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Abstract. For a graph G = (V,E) we consider vertex-k-labellings f : V → {1, 2, . . . , k}
for which the induced edge weighting w : E → {2, 3, . . . , 2k} with w(uv) = f(u) + f(v) is
injective or surjective or both.

We study the relation between these labellings and the number theoretic notions of an
additive basis and a Sidon set, present a new construction for a so-called restricted additive
basis and derive the corresponding consequences for the labellings.

We prove that a tree of order n and maximum degree ∆ has a vertex-k-labelling f
for which w is bijective if and only if ∆ ≤ k = n/2. Using this result we prove a recent
conjecture of Ivančo and Jendrol’ concerning edge-irregular total labellings for graphs that
are sparse enough.

Keywords. Labelling; weighting; additive basis; Sidon set; weak Sidon set; edge irregular
total labelling

1 Introduction

For a finite, simple and undirected graph G = (V,E) we consider labellings f : V →
[1, k] := {1, 2, . . . , k} of the vertex set V using integer labels between 1 and some k ∈ N
such that the induced edge weighting w : E → [2, 2k] with w(uv) := f(u)+f(v) is injective
or surjective or both. If w is injective (surjective, bijective), we call f an edge-injective
(edge-surjective, edge-bijective) vertex-k-labelling.

For a given graph G = (V,E), we denote the maximal k for which G allows an edge-
surjective vertex-k-labelling by s(G) and the minimal k for which G allows an edge-injective
vertex-k-labelling by i(G). If G is of size m and maximum degree ∆ and allows an edge-
injective vertex-k-labelling, then m must be at most the number of possible edge weights
which is 2k−1 = |[2, 2k]| and all ∆ neighbours of a vertex of maximum degree must receive
different labels, i.e.

i(G) ≥ max

{⌈
m+ 1

2

⌉
,∆

}
. (1)

Similarly, if G allows an edge-surjective vertex-k-labelling, then m ≥ 2k − 1 and the at
most k different weights on the edges incident to a vertex of maximum degree together
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with the at most m−∆ further weights must be at least 2k − 1, i.e.

s(G) ≤ min

{⌊
m+ 1

2

⌋
,m+ 1−∆

}
. (2)

Clearly, for ∆ ≤ m+1
2

equality in (1) is equivalent to equality in (2).
Apart from being a natural labelling concept of graphs [5] which we believe to be

interesting on its own right, we have two further main motivations to study such labellings.
The first is that for complete graphs they naturally relate to well-studied number the-

oretic notions. In Section 2, we relate edge-surjective vertex labellings to additive bases.
We present a new construction for a so-called restricted additive basis and derive the con-
sequences concerning the labellings. In Section 3, we relate edge-injective vertex labellings
to Sidon sets.

Furthermore, edge-surjective vertex labellings of graphs can be used to construct so-
called edge-irregular total labellings which were recently introduced by Bača et al. [1]. In
Section 4, we prove that (1) and (2) hold with equality for trees and, in Section 5, we use
this result to establish a conjecture concerning edge-irregular total labellings due to Ivančo
and Jendrol’ [9] for graphs that are sparse enough.

We refer the reader to Gallian’s survey [5] for a wealth of information on labelling
concepts and to Graham and Sloane [6] and Pikhurko [15] who study the relation of the
mentioned number theoretic concepts to harmonious graphs and edge-magic graphs.

2 Edge-surjective vertex labellings and additive bases

An additive basis of order p for a set A of integers is a set B of integers with the property
that every element of A is the sum of p not necessarily distinct elements of B. For example,
Lagrange’s four-squares theorem states that the squares form an additive basis of order
four for the non-negative integers.

If every element of A is the sum of p distinct elements of B, then we call the basis B
strong. Furthermore, following Moser, Pounder, and Riddell [13], if B ⊆ [1, k] is an additive
basis of order 2 for [2, 2k] or a strong additive basis of order 2 for [3, 2k − 1], then we call
the basis B restricted.

The systematic study of additive bases goes back to a question posed by Schur and
investigated by Rohrbach [16]. Clearly, an additive basis B of order 2 for [2, 2k] satisfies(|B|

2

)
+ |B| ≥ 2k − 1, i.e. |B| ≥ 2

√
k + o(

√
k). Complementing this lower bound, already

Rohrbach [16] constructed bases with |B| ≤ 2
√

2
√
k + o(

√
k). Several authors improved

the constants involved in the lower bounds and constructions (cf. [8, 12, 13] and the good
survey in C12 of [7]). The best known lower bound which is relevant for our purposes here
is due to Moser, Pounder, and Riddell [13].

Theorem 1 (Moser, Pounder, and Riddell [13]) For every ε > 0 there is some k1(ε)
such that for every integer k ≥ k1(ε) and every restricted additive basis B ⊆ [1, k] of order
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2 for [2, 2k]

k <

(
1−

(
1

1 + π
2

)2

+ ε

)
|B|2

4
∼= (0.8487 + ε)

|B|2

4
.

For our first result we adapt a construction of a non-restricted basis due to Hämmerer and
Hofmeister [8] to our purposes.

Theorem 2 For every ε > 0 there is some k2(ε) such that for every integer k ≥ k2(ε)
there is a restricted strong additive basis B ⊆ [1, k] of order 2 for [3, 2k − 1] with

k ≥ (1− ε)5

9

|B|2

4
.

