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LOW MACH NUMBER LIMIT OF VISCOUS COMPRESSIBLE

MAGNETOHYDRODYNAMIC FLOWS

XIANPENG HU AND DEHUA WANG

Abstract. The relationship between the compressible magnetohydrodynamic flows
with low Mach number and the incompressible magnetohydrodynamic flows is investi-
gated. More precisely, the convergence of weak solutions of the compressible isentropic

viscous magnetohydrodynamic equations to the weak solutions of the incompressible
viscous magnetohydrodynamic equations is proved as the density becomes constant
and the Mach number goes to zero, that is, the corresponding incompressible limits are
justified when the spatial domain is a periodic domain, the whole space, or a bounded
domain.

1. Introduction

Studies on magnetohydrodynamic flows always involve a choice at the onset to de-
scribe the system entirely in the context of either incompressible magnetohydrodynamics
(MHD), or compressible MHD. For example, theoretic studies on turbulence have a partic-
ular leaning toward the incompressible model. This preference has largely been based on
the benefits and advantages of the similarity of incompressible MHD to its hydrodynamic
counterparts, and the practical consideration of limited computational resources. However,
when the density of a flow is no longer invariant, the flow become much more complicated
not only from the physical viewpoint, but also from the mathematical consideration, see
[3, 18, 17, 21, 22] and references therein. Thus, it is a natural problem to consider the
relation between the incompressible MHD and the compressible MHD. The equations of
the isentropic compressible viscous magnetohydrodynamic flows in N spatial dimensions
have the following form ([3, 21, 22]):






ρ̃t + div(ρ̃ ũ) = 0,

(ρ̃ ũ)t + div (ρ̃ ũ⊗ ũ) +∇p̃(ρ̃) = (∇× H̃)× H̃+ µ̃∆ũ+ λ̃∇divũ,

H̃t −∇× (ũ× H̃) = −∇× (ν̃∇× H̃), divH̃ = 0,

(1.1)

where µ̃ > 0 is the shear viscosity, λ̃ is the bulk viscosity satisfying 2µ̃+Nλ̃ > 0 , ν̃ > 0

is the magnetic viscosity; and ρ̃ denotes the density, ũ ∈ R
N the velocity, H̃ ∈ R

N the
magnetic field, p̃(ρ̃) = aρ̃γ the pressure with constant a > 0 and the adiabatic exponent
γ > 1. The symbol ⊗ denotes the Kronecker tensor product. The first equation in (1.1)
is called the continuity equation and the third equation in (1.1) is called the induction
equation.

From the physics point of view, the compressible flow behaves asymptotically like an
incompressible flow when the density is almost constant, and the velocity and the magnetic

field are small, in a large time scale. More precisely, we scale ρ̃, ũ, and H̃ in the following
way:

ρ̃ = ρ(x, εt), ũ = εu(x, εt), H̃ = εH(x, εt), (1.2)
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and we assume that the coefficients µ̃, λ̃, and ν̃ are small and scaled as:

µ̃ = εµε, λ̃ = ελε, ν̃ = ενε, (1.3)

where ε ∈ (0, 1) is a small parameter and the normalized coefficients µε, λε and νε satisfy

µε → µ, λε → λ, νε → ν, as ε→ 0+, (1.4)

with µ > 0, 2µ + Nλ > 0, and ν > 0. Such a scaling as (1.3) ensures that the limit
sysyem as ε → 0 is not of an Euler type. Also notice that the parameter ε in the front of
the magnetic field H in (1.2) can be understood as the reciprocal of Alfv́en number([27]).
Under those scalings, system (1.1) yields





ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µε∆u− λε∇divu+ a
ε2∇ργ = (∇×H)×H,

Ht −∇× (u×H) = −∇× (νε∇×H), divH = 0.

(1.5)

The existence of global weak solutions to (1.5) has been investigated in Hu-Wang [18] (and
in Hu-Wang [17] for the non-isentropic case). From the mathematical point of view, it is
reasonable to expect that, as ρ → 1, the first equation in (1.5) yields the limit: divu = 0,
which is the incompressible condition of a fluid, and the first two terms in the second
equation of (1.5) become

ut + div(u⊗ u) = ut + (u · ∇)u.

On the other hand, the incompressible MHD equations read





ut + (u · ∇)u− µ∆u+∇p = (∇×H)×H,

Ht −∇× (u×H) = −∇× (ν∇×H),

divu = 0, divH = 0.

(1.6)

Thus, roughly speaking, it is also reasonable to expect from the mathematical point of
view that weak solutions of (1.5) converge in certain suitable functional spaces to the weak
solutions of (1.6) as ρ goes to a constant such as 1 and ε goes to 0, and the hydrostatic
pressure p in (1.6) is the “limit” of (ργ − 1)/ε2 in (1.5). This paper is devoted to the
rigorous justification of the convergence of that incompressible limit (i.e., the low Mach
number limit) for global weak solutions of the compressible isentropic MHD equations.

In this paper, we shall establish the incompressible limit of (1.5) in three types of
spatial domains: the torus T (in this case, all the functions are defined on R

N and assumed
to be periodic with period 2π for all directions, that is, T = [0, 2π]N ), the whole space
R
N , and a sufficiently smooth bounded domain Ω ∈ R

N , N = 2, 3. The study in the
bounded smooth domain with no-slip boundary condition on the velocity is much harder
than that in other two cases, because in bounded domains, there are extra difficulties
arising from the appearance of the boundary layers, and the subtle interactions between
dissipative effects and wave propagation near the boundary, and hence requires a different
approach. We remark that the incompressible limits for compressible isentropic Navier-
Stokes equations have been investigated in [25] for the whole space R

N and the periodic
domain using the group method, and in [9] for a bounded domain. These results have
been extended by others, such as [2, 6, 8, 26, 34]. We also notice that in [15], convergence
results were proved for well-prepared data as long as the solution of incompressible limit is
suitably smooth. For the case of non-isentropic flows, see [12, 13] for some recent studies.
For other related studies on the incompressible limits of viscous and inviscid flows, see
[1, 7, 11, 16, 19, 20, 23, 28, 29, 31, 32] and the references in [12]. Comparing with those works
on the compressible Navier-Stokes equations, we will encounter extra difficulties in studying
the compressible MHD equations. More precisely, besides the possible oscillation of the
density, the appearance of the boundary layer and the interactions between dissipative
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effects and wave propagation, the appearance of the magnetic field and the coupling effect
between the hydrodynamic motion and the magnetic field should also been taken into
considerations with new estimates. We will overcome all these difficulties by using the
group method, Strichartz’s estimate, and the weak convergence method to establish the
convergence of weak solutions of the compressible isentropic MHD equations (1.5) to weak
solutions of the incompressible MHD equations (1.6) as the density goes to a constant and
ε goes to 0 in the periodic case and the whole space case. More precisely, we will show that,
for any fixed T > 0, in the periodic case, the incompressible part of the velocity strongly
converges to a divergence-free vector field in L2([0, T ], L2(T)) while the gradient part of
the velocity converges weakly to zero; and in the whole space case, due to Strichartz’s
estimate, the gradient part of the velocity converges strongly to 0 in L2([0, T ], L2

loc(R
N)),

while the strong convergence of the incompressible part of the velocity only holds in the
local sense. However, this method does not apply to the case of bounded domains because
of subtle interactions between dissipative effects and wave propagation near the boundary.
Instead, we will use the spectral analysis of the semigroup generated by the dissipative wave
operator, together with Duhamel’s principle. Finally, we remark that the incompressible
flow also can be derived from the vanishing Debye length type limit of a compressible flows
with a Poisson damping. We refer the interested readers to [4, 5].

We organize the rest of the paper as follows. In Section 2, we will give the setting of
our problem and state our main results. In Section 3, we discuss the convergence of the
incompressible limit in the periodic case. In Section 4, we will investigate the convergence
of the incompressible limit in the whole space R

N . Finally, in Section 5, we will study the
convergence of the incompressible limit in the bounded domain.

