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Abstract. In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems
theory around typical singularities. We also establish an interaction between nonsmooth systems
and geometric singular perturbation theory. Such systems are represented by discontinuous vector
fields on R

�, � ≥ 2, where their discontinuity set is a codimension one algebraic variety. By means of
a regularization process proceeded by a blow-up technique we are able to bring about some results
that bridge the space between discontinuous systems and singularly perturbed smooth systems. We
also present an analysis of a subclass of discontinuous vector fields that present transient behavior
in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for
our systems to have local asymptotic stability.
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1. Introduction. The purpose of this article is to present some aspects of the geometric
theory of a class of nonsmooth systems. Our main concern is understanding the dynamics
of such systems by means of tools in the geometric singular perturbation theory. Many
similarities between such fields were observed, and a comparative study of the two categories
is called for. The main task for the future is to bring the theory of nonsmooth dynamical
systems to a maturity similar to that of smooth systems. Needless to say, geometric singular
perturbation theory is an important tool in the field of continuous dynamical systems, of
which very good surveys are available (see [6, 7, 9]). The techniques of geometric singular
perturbation theory can be used to obtain information on the dynamics of the nonsmooth
system, mainly in searching minimal sets.

The study of nonsmooth dynamical systems has in recent years established an important
bridge between Mathematics, Physics, and Engineering. The book [5] presents motivating
models that arise in the occurrence of impact motion in impact systems as well as switchings
in electronic systems and hybrid dynamics in control systems. For a survey on qualitative

∗Received by the editors April 30, 2008; accepted for publication (in revised form) by H. Kokubu December 17,
2008; published electronically March 18, 2009.

http://www.siam.org/journals/siads/8-1/72288.html
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aspects of such systems we refer the reader to [14] and references therein. In many appli-
cations examples of nonsmooth systems where the discontinuities are located on algebraic
varieties are available (see, for example, [1, 2]). See, for instance, the system represented by
ẍ+x sign(x)+ sign(ẋ) = 0. Concerning theoretical results on this subject we refer the reader
to [3, 12]. This paper is mainly motivated by such issues. It is worthwhile to point out that
in [4] and [10] preceding results were established in two dimensions and three dimensions,
respectively, when the discontinuity set is a codimension one submanifold.

Let X be a nonsmooth vector field in R
l, and denote by S its discontinuity set. First we

focus our attention on the flow (determined by the orbits of X tending to S) that is tangent
to S, which is denominated the sliding mode. It appears when the flow of X across S and
points “inward” cannot leave such a surface.

Now we address the discussion to a more general context. Let U ⊆ R
�, � ≥ 2, be an open

set with 0 ∈ U . Let S = S1
⋃ S2, where S1 and S2 are codimension one submanifolds of U

with 0 ∈ S1 ∩S2 that are in general position. Around 0 ∈ U we have that S1 ∪S2 separates U
into four open quadrants: M1, . . . ,M4. In our approach S will be the discontinuity boundary
of our systems, also named the switching variety.

Let Xi, i = 1, . . . , 4, be Cκ vector fields, with κ � 1, κ = ∞, or κ = ω, defined on
U . We are concerned with the behavior of the sliding mode generated from a discontinuous
differential system expressed by

(1.1) ż = X(z) = Xi(z), z ∈Mi, i = 1, . . . , 4.

We will denote these systems byX = (X1, . . . ,X4) ∈ Ωκ
1234(U) and the intersection Mi∩Mj

by Sij.
Throughout the paper we consider local coordinates (x1, x2, . . . , x�) such that S1 = S14 ∪

S23 = {x2 = 0}, S2 = S12 ∪ S34 = {x1 = 0}, and

M1 = {x1 > 0, x2 > 0}, M2 = {x1 < 0, x2 > 0},
M3 = {x1 < 0, x2 < 0}, M4 = {x1 > 0, x2 < 0}.

Denote by S∗ = S \ (S1 ∩ S2) the regular part of S. In S∗ the definition of an orbit-
solution obeys, whenever possible, the Filippov convention (see [8]). Consider Mi and Mj ,
i �= j, having a common boundary. According to this convention there may exist generically a
sliding region Ssl ⊂ S∗ such that any orbit which meets Ssl remains tangent to S∗ for positive
time. This region is the part of S∗ on which Xi and Xj point inward to S∗. Analogously
there may exist generically an escaping region Ses ⊂ S∗ such that any orbit which meets Ses
remains tangent to S∗ for negative time.

On Ssl ⋃ Ses the flow slides on S∗; the flow follows a well-defined vector field XS called
the sliding vector field. See Figure 1. The sewing region Ssw ⊂ S∗ is the part of S∗ where
the flow crosses S∗. The boundary between the three regions is the locus of points where the
vector field is tangent to S∗ and the flow grazes the switching surface. In our context such
points together with the critical points of XS and S1 ∩ S2 constitute the set of singularities
of X.

We remark that outside the three above-mentioned open regions (grazing regions), non-
uniqueness of solutions is allowed, and the setting of local qualitative analysis has successfully
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Figure 1. Boundary of four regions and the sliding vector field.

been the object of many studies. In the specific topic addressed in this paper the situation
may be even more complicated since we want to study the dynamics of the vector field X
around the origin. Alexander and Seidman in [1, 2] established a discussion of such a situation
by using two mechanisms termed blending and hysteresis. Our approach is closest in spirit to
the works [4] and [10], and one of our concerns is to know when a sliding flow in S∗ can be
continued until the intersection S1 ∩S2. In addition, we also present some applications of the
techniques developed in [4] and [10] for analyzing the behavior of the so-called transient flow
around 0.

We begin by explaining the main concepts with a concrete example before discussing the
general result of this setting.

Example. Consider U ⊆ R
3, an open set with 0 ∈ U and X = (X1, . . . ,X4) ∈ Ωκ

1234(U).
We denote Xi = (fi, gi, hi), i = 1, . . . , 4. Suppose that f1 < 0, g1 < 0; f2 > 0, g2 < 0; f3 > 0,
g3 > 0; and f4 < 0, g4 > 0. This means that all vector fields point inward to the intersecting
switching curve Σ = S1 ∩S2 = {(0, 0, x3)}. It is natural to extend the definition of the sliding
vector field to this set. A possible sliding vector field is a convex combination of X1, X2, X3,
and X4. We denote this combination by

XΣ
λ1,...,λ4

= λ1X1 + · · · + λ4X4,
i=4∑
i=1

λi = 1.