Proof: For l, h ∈ N with h ≥ 3l − 2 let d := 10l and

A := [1, 2l + 1] ∪ {3l + 1} ∪ [4l + 1, 5l + 1] ∪ [6l + 1, 7l] ∪ {9l + 1},

Bi := {id+ 2l + i+ 1, id+ 3l + i+ 1, id+ 5l + i+ 1, id+ 9l + i+ 1}
for 1 ≤ i ≤ l − 1,

B :=
l−1⋃
i=1

Bi,

C := [(l − 1)d+ 7l + 1, (l − 1)d+ 9l],

Di := {(l + i)d+ 4l + 1} for 0 ≤ i ≤ h− 2l + 1,

D :=
h−2l+1⋃
i=0

Di,

A′ := [hd+ 1, hd+ 2l + 1] ∪ {hd+ 3l + 1} ∪ [hd+ 4l + 1, hd+ 5l + 1]

∪[hd+ 6l + 1, hd+ 7l + 1],

B′i := {(h− i)d+ 2l + i+ 1, (h− i)d+ 3l + i+ 1, (h− i)d+ 5l + i+ 1,

(h− i)d+ 9l + i+ 1} for 1 ≤ i ≤ l − 1,

B′ :=
l−1⋃
i=1

Bi, and

C ′ := [(h− l)d+ 7l + 2, (h− l)d+ 9l + 1].

See Figure 1 for an illustration of the above sets for l = 3 and h = 10 where a black circle
in the y-th line from the bottom and x-th column from the left corresponds to the integer
x+ (y − 1)d and the white circles indicate the range [1, 2k − 1].
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Figure 1 B for l = 3 and h = 10.

Note that
B := A ∪B ∪ C ∪D ∪ A′ ∪B′ ∪ C ′ ⊆ [1, k]

for k = hd+ 7l+ 1. We will show that every integer x ∈ [3, 2k− 1] = [3, (2h+ 1)d+ 4l+ 1]
is the sum of two distinct elements of B and consider different partly overlapping intervals.

Interval [3, d+ 4l − 1].
All integers in this range are the sum of two distinct elements of A.

Interval [d+ 2l + 3, ld+ 3l + 1].
For every 1 ≤ i ≤ l− 1 the integers in [id+ 2l+ i+ 2, (i+ 1)d+ 2l+ i+ 2] are the sum of
an element of A and an element of Bi.

Interval [(l − 1)d+ 7l + 2, ld+ 6l].
All integers in this range are the sum of an element of A and an element of C.

Interval [ld+ 6l + 1, ld+ 7l].
All integers in this range are the sum of an element of A and the element ld of Bl−1.

Interval [ld+ 6l + 2, ld+ 8l + 1].
All integers in this range are the sum of the element 9l + 1 of A and an element of C.

Interval [ld+ 8l + 2, (2l − 1)d+ 9l + 1].
For 1 ≤ i ≤ l − 1 all integers in [(l + i − 1)d + 8l + 2, (l + i − 1)d + 9l + 2] are the
sum of an element of A and the element (l + i − 1)d + 4l + 1 of Di−1, all integers in
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[(l+ i− 1)d+ 9l+ 3, (l+ i− 1)d+ 9l+ i+ 1] are the sum of the element (l+ i− j − 1)d+
4l + 1 of Di−j−1 and the element jd + 5l + j + 1 of Bj for 1 ≤ j ≤ i − 1, all integers in
[(l+ i−1)d+ 9l+ i+ 2, (l+ i)d+ 4l+ i+ 1] are the sum of an element of Bi and an element
of C, all integers in [(l+ i)d+ 4l+ 2, (l+ i)d+ 6l+ 2] are the sum of an element of A and
an element of Di, all integers in [(l + i)d+ 6l + 3, (l + i)d+ 6l + i+ 1] are the sum of the
element (l+ i− j)d+ 4l+ 1 of Di−j and the element jd+ 2l+ j+ 1 of Bj for 1 ≤ j ≤ i− 1,
and all integers in [(l + i)d + 6l + i + 2, (l + i)d + 8l + i + 2] are the sum of the element
{id+ 9l + i+ 1} of Bi and an element of C.

Interval [(2l − 1)d+ 4l + 2, (h− l + 2)d+ 4l + 1].
Note that A ∪ B ∪ C is a complete set of remainders modulo d. This easily implies that
all integers in this range are the sum of an element of A ∪B ∪ C and an element of D.

Interval [(h− l + 1)d+ 3l + 1, hd+ 2l + 3].
For every 1 ≤ i ≤ l − 1 the integers in [(h− i)d+ 2l + i+ 2, (h− i+ 1)d+ 2l + i+ 2] are
the sum of an element of A and an element of B′i.

Interval [hd+ 2, (h+ 1)d+ 4l + 2].
All integers in this range are the sum of an element of A and an element of A′.

Interval [(h+ 1)d+ 2l + 3, (h+ l)d+ 3l + 1].
For every 1 ≤ i ≤ l − 1 the integers in [(h + i)d + 2l + i + 2, (h + i + 1)d + 2l + i + 2] are
the sum of an element of A′ and an element of Bi.

Interval [(h+ l − 1)d+ 7l + 2, (h+ l)d+ 6l + 1].
All integers in this range are the sum of an element of A′ and an element of C.

Interval [(h+ l)d+ l + 3, (2h− 2l + 3)d+ 7l].
Note that A′ ∪B′ ∪ C ′ is a complete set of remainders modulo d. This easily implies that
all integers in this range are the sum of an element of A′ ∪B′ ∪ C ′ and an element of D.

