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ABSTRACT

A graph G is called CIS if each maximal clique intersects each maximal stable set in G, and

is called almost CIS if it has a unique disjoint pair (C, S) consisting of a maximal clique

C and a maximal stable set S. While it is still unknown if there exists a good structural

characterization of all CIS graphs, in this note we prove the following Andrade-Boros-

Gurvich conjecture: A graph is almost CIS if and only if it is a split graph with a unique

split partition.



Let G = (V, E) be a graph. A clique of G is a set of pairwise adjacent vertices, and

a stable set of G is a set of pairwise nonadjacent vertices. We call G a CIS graph if each

maximal clique intersects each maximal stable set in G, where the adjective maximal is

meant with respect to set-inclusion rather than size. The study of CIS graphs dates back

to the 1960s when Grillet [8] proved that in every partially ordered set containing no

quadruple (a, b, c, d) such that a < b, c < d, b covers c, and the remaining three pairs

of elements are incomparable, each maximal chain meets each maximal antichain. With

an attempt to generalize this theorem, Berge [2] made a conjecture and posed a research

problem in terms of CIS graphs; see [9] for their solutions. Later, Chvátal [4, 9] proposed

another conjecture concerning CIS graphs as a variation on Berge’s problem, which was

established independently by Andrade, Boros, and Gurvich [1] and Deng, Li, and Zang

[5, 6]. We refer to [1] for an in-depth account of CIS graphs.

Despite considerable research effort, it is still unknown if there exists a good structural

characterization of all CIS graphs. In this regard, Chvátal [4, 9] suggested the following

problem.

Problem. How difficult is it to recognize CIS graphs?

As pointed out by Andrade, Boros, and Gurvich [1], CIS graphs somehow resemble

perfect graphs in several ways; they also conjectured that this recognition problem, though

very difficult, is polynomial-time solvable. On the other hand, given a graph G together

with a specified maximal stable set S, it is co-NP -complete [9] to decide if S intersects

every maximal clique of G.

By definition, if a graph G is not CIS, then it contains at least one disjoint pair (C, S)

consisting of a maximal clique C and a maximal stable set S; such a (C, S) is called a

non-CIS pair of G. Andrade, Boros, and Gurvich [1] proposed to call a graph almost

CIS if it has a unique non-CIS pair, and discovered that almost CIS graphs are closely

related to some well-known class of graphs. A graph is called split if its vertex set admits

a partition (C, S), called a split partition, such that C is a clique and S is a stable set. As

characterized by Foldes and Hammer [7], a graph is split if and only if it contains none of

2K2, C4, and C5 as an induced subgraph. Moreover, a split graph may have several split

partitions; see, for instance, the graph obtained from a path abcd by adding a fifth vertex

e and making it adjacent to both b and c. It was shown in [3] that

Proposition 1. A split graph has more than one split partition if and only if it is CIS.
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For completeness we include the proof of this statement from [3].

Proof. Let G = (V, E) be a split graph with a split partition (A, B), where A is a

clique and B is a stable set. We claim that (A, B) is the only possible non-CIS pair in

G. To justify this, let C be a maximal clique different from A, and let S be a maximal

stable set different from B. Clearly, C consists of a proper subset of A and a vertex u in

B, and S consists of a proper subset of B and a vertex v in A. It is then a routine matter

to check that C ∩S = {u} if u and v are nonadjacent and C ∩S = {v} otherwise. So the

claim follows.

Suppose G admits a split partition (X, Y ) other than (A, B). By the above claim,

(X, Y ) is also the only possible non-CIS pair in G. It follows that G contains no non-CIS

pair. Hence G is a CIS graph. Conversely, suppose G is a CIS graph. Then either A

is not a maximal clique or B is not a maximal stable set, say the former. Then there

exists a vertex u ∈ B such that A ∪ {u} is a clique. If |B| ≥ 2, then (A ∪ {u}, B − {u})
is a split partition of G other than (A, B). If |B| = 1, then G is a complete graph. So

(V − {v}, {v}) is a split partition of G other than (A, B) for any vertex v in A. 2

¿From Proposition 1 we see that every split graph with a unique split partition is al-

most CIS. Andrade, Boros, and Gurvich [1] conjectured that the converse of this statement

also holds.

Conjecture. Every almost CIS graph is a split graph with a unique split partition.

Boros, Gurvich, and Zverovich [3] exhibited several nice properties enjoyed by almost

CIS graphs and confirmed the conjecture for various graph classes. The purpose of this

note is to present a proof of the whole conjecture.

Theorem. A graph is almost CIS if and only if it is a split graph with a unique split

partition.

This characterization clearly yields a polynomial-time algorithm for recognizing almost

CIS graphs. We remark that if CIS graphs could be recognized in polynomial time, then

almost CIS graphs would surely play important roles in the structural characterization of

these graphs.

