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Abstract. Bayesian modeling and analysis of the MEG and EEG modalities
provide a flexible framework for introducing prior information complementary

to the measured data. This prior information is often qualitative in nature,

making the translation of the available information into a computational model
a challenging task. We propose a generalized gamma family of hyperpriors

which allows the impressed currents to be focal and we advocate a fast and ef-

ficient iterative algorithm, the Iterative Alternating Sequential (IAS) algorithm
for computing maximum a posteriori (MAP) estimates. Furthermore, we show

that for particular choices of the scalar parameters specifying the hyperprior,

the algorithm effectively approximates popular regularization strategies such
as the Minimum Current Estimate and the Minimum Support Estimate. The

connection between priorconditioning and adaptive regularization methods is
also pointed out. The posterior densities are explored by means of a Markov

Chain Monte Carlo (MCMC) strategy suitable for this family of hypermodels.

The computed experiments suggest that the known preference of regulariza-
tion methods for superficial sources over deep sources is a property of the MAP

estimators only, and that estimation of the posterior mean in the hierarchical

model is better adapted for localizing deep sources.

1. Introduction

The human brain contains approximately 1011 exitable neurons whose resting
state is characterized by a cross-membrane voltage difference. Electromagnetic sig-
nals propagate as perturbations of this voltage difference, or action potentials, along
the axons and are transferred across the synaptic gaps by neurotransmitters, creat-
ing a post-synaptic potential in the receiving neurons. The post-synaptic potential
may be relatively stable over a period of milliseconds and, being well localized,
it can be modelled mathematically as current dipole. The neurons are organized
in bundles, and when thousands of neighboring neurons are simultaneously in the
post-synaptic excitation state, the net effect of the post-synaptic potentials gives
rise to a localized current approximately parallel to the neuron bundle. This el-
ementary impressed source current drives an Ohmic volume current in the brain
tissue, and the net electromagnetic field can be registered on or outside the skull.
Imaging of the neuronal activity based on the registered electric voltage (EEG)
or on the magnetic field (MEG) has become a standard research tool in clinical
and cognitive studies. Furthermore, when coupled to functional imaging methods,
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MEG and EEG have a great potential to gather pertinent information about the
coupling between neuronal activity and cerebral hemodynamics.

The advantage of electromagnetic brain imaging modalities is their good tempo-
ral resolution, about a millisecond, while their spatial resolution is limited by various
factors, including weak signal-to-noise ratio, ambiguities in the source estimation
due to the non-uniqueness of the inverse source problem [25] and uncertainties in
the model. For example, while EEG suffers from lack of knowledge of the electric
conductivity distribution and anisotropy of the head, MEG is known to be less
affected by that [9, 34]. For both modalities, the anisotropy of the white matter
may result in a strong bias of the volume currents, an effect that should be taken
into account in a detailed model.

The properties of the solutions to electromagnetic inverse source problems de-
pend on the a priori information implemented in the algorithm. One piece of
information that may certainly improve the spatial resolution, if properly incorpo-
rated in the algorithm, is the focal nature of the impressed currents. In fact, since
the electric and magnetic fields outside the skull depend linearly on the impressed
currents, but the component of the source belonging to the significantly nontrivial
null space of the forward map has no effect on the data, the determination of a
physiologically meaningful solution must be based on complementary information.
The implementation of feasible selection criteria has led to different solutions. For
example, setting the null space component to zero gives the minimum norm esti-
mate (MNE) [12], while minimization of the current, or `1 norm of the source results
in the minimum current estimate (MCE) [31]. Solutions such as the Low Resolu-
tion Electromagnetic Tomography (LORETA) [22] are based on the assumption of
smoothness of the source. In [13], the localization is pursued by local multipole
expansions of the fields. Low-dimensional parametric models, for example those
using only a few current dipoles [8, 19, 11], lead to localized solutions but limit the
number of possible source configurations. Prior anatomical information such as the
location of the sulci has been shown to improve the performance of the localization
[2].

Bayesian methods are widely used in EEG/MEG to implement pertinent prior
information such as anatomic constraints or functional information based on other
imaging modalities [2, 14, 27, 30]. An additional level of flexibility to Bayesian
modelling is provided by hierarchical models that allow uncertainties in the prior
model itself [1, 21, 26]. In particular, the model hierarchy is a powerful tool for
including prior information that is qualitative rather than quantitative [7].

The connection between classical regularization methods and Bayesian Maxi-
mum A Posteriori (MAP) estimates is well known. In particular, the Gaussian
models lead to a MAP estimate that coincides with the standard Tikhonov regu-
larized solution with a quadratic penalty, while non-Gaussian models are needed
for non-quadratic penalties that are often more useful but computationally more
challenging. In this work, we construct a conditionally Gaussian hierarchical para-
metric model that has the computational advantages of Gaussian prior models but
leads to a rich class of MAP estimators that have the desirable qualitative prop-
erties of numerous commonly used non-Gaussian models. Using the conditional
normality, we construct a fast, efficient and simple MAP estimation algorithm, and
show that with proper choices of the few model parameters, the algorithm can be
interpreted as a fixed point iteration for solving the minimum norm estimate, the
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minimum current estimate and, more generally, the minimum `p estimate, while
with a different choice, the algorithm approximates the minimum support estimate
(MSE) [20]. Hence, our approach puts these methods in a unified framework.

The estimation algorithms require the solution of large linear systems, the sys-
tem size depending on the discretization of the model. When a realistic three-
dimensional model is used as in the present paper, iterative linear systems solvers
are indispensable. It is common practice to improve the performance of the itera-
tive solvers by preconditioners [24]. Recently, the authors introduced the concept
of priorconditioner [6], a preconditioner that is based on the prior model rather
than on linear algebraic properties of the system matrix. It is shown in this ar-
ticle that the priorconditioning based on the conditionally Gaussian hierarchical
models yields an effective implementation of adaptive regularization similar to the
FOCUSS (FOCal Underdetermined System Solver) algorithm [10].

A well-known feature of many regularization based source localization algo-
rithms, including the minimum norm and minimum current estimates, is their ten-
dency to favor surface sources, leading sometimes to a gross misplacement of deep
sources. To suppress this bias, different weighting methods have been proposed to
favor deep sources over the shallow ones, see, e.g., [16] for a recent account. From
the statistical point of view, however, a depth dependent prior covariance which
compensates for the preference of the likelihood towards superficial sources appears
rather dubious, since there is no reason to believe a priori that a deep source should
have higher variance than a superficial one. In this article, we confirm with numeri-
cal experiments that surface biasing may be a property of the MAP estimate, while
Markov Chain Monte Carlo (MCMC) sampling based posterior mean estimates may
localize better deep sources without requiring weight compensation. This result re-
inforces the concept, well known to the Bayesian statistics community, that the
mode of the posterior distribution may do a poor job at representing the distribu-
tion, demonstrating that the Bayesian formulation of the inverse problem is much
more than “yet another way to regularize an ill-posed problem”, as is sometimes
incorrectly stated.

