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THE RELATION BETWEEN APPROXIMATION IN DISTRIBUTION

AND SHADOWING IN MOLECULAR DYNAMICS∗

PAUL TUPPER†

Abstract. Molecular dynamics refers to the computer simulation of a material at the atomic
level. An open problem in numerical analysis is to explain the apparent reliability of molecular
dynamics simulations. The difficulty is that individual trajectories computed in molecular dynamics
are accurate for only short time intervals, whereas apparently reliable information can be extracted
from very long-time simulations. It has been conjectured that long molecular dynamics trajectories
have low-dimensional statistical features that accurately approximate those of the original system.
Another conjecture is that numerical trajectories satisfy the shadowing property: that they are close
over long time intervals to exact trajectories but with different initial conditions. We prove that these
two views are actually equivalent to each other, after we suitably modify the concept of shadowing.
A key ingredient of our result is a general theorem that allows us to take random elements of a
metric space that are close in distribution and embed them in the same probability space so that
they are close in a strong sense. This result is similar to the Strassen-Dudley Theorem except that a
mapping is provided between the two random elements. Our results on shadowing are motivated by
molecular dynamics but apply to the approximation of any dynamical system when initial conditions
are selected according to a probability measure.

Key words. molecular dynamics, approximation in distribution, weak approximation, shadow-
ing, Strassen-Dudley Theorem
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1. Introduction. In the form we consider here, molecular dynamics consists
of modeling an atomistic system with a system of Hamiltonian ordinary differential
equations that are numerically integrated. For given initial conditions information of
physical interest is extracted from the resulting approximate trajectories [11, 1, 20].
Despite the scientific importance of molecular dynamics there is very little rigorous
justification of the results it produces. The problem is that individual trajectories
computed by molecular dynamics simulations are accurate for only short time in-
tervals. Numerical trajectories diverge rapidly from true trajectories given the step-
lengths used in practice. This phenomenon is well-known but is not considered a
short-coming of molecular dynamics in practical terms [11, p. 81]. Experience has
suggested that the features of trajectories that researchers wish to study are com-
puted accurately. However, that trajectories are reliable in this sense has yet to be
rigorously demonstrated in representative cases.

Two proposals have emerged to explain the success of molecular dynamics given
the inaccuracy of the computed trajectories [28]. The first we refer to as approximation
in distribution and the second as shadowing.

The idea of approximation in distribution is to view both exact trajectories and
numerical trajectories as stochastic processes. This is done by drawing initial condi-
tions from a physically appropriate probability distribution rather than considering a
single fixed initial condition. Both the resulting numerical trajectory and the resulting
exact trajectory are then random. The proposal is that in some distributional (statis-
tical) sense the numerical trajectories and exact trajectories are close to each other.
This means roughly that the probability of some event happening for the numerical
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trajectory is close to that of the same event happening for the exact trajectory. Put
in this way, approximation in distribution may not hold for arbitrary events which
depend on the position of every single atom in the system. However, usually we are
only interested in low-dimensional functions of the state of the full system. An exam-
ple we shall consider in the following is when one is only interested in the position of
a single particle in a system consisting of many particles. It may be that for systems
studied in molecular dynamics statistical features of trajectories of single particles
are reproduced accurately in simulations. Approximation in distribution for low di-
mensional functions of numerical trajectories has been studied for model systems in
[7, 14, 32] using a combination of analysis and computational experiments, though it
has not been established for more realistic systems.

The idea of shadowing is to show that, even though a numerical trajectory di-
verges rapidly from the corresponding exact trajectory, it may be possible to show
that the numerical trajectory is close to another exact trajectory with different initial
conditions. If shadowing holds, then numerical trajectories from molecular dynamics
simulations can be viewed as real trajectories with some small observational error.
Shadowing has been established for various types of dynamical systems with uniform
hyperbolicity properties [22] and these ideas have been applied to Hamiltonian dy-
namical system such as those studied in molecular dynamics [23]. However, shadowing
over arbitrarily long time intervals is probably not possible for realistic Hamiltonian
systems [12]. Moreover, shadowing as it is usually defined does not guarantee that
statistical features of numerical trajectories match those of the exact trajectories [15].
We will discuss these issues further and show how to modify the concept of shadowing
suitably so that it is applicable to our case and to other situations where the initial
conditions of the dynamical system are distributed according to some probability
measure.