2. Main Results

In this section, we describe the setting of our problem and state our main results. First,
we denote by P the orthogonal projection onto incompressible vector fields, i.e.

v = Pv +Qv, with div(Pv) = 0, curl(Qv) = 0,

for all v ∈ L2. Indeed, in view of results in [14], we know that the operators P and Q
are linear bounded operators in W s,p for all s ≥ 0 and 1 < p < ∞ in the whole space or
bounded domains with smooth boundaries. Second, let us explain the notation of weak
solutions to the incompressible MHD equations as follows: Given the initial conditions
u0 ∈ L2, H0 ∈ L2 such that divu0 = 0 and divH0 = 0, (u,H) is a weak solution of (1.6)
satisfying

u|t=0 = u0, H|t=0 = H0, (2.1)

where

u ∈ C([0, T ];L2
weak) ∩ L2([0, T ];H1(Ω)), H ∈ C([0, T ];L2

weak) ∩ L2([0, T ];H1(Ω)),

if for all T <∞, ψ ∈ C∞
0 (Ω) with divψ = 0, and ϕ ∈ C∞

0 ([0, T )), we have

ψ(0)

∫

Ω

u0ϕdx +

∫ t

0

ψ′(t)

∫

Ω

u · ϕdxdt+
∫ t

0

ψ(t)

∫

Ω

(ui∂iϕjuj − µ∇u : ∇ϕ) dxdt

= −
∫ t

0

∫

Ω

ψ(∇×H)×H · ϕdxdt,

and

ψ(0)

∫

Ω

H0ϕdx+

∫ t

0

ψ′(t)

∫

Ω

H · ϕdxdt +
∫ t

0

ψ(t)

∫

Ω

(u×H) · (∇× ϕ)dxdt

= ν

∫ t

0

ψ(t)

∫

Ω

(∇×H) · (∇× ϕ)dxdt.
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For more details as to the existence and regularity of weak solutions to the incompressible
MHD equations, we refer the readers to [10, 33]. Now, we can state our main results case
by case.

2.1. The periodic case. Let us begin with the periodic case. We consider a sequence
of global weak solutions (ρε,uε,Hε) of the compressible MHD equations (1.5) in T and
assume that

ρε ∈ L∞([0, T ];Lγ(T)), uε ∈ L2([0, T ];H1(T)),

ρε|uε|2 ∈ L∞([0, T ];L1(T)), ρεuε ∈ C

(
[0, T ];L

2γ
γ+1

weak

)
,

Hε ∈ L2([0, T ];H1(T)) ∩ C([0, T ];L2
weak(T)),

for all T ∈ (0,∞), where C([0, T ];Lpweak) denotes the functions which are continuous with
respect to t ∈ [0, T ] with values in Lp endowed with the weak topology. We require (1.5)
to hold in the sense of distributions. Finally, we prescribe initial conditions

ρε|t=0 = ρ0ε, ρεuε|t=0 = m0
ε = ρ0εu

0
ε, Hε|t=0 = H0

ε, (2.2)

where ρ0ε ≥ 0, ρ0ε ∈ Lγ(T), m0
ε ∈ L2γ/(γ+1)(T), m0

ε = 0 on {ρ0ε = 0}, ρ0ε|u0
ε|2 ∈ L1(T), and

H0
ε ∈ L2(T). Furthermore, we assume that

√
ρ0εu

0
ε and H0

ε converge weakly in L2 to u0

and H0 respectively, and that we have

1

2

∫

T

(
ρ0ε|u0

ε|2 + |H0
ε|2
)
dx+

a

ε2(γ − 1)

∫

T

(
(ρ0ε)

γ − γρ0ε(ρε)
γ−1 + (γ − 1)(ρε)

γ
)
≤ C,

ρε = (2π)−N
∫

T

ρ0εdx→ 1, as ε→ 0,

(2.3)

where and hereafter C denotes a generic positive constant independent of ε. Notice that
(2.3) implies that, roughly speaking, ρ0ε is of order ρε +O(ε). We assume finally that the
total energy is conserved in the sense:

Eε(t) +

∫ t

0

Dε(s)ds ≤ E0
ε , a.e t ∈ [0, T ], (2.4)

where

Eε =
1

2

∫

Ω

(
ρε|uε|2 + |Hε|2 +

a

ε2(γ − 1)
ργε

)
dx,

Dε =

∫

Ω

(
µε|Duε|2 + λε(divuε)

2 + νε|∇ ×Hε|2
)
dx,

and

E0
ε =

1

2

∫

Ω

(
ρ0ε|u0

ε|2 + |H0
ε|2 +

a

ε2(γ − 1)
(ρ0ε)

γ

)
dx,

where Ω is equal to T in the periodic case, and later is the whole space or a bounded
domain.

We now recall the results in [18] which yield the existence of such a solution with the
above properties precisely as γ > N

2 , for N = 2, 3. We state the following theorem:

Theorem 2.1 (The periodic case). Assume that {(ρε,uε,Hε)}ε>0 is a sequence of
weak solutions to the compressible MHD equations (1.5) in the periodic domain T with
initial data {(ρ0ε,u0

ε,H
0
ε)}ε>0, satisfying the conditions (2.2)-(2.4) and γ > N

2 , N = 2, 3.

Also assume that (u,H) ∈ [L2([0, T ];H1(T))∩L∞([0, T ];L2(T))]2 is a weak solution to the
incompressible MHD equations (1.6) with initial data u|t=0 = Pu0 and H|t=0 = H0. Then,
for any finite number T , up to a subsequence, the global weak solutions {(ρε,uε,Hε)}ε>0

converge to (u,H). More precisely, as ε→ 0,

ρε converges to 1 in C([0, T ];Lγ(Ω));
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Puε converges strongly to u in L2([0, T ];Lp(T)), for all 1 ≤ p <
2N

N − 2
;

Quε converges weakly to 0 in L2([0, T ];H1(T));

Hε converges to H strongly in L2([0, T ];L2(T)) and weakly in L2([0, T ];H1(T)),

where, for convenience we will denote ∞ by 2N
N−2 if N = 2 in this paper.

2.2. The whole space case. Next, we turn to the whole space case. For the convenience
of presentation, we only discuss the case when a = 1. In order to define weak solutions in
the whole space, the following special type of Orlicz spaces Lpq(Ω) are needed (see Appendix
A in [24]):

Lpq(Ω) =
{
f ∈ L1

loc(Ω) : fχ{|f |<η} ∈ Lq(Ω), fχ{|f |≥η} ∈ Lp(Ω), for some η > 0
}
,

where χ denotes the characteristic function of a set. We consider a sequence of weak solu-
tions {(ρε,uε,Hε)}ε>0 in the whole space RN with initial data {(ρ0ε,u0

ε,H
0
ε)}ε>0, satisfying

the same conditions (2.2) and (2.4) as in the periodic case. In addition, the weak solutions
{(ρε,uε,Hε)}ε>0 satisfy the following conditions at infinity:

ρε → 1, uε → 0, Hε → 0, as |x| → ∞,

and

1

2

∫

RN

(
ρ0ε|u0

ε|2 + |H0
ε|2
)
dx+

a

ε2(γ − 1)

∫

RN

(
(ρ0ε)

γ − γρ0ε + (γ − 1)
)
dx ≤ C. (2.5)

As pointed out in [18], one can show that for any fixed ε > 0, there exists a global weak
solution (ρε,uε,Hε) to the compressible MHD equations (1.5) defined by

ρε − 1 ∈ L∞([0, T ];Lγ2(R
N )),

√
ρεuε ∈ L∞([0, T ];L2(RN )),

∇uε ∈ L2([0, T ];L2(RN )),

Hε ∈ L2([0, T ];H1(RN )) ∩ L∞([0, T ];L2(RN )),

satisfying, in addition,

ρεuε ∈ C([0, T ];L
2γ/(γ+1)
loc (RN )),

ρε ∈ C([0, T ];Lploc(R
N )),

if 1 ≤ p < γ for all finite number T .
Now we are ready to state our result in the whole space as follows.