Interval [(2h− 2l + 2)d+ 2, (2h− l)d+ 9l + 3].
For 1 ≤ i ≤ l− 1 all integers in [(2h− l− i)d+ 9l+ i+ 3, (2h− l− i+ 1)d+ 4l+ i+ 2] are
the sum of an element of B′i and an element of C ′, all integers in [(2h− l − i+ 1)d+ 4l +
2, (2h− l− i+ 1)d+ 6l + 2] are the sum of an element of A′ and an element of Dh−2l−i+1,
all integers in [(2h− l − i+ 1)d+ 6l + 3, (2h− l − i+ 1)d+ 6l + i+ 2] are the sum of the
element (h− l− i+ j + 1)d+ 4l+ 1 of Dh−2l−i+j+1 and the element (h− j)d+ 2l+ j + 1 of
B′j for 1 ≤ j ≤ i, all integers in [(2h− l− i+ 1)d+ 6l+ i+ 3, (2k− l− i+ 1)d+ 8l+ i+ 2 are
the sum of an element of B′i and an element of C ′, all integers in [(2k − l − i+ 1)d+ 8l +
2, (2k − l − i+ 1)d+ 9l + 2] are the sum of an element of A′ and an element of Dh−2l−i+1,
all integers in [(2h− l − i+ 1)d+ 9l + 3, (2h− l − i+ 1)d+ 9l + i+ 2] are the sum of the
element (h− l − i+ j + 1)d+ 4l + 1 of Dh−2l−i+j+1 and the element (h− j)d+ 5l + j + 1
of B′j for 1 ≤ j ≤ i.
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Interval [(2h− l)d+ 7l + 3, (2h− l + 1)d+ 6l + 2].
All integers in this range are the sum of an element of A′ and an element of C ′.

Interval [(2h− l + 1)d+ 3l + 1, 2hd+ 2l + 3].
For every 1 ≤ i ≤ l− 1 the integers in [(2h− i)d+ 2l+ i+ 2, (2h− i+ 1)d+ 2l+ i+ 2] are
the sum of an element of A′ and an element of B′i.

Interval [2hd+ 3, (2h+ 1)d+ 4l + 1].
All integers in this range are the sum of two distinct elements of A′.

Note that

|B| = |A ∪B ∪ C ∪D ∪ A′ ∪B′ ∪ C ′|
= (4l + 2) + (4l − 4) + 2l + (h− 2l + 2) + (4l + 1) + (4l − 4) + 2l

= h+ 18l − 3.

We choose h = 18l which asymptotically minimizes the fraction |B|2
k

= (h+18l−3)2

10hl+7l+1
. For this

choice |B|
2

k
→ 9·4

5
which implies the desired result. 2

In the following corollary we summarize the consequences of the last two results for edge-
surjective vertex labellings of complete graphs.

Corollary 3 For every ε > 0 there is some n(ε) such that

(1− ε)5

9

n2

4
≤ s(Kn) ≤

(
1−

(
1

1 + π
2

)2

+ ε

)
n2

4

for all n ∈ N with n ≥ n(ε).

Proof: Since for every edge-surjective vertex-k-labelling f of Kn = (V,E) the set {f(v) |
v ∈ V } is a restricted additive basis of order 2 for [2, 2k], the upper bound on s(Kn) is
immediate from Theorem 1.

For the lower bound we consider a restricted strong additive basis B ⊆ [1, k] of order 2
for [3, 2k− 1] and a corresponding vertex-k-labelling f of K|B|+2 = (V,E) with B = {f(v) |
v ∈ V } in which two vertices have label 1 and two vertices have label k. Now Theorem 2
implies the desired lower bound. 2

An interesting consequence of Corollary 3 is the existence of quite dense graphs which are
of order n and size (1−o(1))5

9
n2

2
but still admit an edge-bijective vertex labelling: Starting

from an edge-surjective vertex-k-labelling of Kn, we delete all but one edge of weight w for
every w ∈ [2, 2k].

For n ≤ 29, we have determined s(Kn) by exhaustive computer search (cf. Table 1).
It turns out that the structure of each of the corresponding optimal sets of used labels

6



resembles the construction in the proof of Theorem 2. In each case, there is a positive
integer d such that both the d smallest and the d largest elements of the set form a
complete set of remainders modulo d, while the remaining elements form an arithmetic
progression with common difference d. Table 2 contains lower bounds on s(Kn) which
have been obtained by generating complete sets of remainders modulo d for d ≤ 27 for
which the smallest element of the arithmetic progression in such a construction is largest
possible. The estimate s(K59) ≥ 499 for instance is obtained using the following symmetric
set R ∪ P ∪R′ of 57 vertex labels

R := {1, 2, 3, 4, 5, 6, 9, 15, 17, 24, 27, 31, 33, 42, 45, 46, 47}
P := {63 + 17i | 0 ≤ i ≤ 22}
R′ := {500− i | i ∈ R}

on 57 vertices of K59 and repeating the labels 1 and k = 499 on the remaining two vertices.
For 30 ≤ n ≤ 40 the lower bounds correspond to optimal symmetric label sets, i.e.

they would be the precise value of s(Kn) provided the existence of optimal labellings using
symmetric label sets.

i 1 2 3 4 5 6 7 8 9 10
s(Ki) 1 1 2 3 4 5 7 9 12
s(Ki+10) 15 18 21 25 29 33 37 42 47 52
s(Ki+20) 57 63 69 76 83 90 97 106 115

Table 1 Exact values of s(Kn) for n ≤ 29.

i 1 2 3 4 5 6 7 8 9 10
s(Ki+20) ≥ 124
s(Ki+30) ≥ 133 142 151 160 169 180 191 202 213 224
s(Ki+40) ≥ 235 246 257 269 281 294 307 322 337 352
s(Ki+50) ≥ 367 382 397 414 431 448 465 482 499 516
s(Ki+60) ≥ 533 550 567 584 601 619 637 657 677 697
s(Ki+70) ≥ 717 737 759 781 803 825 847 869 891 913
s(Ki+80) ≥ 935 960 985 1010 1035 1060 1085 1110 1135 1160
s(Ki+90) ≥ 1185 1210 1235 1262 1289 1316 1343 1370 1397 1424

Table 2 Lower bounds on s(Kn) for some n ≥ 30.