Preliminary testing of the inversion algorithms and the MCMC sampling is done
using a simple geometry with constant conductivity, modelling the distributed cur-
rents by a field of current dipoles. Subsequently, numerical experiments with a
realistic three dimensional head model, with different electric conductivities in the
scalp, skull, cerebrospinal fluid and the brain tissue are also presented. The volume
current calculations are carried out with a finite element algorithm developed for
this purpose. The distributed currents are represented by Raviart-Thomas elements
that are a reasonable substitute for singular dipoles in the FEM context.

2. Forward model, EEG and MEG

We start by introducing the notations to be used in the sequel and review some
basic facts concerning the forward model, which is based on the standard approach
using the quasi-static approximation of Maxwell’s equations [25]. We denote by
D ⊂ R3 the head with boundary surface S and scalar conductivity distribution
σ > 0. If we let J denote the impressed current density in D, the total current
density, consisting of the impressed current and the Ohmic volume current, is Jtot =
J+σE, where E is the electric field induced by the current. Under the quasi-static
approximation, we may assume that E is conservative, E = −∇u. Neglecting the
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electric displacement current in the Maxwell-Ampère equation, the total current
density is divergence free, leading to the Poisson equation for the electric potential,

(1) ∇ · (σ∇u) = ∇ · J, ∂u

∂n

∣∣∣∣
S

= 0,

where the Neumann boundary condition follows from the assumption that the con-
ductivity vanishes outside D. The magnetic field B outside the head induced by
the total current is, according to the Biot-Savart law, obtained as

(2) B(x) =
µ0

4π

∫
D

Jtot ×
x− y
|x− y|3

dy, x ∈ R3 \D.

The computation of the magnetic field therefore consists of two steps: the numerical
solution of the Poisson equation (1) to find u and thus the total electric current
density Jtot = J− σ∇u, and the computation of the integral yielding the magnetic
field B (2). Each of these steps poses computational challenges.

The solution of the boundary value problem (1) can be formally expressed in
terms of the Neumann Green’s function GN of the diffusion operator ∇ · σ∇,

(3) u(x) =
∫
D

GN(x, y)∇ · J(y)dy.

We assume that the electric potential is measured at locations x`, 1 ≤ ` ≤ L on
the surface S of the head. The approximation of the impressed current by a finite
linear combination J =

∑K
k=1 αkjk of basis currents jk, 1 ≤ k ≤ K, leads to a

discrete model

u` = u(x`) =
K∑
k=1

(∫
D

GN(x`, y)∇ · jk(y)dy
)
αk

=
K∑
k=1

M e
`kαk, 1 ≤ ` ≤ L,

where the matrix M e ∈ RL×K is the electric lead field matrix. Similarly, assume
that outside the head at points xn, 1 ≤ n ≤ N , the projection of the magnetic
field in given directions en is measured. Substituting the expression (3) in the
Biot-Savart law and representing the impressed current in the basis jk, we have the
discrete model

vn = en ·B(xn)

=
K∑
k=1

αken
µ0

4π

∫
D

{
jk(y)− σ(y)∇

∫
D

GN(y, z)∇ · jk(z)dz
}
× xn − y
|xn − y|3

dy

=
K∑
k=1

Mm
nkαk, 1 ≤ n ≤ N,

where the matrix Mm ∈ RN×K is the magnetic lead field matrix.
The EEG inverse source problem is to estimate the vector α ∈ RK from the

noisy observations of the voltage potential u ∈ RL, while in the MEG inverse source
problem the data consist of the noisy observations of the magnetic field component
vector v ∈ RN .
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In our model, we assume that the current elements jk that constitute the basis
for the distributed current are either dipoles or dipole-like vector-valued elements.

3. Imaging in the Bayesian framework

In the Bayesian framework, inverse problems are recast in the form of statistical
inference [6, 15]. The lack of information about any of the quantities appearing in
the formulation of the problem is expressed by modelling them as random variables,
and the available information is encoded in the probability densities.

In the electromagnetic inverse source problem, the goal is to estimate the coef-
ficient vector α from the observations

b = Mα+ e,

where M is either the electric or magnetic lead field matrix and e is noise that,
for simplicity, is modelled here as additive. Although not necessary, we assume
that the noise is white Gaussian with known variance σ2, which we assume known,
leading to a likelihood model of the form

π(b | α) ∝ exp
(
− 1

2σ2
‖b−Mα‖2

)
.

We consider prior models that are conditionally Gaussian and of the form

πprior(α | θ) ∝ exp

−1
2
‖D−1/2

θ α‖2 − 1
2

K∑
j=1

log θj

 ,

where Dθ is a diagonal matrix, Dθ = diag(θ1, . . . , θK), and the logarithmic term
comes from normalizing of the prior density by the determinant of D−1/2

θ . The
posterior density conditional on θ is, by Bayes’ formula,

π(α | b, θ) ∝ πprior(α | θ)π(b | α)

∝ exp

− 1
2σ2
‖b−Mα‖2 − 1

2
‖D−1/2

θ α‖2 − 1
2

K∑
j=1

log θj

 .

Assuming the variance vector θ known and fixed, the MAP estimate for α,

αMAP = argmin
(

1
2σ2
‖b−Mα‖2 +

1
2
‖D−1/2

θ α‖2
)
,

is the classical Tikhonov regularized solution with a penalty defined by the diagonal
matrix D. It is known that if θ has equal entries, this solution is smeared out
even if the data corresponds to a focal input. To improve the localization, non-
quadratic penalties, for example the `p-norm, p < 2, of the coefficient vector α,
have been proposed. Here, we take a different approach assuming instead that the
variance vector θ is unknown, and thus making its estimation a part of the inverse
problem. The variance vector θ is modelled as a random variable, and available a
priori information concerning it is expressed by a hyperprior πhyper(θ). The prior
probability density of the pair (α, θ) is then

πprior(α, θ) = πhyper(θ)πprior(α | θ),
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and, according to Bayes’ formula, the posterior probability density, conditioned on
the observation b alone, becomes

π(α, θ | b) ∝ πhyper(θ)πprior(α | θ)π(b | α).

This implies that in the present formulation we need to estimate both α and its
prior variance vector θ.

