 − b3 = 0 and b2 > 0, then the ω-limit set of any orbit that does not start on
L is contained in ∂Σ.

(ix) If b2 = 0 and b1 + b3 = 0, then V is a conserved quantity.
Proof. The first two statements are a direct consequence of (5.7). If b2 = 0, then the set

defined by V̇ = 0 consists of the boundary of the simplex, where V = 0, and the set P. For
b2 = 0 and u ∈ P we have

u̇1 = u1{1
4 (b1 + b3) − 1

2b3 − (b1 − b3)u2},
u̇2 = u2{1

4 (b1 + b3) − 1
2b1 + (b1 − b3)u1}.

If we let ξ = u1 + u3 − u2 − u4, we compute that on P

ξ̇ = −1
4(b1 − b3)(−1 + 4u2)(−1 + 4u1).

As b1 %= b3, the largest invariant subset is contained in the set {u1 = 1
4 or u2 = 1

4}. When
u1 = 1

4 and we are in the set P, we find

u̇1 = − 1
16(b1 − b3)(−1 + 4u2),

and hence we conclude that the largest interior invariant set of P consists of the fixed point
E4. This proves (iii) and (iv). If b2 = 0 and b1 = b3, one computes that the whole set P
consists of fixed points. A straightforward computation yields that

d

dt
(u1 + u3 − u2 − u4)2 = 4b1(u1 + u3 − u2 − u4)2((u2 + u4)(u1 + u3)).

As the largest invariant set where V̇ = 0 consists of the union of the boundary of the simplex
and the plane P, this proves, in view of (5.7), (v) and (vi). The statements (vii) and (viii)
follow from the observation that the line L consists entirely of fixed points when b2−b1−b3 = 0;
cf. (5.5). (See Figure 2.) The final statement is an immediate consequence of (5.7).

There is another function that acts as a Lyapunov function in part of the parameter space.
The proof of the following result is given in section A.1.

Theorem 5.2. If b2 > b1 + b3 > 0 (b2 < b1 + b3 < 0), then r1 = u1u3 + u2u4 is a global
Lyapunov function: dr1

dt < 0 (dr1
dt > 0) on the simplex, except at E4, E2s, and the line segments

connecting consecutive E1, where dr1
dt = 0.

The consequences of this result are formulated in Theorem 5.8 and in section 5.4.

5.2. Classification of equilibria.

5.2.1. All year classes present. We start by investigating the equilibria with all year
classes present. If B is nonsingular, there is a unique steady state E4 = 1

4 . The matrix
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L

P

Figure 2. The simplex with the line segment L, which consists of fixed points when b2 − b1 − b3 = 0, and
the set P, which consists of fixed points when b2 = 0 and b1 = b3. P and L intersect in the always present
internal fixed point E4 = 1

4 .

B has the eigenvalue b1 + b2 + b3 with corresponding eigenvector ξ0 = , the eigenvalue
b2 − b1 − b3 with eigenvector ξ2 = (1,−1, 1,−1)T , and the last two eigenvalues of B are given
by −b2 ± i(b1 − b3) with eigenvectors ξ1,3 = (1,∓i,−1,±i)T . Hence, the matrix B is singular
iff

(i) b1 + b2 + b3 = 0,
(ii) b2 − b1 − b3 = 0, or
(iii) b2 = 0 and b1 = b3.

In case (i), the normalization
∑4

j=1 uj = 1 still guarantees the uniqueness of the internal
steady state. In case (ii) we have fixed points on the line segment L, and in case (iii) the set
P consists of fixed points.

5.2.2. Three year classes present. Without loss of generality we restrict our attention
to u4 = 0. Indeed, all other cases are obtained by cyclic permutation. Let M denote the 3× 3
matrix

M =




0 b1 b2

b3 0 b1

b2 b3 0





obtained by truncating B. We need to solve Mu = Q where now (with a slight abuse of
notation) u = (u1, u2, u3)T , = (1, 1, 1)T ,

∑3
j=1 uj = 1, and Q =

∑3
j=1 uj(Mu)j . If M is

nonsingular, then u = QM−1 . Hence

1 =
3∑

j=1

uj = Q
3∑

j=1

(M−1 )j ,
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i.e., Q =
(∑3

j=1 (M−1 )j
)−1. So we do not need to solve any quadratic equation to find Q.

Since

M−1 =
1

b2(b2
1 + b2

3)




−b1b3 b2b3 b1

2

b1b2 −b2
2 b2b3

b3
2 b1b2 −b1b3



 ,

we thus find Q = (det M)R−1 and the steady state

(5.9) E3 =
1
R





b1(b1 − b3) + b2b3

b2(b1 + b3 − b2)
b3(b3 − b1) + b1b2

0




def=

1
R





Q1

Q2

Q3

0





with

(5.10) R = (b1 − b3)2 + 2b2(b1 + b3 − 1
2b2)

provided all components are nonnegative (see Figure 3). M is singular iff either b2 = 0 or
b1 = b3 = 0. In case b2 = 0, the vector does not belong to R(M) unless b1 = b3, which is
case (iii) above. The intersection of P with the boundary of the simplex consists of four line
segments. In case b1 = b3 = 0, the vector does not belong to R(M). The eigenvectors of M
corresponding to the eigenvalue zero happen to have at least one zero component, so we will
encounter those when we further reduce the number of year classes that are present.