One might conjecture that a graph G admits an edge-surjective vertex-k-labelling for all
values of k which are at most s(G). Contrary to this, our computer search showed that
K28 has an edge-surjective vertex-106-labelling using the labels in

{1, 2, 3, 5, 7, 8, 13, 15, 18, 22, 31, 40, 49, 58, 67, 76, 85, 89, 92, 94, 99, 100, 102, 104, 105, 106}
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but that K28 has no edge-surjective vertex-105-labelling.
Figure 2 shows the lower bound on 4s(Kn)

n2 corresponding to Tables 1 and 2 and indicates
the difference d used for the arithmetic progression.

n

4s(Kn)

n2

3 4 5 6 7 9 11 15 17 20 22 25 27

d = 12 d = 13 d = 18

10 20 30 40 50 60 70 80 90

0.5

5
9

0.6

Figure 2 Lower bound on 4s(Kn)
n2 .

3 Edge-injective vertex labellings and weak Sidon sets

The number theoretic notion related to edge-injective vertex labellings is that of a weak
Sidon set or a well-spread set which is a set A of integers for which all

(|A|
2

)
pairwise sums

a + b for distinct a, b ∈ A are different. Recall that for a usual Sidon set A all
(|A|

2

)
+ |A|

pairwise sums are required to be different. The study of Sidon sets goes back to Sidon [17]
(cf. also [4, 14]).

Clearly, a weak Sidon set A ⊆ N gives rise to an edge-injective vertex-k-labelling of
K|A| with k = max(A) and, conversely, an edge-injective vertex-k-labelling of Kn gives rise
to a weak Sidon set A ⊆ [1, k] with |A| = n. In view of this close correspondence it follows
from known results on weak Sidon sets that

i(Kn)
1
2 − i(Kn)

21
80 +O(1) ≤ n ≤ i(Kn)

1
2 +
√

3i(Kn)
1
4 +O(1)

for every n ∈ N where the second inequality is due to Kayll [11] and the first inequality
follows by combining a construction due to Singer [18] with prime density results (cf. [11]).
Inverting these estimates, we obtain the following.

Corollary 4

n2 −
(

2
√

3 + o(1)
)
n

3
2 ≤ i(Kn) ≤ n2 + (1 + o(1))n

61
40

for every n ∈ N, i.e. i(Kn) = n2 + o (n2) = 2m+ o(m) for m =
(
n
2

)
.

From Corollary 4 we can derive an upper bound for general graphs.
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Corollary 5 If G = (V,E) is a graph of order n and size m, then

i(G) ≤ 4
1
3m

4
3 + n+ o

(
m

4
3

)
.

Proof: We prove the existence of an edge-injective vertex-k-labelling f : V → [1, k] with

k = 4
1
3m

4
3 + n+ o

(
m

4
3

)
such that f itself is injective by an inductive argument. We may

assume the “o(.)”-term to be positive and that the statement is true for small sizes. We
consider two cases.

Case 1 G has a vertex u of degree dG(u) less than (4m)
1
3 .

By induction, the graph G′ = G − u has an injective edge-injective vertex-k′-labelling f ′

with k′ ≤ k. From the possible k labels in [1, k] exactly n− 1 are forbidden for u, because
we require f to be injective. Furthermore, each of the m − dG(u) edges of G′ forbids at
most dG(u) further labels from [1, k] for u. Since

k − (n− 1)− dG(u)(m− dG(u))

≥ 4
1
3m

4
3 + n+ o

(
m

4
3

)
− (n− 1)− (4m)

1
3

(
m− (4m)

1
3

)
= 1 + o

(
m

4
3

)
+ (4m)

2
3

> 0

we can label u such that we obtain the desired labelling. (Note that, since f ′ is injective,
all neighbours of u have distinct labels.)

Case 2 G has no vertex of degree less than (4m)
1
3 .

In this case n2 ≤ 4
1
3m

4
3 and using Corollary 4 we obtain

i(G) ≤ i(Kn) ≤ n2 + o(n2) = 4
1
3m

4
3 + o

(
m

4
3

)
.

(Note that the constants implicit in the o(·)-notation come from Corollary 4.) Since every
edge-injective vertex labelling of Kn is necessarily injective, we obtain the existence of the
desired labelling and the proof is complete. 2

In view of the last two results, we pose the following conjecture.

Conjecture 6 If G = (V,E) is a graph of size m, then i(G) ≤ 2m.

For every prime power q ≥ 3, Singer’s construction [18] yields a Sidon set A ⊆ [1, q2 + q]
with |A| = q + 1 which implies that i(Kn) ≤ 2

(
n
2

)
for n = q + 1, i.e. Conjecture 6 is true

for complete graphs of infinitely many orders.
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4 Edge-bijective vertex labellings of trees

Our main result in this section states that for trees the necessary condition for the existence
of an edge-bijective vertex labelling implied by (1) and (2) is already sufficient.

Theorem 7 A tree T = (V,E) of order n and maximum degree ∆ admits an edge-bijective
vertex-k-labelling if and only if n is even and ∆ ≤ k = n

2
.

The proof of this result will rely on the following auxiliary statements. The next lemma is
an easy folklore exercise.

Lemma 8 Every tree T of order n has a vertex r such that every component of T − r has
order at most n

2
.

Lemma 9 Every rooted tree T of size m contains a path P starting at the root r such that
every component of T − V (P ) has at most m

2
− 1 edges.

