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Abstract. We consider a primal-dual short-step interior-point method for conic convex opti-
mization problems for which exact evaluation of the gradient and Hessian of the primal and dual
barrier functions is either impossible or prohibitively expensive. As our main contribution, we show
that if approximate gradients and Hessians of the primal barrier function can be computed, and
the relative errors in such quantities are not too large, then the method has polynomial worst-case
iteration complexity. (In particular, polynomial iteration complexity ensues when the gradient and
Hessian are evaluated exactly.) In addition, the algorithm requires no evaluation—or even approxi-
mate evaluation—of quantities related to the barrier function for the dual cone, even for problems
in which the underlying cone is not self-dual.
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1. Introduction. Interior-point methods (IPMs) are the algorithms of choice for
solving many convex optimization problems, including semidefinite programs (SDPs)
and second-order cone programs (SOCPs) (e.g., [20, 1, 3]). The bulk of the work at
each iteration of an IPM consists of the evaluation of the first and second derivatives of
a suitably selected barrier function and the solution of the linear system of equations
formed by Newton’s method. The most efficient algorithms require barrier functions
for both the primal and dual problems.

The success of IPMs on SDPs and SOCPs has not been matched for more gen-
eral classes of conic convex optimization problems. The primary hindrance is the
difficulty of explicitly evaluating the derivatives of the associated barrier functions,
particularly those for the dual problem. The construction of the universal barrier func-
tion [20] provides a definition for these derivatives but does not necessarily prescribe
a polynomial-time evaluation procedure.

Even for well-studied problem classes, evaluation of the derivatives can be quite
expensive. For example, in SDP, where the variables are symmetric positive semidef-
inite matrices, derivatives of the barrier function are usually evaluated by computing
inverses or Cholesky decompositions of matrices. Since these linear algebra tasks can
be expensive when the matrices are large or dense, it might be preferable to instead
compute approximate inverses or approximate Cholesky decompositions, and hence
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an approximate gradient and Hessian of the barrier function, if doing so does not
greatly increase the number of IPM iterations.

Therefore, in this work, we consider applying a simple primal-dual short-step IPM
to conic convex optimization problems for which exact evaluation of the gradient and
Hessian is either impossible or prohibitively expensive. Note that this algorithm
does not require evaluation of the gradient and Hessian of the dual barrier function.
(This property is shared by an algorithm recently proposed by Nesterov [19].) As
our main contribution, we show that if estimates of the gradient and Hessian of the
primal barrier function are known, and their relative errors are not too large, then the
algorithm has the desirable property of polynomial worst-case iteration complexity.

There is an extensive body of literature on inexact IPMs for linear optimization
problems, and a smaller body of work on inexact methods for nonlinear convex op-
timization problems. We note the paper [29], in which it was shown that a simple
primal-dual potential reduction method for linear optimization problems can in princi-
ple be applied to conic optimization problems. It is shown how the assumptions made
on the availability of a self-concordant barrier function and its derivatives are crucial
to the convergence and complexity properties of the method. The inverse Hessian
of an appropriate self-concordant barrier function is approximated by a matrix that
may be updated according to a quasi-Newton scheme. We take a different approach
to such approximations.

In the IPM literature, the term “inexact algorithm” typically refers to algorithms
in which approximate right-hand sides of the linear system are computed. In some
schemes approximate coefficient matrices are also used. The inexact algorithm we
consider here can be interpreted in this way, although our primary concern is to
estimate the gradient and Hessian of a suitable self-concordant barrier function, rather
than the coefficient matrix and right-hand side of the linear system per se. In, e.g., [15,
8, 12] infeasible-point methods for linear optimization are presented in which the linear
system is solved approximately. In [13] an inexact primal-dual path-following method
is proposed for convex quadratic optimization problems. In [2] an inexact algorithm
is presented for monotone horizontal linear complementarity problems. (This class
of complementarity problems includes as special cases linear optimization problems
and convex quadratic optimization problems.) Inexact methods for other classes of
nonlinear convex problems have also been studied. In [32] an inexact primal-dual
method is presented for SDP. We also mention the paper [28] in which an inexact
primal-dual path-following algorithm is proposed for a class of convex quadratic SDPs.
Only the equations resulting from the linearization of the complementarity condition
are perturbed, and a polynomial worst-case complexity result is proven. Another
source of inexactness is the use of an iterative method such as the preconditioned
conjugate gradient method to solve the linear system, and this has been proposed
(e.g., in [16, 11, 14, 6, 9, 30]) and analyzed (e.g., in [4, 5, 10]) for certain classes of
convex optimization problems.

This paper is organized as follows. We first present some relevant properties
of barrier functions in section 2. In section 3 we consider a primal-dual short-step
algorithm that uses inexact values of the primal barrier gradient and Hessian. We show
in section 4 that if the gradient and Hessian estimates are accurate enough, then the
algorithm converges in a polynomial number of iterations. In section 5 we present some
applications of our results. Finally, section 6 is devoted to a few concluding remarks.

Much of the work reported here is derived from the dissertation [27]. Additional
details, including results obtained by assuming the errors in the gradient and Hessian
approximations are dependent, which can occur in practice, may be found there.
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2. Notation and preliminaries. A cone K is a nonempty set such that αx ∈ K
for all scalars α ≥ 0 and x ∈ K. Hence K always includes the origin. A cone that is
closed, convex, solid (i.e., has nonempty interior), and pointed (i.e., contains no lines)
is said to be proper.1 Given an inner product 〈·, ·〉 on Rn, the dual of a set S is given
by

S∗ = {y : 〈x, y〉 ≥ 0 ∀x ∈ S}.

It can be easily verified that the dual of any set is a closed convex cone, so we may
refer to S∗ as the dual cone of S. Denote by ‖ · ‖ the vector norm induced by 〈·, ·〉,
and given a linear mapping A, let ‖A‖ be the operator norm induced by this vector
norm: ‖A‖ = supx �=0 ‖Ax‖/‖x‖. Note that for any inner product, ‖A‖ is the largest
singular value of A; i.e., ‖A‖ is the spectral norm. The adjoint of A is denoted by
A∗, and its inverse by A−∗. It will be clear from the context whether ∗ denotes a
dual cone or an adjoint map. If A is self-adjoint and positive definite, A1/2 denotes
its positive definite square root.

Given a set S ⊂ Rn and a smooth function F : S → R, let F (k)(x) denote the kth
derivative of F at x ∈ int(S). Following standard practice in the optimization litera-
ture, given directions h1, · · · , hj , let F (k)(x)[h1, · · · , hj ] denote the result of applying
F (k)(x) successively to h1, · · · , hj . For example,

(2.1) F ′′(x)[h1, h2] = (F ′′(x)h1)h2 = 〈F ′′(x)h1, h2〉 ∈ R,

and

(2.2) F ′′′(x)[h1, h2] = (F ′′′(x)h1)h2 ∈ L(Rn),

where L(Rn) is the space of linear functionals over Rn, which is isomorphic to Rn

itself.
In the remainder of this section, we establish properties of barrier functions needed

in our analysis.

2.1. Self-concordant barrier functions. Let S ⊂ Rn be a closed convex set
with nonempty interior. The function F : int(S) → R is said to be a ψ-self-concordant
barrier function (or simply a self-concordant barrier) for S if it is closed (i.e., its
epigraph is a closed set), is three times continuously differentiable, and satisfies

|F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 ∀ x ∈ int(S) and h ∈ Rn,(2.3)

and

ψ = sup
x∈int(S)

ω(F, x)2 <∞,

where

ω(F, x) = inf
t
{t : |F ′(x)[h]| ≤ t(F ′′(x)[h, h])1/2 ∀h ∈ Rn}.2

If furthermore F ′′(x) is positive definite for all x ∈ int(S), then F is said to be non-
degenerate. Note that property (2.3) implies the convexity of F , and that convexity

1Some authors call such a cone full or regular.
2The quantity ω(F, x) is often referred to as the Newton decrement.
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and closedness of F imply that F satisfies the barrier property, i.e., for every sequence
{xi} ⊂ int(S) converging to a boundary point of S, F (xi) → ∞. (See [18, proof of
Theorem 4.1.4] for details.)

It is known that a self-concordant barrier for a proper cone is necessarily nonde-
generate [18, Theorem 4.1.3], but for the sake of clarity we will sometimes refer to
such functions as nondegenerate self-concordant barriers.