4. Hypermodels: MCE, minimum `p and beyond

Prior densities require quantitative information about the unknown, e.g., an
estimate for its mean and its dynamical range, which is in turn related to the prior
variance. The flexibility of hypermodels lie in their ability to import qualitative
information into the estimation process, see [5, 7, 4, 6]. In this article, we assume
that the only a priori information concerning the impressed current is that it should
consist of few focal sources. In statistical terms, such information can be expressed
by the following three statements:

(1) Nearby source current elements, should not be, a priori, mutually depen-
dent, to favor the focality;

(2) No location preference for the activity should be given a priori;
(3) Most of the dipole-like sources should be silent, while few of them could

have large amplitude.
To encode these conditions into the hyperprior, we observe first that stochastic
dependence among the variances θk would couple the dynamical ranges of the cor-
responding coefficients αk. Therefore, it is reasonable to assume that the variances
θk are mutually independent. On the other hand, without prior knowledge about
the location of the active sources, it is also reasonable to assume a priori that the
variances are equally distributed. Furthermore, we want to allow the distribution
of the variances to favor small values while permitting rare large outliers which cor-
respond to large amplitude of the source. Among the wealth of distributions that
meet these requirements, we choose the parametric family of distributions, known
as the generalized gamma distribution, θk ∼ GenGamma(r, β, θ0), defined as

πhyper(θ) = πhyper(θ; r, β, θ0)

∝
K∏
k=1

θrβ−1
k exp

(
−θ

r
k

θr0

)
=exp

(
−

K∑
k=1

θrk
θr0

+ (rβ−1)
K∑
k=1

log θk

)
.(4)

In particular, we remark that by choosing r = 1, we have the gamma distribution,
θk ∼ Gamma(β, θ0) = GenGamma(1, β, θ0),

πhyper(θ) ∝
K∏
k=1

θβ−1
k exp

(
−θk
θ0

)
= exp

(
−

K∑
k=1

θk
θ0

+ (β − 1)
K∑
k=1

log θk

)
,

while with r = −1, we obtain θk ∼ InvGamma(β, θ0) = GenGamma(−1, β, θ0)
which is the inverse gamma distribution, and

πhyper(θ) ∝
K∏
k=1

θ−β−1
k exp

(
− θ0

θk

)
= exp

(
−

K∑
k=1

θ0

θk
− (β + 1)

K∑
k=1

log θk

)
.

For gamma and inverse gamma distributions, the parameters β and θ0 are re-
ferred to as shape parameter and scaling parameter, respectively. A discussion of
the similarities and differences of these two distributions, in particular with regard
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to the frequency of occurrence and value of outliers, can be found in [5], where
we also propose the following Iterative Alternating Sequential (IAS) algorithm for
computing the MAP estimate, (αMAP, θMAP) = argmax

{
π(α, θ | b)

}
:

IAS MAP estimation algorithm:

(1) Initialize θ = θ0 and set i = 1;
(2) Update α by defining αi = argmax{π(α | b, θi−1)};
(3) Update θ by defining θi = argmax{π(θ | b, αi)};
(4) Increase i by one and repeat from 2. until convergence.

In the algorithm, following Bayes’ formula, the conditional posterior probabilities
are obtained as π(α | b, θi−1) ∝ π(α, θi−1 | b) and π(θ | b, αi) ∝ π(αi, θ | b), i.e.,
alternatingly the vector α or the vector θ in the expression for the posterior density
set to the current estimate.

The IAS algorithm has been previously applied to image and signal deblurring
[6, 5, 7], and it is found to give a fast and stable algorithm that is easy to implement.

Before discussing how to organize the computations for different choices of the
hyperprior parameter r in (4), pointing out connections with known algorithms as
appropriate, we want to point out a difference between our approach and previously
proposed ones.

In the literature of Bayesian hierarchical models, the gamma distribution is often
suggested as a hyperprior for the precision, or inverse of the variance, because of
its conjugacy property. This corresponds to the inverse gamma distribution for the
variance. The conjugacy property is useful, e.g., when variational Bayes methods,
or variants of the closely related EM algorithm, are used and analytic marginal
integrals are desired (Rao-Blackwellization), see, e.g., [17]. Relevant references for
the MEG problem are [26, 33]. Interestingly, in [26] the gamma hyperprior for the
precision was suggested but the connection with the regularization methods was
not pointed out. We emphasize that our approach neither needs the conjugacy,
nor does it take advantage of it. In fact, as we will show below, the IAS algorithm
yields fast, efficient and explicit estimators with a large range of parameter values
corresponding to non-conjugate models. The generalized gamma distribution is
chosen here solely on the basis that it allows rare outliers.

Gamma distribution and Minimum Current Estimate. Consider the poste-
rior density of the pair (α, θ) when the hyperprior is the gamma distribution

π(α, θ | b) ∝ exp

(
− 1

2σ2
‖b−Mα‖2

− 1
2
‖D−1/2

θ α‖2 − 1
θ0

K∑
k=1

θk +
(
β − 3

2

) K∑
k=1

log θk

)
.

To solve the first maximization problem in the IAS MAP estimation algorithm,
set θ = θi−1 and let the updated αj be the minimizer of the negative of the log-
posterior,

(5) αi = argmin
(

1
2σ2
‖b−Mα‖2 +

1
2
‖D−1/2

θi−1 α‖2
)
,
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which is the least squares solution of the linear system

(6)
[
σ−1M

D
−1/2
θi−1

]
α =

[
σ−1b

0

]
.

Subsequently, setting α = αi, the updated value of θ can be found by differentiating
the log-posterior with respect to θ and setting the derivative equal to zero. The
resulting equation is a second order equation

1
2
α2
j/θ

2
j − 1/θ0 + η/θj = 0, η = β − 3/2, αj = αij ,

for the positive root, whose analytic expression is

θij =
1
2
θ0

(
η +

√
η2 + 2α2

j/θ0

)
.

In particular, if we let η = 0, we have θij = |αij |
√
θ0/2, and, by substituting this in

(5), we obtain

αi = argmin

(
1

2σ2
‖b−Mα‖2 +

1√
2θ0

K∑
k=1

α2
k

|αi−1
k |

)
,

which is also a fixed point iterate of the minimization problem whose solution is
the Minimum Current Estimate (MCE) [31]

αMC = argmin

(
‖b−Mα‖2 + δ

K∑
k=1

α2
k

|αk|

)
, δ =

√
2
θ0
σ2.

Observe that, by choosing β > 3/2 in the hyperprior, we avoid the problem of
dividing by components αi−1

k near or equal to zero. This hence provides a natural
regularization method for solving the Minimum Current Estimate problem.

Generalized gamma distribution and `p–estimates. The choice of the hy-
perprior from the family of generalized gamma distributions leads to the posterior
model

π(α, θ | b) ∝ exp

(
− 1

2σ2
‖b−Mα‖2

− 1
2
‖D−1/2

θ α‖2 − 1
θr0

K∑
k=1

θrk +
(
rβ − 3

2

) K∑
k=1

log θk

)
.

The updating of α given the current value θi−1 requires solving the system (6)
as in the case of gamma hyperprior, while the updating formula for the variance
parameter changes. Setting the derivative of the logarithm of the posterior density
equal to zero leads to the algebraic equation

1
2
α2
j/θ

2
j − rθr−1

j /θr0 + (rβ − 3/2)/θj = 0, αj = αij .