Theorem 2.2 (The whole space case). Assume that {(ρε,uε,Hε)}ε>0 is a sequence
of weak solutions to the compressible MHD equations (1.5) in the whole space R

N with
the initial data {(ρ0ε,u0

ε,H
0
ε)}ε>0, satisfying the conditions (2.2), (2.4), (2.5) and γ > N

2 ,

N = 2, 3. Also assume that (u,H) ∈ [L2([0, T ];H1(RN )) ∩ L∞([0, T ];L2(RN ))]2 is a weak
solution to the incompressible MHD equations (1.6) with initial data u|t=0 = Pu0 and
H|t=0 = H0. Then, for any finite number T , up to a subsequence, the global weak solutions
{(ρε,uε,Hε)}ε>0 converge to (u,H). More precisely, as ε→ 0,

ρε converges to 1 in C([0, T ];Lγ(Ω));

Puε converges strongly to u in L2([0, T ];Lploc(R
N )), for all 1 ≤ p <

2N

N − 2
;

Quε converges strongly to 0 in L2([0, T ];Lq(RN )), for all 2 < q <
2N

N − 2
;

Hε converges to H strongly in L2([0, T ];L2(RN )) and weakly in L2([0, T ];H1(RN )).
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2.3. The bounded domain case. The third case we will address in this paper is the
incompressible limit in a bounded domain Ω. For the convenience of presentation, we also
only discuss the situation when a = 1. In order to state precisely our main theorem,
we first introduce a geometrical condition on Ω (cf. [9]). Let us consider the following
over-determined problem

−∆ψ = λψ in Ω,
∂ψ

∂n
= 0 on ∂Ω, and ψ is constant on ∂Ω. (2.6)

A solution to (2.6) is said to be trivial if λ = 0 and ψ is a constant. We say that Ω satisfies
the assumption (A) if all the solutions to (2.6) are trivial. In the two dimensional space,
it is proved that every bounded, simply connected open set Ω with Lipschitz boundary
satisfies (A).

We consider a sequence of weak solutions {(ρε,uε,Hε)}ε>0 in a bounded domain Ω with
initial data {(ρ0ε,u0

ε,H
0
ε)}ε>0 and boundary condition

uε|∂Ω = 0, Hε|∂Ω = 0, (2.7)

satisfying the same conditions (2.2) and (2.4) as in the periodic case. And the initial data
of the weak solutions {(ρε,uε,Hε)}ε>0 satisfy

1

2

∫

Ω

(
ρ0ε|u0

ε|2 + |H0
ε|2
)
dx+

a

ε2(γ − 1)

∫

Ω

(
(ρ0ε)

γ − γρ0ε + (γ − 1)
)
dx ≤ C. (2.8)

As shown in [18], for any fixed ε > 0, there exists a global weak solution (ρε,uε,Hε) to
the compressible MHD equations (1.5) defined by

ρε ∈ L∞([0, T ];Lγ(Ω)),
√
ρεuε ∈ L∞([0, T ];L2(Ω)),

∇uε ∈ L2([0, T ];H1(Ω)),

Hε ∈ L2([0, T ];H1(Ω)) ∩ L∞([0, T ];L2(Ω)),

satisfying, in addition,
ρεuε ∈ C([0, T ];L2γ/(γ+1)(Ω)),

ρε ∈ C([0, T ];Lploc(Ω)),

if 1 ≤ p < γ for all finite number T .
Our main result in bounded domains reads as follows.

Theorem 2.3 (The bounded domain case). Assume that {(ρε,uε,Hε)}ε>0 is a se-
quence of weak solutions to the compressible MHD equations (1.5) in a bounded domain Ω
with initial data {(ρ0ε,u0

ε,H
0
ε)}ε>0 and boundary condition (2.7), satisfying the conditions

(2.2), (2.4), (2.8) and γ > N
2 , N = 2, 3. Also assume that (u,H) ∈ [L2([0, T ];H1(Ω)) ∩

L∞([0, T ];L2(Ω))]2 is a weak solution to the incompressible MHD equations (1.6) with ini-
tial data u|t=0 = Pu0 and H|t=0 = H0 and boundary conditions u|∂Ω = 0 and H|∂Ω = 0.
Then for any finite number T , as ε goes to 0, the global weak solutions {(ρε,uε,Hε)}ε>0

converges to (u,H). More precisely, as ε→ 0,

ρε converges to 1 in C([0, T ];Lγ(Ω));

uε converges to u weakly in L2(Ω× (0, T )) and strongly if Ω satisfies (A);

Hε converges to H strongly in L2([0, T ];L2(Ω)) and weakly in L2([0, T ];H1(Ω)).

Remark 2.1. In fact, we will split the eigenvectors {Ψk,0}k∈N of the Laplace equation with
Neumann boundary condition into two classes: those which are not constant on ∂Ω will
generate boundary layer and will be quickly damped, thus converge strongly to 0; those
which are constant on ∂Ω, for which no boundary layer forms, will remain oscillating
forever, and lead to only weak convergence. Hence, if (A) is not satisfied, uε will in
general only converge weakly and not strongly to u. In particular, in the bounded, simply
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connected open set Ω ⊂ R
2 with Lipschitz boundary, the boundary layer will always be

generated, and hence uε will strongly converge to zero.

3. The Periodic Case

In this section, we will prove Theorem 2.1.

3.1. A priori bounds and consequences. We first deduce from (2.4) and from the
conservation of mass that we have for almost all t ≥ 0,

1

2

∫

T

(
ρε|uε|2 + |Hε|2 +

a

ε2(γ − 1)

(
ργε − γρε(ρε)

γ−1 + (γ − 1)(ρε)
γ
))

dx

+

∫ t

0

∫

T

(
µε|Duε|2 + λε(divuε)

2 + νε|∇ ×Hε|2
)
dxds

≤ 1

2

∫

T

(
ρ0ε|u0

ε|2 + |H0
ε|2 +

a

ε2(γ − 1)

(
(ρ0ε)

γ − γρ0ε(ρε)
γ−1 + (γ − 1)(ρε)

γ
))

dx ≤ C.

(3.1)

From this inequality we see that ρε|uε|2, |Hε|2 and 1
ε2

(
ργε − γρε(ρε)

γ−1 + (γ − 1)(ρε)
γ
)
are

bounded in L∞([0, T ];L1(T)) and that Duε and ∇×Hε are bounded in L2([0, T ];L2(T)).
In particular, we see that ρε is bounded in L∞([0, T ];Lγ(T)) for all T ∈ (0,∞) due to the
fact that for ε small enough, ρε ∈ (12 ,

3
2 ) and thus for all δ > 0, there exists some η > 0

such that

xγ + (γ − 1)(ρε)
γ − γx(ρε)

γ−1 ≥ η|x− ρε|γ if |x− ρε| ≥ δ, x ≥ 0. (3.2)

As in [25] uε is bounded in L2([0, T ];H1(T)) for all T ∈ (0,∞). In fact, we deduce from
Hölder and Poincáre’s inequalities that we have for all T ∈ (0,∞)

∫ T

0

∫

T

ρε

∣∣∣∣uε − (2π)−N
∫

T

uεdx

∣∣∣∣
2

dxdt ≤ C‖ρε‖L∞([0,T ];Lγ)‖Duε‖2L2([0,T ];L2) ≤ C,

hence, in view of the above bound on ρε|uε|2, we get

C ≥
∫ T

0

∫

T

ρε

(∫

T

uεdx

)2

dxdt =

(∫

T

ρ0εdx

)∫ T

0

(∫

T

uεdx

)2

dt.

Since (2.3) implies that ρ0ε converges to 1 in measure, and hence, up to a subsequence, in
L1(T), thus, we can deduce a bound on uε in L2([0, T ];L2) by using Poincáre inequality
again. Indeed, we have
∫ T

0

∫

T

|uε|2dxdt ≤ 2

∫ T

0

∫

T

∣∣∣∣uε − (2π)−N
∫

T

uεdx

∣∣∣∣
2

dxdt + 2(2π)−N
∫ T

0

∣∣∣∣
∫

T

uε

∣∣∣∣
2

dxdt

≤ C

(
1 +

∫ T

0

∫

T

|∇uε|2dxdt
)

≤ C.