The remainder of this note is devoted to a proof of this theorem. We shall repeatedly

use the following trivial statement in the proof.

Proposition 2. Let K and I be a maximal clique and a stable set in a graph G, respec-
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tively. If K ∩ I = ∅ and each vertex in K has at least one neighbor in I, then K ∩ J = ∅
for any stable set J containing I in G.

Proof of the Theorem. Since the “if” part has already been established in [3], we only

need to verify the “only if” part.

Throughout, let G = (V, E) stand for a counterexample with the smallest number of

vertices:

• G is an almost CIS graph;

• G is not a split graph with a unique split partition;

• every almost CIS graph having fewer vertices than G is a split graph with a unique

split partition.

Let (C, S) be the unique non-CIS pair of G and let Ḡ denote the complement of G. It is

easy to see that

(1) Ḡ, an almost CIS graph with the unique non-CIS pair (S,C), is also a counterex-

ample with the smallest number of vertices.

Set A = V − (C ∪ S). If A = ∅, then G would be a split graph with a split partition

(C, S). Hence, by the assumption on G and Proposition 1, G would be a CIS graph,

this contradiction implies A 6= ∅. We shall follow convention to let N(v) denote the

neighborhood of a vertex v in G and set NU(v) = N(v) ∩ U for all subsets U of V .

(2) For any a ∈ A, there exists s ∈ S such that as ∈ E and NC(a) ⊆ NC(s).

To justify this, let D be a maximal clique containing NC(a)∪{a} in G. Then D∩S 6= ∅
for (C, S) is the unique non-CIS pair of G. Clearly, the vertex s in D∩S has the property

as described in (2).

It follows instantly from (2) that

(3) If a ∈ A is adjacent to some c ∈ C, then a has at least one neighbor in NS(c).

Let us make some further observations.

(4) For any s ∈ S, one of the following holds:

(4.1) there exists t ∈ S − {s} such that NC(s) ∪NC(t) = C;

(4.2) s is adjacent to all vertices in A.

To justify this, put Gs = G − (N(s) ∪ {s}), D = C − NC(s), and T = S − {s}.
Note that both D and T are contained in Gs. Let X be an arbitrary maximal stable set

containing T in Gs. Then X ∪ {s} is a maximal stable set containing S in G. Since S
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itself is a maximal stable set in G, we must have S = X ∪ {s}, which implies X = T and

hence

(4.3) T is a maximal stable set in Gs.

Now let us distinguish between two cases.

Case 1. Gs is a CIS graph.

¿From (4.3), we deduce that T intersects any maximal clique containing D in Gs. So

some t ∈ T is adjacent to all vertices in D, which implies NC(s) ∪NC(t) = C and hence

(4.1).

Case 2. Gs is not a CIS graph.

Let (K, U) be an arbitrary non-CIS pair of Gs and let L be an arbitrary maximal clique

containing K in G. Observe that L−K is fully contained in N(s) and that U ∪ {s} is a

maximal stable set in G, so (L, U ∪{s}) is a non-CIS pair of G. Since (C, S) is the unique

such pair, we obtain L = C and U ∪ {s} = S. Hence K = C − N(s) = C − NC(s) = D

and U = S−{s} = T ; in other words, (D, T ) is the unique non-CIS pair of Gs. Therefore

Gs is an almost CIS graph. As |V (Gs)| < |V (G)|, the minimality of G implies that Gs is

a split graph with the unique split partition (D, T ).

Since A = V (G)− (C ∪ S) ⊆ V (G)− (D ∪ T ∪ {s}) = V (G)− V (Gs)− {s} = N(s),

we conclude that s is adjacent to all vertices in A. This proves (4.2) and hence (4).

(5) There exist two vertices s and t in S such that NC(s) ∪NC(t) = C.

Otherwise, by (4) we have

(5.1) Each vertex in S is adjacent to each vertex in A.

Let a be a vertex in A. Then (2) guarantees the existence of some x ∈ S such that ax ∈ E

and NC(a) ⊆ NC(x). Take y ∈ C − NC(x) and z ∈ NS(y). From (5.1) we deduce that

az ∈ E. Set D = {a, z} ∪ (NC(a) ∩ NC(z)) and I = {x, y}. Clearly, D is a clique and

I is a stable set in G. Let K be an arbitrary maximal clique containing D in G. Then

K − D ⊆ A. By (5.1), we have K − D ⊆ N(x). So each vertex in K has at least one

neighbor in I. From Proposition 2 it follows that K is disjoint from any maximal stable

set containing I, contradicting the hypothesis that (C, S) is the unique non-CIS pair of

G. Hence (5) holds.

(6) There exist two vertices c and d in C such that NS(c) ∩NS(d) = ∅.
To justify this, we turn to considering Ḡ. In view of (1) and (5) (with respect to Ḡ

now), there exist two vertices c and d in C such that (S − NS(c)) ∪ (S − NS(d)) = S,

implying NS(c) ∩NS(d) = ∅. So (6) is established.
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(7) There exist a ∈ A and b ∈ S such that ab ∈ E and NC(a) ∪NC(b) = C.