This equation does not have, in general, a closed form solution, although when
rβ = 3/2 the solution is simply

θij = (θr0α
2
j/2r)

1/(r+1).
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As in the case of the gamma distribution, after substituting this solution into
the objective function in (5) we notice that the updated αi is a fixed point iterate
of the `p–penalized regularization problem,

αp = argmin

(
‖b−Mα‖2 + δ

K∑
k=1

|αk|p
)
, δ = 2σ2

(
2r
θr0

)1/(r+1)

,

with r = p/(2− p). It is known that when 0 < p < 1, i.e., 0 < r < 1, this solution,
like the MCE solution, tends to minimize the support of the estimated current, thus
yielding a good localization of the focal activity. On the other hand, letting r →∞,
or, equivalently, p → 2, the MAP estimate approaches the Tikhonov regularized
solution with a quadratic penalty. The intermediate case 1 < p < 2 is related to
the analysis presented in [1].

Inverse gamma distribution and Minimum Support Estimate. The poste-
rior density for the inverse gamma hypermodel is of the form

π(α, θ | b) ∝ exp

(
− 1

2σ2
‖b−Mα‖2

− 1
2
‖D−1/2

θ α‖2 − θ0

K∑
k=1

1
θk
−

(
β +

3
2

)
K∑
k=1

log θk

)
.

Once again, the updated value αi is found by solving (6) keeping θ fixed to the
current value θi−1, while θj is the zero of the derivative of the logarithm of the
posterior which satisfies

1
2
α2
j/θ

2
j + θ0/θ

2
j − κ/θj = 0,

with κ = β + 3/2, and αj = αij , and can be expressed as

θij =
(

1
2
α2
j + θ0

)
/κ.

By interpreting this algorithm as a fixed point step of a regularization scheme
with a nonlinear penalty term, we can reformulate it as the following minimization
problem

α = argmin

(
‖b−Mα‖2 + δ

K∑
k=1

(αk)2

(αk)2 + 2θ0

)
, δ = 4κσ2,

whose solution is the Minimum Support Estimate (MSE) [20]. In [6, 5, 7], the
authors have shown that, in the context of traditional image processing, the corre-
sponding penalty is related to the Perona-Malik functional [23].

Higher order inverse gamma distributions. The gamma and inverse gamma
distributions are standard models in hierarchical Bayesian methods and the MAP
estimates correspond to known regularizing schemes. The combination of the gen-
eralized gamma distribution and the IAS algorithm provide models that are com-
putationally tractable and lead to new estimators. As an example, if we choose
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r = −q, where q > 1 is an integer, the posterior distribution is

π(α, θ | b) ∝ exp

(
− 1

2σ2
‖b−Mα‖2

− 1
2
‖D−1/2

θ α‖2 − θq0
K∑
k=1

1
θqk
−

(
qβ +

3
2

)
K∑
k=1

log θk

)
.

The algebraic equation for updating θk is

qθq0 +
1
2
x2
kθ
q−1
k −

(
qβ +

3
2

)
θqk = 0,

i.e., θk is a positive root of a polynomial of order q, and can be computed in a stable
way by considering the companion matrix.

5. Hyperpriorconditioners

Direct computation of the least squares solution of the linear system (6), which
yields the updated α, becomes prohibitively slow when the dimensionality of the
problem is large, as is the case in the applications that we are considering here.
Iterative methods are the method of choice for the solution of large scale linear sys-
tems. In the case of linear discrete ill-posed problems, this approach is particularly
attractive because of the inherent regularizing properties of iterative solvers when
equipped with suitable stopping criteria. Iterative linear system solvers start from
a given approximate solution and proceed to determine a sequence of improved
approximate solutions.

Assume, for the moment, that in the process of updating α we introduce the
change of variable w = D

−1/2
θc

α where θc is the current value for θ, and express the
solution of the optimization step in the form

(7) w+ = argmin
(

1
2σ2
‖b−MD

1/2
θc
w‖2 +

1
2
‖w‖2

)
, α+ = D

1/2
θc
w+.

We remark that while in the statistical framework a suitable choice of the matrix
Dθc makes the change of variable equivalent to whitening the random variable α,
in the context of iterative linear systems solvers, this transformation amounts to
preconditioning. Since in our problem the choice of the matrix D

1/2
θc

is dictated
by the selection of the prior, following [6] we refer to it as priorconditioner, to
emphasize the connection between the numerical performance and the statistical
setting.

After the change of variables, the solution of the least squares problem (7) for
updating α coincides with the standard Tikhonov regularized solution for solving
the preconditioned linear system

(8) σ−1MD
1/2
θc
w = σ−1b, α = D

1/2
θc
w.

It has been shown in the literature that iterative Krylov subspace methods such as
CGLS (see [24]) with early stopping of the iterations may give results of comparable
quality to Tikhonov regularization but are computationally much more efficient.

The introduction of a suitable right priorconditioner, which in the Bayesian
framework is related to the prior of the unknown of primary interest, to bias the
iterates towards a desirable subspace, has been shown to improve the quality of the
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computed solution, in particular when the number of iterations is limited by either
high computational costs or a large noise level in the data [6].

In general, statistically inspired preconditioners, which convey into the linear
system solver prior beliefs about the solution, are constructed from the covariance
matrix of the prior. In the application considered here, however, the prior is a
function of unknown parameters, whose distribution is, in turn, given by the hy-
perprior. Since the parameters of the prior are themselves part of the estimation
problem, they are updated at each iteration step. To ensure that the solution of the
minimization problem (5) uses the most up to date information about the problem,
as soon as θc becomes available, we update the priorconditioning matrix D1/2

θc
, then

proceed to compute a new estimate of α.
We remark that the idea of updating the preconditioner to take advantage of

newly acquired information about the linear systems was already proposed in the
context of a Flexible Generalized MINimal RESidual (FGMRES) scheme [24], al-
though the motivation for the updating were quite different. In the Bayesian par-
adigm we can view priorconditioning in the context of hypermodels as priorcondi-
tioning conditioned on the present estimate of the prior parameters.

Finally, it is of interest to notice that the alternating updating scheme where the
least squares problem is solved with preconditioned iterative methods (8) includes as
a special case an algorithm previously proposed in the literature, based on adaptive
weighting of the `2–norm. In fact, when the hyperprior is the gamma distribution
with β = 3/2, the IAS is essentially the FOCUSS algorithm discussed, e.g. in [10].
While in the FOCUSS algorithm the regularization is obtained by passing from (8)
to the normal equation corresponding to (7), here we advocate regularization by
truncated iteration. The connections between the minimum current estimate and
FOCUSS from the empirical Bayesian point of view have been pointed out also in
[33].

6. MCMC and regions of interest

A great advantage of the Bayesian approach over different regularization schemes
is that starting from the posterior density, we can compute a number of different es-
timates and furthermore quantify their reliability. The uncertainty quantification,
however, usually requires sequential sampling techniques which are computation-
ally considerably more intensive than optimization based computation of single
estimates, in particular when applied to a detailed three dimensional model.

Various dimension reduction methods have been proposed in the literature to
make the MCMC sampling viable. A common approach is to restrict the source
sampling either to the surface of the brain or to a thin cortical layer, see, e.g., [26].
In MEG, a further reduction of the dimensionality of model may be achieved by
restricting the sampling to the cortical regions with a non-radial normal vector,
see, e.g., [1]. These model reductions are not applicable for us, since we consider
both EEG and MEG and the possibility of recovering deep sources with the MCMC
sampling.