If

rank

⎡⎣ f1(0) f2(0) f3(0) f4(0)
g1(0) g2(0) g3(0) g4(0)

1 1 1 1

⎤⎦ = 3,

then there exists an open set 0 ∈ U ⊆ R
3 such that for any (0, 0, x3) ∈ U the set{

λ ∈ R
4;

i=4∑
i=1

λi = 1, XΣ
λ1,...,λ4

(0, 0, x3) ∈ Σ

}

is a nonempty set with dimension one in R
4. Clearly we face here an ambiguity situation, and

naturally some questions arise. For example, What is required to avoid such ambiguity?, or
How about the dynamics of smooth systems nearby X?
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Let X = (X1, . . . ,X4) ∈ Ωκ
1234(U). Summarizing, in what follows we give a rough overall

description of the main results of this paper.
(a) There exist four curves

{γi(ψ, x1, ρ) = 0} , {αi(θ, x2, ρ) = 0} , i = 1, 2,

with θ, ψ ∈ [0, π], x1, x2 ∈ R, ρ ∈ R
�−2, and such that the sliding region Ssl ⋃ Ses on the

regular part S∗ is homeomorphic to one of them. Moreover, the sliding vector field XS is
topologically equivalent to one of the following reducing problems:

γi(ψ, x1, ρ) = 0, ẋ1 = δi(ψ, x1, ρ), ρ̇ = νi(ψ, x1, ρ)

or
αi(θ, x2, ρ) = 0, ẋ2 = βi(θ, x2, ρ), ρ̇ = σi(θ, x2, ρ).

See Theorem 2.2(a), (b).
(b) For � ≥ 3 there exists a differential system

ζ(θ, ψ, ρ) = 0, ξ(θ, ψ, ρ) = 0, ρ′ = φ(θ, ψ, ρ),

which extends the concept of the Filippov system for the case S1 ∩ S2. See Theorem 2.2(c).
(c) For � = 2, X1 = X3, and X2 = X4, the flow of the regular vector fields which approach

X = (X1,X2,X1,X2) in the transient case is described. See Proposition 5.4.

2. Preliminaries and statement of results. In this section basic concepts and the main
result of the paper are presented.

The sliding vector field XS is defined at q ∈ Skj ∩ (Ssl ⋃ Ses) by XS(q) = m − q, with
m being the point where the segment joining q +Xk(q) and q +Xj(q) cuts Skj. In previous
works (see [4, 10, 11]) it was shown that if p = (x1, . . . , x�) ∈ S1∪S2 and x2

1 +x2
2 �= 0, then the

sliding vector field on a neighborhood V of p can be studied via singular perturbation theory.
Suppose that p = (0, x2, . . . , x�) ∈ S12, X = X1 = (f1, g1) ∈ R × R

�−1 if x1 > 0,
X = X2 = (f2, g2) ∈ R × R

�−1 if x1 < 0, and f1(p) · f2(p) �= 0.
Definition 2.1. A C∞-function ϕ : R −→ R is a transition function if ϕ(s) = −1 for

s � −1, ϕ(s) = 1 if s � 1, and ϕ′(s) > 0 if s ∈ (−1, 1).
The ϕx2-regularization of X is the one-parameter family given by

(2.1) X12
ε = (1/2) [(1 + ϕ(x1/ε))X1 + (1 − ϕ(x1/ε))X2]

for x2 > 0, ε > 0.
Consider, around the point p, the surface composed by the union of M1 ∩V, M2 ∩V, and

Ŝ12 = {(θ, ρ) : θ ∈ (0, π), ρ = (x2, . . . , x�) ∈ S12∩V}. We denote M = (M1∩V)∪Ŝ12∪(M2∩V)
and remark that the set {(0, ρ) : ρ ∈ S12∩V} has two distinct copies: ∂(M1∩V) and ∂(M2∩V).

The blow-up process is the change of coordinates x1 = r cos θ, ε = r sin θ. It induces a
smooth vector field on M whose trajectories coincide with those of X1 on M1, of X2 on M2,
and of a singular perturbation problem on Ŝ12 described by

(2.2) θ′ = α(r, θ, ρ), ρ′ = rβ(r, θ, ρ),
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Figure 2. The open set V and the set M.

Figure 3. Fast and slow dynamics with the slow manifold connecting two folds.

with r ≥ 0, θ ∈ (0, π), ρ ∈ S12 ∩ V, and α and β of class Cκ. We remark that the functions
α(r, θ, ρ) and β(r, θ, ρ) are given by

α = − sin θ
[
f1 + f2

2
+ ϕ (cot θ)

f1 − f2

2

]
, β =

g1 + g2
2

+ ϕ (cot θ)
g1 − g2

2
,

with the functions fi, gi, i = 1, 2, depending on (r cos θ, ρ). See Figures 2 and 3.
Clearly in a neighborhood of 0 ∈ R

� we have two singular perturbation problems, SP1
and SP2, defined on the sets r ≥ 0, θ ∈ (0, π) for ρ ∈ S12, and for ρ ∈ S34, respectively.
Moreover, another two singular perturbation problems, SP3 and SP4, defined on the sets
u ≥ 0, ψ ∈ (0, π) for η ∈ S14, and for η ∈ S23, respectively, still occur. Our main result is the
following.

Theorem 2.2. Consider X = (X1, . . . ,X4) ∈ Ωκ
1234(U). There exist a neighborhood V ⊆ U

of 0 and the following singular perturbation problems defined at 0 ∈ R
�:

θ′ = αi(r, θ, x2, ρ), x2
′ = rβi(r, θ, x2, ρ), ρ′ = rσi(r, θ, x2, ρ), i = 1, 2;(2.3)

ψ′ = γi(u, ψ, x1, ρ), x1
′ = uδi(u, ψ, x1, ρ), ρ′ = uνi(u, ψ, x1, ρ), i = 1, 2;(2.4)

and

(2.5) uψ′ = rζ(r, u, θ, ψ, ρ), θ′ = ξ(r, u, θ, ψ, ρ), ρ′ = rφ(r, u, θ, ψ, ρ)
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with r, u ≥ 0, θ, ψ ∈ [0, π], (x1, x2, ρ) ∈ V, ρ = (x3, . . . , x�). Moreover, αi, βi, σi, γi, δi, νi, ζ,
ξ, and φ are of class Cκ for i = 1, 2 and satisfying the following:

(a) The sliding region (Ssl⋃Ses)∩S1 is homeomorphic to the slow manifold {γi(0, ψ, x1, ρ)
= 0} \ Zψ = {ψ = 0, π} of (2.4), with i = 1 at Ŝ14 and with i = 2 at Ŝ23. The sliding
vector field XS is topologically equivalent to the reduced problem γi(0, ψ, x1, ρ) = 0,
ẋ1 = δi(0, ψ, x1, ρ), and ρ̇ = νi(0, ψ, x1, ρ).