The quantity ψ is known as the complexity parameter of F . If S ⊂ Rn is a closed
convex set with nonempty interior, and F is a ψ-self-concordant barrier for S, then
ψ ≥ 1 [20, Corollary 2.3.3]. Let F be a nondegenerate self-concordant barrier for
S ⊂ Rn, and let x ∈ int(S). Then F ′′(x) and its inverse induce the following “local”
norms on Rn:

‖h‖x,F = 〈h, F ′′(x)h〉1/2, ‖h‖∗x,F = 〈h, F ′′(x)−1h〉1/2, h ∈ Rn.(2.4)

These norms are dual to each other. The following result—which uses and builds
upon [20, Theorem 2.1.1]—characterizes the local behavior of the Hessian of a self-
concordant barrier.

Lemma 2.1. Let F be a nondegenerate self-concordant barrier for the closed
convex set S having nonempty interior.

(a) If x, y ∈ int(S) are such that r := ‖x− y‖x,F < 1, then for all h,

(1 − r)‖h‖x,F ≤ ‖h‖y,F ≤ 1
1 − r

‖h‖x,F ,(2.5)

(1 − r)‖h‖∗x,F ≤ ‖h‖∗y,F ≤ 1
1 − r

‖h‖∗x,F .(2.6)

(b) For every x ∈ int(S), ‖x− y‖x,F < 1 implies that y ∈ int(S).
Proof. The inequalities in (2.5) and the result in (b) are from [20, Theorem 2.1.1].

The inequalities in (2.6) follow from those in (2.5); see, e.g., [27, Lemma 3.2.9].
Although Lemma 2.1 holds for self-concordant barrier functions on general convex

sets, we will be most interested in barriers on proper cones, so subsequent results will
be phrased with this in mind. Given a proper cone K and a function F : int(K) → R,
the conjugate function, F∗ : int(K∗) → R, of F is given by3

F∗(s) := sup
x∈int(K)

{−〈x, s〉 − F (x)}, s ∈ int(K∗).(2.7)

Since F∗(s) is the pointwise supremum of linear functions of s, F∗ is convex on int(K∗).
It was shown in, e.g., [25, Theorem 3.3.1], that if F is a nondegenerate self-concordant
barrier for K, then F∗ is a nondegenerate self-concordant barrier for K∗. In light of
this, the next result follows directly from Lemma 2.1.

Lemma 2.2. Let F be a nondegenerate self-concordant barrier for the proper
cone K.

(a) If t, s ∈ int(K∗) are such that r := ‖t− s‖t,F∗ < 1, then for all h,

(1 − r)‖h‖t,F∗ ≤ ‖h‖s,F∗ ≤ 1
1 − r

‖h‖t,F∗ .

(b) For every s ∈ int(K∗), ‖s− t‖s,F∗ < 1 implies that t ∈ int(K∗).

3Strictly speaking, in the classical definition of a conjugate function, the domain of F∗ is not
restricted to int(K∗). We include such a restriction here so that F∗ is finite, which is the only case
of interest to us. The definition of a conjugate function used here is found in, e.g., [22, 23, 25]. It
is slightly different from that found elsewhere in the literature, including [20]. The difference is the
minus sign in front of the 〈x, s〉 term, which turns the domain of F∗ from int(−K∗) into int(K∗).
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The following technical results will be used in the analysis of the interior-point
method to be presented later.

Lemma 2.3. Let F be a nondegenerate self-concordant barrier for the proper cone
K, and let x ∈ int(K). Then for all h1 and h2,

‖F ′′′(x)[h1, h2]‖∗x,F ≤ 2‖h1‖x,F‖h2‖x,F .

Proof. Since F is a nondegenerate self-concordant barrier function, it follows
from [20, Proposition 9.1.1] that |F ′′′(x)[h1, h2, h3]| ≤ 2‖h1‖x,F‖h2‖x,F‖h3‖x,F , for
all x ∈ int(K) and all h1, h2, h3. (In fact, only property (2.3) in the definition of a
self-concordant barrier function is used to prove this result.) Now by definition of a
dual norm,

‖F ′′′(x)[h1, h2]‖∗x,F = max
y:‖y‖x,F =1

〈y, F ′′′(x)[h1, h2]〉

= max
y:‖y‖x,F =1

F ′′′(x)[h1, h2, y]

≤ max
y:‖y‖x,F =1

2‖h1‖x,F‖h2‖x,F‖y‖x,F

= 2‖h1‖x,F‖h2‖x,F .

Corollary 2.4. Let F be a nondegenerate self-concordant barrier for the proper
cone K, let x ∈ int(K) and h be such that β := ‖h‖x,F < 1, and let α ∈ [0, 1]. Then

‖F ′′′(x + αh)[h, h]‖∗x+h,F ≤ 2β2

(1 − β)(1 − αβ)
.

Proof. Since αβ < 1, it follows from Lemma 2.1(b) that x + αh ∈ int(K), and
then from (2.5) that

‖h‖x+αh,F ≤ β

1 − αβ
.(2.8)

Moreover, ‖(1−α)h‖x+αh,F ≤ (1−α)β/(1−αβ) < 1, so (2.6) followed by Lemma 2.3
and then (2.8) yields

‖F ′′′(x+ αh)[h, h]‖∗x+h,F ≤ 1
1 − ‖(1 − α)h‖x+αh,F

‖F ′′′(x+ αh)[h, h]‖∗x+αh,F

≤ 1
1 − (1 − α)‖h‖x+αh,F

2‖h‖2
x+αh,F

≤ 1
1 − (1 − α) β

1−αβ

2
(

β

1 − αβ

)2

=
2β2

(1 − β)(1 − αβ)
.(2.9)

2.2. Logarithmically homogeneous barrier functions. An important class
of barrier functions for convex cones is that of logarithmically homogeneous barriers.
(The terminology reflects the fact that the exponential of such a function is homoge-
neous.) These barrier functions were first defined in [20, Definition 2.3.2] and occur
widely in practice. Given a proper cone K, a convex twice continuously differentiable
function F : int(K) → R is said to be a ν-logarithmically homogeneous barrier for
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K if ν ≥ 1, F satisfies the barrier property for K, and the logarithmic-homogeneity
relation

F (tx) = F (x) − ν log(t) ∀ x ∈ int(K), t > 0(2.10)

holds. The following well-known properties of logarithmically homogeneous barriers
are the same or similar to those in [20, Proposition 2.3.4], so we omit proofs.

Lemma 2.5. Let K be a proper cone, and F : int(K) → R be a ν-logarithmically
homogeneous barrier for K. For all x ∈ int(K) and t > 0:

(a) F ′(tx) = 1
tF

′(x) and F ′′(tx) = 1
t2F

′′(x);
(b) 〈F ′(x), x〉 = −ν;
(c) F ′′(x)x = −F ′(x);
(d) 〈F ′′(x)x, x〉 = ν;
(e) If in addition F ′′(x) is positive definite for all x ∈ int(K), then ‖F ′(x)‖∗x,F =

ν1/2.
It was noted in [20, Corollary 2.3.2] that if F is a ν-logarithmically homogeneous

barrier for the proper cone K, and F is three times differentiable and satisfies (2.3),
then F is a ν-self-concordant barrier for K. Such an F is called a ν-logarithmically
homogeneous (nondegenerate) self-concordant barrier for K.

The following result relates the norm induced by the Hessian of F to that induced
by the Hessian of F∗. Here and throughout, we write F ′′∗ (·) as shorthand for (F∗(·))′′.

Lemma 2.6. For some ν, let F be a ν-logarithmically homogeneous self-concordant
barrier for the proper cone K, and let x ∈ int(K). Then for all μ > 0 and all h,

‖h‖−μF ′(x),F∗ =
1
μ
‖h‖∗x,F .