To see this, let s and t be two vertices in S such that NC(s) ∪NC(t) = C (recall (5))

and let u be a vertex in A. If I = {s, t, u} is a stable set in G then, by Proposition 2,

any maximal stable set containing I in G would be disjoint from C, contradicting the

hypothesis that (C, S) is the unique non-CIS pair of G. So u is adjacent to s or t, say

the former. Clearly, we may assume that NC(u) ∪ NC(s) 6= C, for otherwise, setting

{a, b} = {u, s}, we are done. Next, observe that the clique NC(s) ∪ {s} is not maximal

in G, for otherwise, take v ∈ C − (NC(u) ∪ NC(s)). Then each vertex in NC(s) ∪ {s} is

adjacent to u or v. Thus, by Proposition 2, the maximal clique NC(s)∪{s} is disjoint from

any maximal stable set containing {u, v} in G, a contradiction. Therefore, there exists

w ∈ A which is adjacent to all vertices in NC(s) ∪ {s}. It follows that NC(s) ⊆ NC(w)

and hence we have NC(w)∪NC(t) = C as well. Now, from Proposition 2, we deduce that

wt ∈ E. Setting {a, b} = {w, t}, we are done. Thus (7) follows.

Let a, b, c, d be the four vertices as exhibited in (7) and (6) and let s be the vertex in

S as specified in (2). Since C = NC(a) ∪ NC(b) ⊆ NC(s) ∪ NC(b), we have s 6= b. As

NS(c)∩NS(d) = ∅, renaming vertices if necessary, we may assume that c ∈ NC(s)−NC(b)

and d ∈ NC(b)−NC(s). Consequently, c ∈ NC(a)−NC(b) and d ∈ NC(b)−NC(a). Let K

be a maximal clique containing NC(b)∪{b} in G and set B = K− (NC(b)∪{b}). Clearly,

B ⊆ A. Since d ∈ K and ad /∈ E, we have a /∈ K and hence a /∈ B. We claim that

(8) a is adjacent to all vertices in B.

Assume the contrary: ax /∈ E for some x ∈ B. In view of K, we obtain NC(b) ⊆ NC(x).

So C = NC(a)∪NC(b) ⊆ NC(a)∪NC(x). By Proposition 2, C is disjoint from any maximal

stable set containing {a, x} in G, this contradiction justifies claim (8).

Set D = {a, b} ∪ B ∪ (NC(a) ∩ NC(b)) and T = NS(c) ∪ {d}. Clearly, D and T are

disjoint. By (7) and (8), D is a clique and, by (6), T is a stable set in G.

(9) Each vertex in D has at least one neighbor in T .

Since ac ∈ E, from (3) we see that a has at least one neighbor in NS(c). Note that

D − {a} is contained in K − {d}, so all vertices in D − {a} are adjacent to d. Thus (9)

holds.

Since (C, S) is the unique non-CIS pair of G, by (9) there exists a vertex e /∈ D such

that D ∪ {e} is a clique and T ∪ {e} is a stable set in G. In view of the edge eb, we have

e /∈ S. Since ea ∈ E and da /∈ E, we get e 6= d. So ed /∈ E as d ∈ T , which implies

e /∈ C. Therefore e ∈ A− (B ∪ {a}). Since e is adjacent to no vertex in NS(c), by (3) we
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obtain ec /∈ E. Finally, observe that each vertex in K is adjacent to either e or c, so by

Proposition 2 the maximal clique K is disjoint from any maximal stable set containing

{e, c}, contradicting the hypothesis that (C, S) is the unique non-CIS pair of G.

This completes the proof of our theorem. 2

Acknowledgement. The authors are indebted to Professors Endre Boros and Vladimir

Gurvich for their invaluable comments and suggestions.

References

[1] D.V. Andrade, E. Boros, and V. Gurvich, On graphs whose maximal cliques and

stable sets intersect, RRR17-2006, RUTCOR Research Reports, Rutgers University,

New Jersey, 2006. (See homepage http://rutcor.rutgers.edu/∼rrr/)

[2] C. Berge, Problems 9.11 and 9.12, in: Graphs and Order (I. Rival, Ed.), Reidel,

Dordrecht, 1985, pp. 583-584.

[3] E. Boros, V. Gurvich, and I. Zverovich, On split graphs and graphs whose max-

imal cliques and stable sets intersect, except a unique pair, RRR29-2007, RUT-

COR Research Reports, Rutgers University, New Jersey, 2007. (See homepage

http://rutcor.rutgers.edu/∼rrr/)
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