Reduction of Rota's basis conjecture to a problem on three bases

Timothy Y. Chow
Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540

Abstract

It is shown that Rota's basis conjecture follows from a similar conjecture that involves just three bases instead of n bases.

Key words: common independent sets, non-base-orderable matroid, odd wheel

1 Introduction

In 1989, Rota formulated the following conjecture, which remains open.
Conjecture 1 (Rota's basis conjecture) Let M be a matroid of rank n on n^{2} elements that is a disjoint union of n bases $B_{1}, B_{2}, \ldots, B_{n}$. Then there exists an $n \times n$ grid G containing each element of M exactly once, such that for every i, the elements of B_{i} appear in the i th row of G, and such that every column of G is a basis of M.

Partial results towards this conjecture may be found in [1,2,3,4,5,6,7,8,12,14,15]. Now consider the following conjecture.

Conjecture 2 Let M be a matroid of rank n on $3 n$ elements that is a disjoint union of 3 bases. Let $I_{1}, I_{2}, \ldots, I_{n}$ be disjoint independent sets of M, with $0 \leq\left|I_{i}\right| \leq 3$ for all i. Then there exists an $n \times 3$ grid G containing each element of M exactly once, such that for every i, the elements of I_{i} appear in the ith row of G, and such that every column of G is a basis of M.

The main purpose of the present note is to make the following observation.
Theorem 3 Conjecture 2 implies Conjecture 1.
Our proof is inspired by the proof of Theorem 4 in [10].

PROOF. Since Conjecture 1 is known if $n \leq 2$, we may assume that $n \geq 3$. Let M be given as in the hypothesis of Conjecture 1. Define a transversal to be a subset $\tau \subseteq M$ that contains exactly one element from each B_{i}. Define a double partition of M to be a pair (β, τ) where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ is a partition of M into n pairwise disjoint bases β_{i} and $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$ is a partition of M into n pairwise disjoint transversals. Given a double partition (β, τ), define

$$
\mu(\beta, \tau)=\sum_{i \neq j}\left|\beta_{i} \cap \tau_{j}\right|
$$

Observe that if $\mu(\beta, \tau)=0$ then necessarily $\beta_{i}=\tau_{i}$ for all i, and then Rota's basis conjecture follows-just let the (i, j) entry of G be $B_{i} \cap \tau_{j}$.

So let (β, τ) be an arbitrary double partition with $\mu(\beta, \tau)>0$. We show how to construct a double partition $\left(\beta^{\prime}, \tau^{\prime}\right)$ with $\mu\left(\beta^{\prime}, \tau^{\prime}\right)<\mu(\beta, \tau)$; the proof is then complete, by infinite descent, since by hypothesis there exists at least one double partition. Since $\mu(\beta, \tau)>0$, there exist β_{i} and τ_{j} with $i \neq j$ such that $\beta_{i} \cap \tau_{j} \neq \emptyset$. Since $n \geq 3$, there also exists k such that i, j, and k are all distinct. It will simplify notation to assume that $i=1, j=2$, and $k=3$; no generality is lost, and it will be convenient to be able to reuse the index variables i and j below. Let $S=\beta_{1} \cup \beta_{2} \cup \beta_{3}$, let $T=\tau_{1} \cup \tau_{2} \cup \tau_{3}$, and let $M^{\prime}=M \mid S$ (i.e., M restricted to the ground set S).

For each i, let $I_{i}=B_{i} \cap T \cap S$. Then I_{i} is an independent subset of the matroid M^{\prime}, and $\left|I_{i}\right| \leq\left|B_{i} \cap T\right| \leq 3$. The I_{i} are pairwise disjoint because the B_{i} are pairwise disjoint. Therefore we may apply Conjecture 2 to obtain an $n \times 3$ grid G^{\prime} whose columns $\beta_{1}^{\prime}, \beta_{2}^{\prime}$, and β_{3}^{\prime} are disjoint bases of M^{\prime} (and therefore are bases of M) and whose i th row contains the elements of I_{i}.

To construct the desired double partition $\left(\beta^{\prime}, \tau^{\prime}\right)$, let $\beta^{\prime}=\beta$ except with β_{1}, β_{2}, and β_{3} replaced with $\beta_{1}^{\prime}, \beta_{2}^{\prime}$, and β_{3}^{\prime} respectively. Similarly, let $\tau^{\prime}=\tau$ except with τ_{1}, τ_{2}, and τ_{3} replaced with $\tau_{1}^{\prime}, \tau_{2}^{\prime}$, and τ_{3}^{\prime}, which are defined as follows. Let $G^{\prime \prime}$ be any $n \times 3$ grid whose i th row contains the elements of $B_{i} \cap T$ in some order, and whose (i, j) entry agrees with that of G^{\prime} whenever that entry is in I_{i}. Clearly $G^{\prime \prime}$ exists (though it may not be unique). Let τ_{j}^{\prime} be the j th column of $G^{\prime \prime}$, for $j=1,2,3$.

It is easily verified that what we have done is to regroup the elements of M^{\prime} into three new bases and to regroup the elements of T into three new transversals in such a way that the contribution to $\mu\left(\beta^{\prime}, \tau^{\prime}\right)$ from intersections of the new bases with the new transversals is reduced to zero, and such that the total of the other contributions to μ is unchanged. Thus the overall value of μ is reduced, as required.