Proof. It follows from, e.g., [25, Theorem 3.3.1] that F∗ is a ν-logarithmically
homogeneous self-concordant barrier for K∗. Using Lemma 2.5(a), we obtain that for
all x ∈ int(K) and μ > 0,

F ′′
∗ (−μF ′(x)) =

1
μ2
F ′′
∗ (−F ′(x)) =

1
μ2
F ′′(x)−1,

where the last equality follows from the relation F ′′∗ (−F ′(x)) = F ′′(x)−1; see, e.g.,
[25, Theorem 3.3.4]. (This relation holds for all x ∈ int(K), and uses the fact that
F ′(x) ∈ −int(K∗).) So for all h, ‖h‖−μF ′(x),F∗ = ‖h‖∗x,μ2F = 1

μ‖h‖∗x,F .
To our knowledge, the following key relation between the norms induced by the

Hessians of F and F∗ is new. It shows that in a certain region (that we will later
identify as a neighborhood of the central path), the dual norm induced by the Hessian
of F is comparable to the norm induced by the Hessian of F∗.

Lemma 2.7. For some ν, let F be a ν-logarithmically-homogeneous self-concordant
barrier for the proper cone K. Let θ ∈ (0, 1), and suppose that x ∈ int(K) and
s ∈ int(K∗) satisfy

(2.11) ‖s+ μF ′(x)‖∗x,F ≤ θμ,

where μ = 〈x, s〉/ν. Then for any h,

1 − θ

μ
‖h‖∗x,F ≤ ‖h‖s,F∗ ≤ 1

(1 − θ)μ
‖h‖∗x,F .
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Proof. As noted previously, F ′(x) ∈ −int(K∗) for all x ∈ int(K). Moreover,
μ > 0. So t := −μF ′(x) ∈ int(K∗). Since x ∈ int(K) and μ > 0, we may invoke
Lemma 2.6. Following this, we use (2.11) to obtain

r := ‖t− s‖t,F∗ = ‖μF ′(x) + s‖−μF ′(x),F∗ =
1
μ
‖μF ′(x) + s‖∗x,F ≤ θ < 1.

Now applying Lemma 2.2(a) and using r ≤ θ, we obtain for any h,

(1 − θ)‖h‖−μF ′(x),F∗ ≤ ‖h‖s,F∗ ≤ 1
1 − θ

‖h‖−μF ′(x),F∗ .(2.12)

Applying Lemma 2.6 again gives the required result.

3. An inexact primal-dual interior-point method for conic optimiza-
tion. In this section we define our problem, give an overview of the short-step primal-
dual IPM, and then present an algorithm that does not require exact evaluation of
the primal or dual barrier functions or their derivatives.

3.1. Conic optimization problem. Any primal-dual pair of convex optimiza-
tion problems can be written in the following conic form:

vP = inf
x

{〈c, x〉 : Ax = b, x ∈ K},(3.1)

vD = sup
w,s

{〈b, w〉 : A∗w + s = c, s ∈ K∗},(3.2)

where A : Rn → Rm, b ∈ Rm, c ∈ Rn, and K ⊂ Rn is a closed convex cone. A
point x is said to be strongly feasible for (3.1) if Ax = b and x ∈ int(K), and a pair
(w, s) is said to be strongly feasible for (3.2) if A∗w + s = c and s ∈ int(K∗). In the
case that K is the nonnegative orthant, (3.1) and (3.2) are called linear optimization
problems. If K is the second-order cone {x : xn ≥ ‖x1:n−1‖2}, then (3.1) and (3.2) are
called second-order cone optimization problems.4 If K is the proper cone of positive
semidefinite matrices, considered as a subset of the space of symmetric matrices, then
(3.1) and (3.2) are called semidefinite programs.5

Assumption 3.1.

(a) m > 0 and A is onto;
(b) K is a proper cone;
(c) The optimization problems (3.1) and (3.2) each satisfy the generalized Slater

constraint qualification; i.e., there exists a strongly feasible x for (3.1) and a
strongly feasible pair (w, s) for (3.2).

It follows from Assumption 3.1(b) that K∗ is also a proper cone. Assump-
tion 3.1(c) can be made without loss of generality, since if it fails to hold, one can
embed (3.1)–(3.2) in a higher-dimensional conic problem for which the assumption
does hold; see, e.g., [21]. Under Assumption 3.1, the optimal primal and dual solution
sets are nonempty and bounded (see [17, Theorem 1]), and the duality gap is zero,
i.e., vP = vD; see, e.g., [26, Corollary 30.5.2].

Consider the barrier problem associated with (3.1), viz.,

vP (μ) = inf
x
{〈c, x〉 + μF (x) : Ax = b},(3.3)

4The second-order cone is also known as the Lorentz cone or ice-cream cone.
5The space of symmetric matrices of order n is, of course, isomorphic to Rn(n+1)/2.
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where μ > 0 is called the barrier parameter, and the function F : int(K) → R satisfies
the following assumption.

Assumption 3.2. The function F is a ν-logarithmically homogeneous self-
concordant barrier for K.

Such an F is known to exist for every proper cone K [20, Theorem 2.5.1]. As
mentioned previously, the conjugate function F∗ of such an F is a ν-logarithmically
homogeneous self-concordant barrier for K∗, and hence is a suitable barrier for (3.2).
The resulting dual barrier problem is

vD(μ) = sup
w,s

{〈b, w〉 − μF∗(s) : A∗w + s = c}.(3.4)

It was shown in [17, Lemma 1] that under the generalized Slater constraint qualifica-
tion, (3.3) and (3.4) have a unique minimizer for each μ > 0.

3.2. Primal-dual interior-point methods for conic problems. Of special
importance in primal-dual interior-point algorithms is the set of triples (x,w, s) such
that for some μ > 0, x is a minimizer of the primal barrier problem and (w, s) is a
minimizer of the dual barrier problem. This set is called the primal-dual central path.
To exploit the fact that the primal-dual central path is a curve culminating at a point
in the primal-dual optimal solution set, we use an iterative algorithm whose iterates
stay close to the primal-dual central path while also converging to the primal-dual
optimal solution set.

It is well known that under Assumption 3.1 the primal-dual central path consists
of the triples satisfying the following system:

(3.5)

Ax = b
A∗w + s = c

μF ′(x) + s = 0
x ∈ int(K), s ∈ int(K∗).

For any (x,w, s) on the primal-dual central path the pointwise duality gap is

(3.6) 〈c, x〉 − 〈b, w〉 = 〈x, s〉 = 〈x,−μF ′(x)〉 = −μ〈x, F ′(x)〉 = νμ,

where the last equality follows from Lemma 2.5(b). Therefore to follow the primal-
dual central path to the optimal primal-dual solution set, we decrease the positive
duality measure

μ =
〈x, s〉
ν

,(3.7)

of the triple (x,w, s) to zero, at which point x solves (3.1) and (w, s) solves (3.2).
Applying Newton’s method to the system of equations in (3.5), we obtain the

linear system ⎡
⎣ A 0 0

0 A∗ I
μF ′′(x) 0 I

⎤
⎦

⎡
⎣ Δx

Δw
Δs

⎤
⎦ =

⎡
⎣ b −Ax

c−A∗w − s
−τμF ′(x) − s

⎤
⎦ ,(3.8)

with τ = 1.6

6Strictly speaking, A, A∗, and F ′′(x), and hence the block matrix on the left-hand side of (3.8),
are linear mappings rather than matrices, but the meaning of (3.8) is clear.
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It is well known that when F is a logarithmically homogeneous barrier for K, the
primal-dual central path is unchanged when the condition μF ′(x) + s = 0 in (3.5) is
replaced by μF ′

∗(s) + x = 0. Such a replacement gives rise to a “dual linearization”
analogous to the “primal linearization” in (3.8). In general these two approaches yield
different Newton directions. The advantage of using (3.8) is that evaluation of F∗ and
its derivatives is not required. On the other hand, the direction obtained from (3.8)
is biased in favor of solving the primal barrier problem.

Since we intend for the algorithm stated below to produce iterates staying close
to the primal-dual central path while making progress towards the optimal primal-
dual solution set, it is necessary to quantify what it means for a point to lie close to
the central path. Given θ ∈ (0, 1), define the N (θ) neighborhood of the primal-dual
central path by

N (θ) :=
{

(x,w, s) : (x,w, s) is strongly feasible for (3.1)–(3.2), and

‖s+ μF ′(x)‖∗x,F ≤ θμ, where μ =
〈x, s〉
ν

}
.