5.2.3. Two year classes present. There are two essentially different cases.
Case 1. u3 = u4 = 0. Going through the same procedure as above, we find

(5.11)
(

u1

u2

)
=

1
b1 + b3

(
b1

b3

)
def= E2a.

If either b1 = 0, b3 %= 0 or b3 = 0, b1 %= 0, there are no solutions. The condition for positivity
is sign b1 = sign b3.

Case 2. u2 = u4 = 0. In this case we find an equilibrium that exists for all values of b. It
is given by (

u1

u3

)
= 1

2

(
1
1

)
def= E2s.

5.3. Stability of the equilibria.

5.3.1. Stability of E4. Application of Lemma 2.7 yields that the eigenvalues about
E4 = 1

4 are given by 1
4 (b1 + b3 − b2) and 1

4 (b2 ± (b1 − b3)i). Hence, this equilibrium is
locally stable when b2 < 0 and b1 + b3 − b2 < 0. This gives no new information, as we know
already from the analysis of the Lyapunov function that we even have global stability in this
case.

Theorem 5.3. The internal equilibrium is globally stable if b2 < 0 and b1 + b3 − b2 < 0 and
unstable if b2 > 0 or b1 + b3 > b2 or both.
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R

−
+

Q1

−
+

Q1
+

−

+
−

Q3

+ −
Q3

−
+

Q2

I

b1

b3

II

Figure 3. The equilibrium E3 exists in the regions I–II. In this picture b2 = 0.4.

For the statement concerning the (in)stability of, respectively, L and P, see Theorem
5.1(v)–(viii).

5.3.2. Stability of E3. When we linearize the replicator equation about an equilibrium
E3, the eigenvalues come in two categories corresponding to, respectively, the invasibility of
the missing year class and perturbations of the year classes that are present; compare with
Lemma 2.8.

The invasibility of the missing year class is governed by the sign of

u̇4

u4
,u=E3 = Q − 1

R

(
b2
1(b1 − b3) + b2

2(b1 + b3 − b2) + b2
3(b3 − b1) + 2b1b2b3

)

=
1
R

((b2 − b1 − b3)((b1 − b3)2 + b2
2))

(5.12)

in the sense that there is invasibility iff this quantity is positive. The corresponding eigenvector
“points into” the simplex. The “internally” linearized problem reads

dzi

dt
= ūi

{
∑

j

(ūj(Mz)j + (Mū)jzj) − (Mz)i

}
,

where we must restrict our attention to z satisfying
∑

zi = 0. Since (Mū)j is independent of
j, we can therefore simplify to

(5.13)
dzi

dt
= ūi

{
∑

j

ūj(Mz)j − (Mz)i

}
, i = 1, 2, 3.
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The proof of the first statement in the following lemma is tedious but straightforward. The
last statement is a repetition of (5.12).

Lemma 5.4. E3 has two eigenvalues λ(1)
3 and λ(2)

3 corresponding to eigenvectors in the plane
u4 = 0. They are implicitly given by

λ(1)
3 + λ(2)

3 =
b2

(
b1

2 + b3
2
)

R
,

λ(1)
3 λ(2)

3 =
b2

(
b2 b1 − b1 b3 + b3

2
) (

b1
2 − b1 b3 + b2 b3

)
(−b2 + b1 + b3)

R2
.

The third eigenvalue, which characterizes the invasibility, is given by

λ(3)
3 = −

(−b2 + b1 + b3)
(
(b1 − b3)2 + b2

2)
)

R
.

By combining the conditions for the stability of E3 with the condition that the nonzero
components are positive, we arrive at a remarkable conclusion.

Theorem 5.5. E3 is never a stable equilibrium.
Proof. E3 exists (on the simplex) iff

Qi

R
> 0, i = 1, 2, 3,

while it is linearly stable iff λ(1)
3 + λ(2)

3 < 0, λ(3)
3 < 0, and λ(1)

3 λ(2)
3 > 0, which amounts to

b2

R
< 0, − Q2

b2R
< 0,

Q1Q2Q3

R2
> 0.

From the first two inequalities we conclude that Q2 < 0. As both Q1
R and Q3

R are positive, the
third inequality above leads to a contradiction.

5.3.3. Stability of E2a. The equilibrium E2a has two eigenvalues with corresponding
eigenvectors that introduce a new year class. According to Lemma 2.8, these are given by

λ1
2a = b1b3−b1b2−b23

b1+b3
= − Q3

b1 + b3
,

λ2
2a = b1b3−b2b3−b21

b1+b3
= − Q1

b1 + b3
.