Proof: Choose P : r = v0v1v2...vp such that vp is a leaf and for 1 ≤ i ≤ p the vertex vi is a
descendant of vi−1 for which the component of T − vi−1vi containing vi is largest possible.
2

Lemma 10 Let T = (V,E) be a rooted tree with m edges and root r. Let 1 ≤ l ≤ k and
let W = {w1, w2, . . . , wm} be a set of m weights satisfying

(i) l + 1 ≤ w1 < w2 < . . . < wm ≤ l + k and

(ii) wm − w1 ≤ k
2
.

There is a vertex-k-labelling f : V → [1, k] such that f(r) = l and W = {f(u) + f(v) |
uv ∈ E}, i.e. a partial vertex-k-labelling which assigns label l to the root can be extended
to V such that all weights in W are realized.

Proof: We prove the statement by induction on m. For m = 1 the statements is clearly
true. Now let m ≥ 2. Let v be a descendant of r and let Tv and Tr be the two subtrees of
T − rv rooted at v and r, respectively. Let l1 = w1 − l and lm = wm − l.

If wm ≤ l1 + k, then l1 + 1 ≤ w1 < . . . < wm ≤ l1 + k, we assign label l1 to v and
distribute the remaining weights w2, . . . , wm such that Tv receives |E(Tv)| weights and Tr
receives |E(Tr)| weights. The existence of the desired labelling for T follows by induction.

If lm+1 ≤ w1, then we assign label lm to v and proceed similarly as above by induction.
Hence, we may assume that wm ≥ (l1 + k) + 1 = w1− l+ k+ 1 and w1 ≤ (lm + 1)− 1 =

wm − l which implies the contradiction 2(wm − w1) ≥ k + 1 and the proof is complete. 2

Proof of Theorem 7: Since the “only if”-part follows from (1) and (2), it only remains to
prove the “if”-part.

Let the vertex r be as in Lemma 8, i.e. all components of T −r have at most n
2

vertices.
Let T1, T2, . . . , Tt be the components of T − r such that the sizes ei = |E(Ti)| satisfy
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e1 ≥ e2 ≥ . . . ≥ et. Root every Ti in the neighbour ri of r in V (Ti). Let e≤i = e1+e2+· · ·+ei
for 1 ≤ i ≤ t and e≤0 = 0.

Let s be the largest possible index with 1 ≤ s ≤ t such that

e≤s−1 ≤ k − 2.

Note that

e≤t = e1 + e2 + · · ·+ et = n− 1− t = 2k − 1− t ≥ 2k − 1−∆ ≥ k − 1

which implies that s < t and es > 0.
We assign a label f(v) to each of the roots v ∈ {r, r1, . . . , rt} and a weight set Wi to

each of the trees Ti ∈ {T1, . . . , Tt} using the Algorithm 1 below.
Since T has 2k − 1 = |W | edges, the sets W1, . . . ,Wt are well-defined by Algorithm 1.

Claim 1 k ∈ Ws. Furthermore, if w+
s > k, then es ≥ 2, f(rs) + 1 ≤ w−s and

Ws = [e≤s−1 + 2, e≤s + s] \ [k + 1, k + (s− 1)].

Proof of Claim 1: The choice of s implies e≤s−1 ≤ k−2 < e≤s. Furthermore, the definition
of the sets W1, . . . ,Ws−1 by Algorithm 1 implies

W1 ∪ · · · ∪Ws−1 = [2, e≤s−1 + 1].

Hence, again by Algorithm 1, k ∈ Ws and, if w+
s > k, then es ≥ 2 and Ws is as stated in

the claim. We obtain

f(rs) =

⌈
e≤s + s

2

⌉
=

⌈
(e1 + 1) + (e2 + 1) + · · ·+ (es−2 + 1) + (es−1 + es + 2)

2

⌉
=

⌈
e1 + 1

2
+
e2 + 1

2
+ · · ·+ es−2 + 1

2
+
es−1 + es + 2

2

⌉
≤ de1 + e2 + · · ·+ es−2 + es−1 + 1e
= e≤s−1 + 1

= w−s − 1

≤ k − 1

which completes the proof of the claim. 2

Claim 2 For 1 ≤ i ≤ t the label f(ri) assigned to ri by Algorithm 1 is a well-defined
integer between 1 and k.

11



f(r) := k;
W := [2, 2k];
for i = 1 to s− 1 do

Wi := [e≤i−1 + 2, e≤i + 1];
f(ri) := i;
W := W \ (Wi ∪ {f(ri) + k});

end
Ws := { the es smallest elements of W};
w−s := min(Ws);
w+
s := max(Ws);

if w+
s ≤ k then
f(rs) := s;

else

f(rs) :=
⌈
w+

s

2

⌉
;

end
W := W \ (Ws ∪ {f(rs) + k});
for i = s+ 1 to t do

Wi := { the ei smallest elements of W};
w−i := min(Wi);
w+
i := max(Wi);

W := W \Wi;
if ei ≤ 1 then

f(ri) := min(W )− k;
else

f(ri) :=
⌈
w+

i

2

⌉
;

end
W := W \ {k + f(ri)};

end
Algorithm 1 Assigning labels to r, r1, . . . , rt and weight sets to T1, . . . , Tt
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Proof of Claim 2: This is trivially true for 1 ≤ i ≤ s− 1 and also for i = s provided that
w+
s ≤ k.

If w+
s > k, then Claim 1 implies 1 ≤ f(rs) ≤ k − 1.