(3.9)

The neighborhood N (θ) defined in (3.9) was used in [23, Section 6] for optimization
over the class of self-scaled cones. In the case that K is the nonnegative orthant
and F (x) = −∑

i log(xi) is the standard logarithmic barrier function, we have ‖s+
μF ′(x)‖∗x,F = ‖Xs− μe‖2, so N (θ) is the familiar N2(θ) neighborhood used in linear
optimization; see, e.g., [31, p. 9]. Note that points in the set N (θ) satisfy all conditions
in (3.5) with the possible exception of the system of equations s+ μF ′(x) = 0, whose
residual is small (as measured in the ‖ · ‖∗x,F norm).

We will use a primal-dual short-step algorithm to solve (3.1) and (3.2). Short-step
algorithms date back to an important paper of Renegar [24], in which a polynomial-
time primal algorithm for linear optimization was given. The name “short-step” arises
from the fact that this class of algorithms generates at each iteration Newton steps
that are “short” enough to be feasible without the need for a line search. This is an
advantage in conic optimization, since line searches may be expensive and difficult
for many classes of cones K. The major downside is that such Newton steps are
usually too conservative; in practice larger steps are often possible, leading to a faster
reduction in the duality measure, and hence a smaller number of iterations.

A standard short-step primal-dual feasible-point algorithm uses (3.8) to compute
a sequence of steps for a sequence of μ values converging to zero. The algorithm uses
two parameters. One is θ ∈ (0, 1), which stipulates the width of the neighborhood
N (θ) inside which the iterates are constrained to lie, and the other is a centering
parameter τ ∈ (0, 1). (See, e.g., [31, p. 8], where the parameter is denoted by σ.)

We terminate the iteration upon finding an ε-optimal solution of (3.1)–(3.2),
which is a feasible primal-dual point whose duality measure is no greater than ε. We
show in section 4 that by choosing τ and θ appropriately, it can be ensured that all it-
erates of the algorithm indeed stay in the neighborhood N (θ), even if F ′(x) and F ′′(x)
in (3.8) and (3.9) are not computed exactly, provided close enough approximations
are used. Moreover, the duality measure decreases geometrically at each iteration,
insuring convergence to an optimal solution in a reasonable number of iterations.

3.3. An inexact interior-point method. The interior-point method we pro-
pose uses inexact barrier function evaluations ; i.e., for a given x ∈ int(K), the quan-
tities F ′(x) and F ′′(x) in (3.8) are computed inexactly. Denote these estimates by
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F1(x) and F2(x), respectively. Our analysis is independent of the estimation algo-
rithm and depends only on the magnitude of the approximation errors. The core of
the algorithm is the following update procedure (cf. (3.8)).

Iteration Short step
Input: θ, τ ∈ (0, 1) and a triple (x,w, s) ∈ N (θ).
(1) Let μ = 〈x, s〉/ν and solve the linear system⎡

⎣ A 0 0
0 A∗ I

μF2(x) 0 I

⎤
⎦

⎡
⎣ Δx

Δw
Δs

⎤
⎦ =

⎡
⎣ 0

0
−τμF1(x) − s

⎤
⎦ ,(3.10)

where F2(x) is self-adjoint and positive definite.
(2) Set x+ = x+ Δx, w+ = w + Δw, and s+ = s+ Δs.

Remark 3.3. Iteration Short step requires the availability of an initial triple
(x,w, s) in N (θ). This requirement is inherited from other short-step methods. One
method of finding such a point is to repeatedly perform Iteration Short step with
τ = 1, but with μ kept constant at, say, its initial value. In other words, we seek
to move directly towards a point on the central path. However, to our knowledge,
even given a strictly feasible initial triple and using exact computation of the gradient
and Hessian of the barrier function, no algorithm has been proposed that reaches an
appropriate neighborhood of the central path within a polynomial iteration bound
independent of the nearness of the initial point to the boundary of the cone. Accord-
ingly, this question requires further study beyond the scope of this paper.

A noteworthy feature of Iteration Short step is that its implementation does not
require evaluating, or even estimating, numerical values of the dual barrier function
F∗ or its derivatives. For suitable values of θ and τ , and with F1(x) and F2(x) taken
to be F ′(x) and F ′′(x), respectively, it is known (at least in the SDP case) to produce
an algorithm with polynomial iteration complexity; see, e.g., [1, section 6.5]. As we
show below, such a property is preserved when one uses inexact evaluations of the
derivatives of F , which can yield a substantial computational advantage.

We now study the effect of errors in our estimates of F ′(x) and F ′′(x) on the
convergence of the interior-point method.

4. Convergence analysis of the inexact algorithm. In this section we prove
that the inexact algorithm produces a strongly feasible set of iterates and converges
in a polynomial number of iterations.

4.1. Feasibility and convergence of the iterates. Denote the errors in the
known estimates of the gradient and Hessian of F (x) by

E1(x) = F1(x) − F ′(x), E2(x) = F2(x) − F ′′(x).

By definition E2(x) is a self-adjoint linear mapping. Throughout this section,
we will assume that the errors E1(x) and E2(x) are “small enough”. Specifically, for
some ε1 and ε2,

‖E1(x)‖∗x,F

‖F ′(x)‖∗x,F

≡ ‖E1(x)‖∗x,F

ν1/2
≤ ε1 < 1 ∀ x ∈ int(K),(4.1)

‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖ ≤ ε2 < 1 ∀ x ∈ int(K),(4.2)
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well defined since F ′′(x) is positive definite for x ∈ int(K). The quantity
‖E1(x)‖∗

x,F

‖F ′(x)‖∗
x,F

is
the relative error in F1(x), measured in the ‖·‖∗x,F norm, and ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖
is the absolute error in F2(x) relative to the Hessian of F . It is also an upper bound
on the relative error in F2(x), measured in the norm ‖ · ‖:

‖E2(x)‖
‖F ′′(x)‖ =

‖F ′′(x)1/2F ′′(x)−1/2E2(x)F ′′(x)−1/2F ′′(x)1/2‖
‖F ′′(x)‖

≤ ‖F ′′(x)1/2‖ ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖ ‖F ′′(x)1/2‖
‖F ′′(x)‖

=
‖F ′′(x)1/2‖2

‖F ′′(x)‖ ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖

= ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖.
The last equality follows from the relation ‖B2‖ = λmax(B2) = λmax(B)2 = ‖B‖2

for a positive semidefinite self-adjoint operator B, where λmax(·) denotes the largest
eigenvalue.

We now show that under the assumption in (4.2), the eigenvalues of F2(x) are
close to those of F ′′(x). We will use  to denote a partial ordering with respect to
the cone of positive semidefinite matrices. Namely, for symmetric matrices M1 and
M2, M1 M2 if and only if M2 −M1 is positive semidefinite.

Lemma 4.1. Suppose that F ′′ and its estimate F2 satisfy (4.2). Then

(1 − ε2)F ′′(x)  F2(x)  (1 + ε2)F ′′(x) ∀x ∈ int(K).

Moreover F2(x) is positive definite for all x ∈ int(K).
Proof. The assumption in (4.2) and the definition of a norm induced by an inner

product implies that for all x ∈ int(K), each eigenvalue of the self-adjoint operator
F ′′(x)−1/2E2(x)F ′′(x)−1/2 is bounded by ε2, so

−ε2I  F ′′(x)−1/2E2(x)F ′′(x)−1/2  ε2I.

Multiplying this matrix inequality on the left and right by the positive definite matrix
F ′′(x)1/2 preserves the partial ordering :

−ε2F ′′(x)  E2(x)  ε2F
′′(x).

Adding F ′′(x) to each quantity in this matrix inequality gives the required result.
Since F ′′(x) is positive definite, so F2 is also.

Since F2(x) is positive definite for all x ∈ int(K), it follows that F2(x)−1 is well
defined. Due to this and A being onto (Assumption 3.1), (3.10) has a unique solution.

The outline for the remainder of this section is as follows. After giving some
technical results, we prove that for a primal-dual iterate (x,w, s) lying inside a neigh-
borhood N (θ) of the central path, the Newton steps Δx and Δs in (3.10) are bounded
by a constant and a constant times the duality measure μ, respectively, in the appro-
priate norms (Lemma 4.3 and Corollary 4.4). We then show that if these constants are
appropriately bounded, then a full Newton step produces a strongly feasible primal-
dual point (Lemma 4.5). Next we derive lower and upper bounds on the rate of
decrease of the duality measure at each iteration (Lemma 4.6). The lower bound
is used to show that all iterates stay in the N (θ) neighborhood of the central path
(Lemmas 4.7, 4.8, and 4.9). Thus Iteration Short step can be repeated ad infinitum,
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and the resulting algorithm belongs to the class of “path-following” methods. It also
belongs to the class of feasible-point algorithms: All iterates are (strongly) feasible.
Finally, using the upper bound on the rate of decrease of the duality measure, we
show that the algorithm has polynomial iteration complexity.