(5.14)

Invasibility of the third year class corresponds to λ1
2a > 0, and invasibility of the fourth year

class corresponds to λ2
2a > 0.

The internally linearized problem is given by

dz

dt
=

b1b3

(b1 + b3)2

(
b3 −b1

−b3 b1

)
z.

The matrix at the right-hand side has the eigenvalue b1 + b3 when we restrict our attention
to the subspace {z :

∑
zj = 0}. So the two year class equilibrium E2a is internally linearly
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stable iff b1b3
b1+b3

< 0 or, in view of the existence condition sign b1 = sign b3, iff both b1 and b3

are negative.
Theorem 5.6. The equilibrium E2a exists and is stable if b2 > 0 and (recall (5.9)) Q1 < 0

and Q3 < 0. If at least one of the inequalities b2 < 0, Q1 > 0, Q3 > 0 holds, then either E2a

does not exist or, if it exists, it is unstable.
Proof. E2a exists iff

b1

b1 + b3
> 0,

b3

b1 + b3
> 0,

while linearized stability is equivalent with

b1b3

b1 + b3
< 0, − Q1

b1 + b3
< 0, − Q3

b1 + b3
< 0.

Combining the first inequality with the conditions for existence, we conclude that (b1, b3)
should lie in the third quadrant. From the last two inequalities it follows that (b1, b3) should
lie in the set where both Q1 and Q3 are negative. This set lies in the third quadrant iff
b2 > 0.

Remark 5.7. In Figure 3 the stability of E2a occurs in region I.
When we repeat the analysis for the equilibrium E2s, we find that both the second and

the fourth year classes can invade iff b2 − b1 − b3 > 0. The relevant eigenvalue for internal
stability is 1

2b2. For b2 = 0 the line segment u1 + u3 = 1, line L in Figure 2, consists entirely
of steady states.

Theorem 5.8. The steady state E2s is linearly stable iff b2 < 0 and b1 + b3 > b2. When
b2 < b1 + b3 < 0, it is globally attracting in view of Theorem 5.2. All orbits converge to one
of the two equilibria E2s except for the orbits in the at most two-dimensional stable manifolds
of the other equilibria.

5.3.4. Stability of E1. Finally, we note that the single year class (SYC) solution is linearly
stable iff bi > 0, i = 1, 2, 3. If b1 + b3 > b2 > 0, then it is a consequence of (5.7) that all orbits
converge to one of the equilibria E1, except for the stable manifolds of the other boundary
equilibria. These manifolds are at most two-dimensional. Here we use that the restriction
of the equations to the part of the boundary of Σ with ui = 0 is equivalent to a quadratic
Lotka–Volterra system, which cannot have a limit cycle. This result is due to Bautin in 1954;
see [1, p. 213, section 12, Example 7].

5.3.5. Confluence. When either b1 → 0 or b3 → 0, the two-consecutive-year classes
solution E2a runs into an SYC solution. When b2−b1−b3 → 0, the three year classes solution
E3 approaches the (always present) two-nonconsecutive-year classes solution E2s. For b2 → 0,
E3 → 1

b1−b3

( b1
0

−b3

)
, which is positive iff sign b1 %= sign b3. If b1 → b23

b3−b2
, then u3 → 0 and E3

approaches the two-consecutive-year classes solution E2a.

5.3.6. Summary. We collect the information that we have gathered so far about the
equilibria and the corresponding eigenvalues in two lemmas.
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Lemma 5.9. The equilibria are, modulo cyclic permutation, given by

E1 = (1, 0, 0, 0),
E2s = (1

2 , 0, 1
2 , 0),

E2a =
(

b1

b1 + b3
,

b3

b1 + b3
, 0, 0

)
, provided sign b1 = sign b3,

E3 =
1
R

(Q1, Q2, Q3, 0), provided
Qi

R
> 0 for i = 1, 2, 3 (see Figure 3),

E4 = (1
4 , 1

4 , 1
4 , 1

4),

where

R = b2
1 + 2b2b1 − 2b1b3 + 2b2b3 + b2

3 − b2
2,

Q1 = b2
1 + b3(b2 − b1),

Q2 = b2(b1 + b3 − b2),

Q3 = b2
3 + b1(b2 − b3).