Fortunately, in applications where we are interested in local sources, it is often
sufficient to restrict the sampling to a much smaller Region Of Interest (ROI),
around the potentially active area. The selection of the ROI can be based on prior
information about the expected activity: for example, the primary response to a
visual stimulus is expected to occur in the occipital lobe. Alternatively, the ROI
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can be selected around an estimated focus of activity. Note that the concept of
ROI does not exclude the possibilities of restricting the sampling to a portion of
the cortical layer, as is done in the cited articles, or of sampling over the whole
brain, if the computing resources are not an issue.

Once the ROI has been identified, we collect the indices of the source basis vectors
jk whose support is in the ROI in the index vector IROI, and the remaining ones in
the vector I0. We then partition the vectors α and θ accordingly, introducing the
notation αROI = α(IROI), α0 = α(I0), θROI = θ(IROI) and θ0 = θ(I0).

We can now perform MCMC sampling over the ROI, fixing the outside cur-
rent values and prior variance to prescribed values α0, θ0, using the conditional
distribution,

π(αROI, θROI | α0, θ0, b) ∝ π([αROI, α0], [θROI, θ0] | b).

Evidently, α0 = 0 is the most natural choice, corresponding to the assumption that
no activity outside the ROI appears. The MCMC algorithm that we propose is an
independence sampling method, where αROI and θROI are updated sequentially by
a procedure analogous to that of the IAS estimation algorithm. The updating of
αROI is done using the conditional normality of the posterior, while the updating
of θROI is done via a full scan Gibbs sampler [6, 15, 17].

MCMC sampling over ROI:

(1) Initialize α0
ROI, θ

0
ROI and set i = 1. Define M , the desired sample size.

(2) Draw αiROI from the Gaussian density

π(αROI | θi−1
ROI, α0, θ0, b) ∝ π([αROI, α0], [θi−1

ROI, θ0] | b).

(3) Draw θiROI componentwise with a Gibbs sampler from the density

π(θROI | αiROI, α0, θ0, b) ∝ π([αiROI, α0], [θROI, θ0] | b).

(4) If i = M , stop; otherwise increase i by one and repeat from 2.

In the practical implementation of the algorithm we update αROI by defining a
matrix G and its partitioning,

G =
[
σ−1M

D
−1/2
θi−1

]
=
[
GROI G0

]
,

where GROI contains the columns of G with indices in IROI and G0 the remaining
columns. The updated αiROI is obtained by solving, in the least squares sense, the
linear system

GROIαROI =
[
σ−1b

0

]
−G0α0 + w, w ∼ N (0, I).

The updating of θk, k ∈ IROI, is performed by drawing from the one-dimensional
probability density

πk(θk) ∝ exp
(
− α

2
k

2θk
−
(
θk
θ0

)r
+
(
rβ − 3

2

)
log θk

)
by the inverse cumulative distribution method [6, 15]. Hence, the sampling tech-
nique just outlined takes advantage of the conditional normality of the prior and
of the mutual independence of the variances, similarly to the IAS algorithm.
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d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

Figure 1. MAP estimates of the current (top row) and of the
variance of the prior (bottom row) at different depth in the ROI.
The hyperprior is the gamma distribution. The true current dipole
used for generating simulated data is shown as a hallow arrow, and
the ROI is marked on the superficial layer.

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

Figure 2. MAP estimates of the current (top row) and of the
variance of the prior (bottom row) at different depth in the ROI.
The hyperprior is the inverse gamma distribution. The true current
dipole used for generating simulated data is shown as a hallow
arrow, and the ROI is marked on the superficial layer.

7. Computed experiments

In this section we apply the methodology derived above to inverse source prob-
lems by first considering an example with a simplified planar geometry using a
traditional singular dipole model, then applying it to a realistic conductivity model
for the human head. In the latter case, both the MEG and EEG modalities are
considered. Since the finite element method (FEM) is needed to solve the poten-
tial distribution, we use FEM basis functions also for representation of the current
density.

MEG in planar geometry. Consider a half space as a local model for the hu-
man head. The half space model is particularly appropriate to illustrate the depth
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d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

Figure 3. Posterior mean estimates of the current (top row), of
the variance of the prior (center row), and of the variance of the
norm of the current estimated over the sample (bottom row). The
hyperprior is the gamma distribution.

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5 d = 4

Figure 4. Posterior mean estimates of the current (top row),
of the variance of the prior (center row) and the variance of the
norm of the current estimated over the sample (bottom row). The
hyperprior is the inverse gamma distribution.

resolution with different hypermodel parameters and with different statistical esti-
mators.

The magnetic field component perpendicular to the surface is recorded in a
rectangular array of observation points x` above the surface z = 0. We represent
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Figure 5. Sample histories of the components θj and ‖qj‖ for
the gamma hyperprior (top row) and the inverse gamma (bottom
row), where j is the index of the component of maximum value of
θCM .

the current density as a linear combination of point-wise current dipoles,

J(y) =
K∑
j=1

δ(y − yk)(α1
ke1 + α2

ke2) =
K∑
j=1

δ(y − yk)qk,

where e1 and e2 are orthogonal basis vectors parallel to the plane z = 0. In this
example we ignore the volume currents, which is tantamount to setting σ = 0.
More generally, assuming a conductivity density that depends only on the depth
[25], we arrive at a particularly simple magnetic lead field model,

b` =
µ0

4π

K∑
k=1

2∑
j=1

e3 · (ej × (x` − yk))
|x` − yk|3

αjk, or b =
[
Mm

1 Mm
2

] [ α1

α2

]
,

with α = [α1;α2] ∈ R2K . When writing the conditional prior, we identify the
variances θ1

k and θ2
k of the two mutually perpendicular dipoles whose locations

coincide, and the unknown variance θ1
k = θ2

k = θk is a vector of length K. The
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posterior density then becomes

π(α, θ | b) ∝ exp

(
− 1

2σ2
‖b−Mα‖2

− 1
2

K∑
j=1

‖qk‖2

θk
−

K∑
k=1

(
θk
θ0

)r
+
(
rβ − 3

2

) K∑
k=1

log θk

)
,

with ‖qk‖2 = (α1
k)2 + (α2

k)2. We use the IAS algorithm to calculate the MAP
estimate, and MCMC sampling over the ROI to estimate the CM and obtain a
measure of its uncertainty.

The geometry of our model consists of a rectangular array of 10 × 10 vertical
magnetometers 2 cm above the half space, with a distance between adjacent mag-
netometers of 1 cm. The dipoles are located below the magnetometers in nine
horizontal layers, each containing a 10×10 rectangular array of dipoles. The depth
of these layers varies from zero (superficial sources) to 4 cm, with a distance between
the layers of 0.5 cm.