Since F ′′(x) and F2(x) are positive definite on int(K), the positive definite square
roots of these two matrices are well defined. Define

D(x) = F ′′(x)1/2F2(x)−1/2 = F ′′(x)1/2(F ′′(x) + E2(x))−1/2(4.3)

for all x ∈ int(K). In this section we will use the following implication of the Cauchy–
Schwarz inequality: given x ∈ int(K) and y, z ∈ Rn,

|〈y, z〉| ≤ ‖y‖∗x,F ‖z‖x,F .

The following technical results will be used in our analysis.
Lemma 4.2. Suppose that F1 and F2 satisfy (4.1) and (4.2), and let x ∈ int(K)

and z ∈ Rn. Let D(x) be defined as in (4.3). Then

‖D(x)‖2 ≤ 1
1 − ε2

,(4.4a)

‖D(x)−1‖2 ≤ 1 + ε2,(4.4b)
|〈F ′(x), z〉| ≤ ν1/2‖z‖x,F ,(4.4c)

|〈E1(x), z〉| ≤ ε1ν
1/2‖z‖x,F ,(4.4d)

|〈E1(x), x〉| ≤ ε1ν,(4.4e)
|〈x,E2(x)z〉| ≤ ε2ν

1/2‖z‖x,F .(4.4f)

Proof. First, since ‖D(x)‖ is the square root of the largest eigenvalue ofD(x)D(x)∗ ,
we have

‖D(x)‖2 = ‖D(x)D(x)∗‖ = ‖F ′′(x)1/2
(
F ′′(x) + E2(x)

)−1
F ′′(x)1/2‖

= ‖(I + F ′′(x)−1/2E2(x)F ′′(x)−1/2
)−1‖

≤ 1
1 − ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖

≤ 1
1 − ε2

,

where the inequalities follow from (4.2). This proves (4.4a). Next, the invertible
mapping D satisfies

‖D(x)−1‖2 = ‖D(x)−∗D(x)−1‖ = ‖F ′′(x)−1/2
(
F ′′(x) + E2(x)

)
F ′′(x)−1/2‖

= ‖I + F ′′(x)−1/2E2(x)F ′′(x)−1/2‖
≤ 1 + ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖
≤ 1 + ε2,

where the inequalities again follow from (4.2), proving (4.4b). Further,

|〈F ′(x), z〉| ≤ ‖F ′(x)‖∗x,F ‖z‖x,F

= ν1/2‖z‖x,F ,
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where we have used Lemma 2.5(e), proving (4.4c). Now we have

|〈E1(x), z〉| ≤ ‖E1(x)‖∗x,F ‖z‖x,F

≤ ε1ν
1/2‖z‖x,F ,

where the last inequality follows from (4.1), proving (4.4d). The inequality in (4.4e)
follows from (4.4d) with z = x, where Lemma 2.5(d) has also been used. Finally,
using Lemma 2.5(d) and (4.2), we have

|〈x,E2(x)z〉| ≤ ‖E2(x)∗x‖∗x,F ‖z‖x,F

= ‖E2(x)∗F ′′(x)−1/2 · F ′′(x)1/2x‖∗x,F ‖z‖x,F

≤ ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖ ‖F ′′(x)1/2x‖ ‖z‖x,F

≤ ε2ν
1/2‖z‖x,F ,

proving (4.4f).
Define the following three constants, which depend on the IPM parameters θ and

τ , the maximum errors ε1 and ε2, and the complexity parameter ν ≥ 1.

β0 :=
θ + (1 − τ + τε1)ν1/2

(1 − ε2)1/2
,

β1 :=
β0

(1 − ε2)1/2
,(4.5)

β2 := max
{
β1, β0

(1 + ε2)1/2

1 − θ

}
.

Lemma 4.3. Suppose that F1 and F2 satisfy (4.1) and (4.2). Let θ ∈ (0, 1), and
suppose that (x,w, s) ∈ N (θ) for some w, and that x, s,Δx, and Δs satisfy (3.10) for
some Δw. Then

μ2‖F2(x)1/2Δx‖2 + ‖F2(x)−1/2Δs‖2 ≤ μ2β2
0 .

Proof. Premultiplying the third block equation in (3.10) by (μF2(x))−1/2 yields:

(μF2(x))1/2Δx+ (μF2(x))−1/2Δs = −(μF2(x))−1/2(τμF1(x) + s).(4.6)

It is seen from (3.10) that Δx lies in the nullspace of A, while Δs lies in the range of
A∗. Therefore Δx is orthogonal to Δs. Taking the square of the norm of each side of
(4.6) and using this orthogonality, we obtain

‖(μF2(x))1/2Δx‖2 + ‖(μF2(x))−1/2Δs‖2 = ‖(μF2(x))−1/2(τμF1(x) + s)‖2.

Multiplying this equation by μ yields

μ2‖F2(x)1/2Δx‖2 + ‖F2(x)−1/2Δs‖2 = ‖F2(x)−1/2(τμF1(x) + s)‖2.(4.7)

Let us now bound the right-hand side of (4.7). In the following, (4.8a) follows from
(4.3), and (4.8b) follows from (4.4a). The inequality in (4.8c) follows from (x,w, s) ∈
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N (θ), (4.1), and Lemma 2.5(e).

‖F2(x)−1/2(τμF1(x) + s)‖
= ‖D(x)∗F ′′(x)−1/2(τμF1(x) + s)‖(4.8a)

≤ 1
(1 − ε2)1/2

‖τμF1(x) + s)‖∗x,F(4.8b)

=
1

(1 − ε2)1/2
‖(s+ μF ′(x)) + τμE1(x) − μ(1 − τ)F ′(x)‖∗x,F

≤ 1
(1 − ε2)1/2

(‖s+ μF ′(x)‖∗x,F + τμ‖E1(x)‖∗x,F + μ(1 − τ)‖F ′(x)‖∗x,F

)
≤ 1

(1 − ε2)1/2

(
θμ+ τμε1ν

1/2 + μ(1 − τ)ν1/2
)

(4.8c)

= μβ0.

Combining this with (4.7) yields the required result.
Corollary 4.4. Suppose that F1 and F2 satisfy (4.1) and (4.2). Let θ ∈ (0, 1),

and suppose that (x,w, s) ∈ N (θ) for some w, and that x, s,Δx, and Δs satisfy (3.10)
for some Δw. Then

‖F2(x)1/2Δx‖ ≤ β0,

‖F2(x)−1/2Δs‖ ≤ μβ0,

‖Δx‖x,F ≤ β1,

‖Δs‖∗x,F ≤ (1 + ε2)1/2μβ0.

Proof. The first two bounds follow immediately from Lemma 4.3. Further, using
(4.3) and (4.4a), we have

‖Δx‖x,F = ‖D(x)F2(x)1/2Δx‖ ≤ ‖D(x)‖ ‖F2(x)1/2Δx‖ ≤ (1 − ε2)−1/2β0 = β1.

This proves the third inequality. To prove the last, similarly use (4.3) and (4.4b) to
obtain

‖Δs‖∗x,F = ‖D(x)−∗F2(x)−1/2Δs‖ ≤ (1 + ε2)1/2‖F2(x)−1/2Δs‖
≤ (1 + ε2)1/2μβ0.