From now on, we assume that, up to a subsequence, uε converges weakly to some u in
L2([0, T ];H1(T)) for all T > 0. On the other hand, the bound on Hε in L∞([0, T ];L2(T))
and the bound on ∇Hε in L2([0, T ];L2(T)), combining the following Gagliardo-Nirenberg
inequality

‖u‖
L

8
3 ([0,T ];L4(T))

≤ ‖u‖
1
4

L∞([0,T ];L2(T))‖∇u‖
3
4

L2([0,T ];L2(T)),

imply that Hε is bounded in L8/3([0, T ];L4(T)), and also we can assume that Hε converges
weakly to some H in L2([0, T ];H1(T)) with divH = 0. Finally, from the induction equation
in (1.5), we see that

∂tHε = ∇× (uε ×Hε)−∇× (νε∇×Hi)
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is bounded in L8/7([0, T ];H−1(T)), because the fact that uε is bounded in L2([0, T ];L4(T))
implies that uε ×Hε and νε∇×Hi are bounded in L8/7([0, T ];L2(T)). Then the Aubin-
Lions compactness Lemma (see [24]) implies that

Hε → H, strongly in L8/7([0, T ];L2(T)).

Moreover, this, combing with the uniform bound on Hε in L∞([0, T ];L2(T)), implies that
Hε converges strongly to H in L2([0, T ];L2(T)). Therefore, by a standard argument, we
deduce that the limits u and H satisfy the induction equation in the sense of distributions,
and also the nonlinear term (∇ ×Hε) ×Hε in the second equation of (1.5) converges to
(∇×H)×H in the sense of distributions.

Next, we claim that ρε converges to 1 in C([0, T ];Lγ(T)). Indeed, in view of (3.1) and
(3.2), we have

sup
t≥0

∫

T

|ρε − 1|γdx ≤ δγ(2π)N + C sup
t≥0

(∫

T

χ{|ρε−1|≥δ}|ρε − ρε|γdx
)
+ C|ρε − 1|γ

≤ (2π)Nδγ +
Cε2

η
+ C|ρε − 1|γ ,

and we conclude the claim upon letting first ε go to 0 and then δ go to 0.
Now, we show from the previous bounds that divuε converges weakly to 0 in L

2([0, T ];L2(T))
and that Puε converges to u = Pu strongly in L2([0, T ];L2(T)), and thus by Sobolev
imbedding in L2([0, T ];Lq) for all 2 ≤ q < 2N

N−2 . These facts imply that Quε converges

weakly to 0 in L2([0, T ];H1(T)). Indeed, since ρε converges to 1 in C((0,∞);Lγ(T)) and
γ > N

2 , we deduce from (1.5) that divuε converges weakly to 0 in L2([0, T ];L2(T)). The
second part is proven by observing first that we project (1.5) onto divergence-free vector-
fields:

∂tP (ρεuε) + P [div(ρεuε ⊗ uε)]− µε∆Puε = P ((∇×Hε)×Hε). (3.3)

Noticing the fact that the operator P is bounded in all Sobolev space W s,p for all s ∈
[0,∞) and 1 < p < ∞ and the preceding bounds, (3.3) yields a bound on ∂tP (ρεuε) in
L1([0, T ];H−1(T)) + L2([0, T ];L1(T)) + L2([0, T ];H−1(T)), hence, in L1([0, T ];H−1(T)).

In addition, P (ρεuε) is bounded in L∞([0, T ];L
2γ

γ+1 (T)) ∩ L2([0, T ];Lr(T)) with

1

r
=

1

γ
+
N − 2

2N
.

Next, we will need the following compactness Lemma (cf. Lemma 5.1 in [24]):

Lemma 3.1. Let gn, hn converge weakly to g, h respectively in Lp1(0, T ;Lp2), Lq1(0, T ;Lq2)
where 1 ≤ p1, p2 ≤ ∞,

1

p1
+

1

q1
=

1

p2
+

1

q2
= 1.

Assume in addition that

∂gn
∂t

is bounded in L1(0, T ;W−m,1) for some m ≥ 0 independent of n,

and

‖hn − hn(·+ ξ, t)‖Lq1 (0,T ;Lq2) → 0 as |ξ| → 0, uniformly in n.

Then gnhn converges to gh in the sense of distributions in Ω× (0, T ).

Applying this lemma with the previous bounds, we deduce that P (ρεuε) · Puε con-
verges in the sense of distributions to |u|2. We then conclude easily that Puε converges
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in L2([0, T ];L2(T)) to u upon using the weak convergence of Puε to u in L2([0, T ];L2(T))
and remarking that we have

∣∣∣∣∣

∫ T

0

∫

T

(
|Puε|2 − P (ρεuε) · Puε

)
dxdt

∣∣∣∣∣ ≤ C‖ρε − 1‖C([0,T ];Lγ)‖uε‖2L2([0,T ];Ls),

with s = 2γ
γ−1 <

2N
N−2 since γ > N

2 .

We conclude this first step by showing the following bounds valid for all R ∈ (1,∞)




‖ϕε‖L∞([0,T ];L2(T)) ≤ C if γ ≥ 2,

‖ϕεχ{ρε<R}‖L∞([0,T ];L2(T)) ≤ C if γ < 2,

‖ϕεχ{ρε≥R}‖L∞([0,T ];Lγ(T)) ≤ Cε
2
γ −1 if γ < 2,

(3.4)

where we denote the density fluctuation by ϕε = 1
ε (ρε − ρε). These bounds are deduced

immediately from the following straightforward inequalities: for some ν > 0 and for all
x ≥ 0, 




xγ − 1− γ(x− 1) ≥ ν|x− 1|2 if γ ≥ 2,

xγ − 1− γ(x− 1) ≥ ν|x− 1|2 if γ < 2 and x ≤ R,

xγ − 1− γ(x− 1) ≥ ν|x− 1|γ if γ < 2 and x ≥ R.

(3.5)

3.2. The weak convergence of Qu. The proof of the weak convergence of Qu is similar
to that in Lions-Masmoudi [25], thus we only briefly describe the main idea from [25]. We
provide here first a formal proof of the passage to the limit, next the main difficulty, and
finally the strategy of proof used in order to circumvent that difficulty.

We thus begin by an informal proof. It is not difficult to check that the main difficulty
with the passage to the limit lies with the term div(ρεuε ⊗ uε) and more precisely with
the term div(ρεQ(uε) ⊗ Quε) since the strong convergence of Puε. Formally, this term
should not create an obstruction since in view of the continuity equation in (1.1), we can
rewrite the term ∂t(ρεuε) + div(ρεuε ⊗ uε) as ρε∂tuε + ρε(uε · ∇)uε, which corresponds
to the term ∂tu + (u · ∇)u in incompressible MHD equations (1.6). Next, the dangerous
term [(Quε) · ∇]Quε can be incorporated in the pressure p at the limit since Quε = ∇ψε
for some ψε, and then

[(Quε) · ∇]Quε = ∇
∣∣∣∣
1

2
∇ψε

∣∣∣∣
2

.

Next, we need to write down rigorously the proof of the convergence. First, we introduce
the following group {L(t), t ∈ R} defined by etL where L is the operator defined on D′

0 ×
(D′)N , where D′

0 = {φ ∈ D′,
∫
φ = 0}, by:

L

(
φ

υ

)
= −

(
divυ

b∇φ

)
, for b > 0. (3.6)

We remark that etL is an isometry on each Hs× (Hs)N for all s ∈ R and for all t, endowed
with the norm ‖(φ, υ)‖ = (‖φ‖2Hs + 1

b‖υ‖2Hs)1/2. For details, we refer the reader to [25].
For convenience, in the sequel, we will denote by L1 (L2) the first (the second) component
of the operator L, respectively.

We next claim that L(− t
ε )
(

ϕε

Q(ρεuε)

)
is relatively compact in L2([0, T ];H−n) for some

n ∈ (0, 1). To this end, we need to prove first that
(

ϕε

Q(ρεuε)

)
is bounded in L2([0, T ];H−s)

for some s ∈ (0, 1) and that ∂t{L
(
− t
ε

) (
ϕε

Q(ρεuε)

)
} is bounded in L2([0, T ];H−r) for some

r > 0 large enough. Our claim then follows from Aubin-Lions compactness lemma by
choosing n in (s, 1).