Lemma 5.10. The equilibria E1, E2s, E2a, and E4 have eigenvalues with corresponding
eigenvectors as given in the following table:

Equilibrium Eigenvalue Eigenvector
E1 −b1 (1, 0, 0,−1)

−b3 (−1, 1, 0, 0)
−b2 (−1, 0, 1, 0)

E2s
b2
2 (1, 0,−1, 0)

b2−b1−b3
2 〈(0, 1, b3−b1

b1
,− b3

b1
), (1, 0, b3

b1
,− b3+b1

b1
)〉

E2a
b1b3

b3+b1
(1,−1, 0, 0)

− Q1
b3+b1

(1, b3 (b2 b3−b2 b1+b1 b3+b12)
b1 (b12−b32+2 b2 b3) , 0,− (b3+b1)(b12+b2 b3)

b1 (b12−b32+2 b2 b3))

− Q3
b1+b3

(− b1 (b1 b3+b2 b1+b32−b2 b3)
b2 b12+b1 b2 b3+b1 b32+b33 ,

b3 (b12−2 b2 b1−b32)
b2 b12+b1 b2 b3+b1 b32+b33 , 1, 0)

E4
b1+b3−b2

4 (−1, 1,−1, 1)
1
4(b2 ± i(b3 − b1)) *

5.4. Heteroclinic cycles. There are two types of heteroclinic cycles that can occur. The
first type, HCI (see Figure 4), connects the four single year class solutions in cyclic order. It
exists if the two-consecutive-year classes solutions E2a are absent, i.e., when b1b3 ≤ 0. It is
stable when b1 + b2 + b3 > 0; see [12, Chapter 17, pp. 225 and 226]. It is a consequence of
Theorem 5.2 that HCI is a global (except for E4) attractor if b2 > b1 + b3 > 0.

The second type, HCII (see Figure 5), connects the four steady states of two-consecutive-
year classes solutions (see also [5, section 20.4]). It is a “planar” heteroclinic cycle in the sense
introduced in [12, Chapter 17, p. 229]. A necessary condition for the existence of a heteroclinic
cycle connecting the equilibria of type E2a is that the two eigenvalues corresponding to the
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Figure 4. This type of heteroclinic cycle occurs stably in the region in parameter space where {b | b1 + b2 +
b3 > 0 and b1b3 < 0}.

Figure 5. This type of heteroclinic cycle occurs stably when b2 > 0 and (b1 − b3)2 + b2(b1 + b3) < 0.

Figure 6. A sketch of the phase portrait in the two-dimensional face.

eigenvectors that point into the two-dimensional faces of the simplex have opposite sign. This
requires that sign(Q1) = − sign(Q3). Consequently, the equilibrium E3 is not present. As
E2a is assumed to be on the simplex, we also need that sign(b1) = sign(b3). We consider
b2 > 0, and so we must have b1 < 0 and b3 < 0, as otherwise sign(Q1) = sign(Q3). We thus
have that E2s is a source, one of the E2a equilibria is a saddle, and the other is a sink. In
the two-dimensional face the two single year class solutions E1 adjacent to E2s are saddles
and the third SYC solution is a source. We obtain the phase portrait depicted in Figure 6.
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The heteroclinic cycle is stable when the sum of the two eigenvalues corresponding to the
eigenvectors that point into the two-dimensional faces of the simplex is negative [12, Exercise
17.5.5, p. 231]. This is the case when

(5.15) (b1 − b3)2 + b2(b1 + b3) < 0.

This condition holds for small negative values of b1 and b3. It becomes a condition on b1 or
b3 when the curve (b1 − b3)2 + b2(b1 + b3) = 0 intersects the b1- or b3-axis, which is the case
for b1 = −b2 and b3 = −b2. See Figure 7.

b1

b3

Figure 7. In regions III and IV, a stable heteroclinic cycle of type II occurs. In this picture b2 = 0.1.

5.5. Periodic orbits. Small periodic orbits appear through a Hopf bifurcation, and the
next theorem gives the details about the location in parameter space as well as the direction
of bifurcation. Usually determining the direction of bifurcation requires quite a bit of work.
We are here in the lucky situation that we can determine the stability of the fixed point at
bifurcation by the use of a suitable Lyapunov function. Therefore, we do not need a normal
form calculation to determine the first Lyapunov coefficient.

Theorem 5.11. A Hopf bifurcation occurs at the surface b2 = 0 whenever this surface is
transversally crossed with b1 − b3 %= 0. The bifurcation is subcritical for b1 + b3 > 0 and
supercritical for b1 + b3 < 0.

Proof. The linearization at the nontrivial equilibrium 1
4 has eigenvalues 1

4 (b1 − b2 + b3)
and 1

4b2 ± i (b3 − b1), so a Hopf bifurcation occurs at b2 = 0. With V = u1u2u3u4 and b2 = 0
we have (compare (5.7))

V̇ = −4V (b1 + b3)(u1 + u3 − 1
2)2.

Therefore, V is decreasing when b1 + b3 is positive and increasing when b1 + b3 is negative,
except on P. From

d

dt
u1 + u3,b2=0,u1+u3=

1
2

= 2(b3 − b1)(u1 − 1
4)(u2 − 1

4)
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we see that, except for the subsets of P where either u1 = 1
4 or u2 = 1

4 , the flow is transversal
to P in points of P. Another straightforward computation shows that these lines do not
contain invariant subsets except for E4:

d

dt
u1,b2=0,u1+u3=

1
2 ,u1=

1
4

= 1
4(b3 − b1)(u2 − 1

4)

and
d

dt
u2,b2=0,u1+u3=

1
2 ,u2=

1
4

= −1
4(b3 − b1)(u1 − 1

4).