Iteration Short step takes a full primal-dual Newton step from a triple (x,w, s) ∈
N (θ). In the next series of lemmas we show under a condition on the parameters
θ, τ, ε1, and ε2, not only that such a step is strongly feasible, justifying step (2) in
Iteration Short step, but further, that the new iterate remains in the N (θ) neighbor-
hood of the central path, so Iteration Short step can be repeated ad infinitum. We
also characterize how the duality measure changes after taking a full Newton step.
The following condition, in which dependence of β2 on θ, τ, ε1, ε2, and ν is emphasized,
will play a key role:

β2(θ, τ, ε1, ε2, ν) < 1.(4.9)

Lemma 4.5. Suppose that F1 and F2 satisfy (4.1) and (4.2). Let θ, τ, ε1, ε2,
and ν be such that (4.9) holds, and let (x,w, s) ∈ N (θ). Then the point (x+, w+, s+)
generated by Iteration Short step is strongly feasible.
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Proof. The equality constraints in (3.1) and (3.2) are satisfied by (x+, w+, s+),
since they are satisfied by (x,w, s) (by virtue of this triple lying in N (θ)), and any step
from (x,w, s) in the direction (Δx,Δw,Δs) will satisfy these constraints due to the
first two block equations in (3.10). We now show that x+ ∈ int(K) and s+ ∈ int(K∗).
Since F is a nondegenerate self-concordant barrier (Assumption 3.2), Lemma 2.1(b)
is applicable: If ‖Δx‖x,F < 1, then x + Δx ∈ int(K). By Corollary 4.4, a sufficient
condition for ‖Δx‖x,F < 1 is β1 < 1, and this holds since β2 < 1. Similarly, in light
of Lemma 2.2(b), if ‖Δs‖s,F∗ < 1, then s + Δs ∈ int(K∗). It remains to show that
‖Δs‖s,F∗ < 1 under the assumption (4.9). Since (x,w, s) ∈ N (θ), we may apply
Lemma 2.7 with h = Δs to obtain

‖Δs‖s,F∗ ≤ ‖Δs‖∗x,F

(1 − θ)μ
≤ (1 + ε2)1/2β0

1 − θ
,

where the last inequality follows from Corollary 4.4. By the definition of β2 in (4.5),
we have ‖Δs‖s,F∗ ≤ β2 < 1.

It follows from Lemma 4.5 that a full step in the Newton direction for (3.10) is
strongly feasible. We now study the change in the duality measure after taking a full
primal-dual Newton step.

Lemma 4.6. Suppose that F1 and F2 satisfy (4.1) and (4.2). Let θ, τ, ε1, ε2, and
ν be such that (4.9) holds, and let (x,w, s) ∈ N (θ). Then the duality measure μ+ of
(x+, w+, s+) (see (3.7)) in Iteration Short step satisfies

δμ ≤ μ+ ≤ δ̄μ,(4.10)

where

δ = τ − τε1 − 1 − τ + τε1 + ε2
ν1/2

β1 − 1 − ε2
ν

β2
1 ,(4.11)

δ̄ = τ + τε1 +
1 − τ + τε1 + ε2

ν1/2
φ− 1 − ε2

ν
φ2,(4.12)

with

(4.13) φ = min
{
β1,

(1 − τ + τε1 + ε2)ν1/2

2(1 − ε2)

}
.

Proof. Recalling that for the direction obtained from (3.8), Δx is orthogonal to
Δs, we have

νμ+ = 〈x+, s+〉
= 〈x+ Δx, s+ Δs〉
= 〈x, s+ Δs〉 + 〈Δx, s〉.(4.14)

From the third block equation in (3.10), we obtain

s+ Δs = −τμF1(x) − μF2(x)Δx,(4.15)

giving

〈x, s+ Δs〉 = 〈−x, τμF1(x) + μF2(x)Δx〉
= −τμ〈x, F ′(x) + E1(x)〉 − μ〈x, (F ′′(x) + E2(x))Δx〉
= τμν − τμ〈x,E1(x)〉 + μ〈F ′(x),Δx〉 − μ〈x,E2(x)Δx〉,(4.16)
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where we have used Lemma 2.5(b),(c). Since 〈Δx,Δs〉 = 0, it also follows from (4.15)
that

〈Δx, s〉 = 〈Δx,−μF2(x)Δx − τμF1(x)〉
= −μ〈Δx, F2(x)Δx〉 − τμ〈F ′(x) + E1(x),Δx〉.(4.17)

Combining (4.14), (4.16), and (4.17) we have

νμ+ = τμν − τμ〈x,E1(x)〉 + (1 − τ)μ〈F ′(x),Δx〉 − τμ〈E1(x),Δx〉
− μ〈x,E2(x)Δx〉 − μ〈Δx, F2(x)Δx〉;

i.e.,
μ+

μ
= τ − τ

ν
〈x,E1(x)〉 +

1 − τ

ν
〈F ′(x),Δx〉 − τ

ν
〈E1(x),Δx〉

− 1
ν
〈x,E2(x)Δx〉 − 1

ν
〈Δx, F2(x)Δx〉 .(4.18)

To reduce clutter, let t := ‖Δx‖x,F . In view of Lemma 4.1, we have 〈Δx, F2(x)Δx〉 ≥
(1− ε2)t2. Using this inequality and appealing to Lemma 4.2, we obtain the following
upper bound on μ+/μ:

μ+

μ
≤ τ +

τ

ν
|〈x,E1(x)〉| + 1 − τ

ν
|〈F ′(x),Δx〉| + τ

ν
|〈E1(x),Δx〉|

+
1
ν
|〈x,E2(x)Δx〉| − 1 − ε2

ν
t2

≤ τ + τε1 +
1 − τ

ν
ν1/2t+

τ

ν
ε1ν

1/2t+
1
ν
ε2ν

1/2t− 1 − ε2
ν

t2

=: u(t).

It follows from Corollary 4.4 that t ≤ β1, so a uniform upper bound on μ+/μ is
max {u(t) : 0 ≤ t ≤ β1}. The unconstrained maximizer is given by

t∗ =
(1 − τ + τε1 + ε2)ν1/2

2(1 − ε2)
.

If this nonnegative solution satisfies t∗ ≤ β1, then the constrained maximum of u(t)
is u(t∗). Otherwise the maximum is u(β1). Hence

μ+

μ
≤ u(min{β1, t

∗}),

and the latter bound is δ̄ as given in (4.12) and (4.13). This proves the second
inequality in (4.10).

In view of Corollary 4.4, 〈Δx, F2(x)Δx〉 ≤ β2
0 = (1− ε2)β2

1 , so from (4.18) we can
also obtain a lower bound on μ+/μ:

μ+

μ
≥ τ − τε1 − 1 − τ

ν
ν1/2t− τ

ν
ε1ν

1/2t− 1
ν
ε2ν

1/2t− 1 − ε2
ν

β2
1

= τ − τε1 − 1 − ε2
ν

β2
1 −

(
1 − τ + τε1 + ε2

ν1/2

)
t

≥ τ − τε1 − 1 − ε2
ν

β2
1 −

(
1 − τ + τε1 + ε2

ν1/2

)
β1

= δ,

proving the first inequality in (4.10).
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Lemma 4.7. The quantities δ and δ̄ defined in Lemma 4.6 satisfy δ < τ < δ̄.
Proof. It is clear from (4.11) that δ < τ . The inequality τ < δ̄ is easily seen after

rewriting δ̄ as

δ̄ = τ + τε1 +
φ(1 − ε2)

ν

[(
1 − τ + τε1 + ε2

)
ν1/2

1 − ε2
− φ

]
,

and noting that the term in the square brackets must be positive, due to (4.13).
We will now show that condition (4.9) together with the following two conditions,

where dependence on θ, τ , ε1, ε2, and ν is again emphasized, insures that the next
iterate lies in N (θ):

δ(θ, τ, ε1, ε2, ν) > 0,(4.19)
θ+(θ, τ, ε1, ε2, ν) is well defined, and θ+(θ, τ, ε1, ε2, ν) ≤ θ,(4.20)

where

(4.21)
θ+ :=

τε1ν
1/2 + ε2β1

δ(1 − β1)
+

(
τ

δ
− 1

)
ν1/2 +

(1 − τ)β1

δ(1 − β1)

+
2τ
δ

(
log(1 − β1) +

β1

1 − β1

)
.

The next lemma will prove useful in the sequel.
Lemma 4.8. If θ, τ, ε1, ε2, and ν satisfy conditions (4.19) and (4.20), then

β1, β2 < 1.
Proof. If θ+ is well defined, then clearly β1 < 1. Moreover, for all β1 ∈ (0, 1),

log(1 − β1) + β1
1−β1

> 0. It follows from Lemma 4.7 and (4.19) that τ/δ > 1. Hence

2
(

log(1 − β1) +
β1

1 − β1

)
<

2τ
δ

(
log(1 − β1) +

β1

1 − β1

)
< θ+ ≤ θ < β1.(4.22)

The inequality 2 log(1 − β1) + 2β1
1−β1

< β1 implies β1 < 0.46. Now from (4.5) we have

β2 = max
{
β1, β0

(1 + ε2)1/2

1 − θ

}

= β1 max
{

1,
(1 − ε22)

1/2

1 − θ

}

≤ β1

1 − θ

<
β1

1 − β1

<
0.46

1 − 0.46
< 1.