Careful inspection of the above proof shows that it is easily adapted to prove a stronger statement than Theorem 3. Let $C(k)$ denote the statement obtained by replacing ' 3 ' with ' k ' throughout Conjecture 2 . Then the above argument,
mutatis mutandis, yields the following result.
Theorem 4 For any $\ell \geq k \geq 2, C(k)$ implies $C(\ell)$.
In particular, proving $C(k)$ for any fixed k would prove Rota's basis conjecture (in fact a stronger statement, namely $C(n))$ for all n greater than or equal to that fixed k.

It is therefore natural to ask why we have formulated Conjecture 2 as $C(3)$ rather than as $C(2)$. The reason is that $C(2)$ is false. The simplest counterexample is a well-known stumbling block that is partly responsible for the fact that there is no known general "matroid union intersection theorem," i.e., a criterion for determining the minimum number of common independent sets that a set with two matroid structures on it can be partitioned into. Namely, take $M\left(K_{4}\right)$, the graphic matroid of the complete graph on four vertices, and let the I_{i} be the three pairs of non-incident edges of K_{4}. Another counterexample arises from a matroid that Oxley [11] calls J. Representing J by vectors in Euclidean 4-space, we can for example let

$$
\begin{aligned}
I_{1} & =\{(-2,3,0,1),(0,0,1,1)\} \\
I_{2} & =\{(0,2,0,1),(1,0,3,1)\} \\
I_{3} & =\{(1,0,0,1),(0,1,2,1)\} \\
I_{4} & =\{(0,1,0,1),(4,0,0,1)\}
\end{aligned}
$$

It may be possible to construct other examples from non-base-orderable matroids such as those in [9].

Despite these counterexamples to $C(2)$, we believe that Conjecture 2 is plausible. Using a database of matroids with nine elements kindly supplied by Gordon Royle [13], we have computationally verified Conjecture 2 for the case $n=3$.

In an earlier version of this paper, the formulation of Conjecture 2 did not require the I_{i} to be independent. A counterexample to that version of the conjecture was found by Colin McDiarmid. Take the complete graph on the vertex set $\{1,2,3,4\}$, and create an extra copy of the three edges incident to vertex 4. Call the edges $12,13,14,23,24,34,14^{\prime}, 24^{\prime}, 34^{\prime}$, and let $I_{1}=\left\{14,14^{\prime}, 23\right\}$, $I_{2}=\left\{24,24^{\prime}, 13\right\}$, and $I_{3}=\left\{34,34^{\prime}, 12\right\}$. More generally, as pointed out by an anonymous referee, if k is odd, then a wheel with $k-1$ copies of each of its k spokes yields a counterexample to $C(k)$ if the I_{i} are not required to be independent.

In closing, we speculate that Conjecture 2 might be provable using the following strategy. First, develop a modified version of $C(2)$ that says that the conclusion holds provided certain "obstructions" (such as $M\left(K_{4}\right)$ and J) are absent. Then use Rado's theorem (12.2.2 of [11]), or a suitable strengthening
of it, to construct a first column of G in such a way that the remaining $2 n$ elements are obstruction-free. Applying the modified version of $C(2)$ would then yield the desired result. The analysis of obstructions should hopefully be tractable since there are only 3 columns to consider.

2 Acknowledgments

I wish to thank Jonathan Farley, Patrick Brosnan, and James Oxley for useful discussions, and a referee for correcting an error in my counterexample based on J.

References

[1] R. Aharoni and E. Berger, The intersection of a matroid and a simplicial complex, Trans. Amer. Math. Soc. 358 (2006), 4895-4917.
[2] W. Chan, An exchange property of matroid, Discrete Math. 146 (1995), 299302.
[3] T. Chow, On the Dinitz conjecture and related conjectures, Discrete Math. 145 (1995), 73-82.
[4] A. A. Drisko, On the number of even and odd Latin squares of order $p+1$, Advances in Math. 128 (1997), 20-35.
[5] A. A. Drisko, Proof of the Alon-Tarsi conjecture for $n=2^{r} p$, Electron. J. Combin. 5 (1998), R28.
[6] J. Geelen and P. J. Humphries, Rota's basis conjecture for paving matroids, SIAM J. Discrete Math. 20 (2006), 1042-1045.
[7] J. Geelen and K. Webb, On Rota's basis conjecture, SIAM J. Discrete Math. 21 (2007), 802-804.
[8] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Math. 128 (1994), 225-236.
[9] A. W. Ingleton, Non-base-orderable matroids, Proc. 5th British Combin. Conf. (1975), 355-359.
[10] J. Keijsper, An algorithm for packing connectors, J. Combin. Theory Ser. B 74 (1998), 397-404.
[11] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
[12] V. Ponomarenko, Reduction of jump systems, Houston J. Math. 30 (2004), 27-33.
[13] D. Mayhew and G. F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98 (2008), 415-431.
[14] M. Wild, On Rota's problem about n bases in a rank n matroid, Advances in Math. 108 (1994), 336-345.
[15] P. Zappa, The Cayley determinant of the determinant tensor and the Alon-Tarsi conjecture, Advances in Appl. Math. 19 (1997), 31-44.