Now let s+ 1 ≤ i ≤ t. By the choice of s, we have [2, k] ⊆ W1 ∪ · · · ∪Ws.
If ei ≥ 2, this implies k + 1 ≤ w+

i ≤ 2k and hence 1 ≤ f(ri) ≤ k.
If ei ≤ 1, then at the moment of setting f(ri) in Algorithm 1, we have |W | > 0 and

k + 1 ≤ min(W ) ≤ 2k. Hence 1 ≤ f(ri) ≤ k also in this case. 2

If
Wi = [w−i , w

+
i ] \Gi

for some set
Gi ⊆ [w−i + 1, w+

i − 1],

then Wi is said to have |Gi| gaps. Note that the gaps in the sets Wi are caused by the
weights of the edges rr1, . . . , rri−1.

Claim 3 If Wi has at least three gaps g1 < g2 < g3 ∈ Gi for some s + 1 ≤ i ≤ t, then
g3 − g1 ≥ ei.

Proof of Claim 3: Clearly, ei ≥ 2. In view of Algorithm 1 this implies that there are three

indices s ≤ i1 < i2 < i3 < i such that gj = f(rij ) + k =

⌈
w+

ij

2

⌉
for j ∈ {1, 2, 3}. (Note that

if i1 = s, then w+
s > k and f(rs) =

⌈
w+

s

2

⌉
.) Since w+

i3
− w+

i1
≥ ei3−1 + ei3 ≥ 2ei3 ≥ 2ei, the

desired result follows. 2

Let P1, . . . , Pt be paths in T1, . . . , Tt starting at the roots r1, . . . , rt as described in Lemma
9 (cf. Figure 3).
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Claim 4 It is possible to label the vertices in V (Pi) \ {ri} with integers between 1 and
k such that if w+

i ≤ k, then the edges of Pi obtain the |E(Pi)| smallest weights in Wi

increasingly starting from ri, and if w+
i > k, then the edges of Pi obtain the |E(Pi)| largest

weights in Wi decreasingly starting from ri.

Proof of Claim 4: Note that w+
i ≤ k for all i ≤ s− 1 and w+

i > k for all i ≥ s+ 1.
First, we consider the case ei = 1, i.e. Pi and Ti consist of exactly one edge riv. Let

Wi = {wi}. In this case the statement of the claim is trivial for i ≤ s. If i ≥ s + 1, then
by Algorithm 1, f(ri) + 1 < k+ 2 ≤ wi < f(ri) + k and the statement of the claim follows.

Next, we consider the case ei ≥ 2.
For w+

i ≤ k the set Wi contains no gaps and starting at ri the vertices of Pi will receive
the labels

f(ri), w
−
i − f(ri), f(ri) + 1, w−i − f(ri) + 1, f(ri) + 2, w−i − f(ri) + 2, . . . .

Since in this case, 1 ≤ f(ri) < w−i and all weights in Wi are at most k, all assigned labels
are between 1 and k and the edges of Pi obtain the desired weights.

Now let w+
i > k. If Wi contains no gaps, then starting at ri the vertices of Pi will

receive the labels

f(ri) =

⌈
w+
i

2

⌉
,

⌊
w+
i

2

⌋
,

⌈
w+
i

2

⌉
− 1,

⌊
w+
i

2

⌋
− 1,

⌈
w+
i

2

⌉
− 2,

⌊
w+
i

2

⌋
− 2, . . . ,

i.e. the labels are non-increasing along Pi and the maximum difference of labels of adjacent
vertices is 1. It is easy to see that, if Wi has |Gi| ≥ 1 gaps, then the maximum difference
of labels of adjacent vertices on Pi possibly increases to at most |Gi| + 1. It remains to
argue that all assigned labels are integers between 1 and k.

For s+ 1 ≤ i ≤ t all weights in Wi are larger than k + 1 and the first two labels are at
most f(ri), which implies that all further labels lie between 1 and k as required.

For i = s Claim 1 implies that Ws has exactly s− 1 gaps and w−s = e≤s−1 + 2. Hence
the smallest label assigned to a vertex of Ps is at least⌈

e≤s−1 + 2

2
− s

2

⌉
≥
⌈

2(s− 1) + 2

2
− s

2

⌉
=
⌈s

2

⌉
= 1

which completes the proof of the claim. 2

Claim 5 For every 1 ≤ i ≤ t it is possible to label the vertices in V (Ti) \ V (Pi) with
integers between 1 and k such that the edges in E(Ti) obtain exactly the weights in Wi.

Proof of Claim 5: Let 1 ≤ i ≤ t. If ei ≤ 1, then all vertices in Ti have already been labelled
and Claim 5 holds trivially. Hence we assume that ei ≥ 2.

For every vertex v ∈ V (Pi) and every edge e = vv′ ∈ E(Ti) \ E(Pi) let T (v, e) =
(V (C) ∪ {v}, E(C) ∪ {e}) where C is the component of Ti − e containing v′. T (v, e) can
be considered a subtree of Ti rooted in the vertex v which is of degree 1 in T (v, e).
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To every such tree T (v, e) we assign a set

W (v, e) ⊆ Wi \ {f(u) + f(v) | uv ∈ E(Pi)}

of weights such that |W (v, e)| is exactly the size of T (v, e) and the elements of W (v, e)
are consecutive elements of Wi \ {f(u) + f(v) | uv ∈ E(Pi)}. Note that by the choice of
the path Pi according to Lemma 9, we have |W (v, e)| ≤ ei

2
. It remains to argue that the

trees T (v, e) whose root v has already been assigned a label by Claim 4 together with the
weight sets W (v, e) satisfy the conditions (i) and (ii) from Lemma 10. Once this has been
established the statement of Claim 5 follows immediately from that lemma.