Hence the internal fixed point 1
4 is asymptotically stable if b1 + b3 < 0 and unstable if

b1 + b3 > 0.
Remark 5.12.
• When b2 = 0 and b1 = b3, E4 is a degenerate Takens–Bogdanov point, and the plane

P consists entirely of fixed points.
• If b2 = 0 and b1+b3 > 0, then E4 is unstable in the “third” direction and the bifurcating

cycle will inherit this instability, so it will be a repellor for b2 < 0 but small.
The previous theorem provides the local existence and stability of periodic orbits for b2

close to zero. But clearly we lack information about the global fate of these bifurcating
periodic orbits.

Global bifurcation of large periodic orbits occurs when the heteroclinic cycles lose their
stability. We conjecture that the small periodic orbits grow in size and finally disappear in
the heteroclinic cycles.

On the line b1 = −b3 the Hopf bifurcation is vertical and, in addition, the third eigenvalue
corresponding to E4 is zero. We already know that V is a conserved quantity (recall Theorem
5.1(ix)). In Theorem 5.14 below we shall find a two-parameter family of closed orbits. One
may hope to obtain more detailed information about periodic solutions by a perturbation
analysis, starting from points on this line.

5.6. Two special cases. There are two cases that deserve some more attention. The first
is b2 %= 0, b1 = 0 = b3, a parameter combination for which the E1 are Bogdanov–Takens points.
The second is b2 = 0, b1 + b3 = 0, a parameter combination for which E4 is a Fold–Hopf point
(see also [4]).

Theorem 5.13. Let b1 = b3 = 0 and b2 be positive (negative). Except for a set of initial
conditions of measure 0, an orbit that starts in the interior of the simplex converges forward
(backward) in time to a point on an edge connecting consecutive SYC points (in particular
all points on such an edge are stationary) and backward (forward) in time to one of the two
(always present) “two-nonconsecutive-year classes” solutions E2s.

Proof. One computes that

d

dt
(u1 − u3) = 2b2(u1 − u3)f,

d

dt
(u2 − u4) = 2b2(u2 − u4)f,

where
f = (u1u3 + u2u4).
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Applying a time rescaling, we will achieve that b2 = 1. The plane u1 = u3 is invariant, and so
is the plane u2 = u4. These planes divide the simplex into four parts, which are mapped onto
each other by the two reflection symmetries of exchanging u1 and u3, respectively, u2 and u4.
Without loss of generality we focus our attention on u1−u3 > 0 and u2 −u4 > 0. Since f ≥ 0
the quantities u1 − u3 and u2 − u4 increase monotonically and so must have a limit which
necessarily is finite. So f must tend to zero for t → ∞. This in turn requires that both u1u3

and u2u4 tend to zero, which (given u1 > u3 and u2 > u4) requires that both u3 and u4 tend
to zero for t → ∞. So the orbit converges to the edge u1 +u2 = 1. Finally, note that the ratio
of u1−u3 and u2−u4 is constant in time. So this ratio determines the exact point on the edge
to which the orbit converges. Within the plane u1 = u3 all orbits with u2 − u4 > 0 converge
to the SYC vertex with u2 = 1, and a similar statement holds for the plane u2 = u4. On the
line L (which is the intersection of the two invariant planes) the two nonconstant orbits have
E4 as the ω-limit set and E2s as the α-limit set.

Again by monotonicity and boundedness we must have that u1 − u3 and u2 −u4 converge
for t → −∞ as well. If f would tend to zero for t → −∞, then we would as above conclude
that both u3 and u4 → 0 while u1 → c

1+c and u2 → 1
1+c , where c is the (initial) ratio of

u1 − u3 and u2 − u4. But then the derivatives of u3 and u4 would be approximately − c
1+cu3,

respectively, − 1
1+cu4, and so would have the wrong sign. We conclude that necessarily both

u1 − u3 and u2 − u4 converge to zero for t → −∞. So the limit set belongs to the line L.
On L the backward flow is from E4 toward the two E2s points. So generically the α-limit set
is one of the two E2s points and the domains of backward attraction are separated by the
two-dimensional unstable manifold of E4.

Theorem 5.14. If b2 = 0, b1 %= 0, and b1 + b3 = 0, then the interior of the simplex is filled
with periodic orbits and the line segment L that consists of equilibria.

Proof. When b2 = 0 and b3 = −b1, the system reduces to

du1

dt
= −b1(u2 − u4)u1,

du2

dt
= b1(u1 − u3)u2,

du3

dt
= b1(u2 − u4)u3,

du4

dt
= −b1(u1 − u3)u4.

(5.16)

Scaling the time, we may achieve that b1 = 1. There are two integrals:

(5.17) I1 = u1u3, I2 = u2u4.

For fixed values of h1 and h2, with
√

h1 +
√

h2 < 1
2 , the closed orbits are

u1 +
h1

u1
+ u2 +

h2

u2
= 1,

u3 =
h1

u1
, u4 =

h2

u2
.