(b) The sliding region (Ssl⋃Ses)∩S2 is homeomorphic to the slow manifold {αi(0, θ, x2, ρ)
= 0} \ Zθ = {θ = 0, π} of (2.3), with i = 1 at Ŝ12 and with i = 2 at Ŝ34. The sliding
vector field XS is topologically equivalent to the reduced problem αi(0, θ, x2, ρ) = 0,
ẋ2 = βi(0, θ, x2, ρ), and ρ̇ = σi(0, θ, x2, ρ).

(c) The singular perturbation (2.5) is the blowing up of the regularization of the systems
(2.3) for i = 1, 2. The slow manifold is given by SM1 = {ζ(0, 0, θ, ψ, ρ) = 0}. Further-
more, for � ≥ 3, the slow flow is the limit, for r, u ↓ 0, of the trajectories of another
singular perturbation expressed by

(2.6) rθ̇ = ξ(r, u, θ, ψ, ρ), ρ̇ = φ(r, u, θ, ψ, ρ).

The slow manifold of (2.6) is the set on R
� given by

SM2 = {ξ(0, 0, θ, ψ, ρ) = 0, ζ(0, 0, θ, ψ, ρ) = 0} ⊆ SM1.

In section 3 we focus on the concept of regularization discussed above, and we prove
Theorem 2.2. The sets given by αi(0, θ, x2, ρ) = 0, γi(0, ψ, x1, ρ) = 0, and ζ(0, 0, θ, ψ, ρ) = 0
are called slow manifolds, and they will be denoted by SM . We say that a slow manifold is
nontrivial if it is not contained in Z = {θ = 0, π} ∪ {ψ = 0, π}.

p

M1

M1

OXϕX1(t1, p)

ϕX1(t2, p)

OY

M2

M2

Figure 4. Transient vector fields around 0.

Let X = (X1,X2) ∈ Ωk
1234(U) be a vector field belonging to the class Ωk

12(U) of dis-
continuous vector fields satisfying X3 = X1 and X4 = X2. In section 5 we provide sufficient
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conditions for the local asymptotic stability. Finally, in section 5 we study systems in this class
that present a transient behavior. See section 5 for a precise definition. For an illustration
see Figure 4.

3. Proof of Theorem 2.2. First we introduce some basic definitions. Consider a transition
function ϕ.

(a) The ϕx2-regularization of X is the one-parameter family given by

(3.1) X12
ε = (1/2) [(1 + ϕ(x1/ε))X1 + (1 − ϕ(x1/ε))X2]

for x2 > 0, ε > 0, and

(3.2) X43
ε = (1/2) [(1 + ϕ(x1/ε))X4 + (1 − ϕ(x1/ε))X3]

for x2 < 0, ε > 0.
(b) The ϕx1-regularization of X is the one-parameter family given by

(3.3) X14
a = (1/2) [(1 + ϕ(x2/a))X1 + (1 − ϕ(x2/a))X4]

for x1 > 0, a > 0, and

(3.4) X23
a = (1/2) [(1 + ϕ(x2/a))X2 + (1 − ϕ(x2/a))X3]

for x1 < 0, a > 0.
Denote

ϑ+
ij =

ϑi + ϑj
2

, ϑ−ij =
ϑi − ϑj

2
, λ(z) = ϕ(cot(z)), Sα = − sinα,

and

ϑ∗	◦abcd =
ϑa ∗ ϑb � ϑc ◦ ϑd

4
,

where ∗, �, ◦ ∈ {+,−}.
Let ϕ : R −→ R be a transition function. We remark that the mapping λ : [0, π] −→ R

given by λ(θ) = ϕ(cot θ) for 0 < θ < π, λ(0) = 1, and λ(π) = −1 is a nonincreasing smooth
function which is strictly decreasing for π

4 < θ < 3π
4 .

Proof of Theorem 2.2. For simplicity we suppose that � = 3, and we write Xi = (fi, gi, hi),
i = 1, . . . , 4. Denote by X1

r , X
2
r the equations of (3.1) and (3.2), respectively, after the

coordinate change ε = r sin θ, x1 = r cos θ. Let Xr
1 and Xr

2 be these equations after the time
rescaling t = rτ . Let X3

r , X
4
r be the systems given by (3.3) and (3.4) now written in the

coordinates a = u sinψ, x2 = u cosψ. Represent by Xr
3 , Xr

4 those systems after the time
rescaling t = uτ . Thus Xr

i , i = 1, 2, are the vector fields corresponding to the differential
systems (2.3), given in Theorem 2.2, on Ŝ12 and on Ŝ34, respectively. Analogously, Xr

i , i = 3, 4,
are the vector fields corresponding to the differential systems (2.4), given in Theorem 2.2, on
Ŝ14 and on Ŝ23, respectively. See the equations in Table 1 and a diagram with the local vector
fields in the blowing-up locus in Figure 5.
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Table 1
The equations of the regularizations.