Since we know that ϕε is bounded in L∞([0, T ];Lp) where p = min(2, γ), by Sobolev
imbedding theorems, we know that ϕε is bounded in L2([0, T ];H−s) for some s ∈ (0, 1].
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And, we also deduce from the previous subsection that ρεuε and thus Q(ρεuε) is bounded
in L2([0, T ];Lq) with

1

q
=

1

γ
+
N − 2

2N
.

Therefore, L
(
− t
ε

) (
ϕε

Q(ρεuε)

)
is bounded in L2([0, T ];H−s) for some s ∈ (0, 1).

In order to get the uniform bound on ∂t{L
(
− t
ε

) (
ϕε

Q(ρεuε)

)
}, we project the second equa-

tion of (1.5) into the space of gradient vector-fields and we find

∂tQ(ρεuε) +Q[div(ρεuε ⊗ uε)]− (µε + λε)∇divuε+

a

ε2
∇
(
ργε − γρε(ρε)

γ−1 + (γ − 1)(ρε)
γ
)
+
aγ(ρε)

γ−1

ε2
∇(ρε − ρε)

= Q[(∇×Hε)×Hε].

(3.7)

Hence, we can write the first equation (1.5) and (3.7) as

ε
∂ϕε
∂t

+ divQ(ρεuε) = 0,

ε
∂Q(ρεuε)

∂t
+ b∇ϕε = εFε,

where b = aγ(ρε)
γ−1, and

Fε =(µε + λε)∇divuε −Q[div(ρεuε ⊗ uε)]

− a∇
(

1

ε2
(ργε − γρε((ρε))

γ−1 + (γ − 1)(ρε)
γ)] +Q[(∇×Hε)×Hε

)
.

Since b goes to aγ as ε goes to 0. we will ignore the dependence of b on ε hereafter. Now,
we set

ψε(t) = L1(−
t

ε
)

(
ϕε

Q(ρεuε)

)
, mε(t) = L2(−

t

ε
)

(
ϕε

Q(ρεuε)

)
,

then we have

∂

∂t

(
ψε
mε

)
= L

(
− t

ε

){
∂

∂t

(
ϕε

Q(ρεuε)

)
+

1

ε

(
divQ(ρεuε)

b∇ϕε

)}

= L
(
− t

ε

)(
0

Fε

)
,

where Fε is bounded in L2([0, T ];H−1(T)) + L2([0, T ];W−1−δ,1(T)) for all δ > 0, and

hence, is bounded in L2([0, T ];H−r(T)) for all r > N
2 + 1. Thus ∂

∂t

(
ψε

mε

)
is bounded in

L2([0, T ];H−r(T)).
We deduce from the compactness of (ψε,mε) that we may assume without loss of gen-

erality that (ψε,mε) converges in L
2([0, T ];H−n) to some (ψ,m). Since Pmε = 0, we also

have Pm = 0. Similarly,
∫
ψ = 0. Hence, we have

(
ϕε

Q(ρεuε)

)
= L

(
t

ε

)(
ϕ

m

)
+ rε, rε → 0 in L2([0, T ];H−n) as ε→ 0. (3.8)

Finally, following the argument of Step 4 in Section 3 in [25], one can show that ϕ,
m ∈ L2([0, T ];L2(T)) and div(ρεuε ⊗ uε) − div(vε ⊗ vε) converges to div(u ⊗ u) in the
sense of distributions, where vε = L2(

t
ε )
(
ϕ
m

)
. Moreover, following the argument of Step

5 in Section 3 in [25], we can show that div(vε ⊗ vε) converges to a distribution which is
a gradient. Note that the magnetic field does not affect the argument of convergence of
div(ρεuε⊗uε)−div(vε⊗ vε) and div(vε⊗ vε) because the magnetic field H does not affect
the integrability of Fε based on our estimates, thus we only state those convergence results
without proof. We refer the reader to [25] for details.

This finishes the proof of Theorem 2.1.
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4. The Whole Space Case

In this section, we prove Theorem 2.2. The idea is taken from [8]. Before we start, we
introduce homogeneous Sobolev spaces for 1 < p <∞ and s ∈ R defined as usual by

Ẇ s,p(RN ) = (−∆)−s/2Lp(RN ) and Ḣs(RN ) = Ẇ s,2(RN ),

where ∆ is the Laplace operator.
Let us denote by ζ ∈ C∞

0 (RN ) a smoothing kernel such that ζ ≥ 0,
∫
RN ζdx = 1, and

define ζα(x) = α−N ζ(x/α). The following estimate will be useful in this section (cf. [8]):

‖f − f ∗ ζα‖Lq ≤ Cα1−σ‖∇f‖L2, for all f ∈ Ḣ1, (4.1)

where

q ∈
[
2,

2N

N − 2

)
and σ = N

(
1

2
− 1

q

)
,

and for 1 < p2 < p1 <∞, s ≥ 0 and α ∈ (0, 1), we have

‖g ∗ ζα‖Lp1(RN ) ≤ Cα−s−N(1/p2−1/p1)‖g‖W−s,p2(RN ). (4.2)

4.1. A priori estimates and consequences. Most of the arguments developed in the
periodic case can be adapted to the whole space case. First, we obtain bounds on Duε in
L2([0, T ];L2(RN )) , on ∇×Hε in L

2([0, T ];L2(RN )) and on ρε|uε|2, and 1
ε2 (ρ

γ
ε +(γ− 1)−

γρε) in L
∞([0, T ];L1(RN )). The bound on uε in L

2([0, T ];L2(RN )) follows from (3.5) and
the following observation:

∫

RN

(
1

ε2
|ρε − 1|2χ{|ρε−1|≤1/2} +

1

ε2
|ρε − 1|γχ{|ρε−1|≥1/2}

)
≤ C, (4.3)

and thus, in particular,
∫

RN

|uε|2dx ≤ C +

∫

RN

|uε|2χ{ρε≤1/2}dx

≤ C +

(∫

RN

χ{ρε≤1/2}dx

)1/γ (∫

RN

|uε|2γ
′

dx

)1/γ′

≤ C
(
1 + (meas(|ρε − 1| ≥ 1/2))1/γ‖uε‖2θL2‖Duε‖2(1−θ)L2

)

≤ C
(
1 + ε2/γ‖uε‖2θL2‖Duε‖2(1−θ)L2

)
,

where
θ

2
+ (1− θ)

N − 2

2N
=

1

2γ′
.

We then complete the proof of our claim using the bound on Duε in L2([0, T ];L2(RN ))
and the classical Young’s inequality. Moreover, if we define the density fluctuation as

ϕε =
ρε − 1

ε
,

then, it is bounded uniformly in ε in L∞([0, T ];Lκ2) with κ = min{2, γ}. Furthermore, if
we write

uε = u1
ε + u2

ε,

where

u1
ε = uεχ{|ρε−1|≤1/2} and u2

ε = uεχ{|ρε−1|>1/2},

then, we have

sup
t≥0

∫

RN

|u1
ε|2dx ≤ 2 sup

t≥0

∫

RN

ρε|uε|2dx ≤ C,
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and for p < κ when N = 2, p = 2κ/3 if N = 3,
∫

RN

|u2
ε|2dx ≤ C

∫

RN

|ρε − 1|pχ{|ρε−1|>1/2}|uε|2dx

≤ C‖(ρε − 1)χ{|ρε−1|>1/2}‖pL∞([0,T ];Lκ(RN ))‖uε‖2L2κ/(κ−p)

≤ Cε2p/κ‖uε‖2−pN/κL2(RN )
‖∇uε‖pN/κL2(RN )

,

hence, by Young’s inequality, u1
ε is bounded in L∞([0, T ];L2(RN )) and u2

εε
−β is bounded

in L2([0, T ];L2(RN )), where β ∈ (0, 1) if N = 2 and β = 2/3 if N = 3.
Recalling that γ > N/2, we deduce that uε is bounded in

L2([0, T ];L4(RN ) ∩ L2γ/(γ−1)(RN )).

Hence, we have

‖ϕεuε‖L2([0,T ];L4/3(RN )+L2κ/(κ+1)(RN ) ≤ C.

Therefore, using Sobolev’s imbedding, we deduce

‖ϕεuε‖L2([0,T ];H−1(RN )) ≤ C.