Lemma 4.9. Let θ, τ, ε1, ε2, and ν satisfy conditions (4.19) and (4.20). If
(x,w, s) ∈ N (θ), then Iteration Short step produces a triple (x+, w+, s+) ∈ N (θ).

Proof. By Lemma 4.8, β1, β2 < 1, so (4.9) holds. Applying Lemma 4.5, we
conclude that (x+, w+, s+) is strongly feasible. It remains to show that

‖s+ μF ′(x)‖∗x,F ≤ θμ =⇒ ‖s+ + μ+F
′(x+)‖∗x+,F ≤ θμ+ .(4.23)
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From the third block equation in the linear system (3.10), we have

s+ + μ+F
′(x+) = −τμF1(x) − μF2(x)Δx + μ+F

′(x+) = D1 +D2 +D3,(4.24)

where

D1 = −τμE1(x) − μE2(x)Δx,
D2 = (μ+ − τμ)F ′(x+) + μ(τ − 1)F ′′(x)Δx,
D3 = τμ(F ′(x+) − F ′(x) − F ′′(x)Δx).

We now appropriately bound the norms ofD1, D2, and D3. First we bound ‖D1‖∗x+,F .
Since ‖x+ − x‖x,F = ‖Δx‖x,F ≤ β1 (Corollary 4.4) and β1 < 1, we can use (2.6) to
bound ‖D1‖∗x+,F in terms of ‖D1‖∗x,F ; the result is (4.25a). The inequality (4.25b)
follows from the definition of D1, and (4.25c) follows from (4.1). The inequality
(4.25d) follows from (4.2) and Corollary 4.4.

‖D1‖∗x+,F ≤ 1
1 − β1

‖D1‖∗x,F(4.25a)

≤ 1
1 − β1

(
τμ‖E1(x)‖∗x,F + μ‖E2(x)Δx‖∗x,F

)
(4.25b)

≤ 1
1 − β1

(
τμε1ν

1/2

+ μ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2F ′′(x)1/2Δx‖)(4.25c)

≤ 1
1 − β1

(
τμε1ν

1/2

+ μ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖ ‖F ′′(x)1/2Δx‖)
≤ 1

1 − β1
(τμε1ν1/2 + με2β1).(4.25d)

Now in Lemma 4.6 we established that δμ ≤ μ+, where δ is given in (4.11). Moreover,
by assumption, δ > 0. It follows that

‖D1‖∗x+,F ≤ τε1ν
1/2 + ε2β1

δ(1 − β1)
μ+

=: d1μ+.(4.26)

Next we bound ‖D2‖∗x+,F . First note that for δ and δ̄ given in (4.11) and (4.12),

δ + δ̄ = 2τ + (φ− β1)
1 − τ + τε1 + ε2

ν1/2
− 1 − ε2

ν
(φ2 + β2

1)

< 2τ,

where the inequality follows from φ ≤ β1; see (4.13). It follows that δ̄ − τ < τ − δ.
Using this, the fact that δ > 0, and the result τ < δ̄ from Lemma 4.7, we have

τ

δ
− 1 =

τ − δ

δ
≥ τ − δ

δ̄
>
δ̄ − τ

δ̄
= 1 − τ

δ̄
> 0.

Hence

max
δμ≤μ+≤δ̄μ

∣∣∣∣1 − τ
μ

μ+

∣∣∣∣ = max
{
τ

δ
− 1, 1 − τ

δ̄

}
=
τ

δ
− 1.(4.27)
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In the following, (4.28a) follows from the definition of D2, and (4.28b) follows from
Lemma 2.5(e) and (2.6). Furthermore, (4.28c) follows from (4.27) and Corollary 4.4.

‖D2‖∗x+,F ≤ |μ+ − τμ|‖F ′(x+)‖∗x+,F + μ(1 − τ)‖F ′′(x)Δx‖∗x+,F(4.28a)

≤ μ+

∣∣∣∣1 − τ
μ

μ+

∣∣∣∣ν1/2 + μ(1 − τ)
‖F ′′(x)Δx‖∗x,F

1 − ‖Δx‖x,F
(4.28b)

≤ μ+

(
τ

δ
− 1

)
ν1/2 +

μ+

δ
(1 − τ)

β1

1 − β1
(4.28c)

=: d2μ+.(4.28d)

Finally, we bound ‖D3‖∗x+,F . In what follows, we will be working with integrals of
vectors and matrices. All such integrals are meant componentwise. Applying the
fundamental theorem of calculus to F ′, then to F ′′, yields

D3 = τμ

∫ 1

0

(F ′′(x+ tΔx) − F ′′(x))Δx dt = τμ

∫ 1

0

∫ t

0

F ′′′(x+ uΔx)[Δx,Δx] du dt,

giving

‖D3‖∗x+,F ≤ τμ

∫ 1

0

∫ t

0

‖F ′′′(x + uΔx)[Δx,Δx]‖∗x+,F du dt.

Since β1 < 1, Corollary 2.4 can be applied, yielding

‖F ′′′(x+ uΔx)[Δx,Δx]‖∗x+,F ≤ 2β2
1

(1 − β1)(1 − uβ1)
,

and7

‖D3‖∗x+,F ≤ τμ

∫ 1

0

∫ t

0

2β2
1

(1 − β1)(1 − uβ1)
du dt

= τμ

(
2 log(1 − β1) +

2β1

1 − β1

)
(4.29)

≤ 2τ
δ

(
log(1 − β1) +

β1

1 − β1

)
μ+

=: d3μ+.(4.30)

Combining the bounds in (4.26), (4.28d), and (4.30) with (4.24), we obtain

‖s+ + μ+F
′(x+)‖∗x+,F ≤ ‖D1‖∗x+,F + ‖D2‖∗x+,F + ‖D3‖∗x+,F

≤ μ+(d1(ν) + d2(ν) + d3(ν)),

where

d1(ν) :=
τε1ν

1/2 + ε2β1

δ(1 − β1)
,(4.31a)

d2(ν) :=
(
τ

δ
− 1

)
ν1/2 +

(1 − τ)β1

δ(1 − β1)
,(4.31b)

d3(ν) :=
2τ
δ

(
log(1 − β1) +

β1

1 − β1

)
.(4.31c)

7Our bound on 1
τμ

‖D3‖∗x+,F of 2 log(1 − β1) + 2β1
1−β1

= β2
1 + 4

3
β3
1 + · · · in (4.29) below can be

improved in the case that K is a self-scaled cone: In [22, Theorem 4.3] a bound of no greater than
β2
1 is derived using special properties of self-scaled barriers and self-scaled cones.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A POLYNOMIAL-TIME INEXACT INTERIOR-POINT METHOD 567

From (4.21), we see that θ+ ≡ d1(ν) + d2(ν) + d3(ν). Since θ+ ≤ θ (4.20), the proof
is complete.

The significance of θ+ is that it specifies a neighborhood N (θ+) of the central
path such that (x+, w+, s+) ∈ N (θ+) ⊂ N (θ). An important consequence of this is
that Iteration Short step may be repeated. In what follows we will refer to “Algorithm
Short step”, which is simply an iterative algorithm in which at iteration k, Iteration
Short step is invoked with μk as the duality measure of the current iterate (x,w, s) =
(xk, wk, sk). The algorithm terminates when an ε-optimal solution is obtained, i.e., a
feasible solution with μk ≤ ε, for some prescribed ε.

4.2. Polynomial complexity of an inexact IPM. For convenience let us
gather the conditions previously imposed on the algorithm parameters. The conditions
(4.32a) and (4.32b) in the box below are copied from (4.19) and (4.20). (Due to
Lemma 4.8 it is unnecessary to include the condition (4.9).) We also impose a new
condition (4.32c) that will ensure the duality measure decreases at a fast enough rate.
Since we are interested in a complexity result that holds regardless of the complexity
parameter ν, we ask that these conditions be satisfied for all ν ≥ 1.