X1
r

⎧⎪⎨⎪⎩
rθ̇ = Sθ

(
f+
12 + λ(θ)f−

12

)
ẋ2 = g+

12 + λ(θ)g−12
ẋ3 = h+

12 + λ(θ)h−
12

X2
r

⎧⎪⎨⎪⎩
rθ̇ = Sθ

(
f+
43 + λ(θ)f−

43

)
ẋ2 = g+

43 + λ(θ)g−43
ẋ3 = h+

43 + λ(θ)h−
43

X3
r

⎧⎪⎨⎪⎩
uψ̇ = Sψ

(
g+
14 + λ(ψ)g−14

)
ẋ1 = f+

14 + λ(ψ)f−
14

ẋ3 = h+
14 + λ(ψ)h−

14

X4
r

⎧⎪⎨⎪⎩
uψ̇ = Sψ

(
g+
23 + λ(ψ)g−23

)
ẋ1 = f+

23 + λ(ψ)f−
23

ẋ3 = h+
23 + λ(ψ)h−

23

Xr
1

⎧⎪⎨⎪⎩
θ′ = Sθ

(
f+
12 + λ(θ)f−

12

)
x′

2 = r
(
g+
12 + λ(θ)g−12

)
x′

3 = r
(
h+

12 + λ(θ)h−
12

) Xr
2

⎧⎪⎨⎪⎩
θ′ = Sθ

(
f+
43 + λ(θ)f−

43

)
x′

2 = r
(
g+
43 + λ(θ)g−43

)
x′

3 = r
(
h+

43 + λ(θ)h−
43

)
Xr

3

⎧⎪⎨⎪⎩
ψ′ = Sψ

(
g+
14 + λ(ψ)g−14

)
x′

1 = u
(
f+
14 + λ(ψ)f−

14

)
x′

3 = u
(
h+

14 + λ(ψ)h−
14

) Xr
4

⎧⎪⎨⎪⎩
ψ′ = Sψ

(
g+
23 + λ(ψ)g−23

)
x′

1 = u
(
f+
23 + λ(ψ)f−

23

)
x′

3 = u
(
h+

23 + λ(ψ)h−
23

)

1

3

2

4

0
34

0

0

0

1

2

00

0

X X

X

X

X

X

X

X

X

ψ

π

π
θ

Figure 5. Local vector fields in the blowing-up locus.

Since the proofs of the cases (a) and (b) are similar, we will prove only (b) for x2 > 0.
The slow manifold for θ ∈ (0, π) is implicitly determined by the equation f+

12 + λ(θ)f−12 = 0.
We have that f−12 = 0 if and only if f1(0, x2, x3) = f2(0, x2, x3).

We denote f(x1, x2, x3) and f(r, θ, x2, x3) before and after the blow-up, respectively. If
(0, θ, x2, x3) ∈ (Ssl ⋃ Ses), then the vector fields point inward or outward. This implies that

f1(0, θ, x2, x3).f2(0, θ, x2, x3) < 0.

Thus we have that f−12(0, θ, x2, x3) �= 0 for any θ ∈ (0, π), (0, x2, x3) ∈ (Ssl ⋃ Ses). Since

f+
12

f−12
= ±1 ⇒ f1.f2 = 0,

we have

−1 < −f
+
12(0, θ, x2, x3)
f−12(0, θ, x2, x3)

< 1
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for all (0, θ, x2, x3) ∈ (Ssl⋃Ses). Moreover, the inverse of the restriction λ|(π
4
, 3π

4
) is increasing

on (−1, 1), and the equation f+
12 + λ(θ)f−12 = 0 defines a continuous graphic contained in{

(θ, x2, x3) | x2 ∈ R, x3 ∈ R, θ ∈
(
π

4
,
3π
4

)}
.

In accordance with the definition of XS , we have that XS = X1 +k(X2−X1) with k ∈ R such
that X1(x1, x2, x3) + k(X2 −X1)(x1, x2, x3) = (0, y2, y3) for some y2, y3. Thus it is easy to see
that XS is given by XS =

(
0, f1g2−f2g1f1−f2 , f1h2−f2h1

f1−f2
)
. The reduced problem is then represented

by ẋ2 = g+
12 + λ(θ)g−12, ẋ3 = h+

12 + λ(θ)h−12 under the restriction λ(θ) = − f+
12

f−12
. Then we must

have ẋ2 = f1g2−f2g1
f1−f2 , ẋ3 = f1h2−f2h1

f1−f2 . It follows immediately that the flows of XS and the
reduced problem are equivalent.

To prove case (c) we consider the ϕx1-regularization of Xr
1 and Xr

2 :

(3.5) X1r ,2r

a

⎧⎪⎨⎪⎩
θ′ = Sθ

(
f+++
1234 + λ(θ)f−+−

1243 + ϕ(x2/a)f+−−
1234 + ϕ(x2/a)λ(θ)f−−+

1243

)
,

x′2 = r
(
g+++
1234 + λ(θ)g−+−

1243 + ϕ(x2/a)g+−−
1234 + ϕ(x2/a)λ(θ)g−−+

1243

)
,

x′3 = r
(
h+++

1234 + λ(θ)h−+−
1243 + ϕ(x2/a)h+−−

1234 + ϕ(x2/a)λ(θ)h−−+
1243

)
.

The equations of the equivalent system with a = u sinψ, x2 = u cosψ are

(3.6)

⎧⎪⎨⎪⎩
θ′ = Sθ

(
f+++
1234 + λ(θ)f−+−

1243 + λ(ψ)f+−−
1234 + λ(ψ)λ(θ)f−−+

1243

)
,

uψ′ = rSψ
(
g+++
1234 + λ(θ)g−+−

1243 + λ(ψ)g+−−
1234 + λ(ψ)λ(θ)g−−+

1243

)
,

x′3 = r
(
h+++

1234 + λ(θ)h−+−
1243 + λ(ψ)h+−−

1234 + λ(ψ)λ(θ)h−−+
1243

)
.

By means of the time rescaling τ = us we get (keeping the notation θ′, ψ′, x′3 for simplicity)

(3.7)

⎧⎪⎨⎪⎩
θ′ = uSθ

(
f+++
1234 + λ(θ)f−+−

1243 + λ(ψ)f+−−
1234 + λ(ψ)λ(θ)f−−+

1243

)
,

ψ′ = rSψ
(
g+++
1234 + λ(θ)g−+−

1243 + λ(ψ)g+−−
1234 + λ(ψ)λ(θ)g−−+

1243

)
,

x′3 = r
(
h+++

1234 + λ(θ)h−+−
1243 + λ(ψ)h+−−

1234 + λ(ψ)λ(θ)h−−+
1243

)
.

Thus we have

ξ(r, u, θ, ψ, x3) = Sθ
(
f+++
1234 + λ(θ)f−+−

1243 + λ(ψ)f+−−
1234 + λ(ψ)λ(θ)f−−+

1243

)
,

ζ(r, u, θ, ψ, x3) = Sψ
(
g+++
1234 + λ(θ)g−+−

1243 + λ(ψ)g+−−
1234 + λ(ψ)λ(θ)g−−+

1243

)
,

and
φ(r, u, θ, ψ, x3) = h+++

1234 + λ(θ)h−+−
1243 + λ(ψ)h+−−

1234 + λ(ψ)λ(θ)h−−+
1243 .