(5.18)

The line segment L corresponds to
√

h1 +
√

h2 = 1
2 .
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5.7. Permanence. The content of this subsection boils down to solving Exercise 2 in
section 20.1 of [5]; also see [4, Chapter 14]. An inspection of the results so far reveals that we
have identified an attractor at the boundary in much of the parameter space (see Figures 8
and 9 below). The only open regions for which this is not the case are {b : b1 + b3 < b2 < 0}
and

Z := { b : b1 + b3 < −b2 < 0 & (b1 − b3)2 + b2(b1 + b3) < 0 }.
For the first of these, Theorem 5.1(i) establishes a very strong form of permanence. So we
focus our attention on Z. We use the following result [5, Theorem 13.6.1].

Theorem 5.15. The replicator system (2.1) is permanent if there exists a p ∈ intΣ such
that

(5.19) p · Bu < u · Bu

holds for all rest points u ∈ bdΣ.

The proof of this theorem utilizes the function V
1
4 , with V defined by (5.6) as an average

Lyapunov function. This is reflected in the following auxiliary result.
Lemma 5.16. Let p = E4. Then −p · Bu + u · Bu = 1

4
V̇
V .

Theorem 5.17. The replicator equation (2.1) with B given in (5.1) is permanent in the
region Z.

Proof. From (5.7) we deduce

V̇

V
,E1 = −b1 − b2 − b3,

V̇

V
,E2s = −b1 + b2 − b3,

and both right-hand sides are positive in the parameter region Z. Next we compute

V̇

V
,E2a = −b1 − b2 − b3 +

4b1b3

b1 + b3
,

which is also positive in the region Z. Finally, we turn our attention to the equilibrium E3.
Recall that the formula for E3 is

E3 =
(

b2
1 − b1b3 + b2b3

R
,
b2(b1 − b2 + b3)

R
,
b2b1 − b1b3 + b2

3

R
, 0

)
=

1
R

(Q1, Q2, Q3, 0).

If b2 > 0 and b1 + b3 − b2 < 0, then E3 is a point on the simplex iff R < 0, Q1 < 0, Q3 < 0.
Consequently

Q1 + Q3 = b2
1 + b3

3 − 2b1b3 + b2(b1 + b3) < 0.

Hence, in the region Z there is no equilibrium E3.

5.8. Attractor diagrams. We have collected quite a bit of local and global information.
Figures 8 and 9 provide an overview of the parameter regions corresponding to the various
kinds of attractors. Note that we do not know whether there is a unique periodic attractor
in the region denoted “permanent” in Figure 8. Neither can we exclude that in other regions
periodic attractors coexist with the indicated attractors.
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permanent

permanent

SYC

Figure 8. Attractor diagram for b2 positive.

b1 + b3 = b2

E4 globally stable

b3

E2s stable

b1

Figure 9. Attractor diagram for b2 negative.

6. Discussion. The emergences of the 13- and 17-year periodical cicadas of eastern North
America have intrigued many people. What mechanisms lead to such long life cycles? Is it
significant that both 13 and 17 are prime? Why does only one brood exist?

To find answers, one should ultimately make quantitative models that incorporate known
biological detail. But in order to interpret the dynamical features that such models exhibit, it
will be helpful to relate to a catalogue of stylized dynamics in simple caricature models. The
present paper has as its aim to contribute to such a catalogue.

It is very natural to order the catalogue by the length k of the life cycle, as lower dimen-
sional systems are easier to analyze and have fewer parameters. But low dimensional models
are misleadingly simple, so one should aspire to move on to longer and longer life cycles, ac-
cepting that the work gets harder and harder, if only due to the sheer number of possibilities.
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To make progress, simplifications are called for. Here we have introduced a scaling that, in
the limit, leads to a continuous time description of the dynamics generated by the full-life-
cycle-map for basic reproduction numbers R0 just above one. We like to think of the limiting
system as a normal form for the highly degenerate bifurcation at R0 = 1, characterized by all
roots of unity being multipliers. But it remains to be verified that the limiting system does
indeed give a faithful description of the dynamics for the original discrete time system.

The ordinary differential equation system is, we think, mathematically interesting. It is a
Lotka–Volterra system with cyclic symmetry, which can be rewritten as a replicator equation
with that same symmetry. As a consequence of the symmetry, various types of heteroclinic
cycles occur robustly, and one can even derive conditions for the (in)stability of such cycles.

If one restricts one’s attention to life cycles of three or fewer years, one finds a strict
dichotomy: either all year classes coexist in a symmetric steady state or orbits approach the
boundary, meaning that some (and maybe all) year classes go through periods of very low
abundance. The transition between the two possibilities is by way of a vertical bifurcation.
Here we have shown that for k = 4 the transition is not necessarily that rigid. More precisely,
if the transition to instability of the coexistence steady state is by way of a Hopf bifurcation,
it is not vertical. Stable interior periodic orbits may arise by Hopf bifurcation, exist in certain
open regions of parameter space, and vanish in a boundary heteroclinic cycle. If the transition
is by way of a real eigenvalue, it is vertical.