For w+
i ≤ k the set Wi is a set of ei consecutive integers without gaps. Since the weights

of the edges of Pi are the smallest |E(Pi)| elements in Wi and all weights in Wi are at most
k, condition (i) from Lemma 10 trivially holds. Furthermore, since Wi has no gaps also
the sets W (v, e) have no gaps and

max(W (v, e))−min(W (v, e)) ≤ ei
2
− 1 ≤ k

2
− 1,

i.e. also condition (ii) from Lemma 10 holds.
If i ≥ s+ 1, then the weights of the edges of Pi are the largest |E(Pi)| elements in Wi.

Hence for every vertex v on Pi we obtain that all elements of Wi\{f(u)+f(v) | uv ∈ E(Pi)}
are between f(v) + 1 ≤ k + 1 and f(v) + k, i.e. condition (i) from Lemma 10 holds. Since
|W (v, s)| ≤ ei

2
< ei, Claim 3 implies that none of the sets W (v, s) contains more than 2

gaps. Since i ≥ 2, we have ei ≤ e≤i

2
≤ (2k−1)−2

2
and

max(W (v, e))−min(W (v, e)) ≤
⌊ei

2
+ 2− 1

⌋
≤
⌊
k

2
+

1

4

⌋
≤ k

2
,

i.e. also condition (ii) from Lemma 10 holds.
Finally, let i = s and w+

s > k. By the choice of s, we have es(s − 1) ≤ k − 2 which
implies s − 1 ≤ k−2

es
≤ k−2

2
. By Claim 4, the weights of the edges of Pi are the largest

|E(Pi)| elements in Wi. Since, by Claim 1, f(rs) + 1 ≤ w−s and w+
s ≤ f(rs) + k, condition

(i) from Lemma 10 holds. Furthermore, also by Claim 1,

w+
s − w−s = es + s− 2 ≤ k − 2

s− 1
+ (s− 1)− 1.

The convex function g(x) = k−2
x−1

+ (x− 1)− 1 satisfies

max
3≤x≤ k−2

2

g(x) ≤ max

{
g(3), g

(
k − 2

2

)}
=
k

2
.

Hence for 3 ≤ s, condition (ii) from Lemma 10 holds trivially. For s = 2 the set W (v, e)
has at most one gap and we obtain

max(W (v, e))−min(W (v, e)) ≤ ei
2

+ 1− 1 ≤ k

2
.
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Hence also in this final case condition (ii) from Lemma 10 holds and the proof of the claim
holds. 2

As noted in the beginning of the proof of Claim 5, Lemma 10 finally implies the existence
of an edge-bijective vertex-k-labelling of T and the proof is complete. 2

Theorem 7 allows to derive best-possible result about edge-surjective and edge-injective
vertex labelling of trees.

Corollary 11 Let T = (V,E) be a tree of order n and maximum degree ∆. T admits an
edge-surjective vertex-k-labelling if and only if k ≤ min{n

2
, n−∆}.

Proof: Since the “only if”-part follows from (2), it only remains to prove the “if”-part. We
will first prove the result in the case that n is even and ∆ ≤ n

2
. Then we consider the cases

that n is odd and ∆ ≤ n
2

and that ∆ > n
2
. Let k ≤ min{n

2
, n−∆}.

Claim 1 If ∆ = n
2
, then either T has a unique vertex of maximum degree which is adjacent

to a leaf, or T has exactly two vertices of maximum degree which are both adjacent to a
leaf.

Proof of Claim 1: Since the statement is trivial for n ≤ 4, we assume that n ≥ 6.
If T has a unique vertex of maximum degree which is not adjacent to a leaf, then

1 + 2∆ ≤ n, which is a contradiction.
If either T has exactly two vertices of maximum degree such that one is not adjacent

to a leaf, or T has at least three vertices of maximum degree, then 3∆ − 1 ≤ n. Hence
∆ ≤

⌊
n+1

3

⌋
< n

2
, which is a contradiction. 2

Claim 2 If n is even and ∆ ≤ n
2
, then T admits an edge-surjective vertex-k-labelling.

Proof of Claim 2: The proof is done by induction on min{n
2
, n−∆}− k = n

2
− k. If k = n

2
,

then claim follows immediately from Theorem 7. Hence let k < n
2
. By Claim 1, there

are two leaves whose deletion results in a tree T ′ of maximum degree at most n−2
2

. By
induction, T ′ admits an edge-surjective vertex-k-labelling and hence also T . 2

Claim 3 If n is odd and ∆ ≤ n
2
, then T admits an edge-surjective vertex-k-labelling.

Proof of Claim 3: Deleting a leaf results in a tree T ′ which admits an edge-surjective
vertex-k-labelling by Claim 2. Hence so does T . 2

Claim 4 If ∆ ≥ n
2
, then T admits an edge-surjective vertex-k-labelling.
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Proof of Claim 4: The proof is done by induction on ∆− n
2
. If ∆ = n

2
, then Claim 2 implies

the result. Hence let ∆− n
2
> 0. It follows as in the proof of Claim 1 that T has a unique

vertex of maximum degree which is adjacent to a leaf u. Deleting u from T results in a
tree for which the difference between the maximum degree and half the order is smaller
and the result follows by induction. 2

The above claims clearly imply the desired result. 2

Similar arguments as in the proof of Corollary 11 yield the following result.

Corollary 12 Let T = (V,E) be a tree of order n and maximum degree ∆. T admits an
edge-injective vertex-k-labelling if and only if k ≥ max{n

2
,∆}.

Proof: Since the “only if”-part follows from (1), it only remains to prove the “if”-part. If
∆ ≤ n

2
and n is even, then this result follows immediately from Theorem 7. For odd n we

simply add a vertex and an edge joining it to a leaf and apply Theorem 7 to the resulting
graph. If ∆ > n

2
, then we can delete leaves incident with the unique maximum degree

vertex v until we reach a tree T ′ with n′ vertices and k′ := ∆(T ′) = n′

2
. Applying Theorem

7 once more, we obtain an edge-bijective vertex-k′-labelling of T ′. The labelling procedure
described in the proof of Theorem 7 assigns label k′ to v and, since k− k′ ≥ n−n′, we can
label the remaining vertices of T with labels k′ + 1, . . . , k′ + n− n′. 2

The last two corollaries also imply that for trees (1) and (2) are satisfied with equality.