We define the slow system (u = 0 at (3.6)) and the fast system (divide by r and u = 0 at
(3.7)) at (x1, x2, x3) = (0, 0, x3), respectively, by

(3.8) XS
00

⎧⎨⎩
0 = Sψ

(
g+++
1234 + λ(θ)g−+−

1243 + λ(ψ)g+−−
1234 + λ(ψ)λ(θ)g−−+

1243

)
,

θ′ = Sθ
(
f+++
1234 + λ(θ)f−+−

1243 + λ(ψ)f+−−
1234 + λ(ψ)λ(θ)f−−+

1243

)
,

x′3 = 0
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and

(3.9) XF
00

⎧⎨⎩
ψ′ = Sψ

(
g+++
1234 + λ(θ)g−+−

1243 + λ(ψ)g+−−
1234 + λ(ψ)λ(θ)g−−+

1243

)
,

θ′ = 0,
x′3 = 0.

This finishes the proof.
Next the results of the theorem are illustrated.
Example 1. Consider X1(x1, x2) = (−1,−1), X2(x1, x2) = (2,−1), X3(x1, x2) = (4, 5),

and X4(x1, x2) = (−2, 3). The trajectories of X1
0 are the solutions of the reduced problem

Sθ
(

1
2 − 3

2λ(θ)
)

= 0, ẋ2 = −1, where Sθ = − sin θ. The slow manifold is the curve θ = θ0
with λ(θ0) = 1/3, and the slow flow points to region x2 < 0. The fast vector field is (θ′, 0)
with θ′ < 0 for θ > θ0 and θ′ > 0 for θ < θ0. The trajectories of X2

0 are the solutions of the
reduced problem Sθ (1 − 3λ(θ)) = 0, ẋ2 = 4 − λ(θ). The slow manifold is the curve θ = θ0
with λ(θ0) = 1/3, and since 4− λ(θ) > 0 for θ ∈ (0, π), the slow flow points to region x2 > 0.
The fast vector field is (θ′, 0) with θ′ < 0 for θ > θ0 and θ′ > 0 for θ < θ0. The trajectories of
X3

0 are the solutions of the reduced problem Sψ (1− 2λ(ψ)) = 0, ẋ1 = −3
2 + 1

2λ(ψ). The slow
manifold is the curve ψ = ψ0 with λ(ψ0) = 1/2, and since ẋ1 < 0 for ψ ∈ (0, π), the slow flow
points to region x1 < 0. The fast vector field is (ψ′, 0) with ψ′ > 0 for ψ < ψ0 and ψ′ < 0 for
ψ > ψ0. The trajectories of X4

0 are the solutions of the reduced problem Sψ (2 − 3λ(ψ)) = 0,
ẋ1 = 3− λ(ψ). The slow manifold is the curve ψ = ψ1 with λ(ψ1) = 2/3, and since ẋ1 > 0 for
ψ ∈ (0, π), the slow flow points to region x1 > 0. The fast vector field is (ψ′, 0) with ψ′ > 0
for ψ < ψ1 and ψ′ < 0 for ψ > ψ1. The trajectories of X00 are the solutions of the reduced
problem Sψ

(
3
2 − 1

2λ(θ)− 5
2λ(ψ) + 1

2λ(ψ)λ(θ)
)

= 0, θ′ = Sθ
(

3
4 − 9

2λ(θ)− 1
4λ(ψ) + 3

4λ(ψ)λ(θ)
)
.

The slow manifold is the curve 3
2 − 1

2λ(θ)− 5
2λ(ψ)+ 1

2λ(ψ)λ(θ) = 0, which connects the points
(θ, ψ) = (0, ψ0) and (θ, ψ) = (π, ψ1) with λ(ψ0) = 1/2 and λ(ψ1) = 2/3. In fact, if θ = 0,
then λ(θ) = 1, and 3

2 − 1
2λ(θ) − 5

2λ(ψ) + 1
2λ(ψ)λ(θ) = 0 implies λ(ψ) = 1

2 , and if θ = π,
then λ(θ) = −1, and 3

2 − 1
2λ(θ) − 5

2λ(ψ) + 1
2λ(ψ)λ(θ) = 0 implies λ(ψ) = 2

3 . Observe that
3
2 − 1

2λ(θ) − 5
2λ(ψ) + 1

2λ(ψ)λ(θ) = 0 implies θ′ = Sθ
4(λ(θ)−5) (−15λ2(θ) + 83λ(θ) − 12). There

exists a unique α = 83
30 − 1

30

√
6169 ∈ (−1, 1) such that −15α2 + 83α− 12 = 0. Furthermore, if

λ < α, then −15λ2 + 83λ− 12 < 0, and if λ > α, then −15λ2 + 83λ− 12 > 0. So there exists
a unique θ∗ ∈ (π4 ,

3π
4 ) such that λ(θ∗) = α and

0 < θ < θ∗ ⇒ λ(θ) > λ(θ∗) ⇒ θ′ > 0

and
θ > θ∗ ⇒ λ(θ) < λ(θ∗) ⇒ θ′ < 0.

Moreover, λ(θ0) = 1/3 and θ′ > 0 imply that θ0 < θ∗. See Figure 6.
Example 2. Consider X1(x, y) = (−y, x) and X2(x, y) = (1,−1). The trajectories of X1

0

are the solutions of the reduced problem
−y + 1

2
+ λ(θ)

−y − 1
2

= 0, ẏ = −1
2

(1 − λ(θ)) .

The slow manifold is the curve y = y(θ) given by y = 1−λ(θ)
1+λ(θ) . This function is increasing:

lim
θ−→π

4

y(θ) = 0, lim
θ−→ 3π

4

y(θ) = +∞.
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Figure 6. Local vector fields in the blowing-up locus of Example 1.

Since 1 − λ(θ) ≥ 0, we have that ẏ ≤ 0. So the slow flow points to region y < 0. Denote θ(y)
the inverse function of y(θ). The fast vector field is (θ′, 0) with θ′ < 0 for θ(y) < θ < π and
θ′ > 0 for 0 < θ < θ(y). The trajectories of X2

0 are the solutions of the reduced problem

−y + 1
2

+ λ(θ)
y + 1

2
= 0, ẏ = −1

2
(1 + λ(θ)) .

The slow manifold is the empty set. In fact, the right-hand side of y = 1+λ(θ)
−λ(θ)+1 is positive for

θ ∈ (π4 ,
3π
4 ), and here we have y < 0. The fast vector field is (θ′, 0) with θ′ < 0 for 0 < θ < π.