Algorithm parameters θ, τ ∈ (0, 1) and ε1, ε2 ∈ [0, 1) are selected as functions
of ν with the property that there exists a constant α ∈ (0, 1) independent of ν
such that for every ν ≥ 1:

δ(θ, τ, ε1, ε2, ν) > 0,(4.32a)
θ+(θ, τ, ε1, ε2, ν) is well defined, and θ+(θ, τ, ε1, ε2, ν) ≤ θ,(4.32b)

δ̄(θ, τ, ε1, ε2, ν) ≤ 1 − α

ν1/2
.(4.32c)

We now give the main result regarding the worst-case complexity of Algorithm
Short step.

Theorem 4.10. Let F be a ν-self-concordant barrier for the cone K in (3.1).
Let θ, τ ∈ (0, 1) and ε1, ε2 ∈ [0, 1) vary with ν in such a way that for some constant
α > 0, they satisfy conditions (4.32a)–(4.32c) for all ν ≥ 1. Suppose that the initial
primal-dual iterate lies in N (θ), and that for all primal iterates xk, F1(xk) and F2(xk)
satisfy the inequalities in (4.1) and (4.2). Then for any ε > 0, an ε-optimal solution
to (3.1)–(3.2) is obtained in a polynomial number (in ν and log(μ0/ε)) of iterations.
Specifically, given ε > 0, there exists a number k∗ = O(ν1/2 log(μ0/ε)) such that
k ≥ k∗ implies μk ≤ ε.

Proof. Since (4.32a) and (4.32b) hold, and the starting iterate lies in N (θ), it
follows from Lemma 4.9 that all iterates generated by Iteration Short step lie in N (θ).
In fact, for each k, they remain in N (θ) restricted to the set S(μk) := {(x,w, s) : 0 ≤
μ ≤ μk}. Now from Lemma 4.6 the ratio of successive duality measures μk+1/μk is
bounded above by the constant δ̄, which by (4.32c) is bounded away from 1. Hence
μk → 0+ and all limit points of the sequence {(xk, wk, sk)} lie in N (θ) restricted to
the set S(limk μk) = S(0), which is the primal-dual optimal solution set. Now the
particular bound on δ̄ in (4.32c) implies that μk+1 ≤ (1− α/ν1/2)μk for k = 0, 1, . . . .
Our polynomial iteration bound is readily obtained from this inequality. Specifically,
if k ≥ � 1

αν
1/2 log(μ0/ε)�, then μk ≤ ε.

Remark 4.11. A tradeoff exists between the distance from a given quadruple
(θ, τ, ε1, ε2) to the boundary of the set of quadruples satisfying (4.32a)-(4.32b), and
the largest possible α in (4.32c). Given θ and τ , it is natural to want to choose ε1 and
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Fig. 4.1. Plot of the slacks in conditions (4.32a), (4.32b), and (4.32c), for α = 10−4, θ = 0.1,
τ = 1 − 0.02ν−1/2, ε1 = 0.015ν−1/2, and ε2 = 0.035.

ε2 as large as possible. This reduces α, which according to the proof of Theorem 4.10,
increases the order constant in the complexity of the algorithm.

It remains to verify that Theorem 4.10 is not vacuous, i.e., that there exists some
α ∈ (0, 1) and (possibly ν-dependent) values θ, τ ∈ (0, 1) and ε1, ε2 ∈ [0, 1), such that
inequalities (4.32a)–(4.32c) hold for all ν ≥ 1. To that effect, let α = 10−4, θ = 0.1,
τ = 1−0.02ν−1/2, ε1 = 0.015ν−1/2, and ε2 = 0.035. The slack in the three inequalities
(4.32a)–(4.32c) is plotted in Figure 4.1, suggesting that the conditions hold indeed.
(That they hold for arbitrarily large ν can be formally verified with little effort.)

Remark 4.12. The worst-case complexity bound obtained in Theorem 4.10, O(ν1/2

log(μ0/ε)), matches the best worst-case bound currently available for convex optimiza-
tion algorithms, even for linear optimization algorithms that use exact evaluations of
the barrier gradient and Hessian.

Corollary 4.13. Given a family {Kn} of cones, where Kn has dimension n,
and associated barrier functions Fn : int(Kn) → R, if the complexity parameter ν(n)
of Fn is polynomial in n, and if the gradient and Hessian estimates Fn

1 (·) and Fn
2 (·)

can each be computed in a polynomial (in n) number of arithmetic operations, then
Algorithm Short step with (possibly ν-dependent) values of θ, τ , ε1, and ε2 chosen to
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satisfy inequalities (4.32a)–(4.32c), generates an ε-optimal solution in a polynomial
(in n) number of arithmetic operations.

As a special case, Theorem 4.10 provides sufficient conditions on the parameters
θ and τ for polynomiality of Algorithm Short Step under exact evaluation of the
gradient and Hessian of F . Letting α = 10−4 again, it is readily verified that, when
θ = 0.1 is again selected, τ can now be as small as 1 − 0.069ν−1/2, and when the
larger value τ = 1 − 0.02ν−1/2 is maintained, θ can be as large as 0.28, i.e., the size
of the neighborhood of the central path can be significantly increased.

5. Applications. Our results have potential applications in several areas, some
of which we now discuss briefly.

1. Inexactness in computation of the Newton step. Inexactness in the
solution of (3.10) can be reinterpreted as inexactness in the computation of
F ′(x) or F ′′(x). In order to do this, the increment Δx should be defined as
PAΔp, where the columns of PA form a basis for the nullspace of A. Then
the first block equation is automatically satisfied. The value of Δw can be
computed by approximately solving the normal equations using an iterative
method, and Δs can then be determined to satisfy the second block equation.
As a consequence, the only residual is in the third block equation, and this
can be analyzed as a perturbation in F ′(x) or F ′′(x).

2. Optimization over cones with intractable barrier functions. The
well-studied convex optimization problems (linear programming, SDP, SOCP,
etc.) all have barrier functions that can be computed in polynomial time. For
obvious reasons, there is a dearth of literature on optimization over cones with
intractable barrier functions. One notable exception is the universal barrier
function for a cone generated by a Chebyshev system over an interval. This
function has been proven to be the limit of the sequence of barrier functions for
discretizations of the interval [7], and such discretization provides a natural
way to approximate such barrier functions. Our results shed light on the
effects of such approximations on convergence of the inexact algorithm.
An explicit formula for the universal barrier function—which is defined for
any proper cone—is given in [20], but this function and its derivatives are
defined as multidimensional integrals that are intractable except for a few
cones K. Different characterizations of the universal barrier function and
its derivatives, and a possible procedure for estimating these quantities, are
discussed in [27, Chapter 5], and our results in section 4 quantify the effects
of the estimation errors.
For those conic optimization problems in which the cone’s barrier function F
and derivatives F ′ and F ′′ cannot be computed exactly, the use of automatic
differentiation on the approximate function evaluator (defined, for example,
using quadrature), provides another application for our results. Similarly, our
results provide insight into the effects of using finite difference approximations
to the gradient and Hessian of a barrier function.

3. Exploiting structure in the problem. Even for barrier functions where
computation of derivatives is tractable, exact computation is sometimes not
desirable. For example, in SDP there is increasing interest in problems in-
volving large matrices, and forming the Newton system (3.10) can be too
expensive. If in these problems the data matrices have special structure
(for example, block-diagonal matrices plus matrices of small norm), then the
small-norm pieces might be ignored in forming the normal equations. The
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resulting inexactness in the Newton step can again be interpreted as resulting
from a perturbation in F ′(x) or F ′′(x).

6. Conclusion. A simple interior-point method for general conic optimization
was proposed. It allows for inexact evaluation of the gradient and Hessian of the primal
barrier function, and does not involve any evaluation of the dual barrier function or
its derivatives. It was shown that as long as the relative evaluation errors remain
within certain fixed, prescribed bounds, under standard assumptions, an ε-optimal
solution is obtained in a polynomial number of iterations.

Acknowledgments. We are grateful to the referees for helpful comments.

REFERENCES

[1] A. Ben-Tal and A. Nemirovskii, Lectures on Modern Convex Optimization. Analysis, Al-
gorithms, and Engineering Applications, MPS/SIAM Ser. Optim., SIAM, Philadelphia,
2001.
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