Finally, we already know that ϕ0
ε is bounded in Lκ2 (R

N ), hence in H−1(RN ), since
γ > N/2. On the other hand, m0

ε can be rewritten as

m0
ε =

m0
ε√
ρ0ε

√
ρ0εχ{|ρ0ε−1|≤1/2} +

m0
ε√
ρ0ε

√
ρ0ε√

|ρ0ε − 1|
√
|ρ0ε − 1|χ{|ρ0ε−1|>1/2}.

This implies that m0
ε is bounded in L2(RN ) + L2κ/(κ+1)(RN ), and hence in H−1(RN ).

Therefore,
(ϕ0

ε

m0
ε

)
is bounded in H−1(RN ) uniformly in ε.

4.2. Strong convergence of Quε to 0. We now prove that the gradient part of the
velocity Quε converges strongly to 0. More precisely, we claim that Quε converges strongly
to 0 in L2([0, T ];Lp(RN )) for all p ∈ (2, 2N

N−2) . Indeed, let us first observe that the
compressible MHD equations can be rewritten in terms of the density fluctuation ϕε, the
momentum mε = ρεuε and φε =

(
ϕε

mε

)
as follows

∂tφε +
Lφε
ε

= F 1
ε + F 2

ε ,

where the wave operator L is defined on (D′(RN ))N+1 with values in (D′(RN ))N+1 by

Lφ =

(
divm

∇ψ

)
, with φ =

(
ψ

m

)
,

and

F 1
ε =

(
0

µε∆u1
ε + λε∇divu1

ε − div(mε ⊗ uε)− a
ε2∇(ργε − 1− γ(ρε − 1)) + (∇×Hε)×Hε

)
,

F 2
ε =

(
0

µε∆u2
ε + λε∇divu2

ε

)
.

Using Duhamel ’s formula, we deduce that

Qφε(t) = L
(
t

ε

)
Qφ0ε +

∫ t

0

L
(
t− s

ε

)
(QF 1

ε (s) +QF 2
ε (s))ds.

Here we used the fact that Q and L commute, since Q and L do.
At this stage, the following Strichartz’s estimates from [8] are useful:
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Lemma 4.1. For all s ≥ 0, we have
∥∥∥∥L
(
t

ε

)
Qψ0

∥∥∥∥
Lq((0,∞);W−s−σ,p(RN ))

≤ Cε1/q‖ψ0‖H−s(RN ), (4.4)

∥∥∥∥
∫ t

0

L
(
t− s

ε

)
Qψ(s)ds

∥∥∥∥
Lq([0,T ];W−s−σ,p(RN ))

≤ C(1 + T )ε1/q‖ψ‖Lq([0,T ];H−s(RN )), (4.5)

for all (p, q) ∈ (2,∞)× (2,∞) and σ ∈ (0,∞) such that

2

q
= (N − 1)

(
1

2
− 1

p

)
and σq =

N + 1

N − 1
. (4.6)

Now, we choose p ∈ (2, 2N
N−2 ), q ∈ (2,∞) and σ ∈ (0,∞) given by (4.6). One can deduce

that

|Quε| ≤ |Quε −Quε ∗ ζα|+ ε|Q(uεϕε) ∗ ζα|+ |Qmε ∗ ζα|.
Hence,

‖Quε‖L2([0,T ];Lp(RN )) ≤ Cα1−N(1/2−1/p)‖∇uε‖L2([0,T ];L2(RN ))

+ εα−1−N(1/2−1/p)‖ϕεuε‖L2([0,T ];H−1(RN ))

+ ‖Qmε ∗ ζα‖L2([0,T ];Lp(RN )).

From the estimates in previous subsection, we know that F 1
ε is bounded in L∞([0, T ];H−s0)

for all s0 > N/2 + 1. On the other hand, we deduce from the uniform bound on u2
εε

−β in
L2([0, T ];L2) that ε−βF 2

ε is bounded in L2([0, T ];H−2(RN )). Then, using Lemma 4.1, we
obtain, for all η > 0 small enough,

‖Qmε ∗ ζα‖L2([0,T ];Lp(RN ))

≤ CTα
−1−σ

∥∥∥∥L
(
t

ε

)
ψ0
ε

∥∥∥∥
Lq([0,T ];W−1−σ,p(RN ))

+ CTα
−N/2−1−σ−η

∥∥∥∥∥

∫ T

0

dsL
(
t− s

ε

)
QF 1

ε (s)

∥∥∥∥∥
Lq([0,T ];W−η−N/2−1−σ,p(RN ))

+ Cα−2−N(1/2−1/p)

∥∥∥∥
∫ t

0

dsL
(
t− s

ε

)
QF 2

ε (s)

∥∥∥∥
L2([0,T ];H−2)

≤ CTα
−1−σε1/q‖ψ0

ε‖H−1 + CTα
−N/2−1−σ−ηε1/q‖F 1

ε ‖L∞([0,T ];H−η−N/2−1)

+ Cα−2−N(1/2−1/p)εβ‖ε−βF 2
ε ‖L2([0,T ];H−2).

Next, fixing α > 0 and letting ε go to zero, we obtain

lim sup
ε→0

‖Quε‖L2([0,T ];Lp(RN )) ≤ Cα1−N(1/2−1/p),

where C is independent of ε and α. Noticing that 1−N(1/2− 1/p) > 0, we finally get, by
letting α → 0,

lim sup
ε→0

‖Quε‖L2([0,T ];Lp(RN )) = 0.

This implies that Quε strongly converges to 0 in L2([0, T ];Lp(RN )) for all 2 < p < 2N
N−2 .
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4.3. Strong convergences of Puε and Hε. In the previous section, we proved the strong
convergence of the gradient part of the velocity to 0. In order to complete the proof of The-
orem 2.2, we are left to show the convergence of the incompressible part the velocity, Puε,
the convergence of the density, and the convergence of the magnetic field. This can be done
by using the classical compactness arguments in [24, 25], or equivalently by looking at the
time-regularity properties of Puε, see [8]. Indeed, following the argument in the periodic
case steps by steps, we obtain the strong convergence of ρε to 1 in C([0, T ];Lγloc(R

N )) and
the weak convergence of Puε to u in L2([0, T ];H1(RN )). Moreover, we also can show that
Puε converges to u in L2([0, T ];L2(BR)) for all R ∈ (0,∞). Here, we denote by BR the
open ball centered at 0 of radius R.

Finally, similarly as in the periodic case, the bound on Hε in L∞([0, T ];L2(RN )) and
the bound on ∇Hε in L

2([0, T ];L2(RN )), combining Sobolev’s inequality and interpolation
theorem, we know that Hε is bounded in L8/3([0, T ];L4(RN )), and also we can assume that
Hε converges weakly to some H in L2([0, T ];H1(RN )) with divH = 0. Finally, from the
induction equation in (1.5), we deduce that ∂tHε is bounded in L8/7([0, T ];H−1(RN )), due
to the fact that uε is bounded in L2([0, T ];L4(RN )). This property, combining Aubin-Lions
compactness Lemma, implies that Hε converges strongly to H in L8/7([0, T ];L2

loc(R
N )).

Moreover, the uniform bound on Hε in L∞([0, T ];L2(RN )) implies that Hε converges
strongly to H in L2([0, T ];L2

loc(R
N )). Therefore, by a standard argument, we deduce that

the limits u and H satisfy the induction equation in (1.1) in the sense of distributions,
and also the nonlinear term (∇ ×Hε) ×Hε in the second equation of (1.5) converges to
(∇×H)×H in the sense of distributions. For a detailed statement of the above argument,
we refer it to the argument surrounding the convergence of the magnetic field in section
3.1.

The proof of Theorem 2.2 is complete.

5. The Bounded Domain Case

In this section, we will prove Theorem 2.3 by the spectral analysis of the semigroup
generated by the dissipative wave operator. Before we start, we introduce the eigenvalues
{λ2k,0}k∈N (λk,0 > 0) and the eigenvectors {Ψk,0}k∈N in L2(Ω) with zero mean value of the
Laplace operator satisfying homogeneous Neumann boundary conditions:

−∆Ψk,0 = λ2k,0Ψk,0 in Ω,
∂Ψk,0
∂n

= 0 on ∂Ω.