The trajectories of X3
0 are the solutions of the reduced problem

x− 1
2

+ λ(ψ)
x+ 1

2
= 0, ẋ =

1
2

(1 − λ(ψ)) .

The slow manifold is the curve x = x(ψ) given by x = 1−λ(ψ)
1+λ(ψ) . This function is increasing:

lim
ψ−→π

4

x(ψ) = 0, lim
ψ−→ 3π

4

x(ψ) = +∞.

We have ẋ ≥ 0. So the slow flow points to region x > 0. Denote by ψ(x) the inverse function
of x(ψ). The fast vector field is (ψ′, 0) with ψ′ < 0 for 0 < ψ < ψ(x) and ψ′ > 0 for
ψ(x) < ψ < π. The trajectories of X4

0 are the solutions of the reduced problem

x− 1
2

+ λ(ψ)
−x− 1

2
= 0, ẋ =

1
2

(1 + λ(ψ)) .

The slow manifold is the empty set. In fact, the right-hand side of x = 1+λ(ψ)
−λ(ψ)+1 is positive,

and here we have x < 0. The fast vector field is (ψ′, 0) with ψ′ < 0 for 0 < ψ < π. The
trajectories of X00 are the solutions of the reduced problem

−1
2

+ λ(ψ)λ(θ)
1
2

= 0, θ′ =
Sθ
2

(1 − λ(ψ)λ(θ)) .
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The slow manifold is given by the equation λ(ψ)λ(θ) = 1, and the slow flow is θ′ = 0, which
is highly degenerated. The fast vector field is (ψ′, 0) with ψ′ ≤ 0 for 0 < ψ < π. Note that
λ(ψ)λ(θ) = 1 for all (θ, ψ) ∈ ([0, π/4] × [0, π/4]) ∪ ([3π/4, π] × [3π/4, π]). See Figure 7.

Figure 7. Local vector fields in the blowing-up locus of Example 2.

4. Intersecting switching surfaces on R
3. In this section we consider the case � = 3. We

provide sufficient conditions in order for an equilibrium point of the reduced problem (2.6) to
be a local attractor. See previous results in this direction in [12, 13].

In what follows we use the notation

∂(Φ,Ψ)
∂(a, b)

=
∣∣∣∣ Φaa Ψab

Φba Ψbb

∣∣∣∣ .
Proposition 4.1. Consider U ⊆ R

3, an open set with 0 ∈ U and X = (X1, . . . ,X4) ∈
Ωκ

1234(U). Denote Xi = (fi, gi, hi), i = 1, . . . , 4. Let ζ, ψ be the functions which satisfy
ζ = Sθζ and ξ = Sψξ with ζ, ξ, and φ given by (2.5). Let D ⊆ (0, π) × (0, π) × R be an open
neighborhood of (θ0, ψ0, 0). Suppose that ζ(0, 0, θ0, ψ0, 0) = ξ(0, 0, θ0, ψ0, 0) = 0 and that for
(θ, ψ, x3) ∈ D we have

∂(ζ, ξ)
∂(θ, ψ)

> 0,
∂(ζ, ξ)
∂(θ, x3)

< 0,
∂(ζ, ξ)
∂(ψ, x3)

< 0.

Then the slow manifold SM2 is a curve parameterized by (θ(x3), ψ(x3), x3). Moreover, if

φ(θ0, ψ0, 0) = 0,
∂

∂x3
φ(θ0, ψ0, 0) < 0,

then (θ0, ψ0, 0) is an attracting singular point of the reduced system (2.6).
Proof. It is enough to apply the implicit function theorem. The assertions about the

singular point follow the fact that the reduced problem is x′3 = αx3 + · · · with α < 0.
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Example. Consider X = (X1, . . . ,X4) ∈ Ωκ
1234(U) given by X1 = (−1,−1,−x3), X2 =

(2,−3,−x3), X3 = (1, 2,−x3), and X4 = (−3, 1,−x3). System (2.5) takes the form

uψ′ = rSψ(−1
4 + 1

4λ(θ) − 7
4λ(ψ) + 3

4λ(ψ)λ(θ)),
θ′ = Sθ(−1

4 − 7
4λ(θ) + 3

4λ(ψ) + 1
4λ(θ)λ(ψ)),

x′3 = −rx3.

The slow manifold SM1 is given by −1 + λ(θ) − 7λ(ψ) + 3λ(θ)λ(ψ) = 0. This is a surface
parameterized by (θ, ψ(θ), x3) with θ ∈ [0, π]. Moreover, the curve (θ, ψ(θ)) is such that it
connects (θ, ψ) = (0, π/2) to (π, ψ2) with λ(ψ2) = −1/5. The fast vector field is such that
ψ′ > 0 on the upper side and ψ′ < 0 otherwise. The slow manifold SM2 is represented by{ −1 + λ(θ) − 7λ(ψ) + 3λ(θ)λ(ψ) = 0,

−1 − 7λ(θ) + 3λ(ψ) + λ(θ)λ(ψ) = 0.

This curve is parameterized by (θ0, ψ0, x3), x3 ∈ R, with λ(ψ0) = 11−4
√

11
2 and λ(θ0) = 3−√

11
2 .

Since x′3 = −x3, the slow flow on SM2 has an attracting singular point at (θ0, ψ0, 0). See
Figure 8.

0π

π

x1

x1

x2x2

x3
x3

Figure 8. A sequence of slow manifolds SM2 ⊆ SM1.

5. Transient vector fields on R
2. Now we give special attention to the class of discon-

tinuous vector fields that present a transient behavior around the singularity. The following
study program can be considered. Let F : U ⊆ R

2, 0 → R, 0 be a generic Morse C∞-function.
This means that we may take a coordinate system (x1, x2) around (0, 0) such that it takes
either the form (a) F (x1, x2) = x2 or the form (b) F (x, y) = x2 +εy2 with ε = ±1. We denote
by Cκ(U,R2) the set of all vector fields of class Cκ defined on U, with κ � 1, endowed with
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Figure 9. T-type singular points.

the Cκ-topology. Consider X1,X2 ∈ Cκ(U,R2). The idea is to study the following nonsmooth
system in U :

(5.1) X(q) =
{
X1(q) = (f1(q), g1(q)) if F (q) > 0,
X2(q) = (f2(q), g2(q)) if F (q) < 0.