Since the MAP estimation algorithm is tantamount to fixed point iteration with
localizing penalties, we expect good performance at detecting focal sources of known
depth. It is well known [11, 16, 31] that when the depth of the source is unknown,
the minimum current and minimum norm estimates due to their tendency to bias to-
wards superficial sources may lead to gross misplacements of the deep focal sources.
We expect the same behavior from the MAP estimates of our hypermodel. We test
this by generating synthetic data in which a single dipole source is placed 3.5 cm
below the surface of the half space. The standard deviation in the likelihood model
was assumed to be 5% of the maximum noiseless signal. In this simulation, we did
not add artificial noise to the data, since we are only interested in the model bias,
not in the noise sensitivity.

The MAP estimates for the dipole fields as well as for the prior variance θ with
model parameter values r = 1 (gamma) and r = −1 (inverse gamma) are shown in
Figures 1 – 2. When r = 1, we use the values θ0 = 10−7 and β = 3 for the scaling
parameter and the shape parameter, while when r = −1, we set θ0 = 10−5 and
β = 3. In both cases we perform 15 iterations with the IAS algorithm.

As expected, both hypermodels favor superficial sources, with a relatively good
localization in the horizontal direction, i.e., the MAP estimate of the activity is
above the true source. The major differences between the two hypermodels are in
the convergence rate and in the focality of the MAP estimate. With the inverse
gamma hypermodel the iterative algorithm converges faster than with the gamma
hypermodel, in particular for non-superficial sources, and seeks to explain the data
with fewer active superficial dipoles.

To reduce the dimensionality of the sampling space, we select the ROI to be
a cylinder with a 6 × 6 cm2 square base around the estimated superficial focal
activity, shown in Figure 1 – 2, containing 9 × 6 × 6 = 324 dipoles. For each
hyperparameter model we generate a sample of size M = 50 000, conditional on the
currents vanishing outside the ROI, and calculate estimates of the posterior means
of the vectors α and θ, αjCM = 1

M

∑M
i=1 α

j,i, j = 1, 2, and θCM = 1
M

∑M
i=1 θ

i, and
of the posterior variance of the dipole amplitudes, Var(‖qk‖) = 1

M

∑M
i=1

{
(α1,i −

α1
CM)2 + (α2,i − α2

CM)2
}

.
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Table 1. The domains of the head model and respective conductivities.

Layer Conductivity
scalp 0.33
skull 0.0042

cerebrospinal fluid 1
brain 0.33

Figure 3 displays the plots of the posterior mean of the current and the estimates
of the prior variance, and the posterior variance of the amplitude with the gamma
hyperprior, while Figure 4 shows the analogous results for the inverse gamma hy-
perprior. The results with the two hyperpriors are qualitatively very different. The
posterior mean of the current for the gamma hyperprior model is biased towards
the surface and is very similar to the MAP estimate, while the inverse gamma
hypermodel has a good depth resolution, with an error between the true and the
estimated source depth of 0.5 cm. The observation that the gamma hyperprior
leads to a posterior density that is qualitatively closer to the Gaussian prior, whose
mean and maximum coincide, is in line with the fact that, as r → ∞, the MAP
estimate approaches the minimum norm, or Tikhonov regularized, solution. The
latter corresponds to an `2 prior model.

The sample histories of single components ‖qj‖ = ((α1
j )

2+(α2
j )

2)1/2 and θj reveal
an interesting feature of the posterior density. Figure 5 shows the sample histories of
the components corresponding to the maximum value of θCM. The sample histories
with the gamma hyperprior exhibit good mixing, while those corresponding to the
inverse gamma distribution seem to suggest a bimodal posterior density.

Note that the posterior mean of the prior variance θ is in good agreement with
the posterior variance of the current amplitude, implying that the reliability of the
posterior mean current in this geometry could be assessed directly from the mean
of the variance parameter θ.

EEG/MEG in realistic geometry. To validate the hyperprior models in a more
realistic geometry, we performed EEG and MEG tests with a realistic human head
model, based on MRI data. We assume that both electric and magnetic fields are
measured outside the skull at 31 different locations, as shown in Figure 6. This
model is partitioned into four domains of constant electric conductivity: scalp,
skull, cerebrospinal fluid (CSF), and brain, as illustrated in Figure 6. Anisotropies
in the brain as well as possible electroconductive differences between the gray and
the white matter are ignored.

The electric and magnetic lead field matrices for this setup were constructed
using the complete electrode model and a Finite Element Method (FEM), described
in the Appendix, under the assumption that all electrode contact impedances are
equal to one. The FEM mesh was generated in two stages. The meshes for the
skull and the brain domains were generated first using triangular elements. The
meshes for the scalp and CSF domains were then generated by positioning prism
elements, each to be subsequently divided into three tetrahedral elements, between
the brain and the skull surface. The total number of tetrahedral elements in the
head mesh is 108 914. The electric conductivities of the domains are given in Table
1. These values are as in [32].
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Figure 6. Sagittal, coronal, and axial projections (left to right) of
the head model (top row) and the conductivity distribution inside
it (bottom row). The electric field is measured using 31 contact
electrodes marked by dark grey surface patches. The 31 mag-
netic field measurement locations are indicated by the lighter dark
spheres over the patches.

Figure 7. Sagittal, coronal, and axial projections (left to right) of
the reference current density (top row) and of the region of interest
(bottom row).

Lowest order H(div)-conforming Raviart-Thomas elements were applied for the
source current density. In these elements, basis functions are linear over the tetra-
hedron, vanish at one of the vertices, and have a constant direction normal to the
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Figure 8. Sagittal, coronal, and axial projections (left to right)
of the MAP estimate from EEG data of the current for the gamma
hypermodel (top row) and of the inverse gamma hypermodel (bot-
tom row). To improve the readability of the three dimensional
plots, only the current elements whose amplitude is above 5% of
the maximum of the amplitudes in the estimate were plotted.

Figure 9. Sagittal, coronal, and axial projections (left to right)
of the CM estimate from EEG data of the current for the gamma
hypermodel (top row) and for the inverse gamma hypermodel (bot-
tom row).

face opposite to the vertex where they vanish [3]. For a curl-free current density, e.g.
a dipole source, it is necessary to use H(div)-conforming elements [18], i.e. elements
in which basis functions and their divergences are square integrable. Basis functions
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Figure 10. Sagittal, coronal, and axial projections (left to right)
of the MAP estimate from MEG data of the current for the gamma
hypermodel (top row) and for the inverse gamma hypermodel (bot-
tom row).

Figure 11. Sagittal, coronal, and axial projections (left to right)
of the CM estimate from MEG data of the current for the gamma
hypermodel (top row) and for the inverse gamma hypermodel (bot-
tom row).

for H(div)-conforming elements can be interpreted to represent dipole-like currents
[29].

The electric potential u was modelled using Lagrange elements [3]. Quadratic
Lagrange elements and a fifteen point Gauss quadrature rule [3] were employed to
generate simulated, noiseless reference data, while the exploration of the posterior
was done using linear Lagrange elements and a four point Gauss quadrature to
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Figure 12. Sagittal, coronal, and axial projections (left to right)
of the MAP estimate from EEG data of the variance of the prior
for the gamma hypermodel (top row) and for the inverse gamma
hypermodel (bottom row). In the top row, location of the compo-
nents of θ larger than 5% of the maximum value are marked with a
bubble. In the bottom row only elements whose values were greater
than or equal to 85% of the maximum were plotted, indicating that
the estimated variance is nearly maximal over the entire brain.