Notice that, by Gram-Schmidt orthogonalization method, it is possible to assume that
{Ψk,0}k∈N is a orthonormal basis of L2(Ω) and that up to a slight modification, if λk,0 = λl,0
and k 6= l, then ∫

∂Ω

∇Ψk,0 · ∇Ψl,0ds = 0.

Next, we recall from the previous section that we can deduce similarly that

sup
t≥0

‖ρε − 1‖Lγ(Ω) ≤ Cεκ/γ and sup
t≥0

‖ρε − 1‖Lκ(Ω) ≤ Cε,

where κ = min{2, γ}. And similarly to the whole space case, we will split

uε = u1
ε + u2

ε, with u1
ε = uεχ|ρε−1|≤1/2, u2

ε = uεχ|ρε−1|>1/2,

which satisfy

sup
t≥0

∫

Ω

|u1
ε|2dx ≤ 2 sup

t≥0

∫

Ω

ρε|uε|2dx ≤ C;

and

‖u2
ε‖2L2(Ω) ≤ 2

∫

Ω

|ρε − 1||uε|2dx ≤ Cε‖uε‖2L2κ/(κ−1)(Ω) ≤ Cε|∇uε|2L2(Ω).
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Therefore, u1
ε is bounded in L∞([0, T ];L2(Ω)) whereas u2

εε
−1/2 is bounded in L2(Ω×(0, T )),

and hence, uε is bounded in L2(Ω × (0, T )). Also, in this section, we denote the density
fluctuation by

ϕε =
ρε − 1

ε
,

and the momentum by mε = ρεuε.

5.1. Strong convergence of Puε and Hε. Following the argument in the periodic case
step by step, up to the extraction of a subsequence, we then obtain the strong convergence
of ρε to 1 in C([0, T ];Lγ(Ω)), the strong convergence of Puε to u = Pu in L2(Ω× (0, T )),
and the weak convergence of Quε to 0 in L2([0, T ];H1(Ω)). Thus, the continuity equation
in (1.5) holds in the sense of distributions.

Similarly to the periodic case, the bound on Hε in L
∞([0, T ];L2(Ω)) and the bound on

∇Hε in L2([0, T ];L2(Ω)), combining Sobolev’s inequality and interpolation theorem, we
know that Hε is bounded in L8/3([0, T ];L4(Ω)), and also we can assume that Hε converges
weakly to some H in L2([0, T ];H1(Ω)) with divH = 0. Also, from the induction equation
in (1.5), we deduce that ∂tHε is bounded in L8/7([0, T ];H−1(Ω)), due to the fact that
uε is bounded in L2([0, T ];L4(Ω)). This property, combining Aubin-Lions compactness
Lemma, implies that Hε converges strongly to H in L8/7([0, T ];L2(Ω)). Moreover, the
uniform bound on Hε in L∞([0, T ];L2(Ω)) implies that Hε converges strongly to H in
L2([0, T ];L2(Ω)). Therefore, by a standard argument, we deduce that the limits u and H
satisfy the induction equation in (1.1) in the sense of distributions, and also the nonlinear
term (∇×Hε)×Hε in the second equation of (1.5) converges to (∇×H)×H in the sense
of distributions. Therefore, in order to prove Theorem 2.3, it only remains to study the
convergence of the gradient part of the velocity Quε.

5.2. The convergence of Quε. The argument for the convergence of Quε in this subsec-
tion follows the lines in [9], except the argument for the magnetic field. For the reader’s
convenience and the completeness of the argument, we provide the details here. For this
purpose, first, we discuss the spectral problem associated with the viscous wave operator
Lε in terms of eigenvalues and eigenvectors of the inviscid wave operator L, where the wave
operator L and Lε are defined on D′(Ω)×D′(Ω)N by

L

(
ψ

m

)
=

(
divm

∇Ψ

)
,

and

Lε

(
Ψ

m

)
= L

(
Ψ

m

)
+ ε

(
0

µε∆m + λε∇divm

)
.

The eigenvalues and eigenvectors of L read as follows

φ±k,0 =

(
Ψk,0

mk,0 = ±∇Ψk,0

iλk,0

)
,

Lφ±k,0 = ±iλk,0φ
±
k,0 in Ω, m±

k,0 · n = 0 on ∂Ω.

In the following steps, the following information on the approximating eigenvalues and
eigenvectors for the operator Lε is crucial:

Lemma 5.1. Let Ω be a C2 bounded domain in RN and let k ≥ 1, M ≥ 0. Then, there

exists approximate eigenvalues iλ±k,ε,M and eigenvectors φ±k,ε,M =
(Ψ±

k,ε,M

m
±

k,ε,M

)
of Lε such that

Lεφ
±
k,ε,M = iλ±k,ε,Mφ

±
k,ε,M +R±

k,ε,M ,

with
iλ±k,ε,M = ±iλk,0 + iλ±k,1

√
ε+O(ε), where Re(iλ±k,1) ≤ 0,
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and for all 1 ≤ p ≤ ∞, we have

‖R±
k,ε,M‖Lp(Ω) ≤ Cp(

√
ε)M+1/p and ‖φ±k,ε,M − φ±k,0‖Lp(Ω) ≤ Cp(

√
ε)1/p.

Proof. For the construction in detail, we refer the readers to [9]. �

Remark 5.1. Due to the construction in [9], indeed, we have

iλ±k,1 = −1± i

2

√
µε

2λ3k,0

∫

∂Ω

|∇Ψk,0|2 ds.

Remark 5.2. We notice that the first order term iλ±k,1 clearly yields an instantaneous

damping of the acoustic waves, as soon as Re(iλ±k,1) < 0. For this reason, we define I ⊂ N

to be the set of eigenvectors Ψk,0 of the Laplace operator such that Re(iλ±k,1) < 0 and

J = N− I. Observe that when k ∈ J , we have λ±k,1 = 0. For those indices, m±
k,0 identically

vanishes on ∂Ω and therefore satisfies not only m±
k,0 ·n = 0 but also m±

k,0 = 0 on ∂Ω, hence
no significant boundary layer is created, and there is no enhanced dissipation of energy in
these layers.

Now, we can express Quε in the terms of the orthonormal basis
{

∇Ψk,0

λk,0

}

k∈N

of L2(Ω)

as

Quε =
∑

k∈N

(
Quε,

∇Ψk,0
λk,0

) ∇Ψk,0
λk,0

,

where the notation (·, ·) stands for

(f(x), g(x)) =

∫

Ω

f(x)g(x)dx.

We can split Quε into two parts Q1uε and Q2uε, defined by

Q1uε =
∑

k∈I

(
Quε,

∇Ψk,0
λk,0

) ∇Ψk,0
λk,0

, and Q2uε =
∑

k∈J

(
Quε,

∇Ψk,0
λk,0

) ∇Ψk,0
λk,0

,

which respectively correspond to damped terms and nondamped terms. We will prove on
one hand that Q1uε converges strongly to 0 in L2(Ω× (0, T )), and on the other hand that
curldiv(Q2mε⊗Q2uε) converges to 0 in the sense of distributions, if J 6= ∅, which is equiv-
alent to say that div(Q2mε ⊗Q2uε) converges to a gradient in the sense of distributions.

Let us observe that in view of the bound on uε in L
2([0, T ];H1

0 (Ω)), the problem reduces
to a finite number of terms. Indeed, we have

∑

k>M

∫ T

0

∣∣∣∣
(
Qiuε,

∇Ψk,0
λk,0

)∣∣∣∣
2

dt ≤ C

λ2M+1

|∇uε|2L2(Ω×(0,T )), i = 1 or 2.