The case (a) was treated in [11]. The case (b) can be seen as a particular case of the
system studied above when ε = −1. In this case we will denote X = (X1,X2) ∈ Ωκ

12(U).
The case when ε = 1 does not deserve to be analyzed. We choose local coordinates such that
M = F−1(0) = {xy = 0}. Thus M1 = {x.y > 0} and M2 = {x.y < 0}. In what follows we
denote by OXi(p) = {ϕXi(t, p), t ∈ R} the orbit of the vector field Xi, i = 1, 2, through the
point p.

Definition 5.1. We say that X = (X1,X2) ∈ Ωκ
12(U), U ⊆ R

2, is a transient vector field
around 0 if, for all p = (x, y) ∈ Mi for some i = 1, 2, there exist t1, t2 ∈ R such that OXi(p)
(i = 1 if xy > 0 or i = 2 if xy < 0) cuts 0X \ {0} and 0Y \ {0} transversally for t = t1
and t = t2, respectively. Moreover, t1t2 < 0, and for any t between t1 and t2 we have that
ϕXi(t, p) ∈Mi.

Definition 5.2. Let A ∈M(2) be a 2×2 real matrix. We say that (0, 0) is a T-type singular
point of A if the Jordan form of A, J(A), is one of the following.

• (focus-type) J(A) =
[ α −β
β α

]
, with α · β �= 0;

• (improper node–type) J(A) = [ α 1
0 α ], with α �= 0 and with the eigenvector ω ∈Mi;

• (saddle- or node-type) J(A) =
[
λ1 0
0 λ2

]
, with λ1 �= λ2 ∈ R and with both eigenvectors

in the same Mi.
See Figure 9.
Proposition 5.3. Let X = (X1,X2) ∈ Ωκ

12(U), U ⊆ R
2, be a transient vector field. If (0, 0)

is a hyperbolic singular point of Xi, i = 1, 2, then (0, 0) is a singular point of the linear vector
field DXi(0, 0) of T type.

Proof. We have that (0, 0) is a saddle or a node or a focus. The transient behavior
of Xi implies that we cannot have orbits on Mi ∪ {(0, 0)} with α-limit or ω-limit equal to
{(0, 0)}. Moreover, if (0, 0) is a saddle or a node, then the stable and unstable manifolds are
on Mi ∪ {(0, 0)}.

Now we introduce some notation. Q1 = {(x, y); x > 0, y > 0}.
• We say that Xi for i = 1, 2 is of Fij type in a neighborhood of (0, 0) if (0, 0) is a focus

or an improper node of Xi. Moreover, the trajectories are positively oriented if j = 1
and negatively oriented if j = 2.
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R11-R21

0θ

ψ

Figure 10. Transient vector field of (R11, R21) type.

• We say that Xi for i = 1, 2 is of Sij type in a neighborhood of (0, 0) if (0, 0) is a
saddle or a node of Xi and the trajectories on Mi are positively oriented if j = 1 and
negatively oriented if j = 2.

• We say that X1 is of R1j type in a neighborhood of (0, 0) if (0, 0) is a regular point of
X1 and X1(0, 0) ∈ Q2 if j = 1 and X1(0, 0) ∈ Q4 if j = 2.

• We say that X2 is of R2j type in a neighborhood of (0, 0) if (0, 0) is a regular point of
X2 and X2(0, 0) ∈ Q1 if j = 1 and X1(0, 0) ∈ Q3 if j = 2.

• We say that (X1,X2) is of (A,B) type if X1 is of A type and X2 is of B type.
Remark. We have 36 possible combinations for X1 and X2. However, we can reduce this

number, observing that some cases can be identified by means of a rotation or a change of sign.
For example, roughly speaking, (F12, F21) can be identified with −(F11, F22), and (S11, F21)
can be identified with Rπ/2(F11, S21). Thus we have the following:

(a) If X1(0, 0) ∈ M2, X2(0, 0) ∈ M1, then, by means of a rotation, X = (X1,X2) is such
that its phase portrait is of (R11, R21) type. See Figure 10.

(b) If |X1(0, 0)|.|X2(0, 0)| = 0 and |X1(0, 0)|2 + |X2(0, 0)|2 �= 0, then X = (X1,X2) is such
that its phase portrait is of (F11, R21), (F11, R22), (S11, R21), or (S11, R22) type. See
Figures 11 and 12.

(c) If |X1(0, 0)|2 + |X2(0, 0)|2 = 0, then X = (X1,X2) is such that its phase portrait is of
(F11, F21), (F11, F22), (F11, S21), (F11, S22), (S11, S21), or (S11, S22) type. See Figures
13, 14, and 15.

Example. Let X = (X1,X2) ∈ Ωk
12(U) be a transient vector field defined on a neigh-

borhood of 0 ∈ U ⊆ R
2. Suppose that X1(0, 0) = (a, b), ab < 0, and X2(0, 0) = (c, d),

with cd > 0. The slow manifold on the blowing-up locus corresponding to x1 > 0, x2 = 0
is Sψ( b+d2 + b−d

2 λ(ψ)) = 0 and on the blowing-up locus corresponding to x1 < 0, x2 = 0 is
Sψ( b+d2 + d−b

2 λ(ψ)) = 0. If we consider bd < 0, we have that − b+d
b−d ∈ (−1, 1), which implies that

there exist ψ1, ψ2 ∈ (π4 ,
3π
4 ) such that the slow manifolds are ψ = ψ1 and ψ = ψ2, respectively.

Finally, the equation of the slow manifold in the intersection is Sψ( b+d2 + b−d
2 λ(θ)λ(ψ)) = 0.

We have that this manifold connects the points (θ, ψ) = (0, ψ1) and (θ, ψ) = (π, ψ2).
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F11-R21

0θ

ψ

F11-R22

0θ

ψ

Figure 11. Transient vector fields of (F11, R21) type and (F11, R22) type.

S11-R21

0θ

ψ

S11-R22

0θ

ψ

Figure 12. Transient vector fields of (S11, R21) type and (S11, R22) type.

Proposition 5.4. Let X = (X1,X2) ∈ Ωk
12(U) be a transient vector field defined on a neigh-

borhood of 0 ∈ U ⊆ R
2. Denote

Ai =
[
ai −bi
bi ai

]
, i = 1, 2,

Bλ =
[

sin(λ1 + λ2) −2 cos λ1 cos λ2

2 sin λ1 sinλ2 − sin(λ1 + λ2)

]
,

and

Cλ =
[ −2 sinλ1 sinλ2 sin(λ1 + λ2)

sin(λ1 + λ2) −2 cos λ1 cos λ2

]
.