The main purpose of this paper is to carefully define and quantify these two
concepts, approximation in distribution and shadowing, in the context of molecular
dynamics and to explain the relation between them. Our main result shows that when
the two concepts are formalized and suitably modified they are actually equivalent.

In Section 2 we introduce a model system for molecular dynamics and present
the results of some numerical experiments performed with it. We first demonstrate
that numerical trajectories using practical time steps diverge rapidly from exact tra-
jectories. We then provide evidence that statistical features of some low-dimensional
functions of the trajectories are nevertheless reliable.

In Section 3 we discuss approximation in distribution and shadowing in detail
and give quantitative versions of each idea. In particular we show how to adapt the
idea of shadowing to situations where initial conditions are distributed according to
a probability measure. Our concept, which is a modification of the usual notion of
shadowing for dynamical systems, we call Weak Shadowing.

In Section 4 we prove our main result, Theorem 1.1, which we state here. In what
follows, the space (C[0, T ])m is the set of all continuous trajectories on [0, T ] taking
values in R

m. For x, y ∈ (C[0, T ])m, we define ‖x − y‖∞ = supt∈[0,T ] |x(t) − y(t)|.

We let Π be a map R
m → R

k and we define Π(x) ∈ (C[0, T ])k by Π(x)(t) = Π(x(t))
for any x ∈ (C[0, T ])m. We let X0 be a random initial condition in R

m and then
denote by X the random member of (C[0, T ])m starting at X0 and generated by the
differential equations. When we use a numerical method to generate an approximate
solution to the differential equations at a sequence of points, we use X∆T to denote
the random element of (C[0, T ])m generated by its linear interpolation. Finally, we
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denote by ρ the well-known Prokhorov metric on random elements of metric spaces
which we will define in Subsection 3.1. It metrizes convergence in distribution so
that if two random elements of a metric space are close according to ρ they have
approximately the same distribution.

Theorem 1.1. Let X0 be a random vector in R
m such that P(X0 = x) =

0 for any x ∈ R
m. Let X be the random trajectory in (C[0, T ])m generated by a

system of differential equations starting from X0. Let X∆t be the random trajectory
of (C[0, T ])m generated by a numerical method starting at X0. Let Π : Rm → R

k be
a map. Then the following are equivalent for all ǫ > 0:
(A) Approximation in distribution.

ρ(Π(X),Π(X∆t)) < ǫ.

(B) Weak Shadowing. There is a map S∆t : R
m → R

m such that Y0 = S∆tX0 has
the same probability distribution as X0 and if Y is the random member of (C[0, T ])m

starting at Y0 generated by the flow of the differential equations then

P(‖Π(X∆t)−Π(Y )‖∞ > ǫ) < ǫ.

Note that no assumptions are made about the differential equations that generate
the exact trajectory X nor about the numerical method that generates the approx-
imate trajectory X∆. The theorem just asserts that two ways in which a numerical
method can be accurate, (A) and (B), are equivalent. The theorem does not assert
that (A) or (B) holds for any particular system or any particular method.

Showing that (B) implies (A) is straightforward, but the converse requires the
result of Theorem 4.3, which is a version of the Strassen-Dudley theorem [30], [9,
§11.6]. The original Strassen-Dudley Theorem shows that two random variables that
are close with respect to the Prokhorov metric ρ can be embedded in a new probability
space where they are close in a strong sense. Our contribution is to show how to do
this with one random variable defined as a function of the other. The only important
extra assumption needed is that the measures induced by the random variables be
non-atomic, which means that they assign zero measure to any point.

Finally, in Section 5 we conclude with a discussion of what our result suggests for
the numerical analysis of molecular dynamics.

2. Numerical Experiments. We consider a system of n = 100 point particles
interacting on an 11.5 by 11.5 square periodic domain. We let q ∈ T

2n and p ∈ R
2n

denote the positions and velocities of the particles, with qi ∈ T
2, pi ∈ R

2 denoting
the position and velocity of particle i. The motion of the particles is described by a
system of Hamiltonian differential equations:

dq

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂q
, (2.1)

with Hamiltonian

H(q, p) =
1

2
‖p‖22 +

∑

i<j

VLJ(‖qi − qj‖).