Figure 13. Sagittal, coronal, and axial projections (left to right)
of the CM estimate from EEG data of the variance of the prior
for the gamma hypermodel (top row) and for the inverse gamma
hypermodel (bottom row). The thresholding level is set to 5% in
this plot.

speed up the computation. The resulting forward modelling error for the electric
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Figure 14. Sagittal, coronal, and axial projections (left to right)
of the MAP estimate from MEG data of the variance of the prior for
the gamma hypermodel (top row) and inverse gamma hypermodel
(bottom row). The thresholding in the visualization is as in Fig-
ure 12.

Figure 15. Sagittal, coronal, and axial projections (left to right)
of the CM estimate from MEG data of the variance of the prior
for the gamma hypermodel (top row) and for the inverse gamma
hypermodel (bottom row). Here, the visualization threshold is set
to 5%.

lead field matrix in the brain domain was approximately 3 % in the Frobenius norm
[3], and approximately 2 % for the magnetic lead field matrix.

The reference current density used to generate the reference data, shown in
Figure 7, corresponds to the case where we have three dipole-like source currents,
one positioned deeply, approximately 2.5 cm under the occipital lobe, and the other
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Figure 16. Sagittal, coronal, and axial projections (left to right)
of the sample based estimates of the posterior variance from EEG
data for the gamma hypermodel (top row) and for the inverse
gamma hypermodel (bottom row). The visualization threshold is
set at 5% here.

Figure 17. Sagittal, coronal, and axial projections (left to right)
of the sample based estimates of the posterior variance from MEG
data for the gamma hypermodel (top row) and for the inverse
gamma hypermodel (bottom row). The visualization threshold is
set to 5%.

two on the surface layer modelling the cortex. The source on the right of the frontal
lobe is almost tangential to the surface, and the source close to the left central sulcus
is almost normal to the surface.
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Figure 18. Sample histories of the component corresponding to
the maximum of the posterior mean estimate of the current esti-
mate from the EEG data and the gamma hypermodel (top left)
and with the inverse gamma hypermodel (bottom left). In the
right column we show the corresponding plots obtained from the
MEG data and the gamma distribution (top right) or the inverse
gamma distribution (bottom right).

As in the planar geometry example, the standard deviation in the likelihood
model is assumed to be 5% of the maximum noiseless signal. In this case, to
simulate real situations, the noise is added to the generated data.

The MAP estimate with the IAS algorithm and posterior mean by MCMC sam-
pling over the ROI are computed, corresponding to two different hyperprior models
(gamma, inverse gamma) and to the EEG and MEG recording modalities. In these
examples, the scaling and shape parameter values are held constant at θ0 = 10−7

and β = 1.55 and up to 20 iterations of the IAS methods were allowed to compute
the MAP estimates. The ROI consisted of three disjoint sets containing together
5 982 elements, see Figure 7. Corresponding to each combination of hyperprior
model and recording modality, an MCMC sample of size M = 50 000 is generated,
assuming that impressed currents differ from zero only inside the ROI.

In Figures 8 – 9, the MAP and posterior mean estimates of the current vector
α using the EEG data are superimposed with three different projections (sagittal,
coronal, and axial) of the brain. The top row corresponds to the gamma hyperprior
and the bottom row to inverse gamma. Interestingly, the MAP estimate with the
gamma distribution is more focal than with the inverse gamma, while with the
posterior mean, the inverse gamma yields more focal estimates. The same behavior
is also seen in the estimates based on the MEG data, see Figures 10 – 11.

Although focal, the estimate obtained from the EEG data is unable to locate
all the sources. The preference for finding the right cortical source while missing
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the left cortical source may be related to the orientation of the dipoles and the
positioning of the electrodes in the simulation.

Unlike in the case of the planar geometry, when using a realistic head model
the deep source in the MAP estimates is not driven to the surface, indicating that
there is enough geometric information in the three dimensional positioning of the
electrodes or magnetometers to resolve the depth.

The MAP and posterior mean estimates of the variance vector θ of the prior are
shown in Figures 12 – 13 using the EEG data and in Figures 14 – 15 for the MEG
data. The results are in full agreement with the corresponding estimates for the
currents.

Finally, based on the MCMC sampling, we estimate the posterior variances
Var(α) of the current vector. The estimated variances are visualized in Figures 16
– 17. Interestingly, even when the posterior estimates are blurry, the posterior
variances are relatively focal, giving additional information of the likely positions
of the sources.

To monitor the performance of the MCMC sampler, in Figure 18 we have plotted
the sample histories of the components of α and θ corresponding to the index of
maximum value of the conditional mean estimate. In the realistic geometry, we do
not encounter effects that would suggest multimodality of the distribution, and the
mixing and convergence seem, by visual inspection, satisfactory.

8. Discussion

In this article, we consider the MEG/EEG inverse problems of localizing few
focal sources in the framework of Bayesian hierarchical models. It is shown that
by using a conditionally Gaussian prior combined with generalized gamma distri-
butions as hyperpriors, a rich family of posterior densities ensues, and it is possible
to generate numerous estimates, some of which are closely related to previously
proposed, regularization based estimators.

We propose a simple and effective numerical algorithm, the Iterative Alternating
Sequential (IAS) algorithm for computing the MAP estimate simultaneously for the
current density and its variance. The versatility of this approach is confirmed by its
ability of producing an efficient fixed point implementation of several well known fo-
cal reconstruction methods based on non-quadratic penalties or non-Gaussian prior
distributions. Particular instances, that correspond to a choice of few scalar param-
eters in the hypermodel, include the minimum current estimate, the `p-regularized
estimate and the limited support functional estimate. Furthermore, the efficient
numerical implementation using iterative solvers gives also a natural interpreta-
tion in the statistical framework for the FOCUSS algorithm when applied to the
MEG/EEG imaging problem. Compared to the empirical Bayes methods proposed
in the literature such as evidence maximization, or Automatic Relevance Determi-
nation (ARD), Expectation Maximization (EM) and variational methods [26, 33],
the IAS algorithm is very fast, easy to implement and does not require sophisti-
cated minimization methods, nor does it lead to intractable integral expressions.
As shown in this article, explicit expressions for the iterative minimization steps
can be found with numerous choices of the hyperprior parameters without requiring
conjugacy property of the hyperprior.