(a) If X1(0, 0) = X2(0, 0) = (0, 0), DX1(0, 0) = A1, and DX2(0, 0) = A2, then for b1 > 0,
b2 > 0 the slow manifold is nontrivial and the reduced flow of system (2.5) is singular;
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F11-F21

0θ

ψ

F11-F22

0θ

ψ

Figure 13. Transient vector fields of (F11, F21) type and (F11, F22) type.

F11-S21

0θ

ψ

F11-S22

0θ

ψ

Figure 14. Transient vector fields of (F11, S21) type and (F11, S22) type.

and for b1 > 0, b2 < 0, and a1 �= a2 the slow manifold is nontrivial and the slow flow
has a singular point.

(b) If X1(0, 0) = X2(0, 0) = (0, 0), DX1(0, 0) = A1, and b1 > 0, 0 < λ1 < λ2 < π/2, then
for DX2(0, 0) = Bλ the slow manifold is nontrivial and the reduced flow of system (2.5)
is singular; and for DX2(0, 0) = −Bλ the slow manifold is nontrivial and the slow flow
has not only singular points. Moreover, if 2a1 sin(λ1) sin(λ2) > b1 sin(λ1 + λ2), then
the slow flow has a singular point.

(c) If X1(0, 0) = X2(0, 0) = (0, 0), DX1(0, 0) = Cλ, 0 < λ1 < λ2 < π/2, and 0 < μ1 <
μ2 < π/2, then for DX2(0, 0) = Bμ the slow manifold is nontrivial and the reduced flow
of system (2.5) is singular; and for DX2(0, 0) = −Bμ the slow manifold is nontrivial
and the slow flow has a part composed only of singular points and another part where
there exists a singular point.

We remark that Ai is the matrix of a linear vector field which has a singular point of
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S11-S21

0θ

ψ

S11-S22

0θ

ψ

Figure 15. Transient vector fields of (S11, S21) type and (S11, S22) type.

focus type at (0, 0), and Bλ and Cλ are the matrices of linear vector fields which have singular
points of saddle type at (0, 0) with eigenvectors (cos λ1, sinλ1) and (cos λ2, sinλ2) in the first
and second quadrants, respectively.

Proof of Proposition 5.4. Suppose that X1 and X2 satisfy the hypothesis of (a). The
equation of the slow manifold is Sψ

2 cos(θ)((b1 + b2) + (b1 − b2)λ(θ)λ(ψ)) = 0. If b1 > 0 and
b2 > 0, then | b1+b2

b1−b2 | > 1. This implies that the nontrivial part of the slow manifold is given
by θ = π/2. Moreover, the slow flow is determined by θ′, which is zero for θ = π/2. If b1 > 0
and b2 < 0, then | b1+b2

b1−b2 | < 1, and thus (b1 + b2) + (b1 − b2)λ(θ)λ(ψ) = 0 defines two smooth
curves. The slow flow has a singular point because θ′ = Sθ cos(θ)(a2 − a1) has a sign change
at θ = π

2 . So (a) is proved.
Suppose now that both X1 and X2 satisfy the hypothesis of (b). The equation of the

slow manifold is Sψ
2 cos(θ)[(b1 + 2Sλ1Sλ2) + (b1 − 2Sλ1Sλ2)λ(θ)λ(ψ)] = 0. If b1 > 0 and

0 < λ1 < λ2 < π/2, then Sλ1Sλ2 > 0. This implies that the nontrivial part of the slow
manifold is given by θ = π/2. Moreover, the slow flow is determined by θ′, which is zero
for θ = π/2. If DX2(0, 0) = −Bλ, then the slow manifold is Sψ

2 cos(θ)[(b1 − 2Sλ1Sλ2) +

(b1 + 2Sλ1Sλ2)λ(θ)λ(ψ)] = 0. Since b1−2Sλ1
Sλ2

b1+2Sλ1
Sλ2

∈ (−1, 1), the equation defines at least two

curves. The slow flow has a singular point because θ′ = Sθ cos(θ)
(2a1Sλ1

Sλ2
+b1Sλ1+λ2

b1+2Sλ1
Sλ2

)
has a

sign change at θ = π
2 . So (b) is proved.

Suppose now that X1 and X2 satisfy the hypothesis of (c). The equation of the slow
manifold is Sψ

2 cos(θ)[(−Sλ1+λ2 + 2Sμ1Sμ2) + (−Sλ1+λ2 − 2Sμ1Sμ2)λ(θ)λ(ψ)] = 0. If 0 < λ1 <
λ2 < π/2 and 0 < μ1 < μ2 < π/2, then −Sλ1+λ2 > 0 and Sμ1Sμ2 > 0. This implies that
the nontrivial part of the slow manifold is given by θ = π/2. Moreover, the slow flow is
determined by θ′, which is zero for θ = π/2. If DX2(0, 0) = −Bμ, then the slow manifold is
Sψ
2 cos(θ)[(−Sλ1+λ2 −2Sμ1Sμ2)+(−Sλ1+λ2 +2Sμ1Sμ2)λ(θ)λ(ψ)] = 0. Since −Sλ1+λ2

−2Sμ1Sμ2

−Sλ1+λ2
+2Sμ1Sμ2

∈
(−1, 1), the equation defines at least two curves. The slow flow has a singular point because
θ′ = Sθ cos(θ)

(−8Sλ1
Sλ2

Sμ1Sμ2−2Sλ1+λ2
Sμ1+μ2

−Sλ1+λ2
+2Sμ1Sμ2

)
has a sign change at θ = π

2 . In fact, observe
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that if
δ =

−8Sλ1Sλ2Sμ1Sμ2 − 2Sλ1+λ2Sμ1+μ2

−Sλ1+λ2 + 2Sμ1Sμ2

⇒ sgn(δ) = −1,

then (c) is proved.

6. Conclusions. In this paper we propose a method of studying the dynamics around the
intersection of codimension one discontinuity submanifolds. Using a regularization process
proceeded by a blow-up, we get a singular perturbation problem. We also consider questions
like transient behavior and asymptotic stability.

Acknowledgment. The authors express their gratitude to the referees for their helpful
comments.
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