Here VLJ denotes the famous Lennard-Jones potential [11]. In our simulations we use
a truncated but infinitely smooth version [29, p. 2409]:

VLJ(r) =

{

4
(

1
r12 − 1

r6

)

exp[(r − rcutoff)
−1], if r ≤ rcutoff,

0, otherwise.
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We set rcutoff = 2.5.
For our first numerical experiments we take our initial conditions q(0), p(0) to be

randomly distributed according to the probability density function

Ce−βH(q,p), (2.2)

where C is chosen so that
∫

Ce−βH(q,p) dq dp = 1. The probability distribution with
this density function is known as the canonical distribution for the system with Hamil-
tonian H at temperature β−1. It is intended to model the equilibrium distribution
of the system when it is in thermal contact with an environment of temperature β−1

[24, Sec. 6.2]. For our experiments we fixed β = 1 and generate (q(0), p(0)) according
to (2.2) using Langevin dynamics [6]. We then subtract a constant vector from the
velocities of all the particles so that center of mass of the system has zero velocity.
The canonical distribution for any β > 0 with this adjustment is invariant with re-
spect to the dynamics described by (2.1). Later in this section we will perform further
experiments with a nonequilibrium distribution on the initial conditions.

We numerically integrate (2.1) using the Störmer-Verlet scheme, which is an ex-
plicit second-order method for our system [13]. It is the standard numerical integrator
used in molecular dynamics [11, p. 69]. Given an initial (q0, p0) = (q(0), p(0)) and a
∆t > 0, the Störmer-Verlet scheme generates a sequence of states (qn, pn), n ≥ 0 such
that (qn, pn) ≈ (q(n∆t), p(n∆t)). The version of the algorithm we use is

qn+1/2 = qn + pn∆t/2,

pn+1 = pn −∆t∇V (qn+1/2),

qn+1 = qn + pn+1∆t/2,

A practical steplength for simulations of our system with the Störmer-Verlet method
is ∆t = 0.01. This choice of ∆t is close to the largest for which the system can be
integrated without an explosive instability in energy on the interval [0, 1000] for the
initial conditions we consider.

In the introduction we mentioned that researchers only consider low dimensional
information from a molecular dynamics simulations. For our numerical experiments
we will consider the configuration over time of the first particle: q1(t) ∈ T

2, t ∈ [0, T ].
For the purposes of our experiments it helps to view the motion of the particle as
occurring in R

2 and starting at the origin. To this end, for the exact trajectory we
define

Q(t) =

∫ t

0

p1(s) ds,

and let Qx(t) and Qy(t) denote the respective x and y coordinates. We have that
Qx(0) = Qy(0) = 0 and if we let t vary in [0, T ] then Q ∈ (C[0, T ])2. Similarly, for
the numerical trajectory for each ∆t we define

Qn =

n−1
∑

i=0

pi.

We then define Q∆t to be the linear interpolation the the Qn at the times n∆t so
that Q∆t ∈ (C[0, T ])2.

Our first set of numerical experiments demonstrates the qualitative features of the
trajectories Q over the time interval [0, 20]. We select three random initial conditions
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Fig. 2.1. First set of experiments. Plots of realizations of Q∆t,x vs. Q∆t,y for three different
initial conditions over the time interval [0, 20] with ∆t = 0.01. The initial position is designated by
a circle and the final position by an X.

from the distribution given by (2.2) and plot in Figure 2.1 the resulting numerical
trajectories when ∆t = 0.01. At the scale shown here there was not a noticeable qual-
itative difference between these plots and the similar plots generated with a smaller
∆t. The motion is highly irregular, looking somewhat like Brownian motion in R

2.
However, unlike Brownian motion, the exact trajectories Q are infinitely smooth. The
interpolated numerical approximations Q∆t are piecewise linear.