The different choices of the hypermodel parameter lead to algorithms that be-
have qualitatively similarly with respect to the MAP estimation: when the depth
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resolution due to the measurement geometry is poor, as is the case in the local
half space model, superficial focal sources are localized well, while deep sources
are biased towards the surface. The MCMC analysis of the posterior distributions,
however, reveals a qualitative difference between the hypermodels with different
values of the hypermodel parameter r. In the case where r = 1, corresponding to
the gamma hypermodel, the MAP estimate coincides with the minimum current
estimate and, like the posterior mean estimate, is biased towards superficial sources.
With r = −1, yielding the inverse gamma hypermodel, the MAP estimate is also
biased towards superficial sources, but the posterior mean is not. This qualitative
difference may be interpreted by saying that the smaller the parameter r, the less
Gaussian the model, and in the limit as r → ∞ we obtain the minimum norm
solution. Note that for Gaussian distributions, the posterior mean and the MAP
estimates coincide.

From the point of view of Bayesian modelling paradigm, the qualitatively differ-
ent behavior of solutions corresponding to different hyperpriors may seem strange,
since in none of the cases any a priori preference to superficial sources is given.
The explanation is related to the parameter values in the hyperpriors. The scal-
ing parameter θ0 in the gamma distribution was chosen very small in our example
with planar geometry to obtain good localization in the tangential direction. Since
the mean of the gamma distribution is θ0β, this choice of θ0 favors small current
dipoles in the conditional mean, and the energetically easiest way to achieve this is
to place all the currents on the surface. The mean of the inverse gamma distribution,
θ0/(β − 1), is also a small number for this choice of θ0, but since this distribution
allows significantly larger outliers, it has no difficulty in letting few large dipoles
in the lower layers explain the data. For completeness, we also performed MCMC
runs with the gamma distribution with considerably larger scaling parameter val-
ues. The result suggest that when the scaling parameter is large enough to allow
dipoles of the correct size in the lower layers where the true dipole lies, the focal
properties of the posterior mean are lost. We conclude that the findings are in line
with the Bayesian philosophy and seem to suggest that the inverse gamma prior is
more suitable for deep sources.

When using a three-dimensional more realistic geometry, the question of depth
resolution becomes more delicate since the geometry starts to play a significant
role, and measurements from different directions possibly contribute to the depth
resolution more than the prior.

The computed results obtained with the realistic head model are in good agree-
ment with the planar case results, suggesting that the posterior mean estimate is
most effective in combination with the inverse gamma prior. The MAP estimate,
on the other hand, is most effective when applied in connection with the gamma
prior. In general, for the inverse gamma hypermodel the posterior mean estimation
produced better results with larger values of the scaling parameter θ0 than MAP
estimation, while for the gamma hypermodel, MAP estimates were superior to CM
estimates with larger θ0 values. In these model both estimate types were found to
be more sensitive to the choice of the shape parameter β than in the case of the
planar geometry, with large value of β leading to blurred estimates and ultimately
to invisibility of the deep source current. The hyperparameter values θ0 = 10−7

and β = 1.55, used in the realistic case, were chosen based on visual inspection.
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Future extensions of this work include a hierarchical extension of the model where
the values of the hypermodel parameters will be chosen based on the data, and the
extension of the formalism to include time dependent sources with a longitudinal
correlation structure.

9. Appendix: Complete electrode model and FEM for EEG/MEG

This appendix describes briefly how the electric and magnetic lead field matrices
can be constructed through the complete electrode model [28] and the FEM for a
realistic three dimensional head, denoted here by Ω.

The complete electrode model assumes that a set of contact electrodes e1, e2,
. . . , eL with contact impedances z1, z2,. . . , zL is attached to the boundary ∂Ω. The
electrode potential values are collected into a vector U = (U1,U2, . . . ,UL) and the
electric potential field u satisfies the equation

(9) ∇ · (σ∇u) = ∇ · J, in Ω,

as well as the boundary conditions

(10) σ
∂u

∂n

∣∣∣
∂Ω\∪`e`

= 0,
∫
e`

σ
∂u

∂n
ds = 0,

(
u+ z`σ

∂u

∂n

)∣∣∣
e`

= U`,

with ` = 1, 2, . . . , L. Additionally, the Kirchoff’s voltage law
∑L
`=1 U` = 0 is as-

sumed to hold. The weak form of (9) and (10) can be formulated by requiring that
u ∈ H1(Ω) = {w ∈ L2(Ω) : ∂w/∂ri ∈ L2(Ω), i = 1, 2, 3 } and J ∈ H(div; Ω) =
{w ∈ L2(Ω)3 : ∇ ·w ∈ L2(Ω) }. These function spaces are thoroughly discussed
e.g. in [18].

The finite element discretized fields corresponding to u ∈ H1(Ω) and Jp ∈
H(div;Ω) can be defined as uT =

∑Nu

i=1 ζiψi and JT =
∑NJ

i=1 αiwi, respectively.
Here, the functions ψ1, ψ2, . . . , ψNu

∈ H1(Ω) and w1,w2, . . . ,wNJ
∈ H(div; Ω) are,

respectively, scalar and vector valued finite element basis functions, defined on a
shape regular finite element mesh T [3], and the coefficients form the coordinate
vectors ζ = (ζ1, ζ2,. . . , ζNu

)T and α = (α1, α2,. . . , αNJ
)T . Furthermore, since the

sum of the electrode potentials is assumed to be zero in the complete electrode
model, it is required that U = (U1,U2,. . . ,UL)T = Rζ̃, where ζ̃ is a vector and
R ∈ RL×(L−1) is a matrix with entries R1,j = −Rj+1,j = 1 for j = 1, 2, . . . , L − 1,
and otherwise Ri,j = 0.

The vectors α, ζ and ζ̃ are linked through a symmetric and positive definite linear
system of the form

(11)
[

B C
CT G

] [
ζ

ζ̃

]
=
[
Fα
0

]
,
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in which the submatrix entries are given by

Fi,k =
∫

Ω

(∇ ·wk)ψi dΩ,

Bi,j =
∫

Ω

σ∇ψi · ∇ψj dΩ +
L∑
`=1

1
z`

∫
e`

ϕiϕj dS,

Ci,j = − 1
z1

∫
e1

ϕi dS +
1

zj+1

∫
ej+1

ϕi dS,

Gi,j =
1
zj

∫
ej

dS +
δi,j
zj+1

∫
ej+1

dS,

where δi,j denotes the Kronecker delta. The system (11) arises from the Ritz-
Galerkin discretization [3] of the weak form of (9) and (10). Similarly, a discretized
version of the Biot-Savart law (2) can be expressed as B = Wα−V ζ, where B is a
vector containing the magnetic field values at the measurement locations, and the
matrices are defined by

Wi,3(j−1)+k =
∫

Ω

ek ·wj×(ri − r)
|ri − r|3

dr, and

Vi,3(j−1)+k =
∫

Ω

ek · σ∇ψj×(ri − r)
|ri − r|3

dr,

with rj denoting the jth measurement location and ek denoting the kth natural
basis vector.

The dependences of U and B on the vector α are described by the electric and
magnetic lead field matrices M e and Mm, respectively. These matrices are given
by

M e = R(CTB−1C −G)−1CTB−1F,

Mm = W − V (B − CG−1CT )−1F,

as can be verified through straightforward linear algebra manipulations. Note that
these expressions are valid only if a set of contact electrodes is attached to the head
during the magnetic field measurement.
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