For k ≥ 3 one can have stable heteroclinic cycles in which the year classes are chasing each
other, in the sense that one is growing while its predecessor declines, and so on and so forth,
with the periods of hegemony of a year class becoming longer and longer. For k = 4 another
type of stable heteroclinic cycle is possible, viz. one in which coalitions of two year classes are
chasing each other, in the sense that a year class interchanges its old “partner” for a new one,
to be subsequently dropped itself, and so on and so forth, with the periods of hegemony of
a coalition becoming longer and longer. Field observations of these phenomena have, as far
as we know, never been made for semelparous populations, but given the time scales involved
and the noisiness of the real world, it would be surprising if they were.

We do not believe that a complete classification for arbitrary k is feasible. Yet it must
be possible to reveal certain patterns, partly determined by the prime decomposition of k.
Whether or not we are overly optimistic remains to be seen.

Appendix.

A.1. A global Lyapunov function. To simplify some of the lengthy formulas we introduce
the basis for the Z4 invariant polynomials of degree ≤ 3:

π1 = u1 + u2 + u3 + u4,

π2 = u2
1 + u2

2 + u2
3 + u2

4,

π3 = u1u2 + u2u3 + u3u4 + u4u1,

π4 = u3
1 + u3

2 + u3
3 + u3

4,

π5 = u2
1u2 + u2

2u3 + u2
3u4 + u2

4u1,

π6 = u2
1u3 + u2

2u4 + u2
3u1 + u2

4u2,

π7 = u1u2u3u4.

(A.1)
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In addition we have invariant polynomials of degree ≤ 3 that can be expressed in those given
above:

r1 = u1u3 + u2u4 = 1
2(π2

1 − π2) − π3,

r2 = u2
1u4 + u2

2u1 + u2
3u2 + u2

4u3 = π1π2 − π4 − π5 − π6,

r3 = u1u2u4 + u2u3u1 + u3u4u2 + u4u1u3 = 1
6π

3
1 − 1

2π1π2 + 1
3π4.

(A.2)

Theorem A.1. If b2 > b3 + b1 > 0 (b2 < b1 + b3 < 0), then r1 = u1u3 + u2u4 is a global
Lyapunov function in the following sense: dr1

dt < 0 (> 0) except at the points E4, E2s, and
HCI, where dr1

dt = 0.
Proof. A straightforward computation gives that

dr1

dt
= (b1 + b3)(−r3 + 2π3r1) + b2(4r2

1 − π6)

= (b1 + b3)(−r3 + 2π3r1 + 4r2
1 − π6)

+ (b2 − (b3 + b1))(4r2
1 − π6).

We claim that both t1 = −r3 + 2π3r1 + 4r2
1 − π6 and t2 = 4r2

1 − π6 are nonpositive on the
simplex. As on the simplex

−r3 + 2π3r1 + 4r2
1 − π6 = −r1((u1 − u3)2 + (u2 − u4)2),

the statement for t1 is immediate. In addition, a straightforward inspection shows that the
vector field transversally intersects the line P where u1 = u3 and u2 = u4 except in E4 and
E2s. To show that t2 ≤ 0, we perform the transformation

v = u1u3,

w = u2u4,

x = u1 + u3

(A.3)

to obtain t2 = 4(v + w)2 − vx − w(1 − x). We find a critical point for v = w = 1
32 and x = 1

2 .
In this point t2 = − 1

64 . At the boundary of Σ either v = 0 or w = 0. For w = 0 we find
that t2 = 4v2 − vx has a critical point v = x = 0 with t2 = 0. By symmetry t2 has another
boundary maximum t2 = 0 for v = 0.

The transformation (A.3) is singular if either u1 = u3 or u2 = u4. If u1 = u3, then
x = 2

√
v, and hence t2 = 4(v + w)2 − 2v

√
v − w(1 − 2

√
v). We find a critical point for√

v = 1
16(1 + 1

3

√
57), w = 5v −

√
v with a corresponding t2 = − 23

512 + 19
4608

√
57 < 0.

The case u2 = u4 is symmetric to the case u1 = u3.
If both u1 = u3 and u2 = u4, then

t2 = 4(u2
1 + (1

2 − u1)2)2 − 1
2u2

1 − 1
2(1

2 − u1)2,

and there is a critical point for u1 = 1
4 with corresponding t2 = 0. The final conclusion is that

indeed t2 ≤ 0. This shows that when b2 > b1 + b3 > 0, r1 is a Lyapunov function.
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A.2. Derivation of the Lotka–Volterra system from the Leslie-matrix model. We derive
the replicator equation (1.1) from the nonlinear Leslie-matrix model:

(A.4)






xi(t + 1) = hε
i−1(I(t))xi−1(t), i = 0, . . . , k − 1, mod k,

I(t) =
k∑

l=1

clxl(t),

where the mappings hε
i depend smoothly on ε. For the vector x = (x0, . . . , xk−1)T we have

the nonlinear mapping

(A.5) x(t + 1) = Lε(I(t))x(t).