Our second set of experiments demonstrates that individual trajectories computed
using the timestep ∆t = 0.01 are not accurate over time scales of interest. We
randomly generate one initial condition according to the canonical distribution and
then simulate over [0, 10] for ∆t = 0.01, 0.005, 0.0025. In Figure 2.2 we plot Q∆t,x(t)
versus t for each of these steplengths. If the trajectory computed with steplength
∆t = 0.01 is accurate over the time interval [0, 10], we expect that reducing the time
step by a factor of two would not yield a significantly different curve. However, we see
that the two curves for ∆t = 0.01 and ∆t = 0.005 very quickly diverge. Moreover, we
see that the trajectory with ∆t = 0.005 is not accurate either, since it diverges quickly
from the trajectory with timestep ∆t = 0.0025. Obtaining an accurate trajectory
over the interval [0, 10] and certainly over [0, 100] would require ∆t to be considerably
smaller than what is used in practice. This same convergence behaviour is observed
for all initial conditions selected according to the canonical distribution.

Our third set of experiments shows that despite the inaccuracy of individual sim-
ulations of the system, the statistical features of numerical trajectories appear to be
highly accurate even for ∆t = 0.01. Again we consider the trajectory of a single
particle for initial conditions drawn from the distribution defined by (2.2). For each
randomly generated initial condition we compute the value of a collection of function-
als of the numerical trajectories over the time intervals [0, 100] and [0, 1000]. We plot
these values in histograms in order to observe the distribution of each functional. We
do this for each of ∆t = 0.01, 0.005, 0.0025 and for five functionals of the trajectory.
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Fig. 2.2. Second set of experiments. Computed Q∆t(t) versus t for fixed initial conditions for
a range of ∆t.

The functionals Fi : (R[0, T ])
2 → R we consider are

F1(Q) = Qx(T ),

F2(Q) =
1

T

∫ T

0

Qx(t) sin(2πt/T ) dt,

F3(Q) = max
t∈[0,T ]

‖Q(t)‖,

F4(Q) = min{t ∈ [0, T ] : ‖Q(t)‖ ≥ 1},

F5(Q) =
(Q(T )−Q(T − τ))T(Q(T − τ)−Q(T − 2τ))

‖Q(T )−Q(T − τ)‖ ‖Q(T − τ)−Q(T − 2τ)‖
, τ = 0.1.

F1 is simply the x-position of the particle at time T . F2 is the average ofQx(t) sin(2πt/T )
over [0, T ]. F3 is the maximum distance from its initial condition that the particle
attains on [0, T ]. F4 is the first time at which the particle leaves a ball of radius 1
centred at its initial condition. Its value was set to T if the particle did not leave
within [0, T ]. F5 is the cosine of the angle between two adjacent increments of Q just
before time T .

In Figure 2.3 we show histograms of Fi(Q∆t) for i = 1, . . . , 5 with the different
values of ∆t over the time interval [0, 100]. We also show the analogous histograms
for two-dimensional Brownian motion B(t) scaled so that Bx(t) and Q∆t,x have the
same variance. We see that for all five functions the histogram generated does not
appear to depend on the steplength used. As well, we see that for some of the Fi this
matches closely the same histogram for Brownian motion, whereas for others it does
not. Note that we do not expect the histograms of Q∆t to converge to those for B:
the exact trajectory Q and Brownian motion B do not have the same distribution.
These results are duplicated in Figure 2.4 where we show the analogous plots for the
time interval [0, 1000].
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Fig. 2.3. Third set of experiments for the time interval [0, 100]. Histograms of Fi(Q∆t)
for i = 1, . . . , 5. Each plot shows the result for the numerical trajectory with ∆t = 0.01 (solid),
∆t = 0.005 (dashed), ∆t = 0.0025 (dash-dot), as well as for Brownian motion (grey).

Finally, in our fourth numerical experiment we repeat the previous experiment but
we start with initial conditions that are drawn from a non-equilibrium distribution.
We randomly generate the initial conditions by first drawing from the equilibrium
distribution (2.2) as before. We then add 10 to the velocity in the x direction of the
first particle. The typical trajectory arising from an initial condition selected in this
way involves the first particle rapidly losing its excess energy through collisions with
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Fig. 2.4. Third set of experiments for the time interval [0, 1000]. Histograms of Fi(Q∆t)
for i = 1, . . . , 5. Each plot shows the result for the numerical trajectory with ∆t = 0.01 (solid),
∆t = 0.005 (dashed), ∆t = 0.0025 (dash-dot), as well as for Brownian motion (grey).

the other particles. Within 10 time units the system is effectively indistinguishable
from one started in the equilibrium state. As before, we generate histograms of the
functions F1, . . . , F5, but now over the time interval [0, 10] in order to highlight the
effects of the nonequilibrium initial conditions. Figure 2.5 shows the results of these
simulations.