5 Edge-irregular total labellings of sparse graphs

An edge-irregular total-k-labelling of a graph G = (V,E) is a labelling f : V ∪ E → [1, k]
of its vertices and edges with integers between 1 and k such that

f(u) + f(uv) + f(v) 6= f(u′) + f(u′v′) + f(v′)

for all pairs of distinct edges uv, u′v′ ∈ E. These labellings and the total edge irregularity
strength tes(G) which is defined as the minimum k for which G admits an edge-irregular
total-k-labelling were recently introduced by Bača et al. [1]. Similar arguments as in the
introduction lead to two natural lower bounds on tes(G) in terms of the size m and the
maximum degree ∆ of G:

tes(G) ≥ max

{⌈
m+ 2

3

⌉
,

⌈
∆ + 1

2

⌉}
.

Ivančo and Jendrol’ [9] posed the surprising conjecture that K5 is the only graph which does
not satisfy the last inequality with equality. Their conjecture has been verified for several
special classes of graphs such as trees [9], complete and complete bipartite graphs [10] and
it is known to be true if either m ≤ 3∆/2 [2] or m ≥ 106∆ [3]. Our intention in the present
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section is to use the results of the previous section in order to establish the conjecture for
sparse enough graphs.

Let G = (V,E) be a graph and let f : V → [1, k] be a vertex-k-labelling. Whether f can
be extended to an edge-irregular total-k-labelling of G is essentially a matching problem
in the bipartite graph — already considered in [10] —

BIB(G, f)

with partite sets E and [3, 3k] where an edge e = uv ∈ E is adjacent exactly to [f(u) +
f(v) + 1, f(u) + f(v) + k].

Proposition 13 If G, f and BIB(G, f) are as above, then there is an edge-irregular
total-k-labeling f ′ such that f ′ |V = f if and only if BIB(G, f) has a matching of size |E|.

Proof: This equivalence follows immediate from the 1-to-1-correspondence between f ′ |E
and a matching of size |E| in BIB(G, f). 2

As shown in the next result, a natural hypothesis ensuring the Hall-condition and hence
the existence of a matching as described in Proposition 13, is that the vertex-k-labelling is
edge-surjective.

Corollary 14 Let G = (V,E) be a graph of order n and size m. Let k =
⌈
m+2

3

⌉
.

If G admits an edge-surjective vertex-k-labelling f , then G admits an edge-irregular
total-k-labelling.

Proof: We will verify the Hall-condition for the graph BIB(G, f) as in Proposition 13.
Therefore, let ∅ 6= S ⊆ E and let N(S) denote the neighbourhood of S in BIB(G, f).

If 1 ≤ |S| ≤ k, then |N(S)| ≥ k ≥ |S| by the construction of BIB(G, f).
If |S| ≥ k+1, then there are at least (2k−1)− (m−|S|) ≥ (2k−1)− ((3k−2)−|S|) =

|S|−k+1 distinct partial edge weights in {f(u)+f(v) | uv ∈ S}. Hence, by the construction
of BIB(G, f), |N(S)| ≥ |S| − k + 1 + k − 1 = |S|.

Therefore, the Hall-condition is satisfied, BIB(G, f) has a matching of size |E| and, by
Proposition 13, G admits an edge-irregular total-k-labelling. 2

After these preparations we proceed to our main result in this section.

Corollary 15 Let G = (V,E) be a connected graph of order n, size m and maximum
degree ∆. Let k =

⌈
m+2

3

⌉
.

If m ≤ 3
2
n− 1 and ∆ ≤ k − 1, then G admits an edge-irregular total-k-labelling.

Proof: We consider the three cases m = 3k − 2, m = 3k − 3 and m = 3k − 4 separately.
First let m = 3k − 2 which implies 2k ≤ n. Applying Theorem 7 to a subtree of G of

order 2k yields the existence of an edge-surjective vertex-k-labelling of G and Corollary 14
implies the existence of an edge-irregular total-k-labelling of G.
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Now let m = 3k− 3 which implies that 2k− 1 ≤ n. If 2k ≤ n, then we argue as before.
Hence we may assume that 2k − 1 = n. Applying Corollary 12 to a spanning tree T of G
yields the existence of an edge-injective vertex-k-labelling f of T , i.e. all n− 1 edges of T
have different partial edge weights induced by f .

Let BIB(G, f), S and N(S) be as in the proof of Corollary 14. If |S| ≤ k, then
|N(S)| ≥ |S|. If |S| ≥ k + 1, then at least |S| − (m − (n − 1)) = |S| − k + 1 many edges
in S have different partial edge weights and |N(S)| ≥ (|S| − k + 1) + (k− 1) = |S|. Hence
BIB(G, f) satisfies the Hall-condition and, by Proposition 13, G admits an edge-irregular
total-k-labelling.

Finally, let m = 3k − 4 which implies 2k − 2 ≤ n. Applying Corollary 12 to a subtree
T ′ of G of order 2(k − 1) yields the existence of an edge-injective vertex-(k − 1)-labelling
f of T ′. As before, m− (2(k− 1)− 1) = k− 1 and we can argue as above which completes
the proof. 2
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[9] J. Ivančo and S. Jendrol’, Total edge irregularity strength of trees, to appear in Dis-
cussiones Matematicae Graph Theory.
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