Hence, recalling that λM → ∞ as M → ∞, we only have to prove that (Q1uε,m
±
k,0)

converges strongly to 0 in L2(0, T ) for any fixed k, and study the interaction of a finite
number of terms in div(Q2uε ⊗Q2uε). On the other hand, we notice that

Quε = Qmε − εQ(ϕεuε),

and

ε|(Q(ϕεuε),∇Ψk,0)| = ε

∣∣∣∣
∫

Ω

ϕεuε · ∇Ψk,0dx

∣∣∣∣
≤ ε‖ϕε‖Lγ(Ω)‖uε‖

L
γ

γ−1 (Ω)
‖∇Ψk,0‖L∞(Ω),

which goes to 0 in L2(0, T ) since γ > N/2. Hence, we are led to study (Qmε,m
±
k,0).
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Denote

β±
k,ε = (φε(t), φ

±
k,0), with φε(t) =

(
ϕε
mε

)
,

we observe that:

2(Qmε,m
±
k,0) = β±

k,ε − β∓
k,ε,

so that it suffices to consider the convergence properties of β±
k,ε in L2(0, T ). Also, we see

from Lemma 5.1 with M = 2 that:

|(φε(t), φ±k,0 − φ±k,ε,2)| ≤ Cεα/2
(
‖ϕε‖L∞([0,T ];Lκ(Ω)) + ‖mε‖

L∞([0,T ];L
2γ

γ+1 (Ω))

)
,

where

α = min

{
1− 1

κ
,
1

2
− 1

2γ

}
,

hence we only have to prove that b±k,ε(t) = (φε(t), φ
±
k,ε,2) converges strongly to 0 in L2(0, T )

when k ∈ I, and study its oscillations when k ∈ J .
Notice that φε(t) = (ϕε,mε) solves

∂tφε −
L∗
εφε
ε

=

(
0

gε

)
, (5.1)

where L∗
ε denotes the adjoint of Lε with respect to (·, ·), and

gε = −div(mε ⊗ uε)−∇
[
(ρε)

γ − γρε + (γ − 1)

ε2

]
+ (∇×Hε)×Hε.

Taking the scalar product of (5.1) with φ±k,ε,2, we obtain

d

dt
b±k,ε(t)−

iλ±k,ε,2
ε

b±k,ε(t) = c±k,ε(t), (5.2)

where c±k,ε(t) = (gε,m
±
k,ε,2) + ε−1(φε, R

±
k,ε,2).

5.2.1. The case k ∈ I. From (5.2), by Duhamel’s principle, we deduce that

b±k,ε(t) = b±k,ε(0) exp
iλ±

k,ε,2t/ε+

∫ t

0

c±k,ε(s) exp
iλ±

k,ε,2(t−s)/ε ds. (5.3)

The first term in (5.3) is estimated as follows
∥∥∥∥b

±
k,ε(0) exp

iλ±

k,ε,2t/ε

∥∥∥∥
L2(0,T )

≤ C

∥∥∥∥b
±
k,ε(0) exp

Re(iλ±

k,1)t/
√
ε

∥∥∥∥
L2(0,T )

≤ Cε1/4.

In order to estimate the remaining term in (5.3), we will use the following estimate: for
any 1 ≤ p, q ≤ ∞ with 1

q +
1
p = 1, we have

∣∣∣∣
∫ t

0

expiλ
±

k,ε,2(t−s)/ε a(s)ds

∣∣∣∣ ≤
∫ t

0

expRe(iλ
±

k,1)(t−s)/
√
ε |a(s)|ds ≤ C‖a‖Lq(0,T )ε

1
2p . (5.4)

We now write |c±k,ε| ≤ c1 + c2 + c3 + c4, where

c1(t) =

∣∣∣∣
∫

Ω

(mε ⊗ uε)(t) · ∇m±
k,ε,2dx

∣∣∣∣ ,

c2(t) =

∣∣∣∣
∫

Ω

[
(ρε)

γ − γρε + (γ − 1)

ε2

]
(t)divm±

k,ε,2dx

∣∣∣∣ ,

c3(t) = ε−1|(φε, R±
k,ε,2)|,

c4(t) =

∣∣∣∣
∫

Ω

(∇×Hε)×Hε · ∇m±
k,ε,2dx

∣∣∣∣ .
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Observing that mε = εϕεuε + uε, we have:

c1(t) ≤ ‖m±
k,ε,2‖L∞(Ω)‖u1

ε + u2
ε‖L2(Ω)‖∇uε‖L2(Ω)

+ ε‖ϕε‖L∞([0,T ];Lκ(Ω))‖(uε)2‖Lκ/(κ−1)(Ω)‖∇m±
k,ε,2‖L∞(Ω)

≤ C‖u1
ε‖L∞([0,T ];L2(Ω))‖∇uε‖L2(Ω) + Cε1/2‖∇uε‖2L2(Ω) + Cε1/2‖∇uε‖L2(Ω).

The second term c2 is estimated as

c2(t) ≤ C‖pε‖L∞([0,T ];L1(Ω))(‖Ψ±
k,ε,2‖L∞(Ω) + ‖R±

k,ε,2‖L∞(Ω)) ≤ C.

Also, we estimate c3 by

c3(t) ≤
1

ε
‖R±

k,ε,2‖Lκ/(κ−1)(Ω)‖φε‖L∞([0,T ];Lκ(Ω)) ≤ Cε1/2−1/2κ.

Finally, we can estimate c4 by

c4(t) ≤ ‖∇m±
k,ε,2‖L∞(Ω)‖Hε‖L∞([0,T ];L2(Ω))‖∇Hε‖L2(Ω) ≤ C‖∇Hε‖L2(Ω).

Therefore, using the estimate (5.4) repeatedly, we can conclude that b±k,ε converges strongly

to 0 in L2(0, T ).

5.2.2. The case k ∈ J . From (5.3) and the fact that λ±k,1 = 0, we see that exp±iλk,0t/ε b±k,ε
is bounded in L2(0, T ) and that its time derivative is bounded in

√
εL1(0, T ) + Lp(0, T )

for some p > 1. It follows that up to a subsequence, it converges strongly in L2(0, T ) to
some element b±k,osc.

Next, since ρε(x, t) converges to 1 in C([0, T ];Lγ(Ω)) and b±k,ε(t) are uniformly bounded

in L2([0, T ]), we deduce that

ρεb
±
k,εb

±
l,ε

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

− b±k,εb
±
l,ε

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

→ 0,

in the sense of distributions. Hence, we only need to consider the terms

b±k,εb
±
l,ε

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

, for all k, l ∈ J.

On the other hand, due to the strong convergence of exp±iλk,0t/ε b±k,ε in L2([0, T ]) when
k ∈ J , we can deduce that

b±k,εb
±
l,ε

∇Ψk,0
λk,0

⊗ Ψl,0
λl,0

= expi(λk,0−λl,0)t/ε exp−iλk,0t/ε bk,0 exp
iλl,0t/ε bl,0

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

→ expi(λk,0−λl,0)t/ε b±k,osc(t)b
±
l,osc(t)

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

,

at least in the sense of distributions. Thus, we are only left to study the interaction of
terms

expi(λk,0−λl,0)t/ε b±k,osc(t)b
±
l,osc(t)

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

. (5.5)

We will finish the analysis of the interaction by two cases. The first case is λk,0 = λl,0.
In this case, the term (5.5) is reduced to

b±k,osc(t)b
±
l,osc(t)

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0

,

whose divergence is clearly a gradient in the sense of distributions, due to the fact that as
long as λk,0 = λl,0, we have

div(∇Ψk,0 ⊗∇Ψl,0 +∇Ψl,0 ⊗∇Ψk,0) = −λ2k,0∇(Ψk,0Ψl,0) +∇(∇Ψk,0 · ∇Ψl,0).
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For the second case, we have λk,0 6= λl,0. Under this situation, due to the fact that
b±k,osc(t) ∈ L2([0, T ]) as k ∈ J , we know that b±k,osc(t)b

±
l,osc(t) ∈ L1([0, T ]) for all k, l ∈ J .

Then, by Riemann-Lebesgue Lemma, we conclude that
∫ T

0

expi(λk,0−λl,0)t/ε b±k,osc(t)b
±
l,osc(t)dt → 0, as ε→ 0,

which implies that (5.5) converges to 0 in the sense of distributions. Hence, the finite sum,
as k, l ≤M ,

div



∑

k,l∈J
ρεb

±
k,εb

±
l,ε

∇Ψk,0
λk,0

⊗ ∇Ψl,0
λl,0




converges to a gradient in the sense of distributions. And hence,

div(ρεQ2uε ⊗Q2uε)

converges to a gradient in the sense of distributions.
This completes our proof of Theorem 2.3.
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