The kth iterate of the mapping is then given by

(A.6) xi(t + k) =
k−1∏

j=0

hε
i+j(I(t + j))xi(t).

We assume that
∏k−1

j=0 h0
i (0) = 1.H1

Let εy = x, τ = εt
k , and ỹ(τ) = y(t). Then

(A.7)
ỹi(τ + ε) − ỹi(τ)

ε
=

1
ε

{
k−1∏

j=0

hε
i+j(ε c · y(t + j)) − 1

}

ỹi(τ).

The Taylor series in ε of the term between brackets is given by

k−1∏

j=0

hε
i+j(0) − 1 +

k−1∏

j=0

h0
i+j(0)

k−1∑

j=0

Dh0
i+j(0)

h0
i+j(0)

ε c · y(t + j) + O(ε2).

It is a consequence of H1 that we may write

k−1∏

j=0

hε
i+j(0) − 1 = aε+ O(ε2).

As we have that y(t + 1) = L0y(t) + O(ε), we obtain in the limit for ε → 0 the differential
equation

(A.8) ˙̃yi(τ) =

(
a +

k−1∑

j=0

Dh0
i+j(0)

h0
i+j(0)

c · Lj
0ỹ(τ)

)
ỹi(τ).

When we rescale the time t = aτ , we find

(A.9) ˙̃yi(t) =

(
1 +

1
a

k−1∑

j=0

Dh0
i+j(0)

h0
i+j(0)

c · Lj
0ỹ(τ)

)
ỹi(t).
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We omit the tildes and we define σi = 1
a

∑k−1
j=0

Dh0
i+j(0)

h0
i+j(0)

(LT
0 )jc in order to write the equation

in the more compact form
ẏi(t) = (1 + σiy(t))yi(t).

Note that

LT
0 σ

i =
1
a

k−1∑

j=0

Dh0
i+j(0)

h0
i+j(0)

LT j+1

0 c

=
1
a

k∑

j=1

Dh0
i+j−1(0)

h0
i+j−1(0)

LT j

0 c

=
1
a

k−1∑

j=0

Dh0
i+j−1(0)

h0
i+j−1(0)

LT j

0 c = σi−1.

Finally, we will apply a rescaling so that the transformed vector field commutes with S. Let
yi = θizi, which leads to the equation

(A.10) żi(t) = (1 + σ̃i · z(t))zi(t),

where (σ̃i)j = (σi)jθj. It is possible to choose θ such that

(A.11) S−1σ̃i = σ̃i−1,

i.e.,
(σ̃i)j+1 = (σ̃i−1)j ⇔ (σi)j+1θj+1 = (σi−1)jθj.

As we know that h0
j (0)(σ

i)j+1 = (σi−1)j , it follows that we achieve this by choosing

θj+1

θj
= h0

j(0).

As the last equation involves the quotients of θj, we may in addition assume that

(A.12)
k∑

j=1

(σi)j = 1.

For the Ricker nonlinearity hε
i(x) = (1 + ε)

1
k e−gix, we compute

BRicker
i (y) =

k−1∑

j=0

d

dε
h0

i+j(0) +
k−1∑

j=0

Dh0
i+j(0)(S

−j)c · y(τ)

= 1 −
k−1∑

l=0

k−1∑

j=0

gi+jcl+jyl(t).

(A.13)
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Lemma A.2. Let, for positive integers t, and for 0 < |ε|, x(t, ε) be the itinerary defined by
(A.4) that starts at x0 at t = 0, let N be a given natural number, and let ỹ(t) be the solution
of the differential equation (A.8) with initial condition ỹ(0) = 1

ε x0; then |x(nk, ε) − εỹ(nε)| =
O(ε), for n ≤ N .

Proof. Without loss of generality, we prove the result for k = 1. The mapping (A.4) is of
the form

x(t + 1) = F (x(t), ε)x(t)

for a smooth mapping F : Rk × R −→ Rk×k that satisfies F (0, 0) = Id. With the rescaling
x(εt) = εỹ(τ) the mapping in ỹ is given by

ỹ(τ + ε) = F (εỹ(τ), ε)ỹ(τ).

For this mapping we find

ỹ(τ + ε) = ỹ(τ) + (F (εỹ(τ), ε) − Id)ỹ(τ)

= ỹ(τ) + ε(D1F (0, 0)ỹ(τ) + D2F (0, 0))ỹ(τ) + O(ε2).

This mapping differs in order O(ε2) of the Euler approximation with stepsize ε of the differ-
ential equation

˙̃y = (D1F (0, 0)ỹ(τ) + D2F (0, 0))ỹ,

which is the analogue of (A.8). This proves the theorem.
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