For both the simulations from equilibrium and from non-equilibrium initial con-
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Fig. 2.5. Fourth set of experiments. Using initial conditions drawn from a non-equilibrium
distribution over the time interval [0, 10]. Histograms of Fi(Q∆t) for i = 1, . . . , 5. Each plot shows
the result for the numerical trajectory with ∆t = 0.01 (solid), ∆t = 0.005 (dashed), ∆t = 0.0025
(dash-dot).

ditions the histograms for all the functionals F1, . . . , F5 are virtually identical for the
different step-lengths, in contrast to the case where we examined single trajectories.
Any differences are well within the statistical error due to sampling only a finite
number of trajectories. This suggests that computed distributions of the functionals
with ∆t = 0.01 are fairly accurate for the distributions on the initial conditions we
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consider. The non-rigorous argument for this belief is is as follows. If the histograms
were not accurate for the step length we were using, then reducing the steplength
would cause the histogram to move significantly closer to the histogram for the exact
solution. Thus the histogram would not stay the same after halving the steplength.
The defect in this argument is that there could in theory be a broad range of values of
∆t for which the apparently same wrong histogram is computed. An approximately
correct histogram could be only observed for a ∆t much small than what we use.
Despite this possibility, researchers generally trust histograms and other statistical
information extracted from molecular dynamics trajectories [11].

3. Two Approaches. Here we review two different proposals for the success
of molecular dynamics: approximation in distribution and weak shadowing. For a
distinct but related perspective, see [27].

In the following (C[0, T ])m denotes functions x : [0, T ] → R
m. We use X0 to

denote a random initial condition in R
m, X ∈ (R[0, T ])m to denote the random exact

trajectory of a dynamical system starting at X0, and X∆t ∈ (C[0, T ])m the random
approximate trajectory with the same initial condition. We imagine the approximate
trajectory to be generated by using a numerical method with steplength ∆t and then
linearly interpolating the result. We measure the distance between two members x, y
of (R[0, T ])m by d(x, y) = ‖x − y‖∞ = supt∈[0,T ] |x(t) − y(y)|. Let Π: Rm → R

k be
a map that extracts some low dimensional information from the system, so that the
resulting low dimensional trajectories in (C[0, T ])k are Π(X) and Π(X∆t).

3.1. Approximation in Distribution. One explanation for the reliability of
molecular dynamics is that if we let the initial condition of a simulation be random,
then the distribution of the resulting numerical trajectory, seen as a random path
in (C[0, T ])m, is close to the distribution of the actual trajectory. We say that the
trajectory is approximated in distribution. This is also known as weak approximation.
Here we review some of the basic facts of approximation in distribution [3].

Given a random variable X taking values in R, its distribution is the probability
measure on (R,B) defined by µ(A) = P(X ∈ A) for A ∈ B. Here B is the Borel
subsets of R. We say that two random variables X and Y have the same distribution
if P(X ∈ A) = P(Y ∈ A) for all A ∈ B. This is equivalent to Ef(X) = Ef(Y ) for all
measurable f . Note that two random variables need not be close on a realization-by-
realization basis in order for their distributions to be identical.

The concept of distribution extends naturally to random vectors taking values
in R

m and indeed to random elements of any metric space as follows. Consider a
metric space (S, d) with metric d and let B be the Borel subsets of S induced by d.
A random element of S is a measurable function X : Ω → S where (Ω,F ,P) is some
probability space. The distribution of X on S is the probability measure given by
µ(A) = P(X ∈ A). As in the case of random variables, two random elements X and
Y of S can have the same distribution without X(ω) and Y (ω) being close for any
fixed ω ∈ Ω.

Suppose we want to quantify how close the distributions of two random elements
of a metric space are to each other. A natural way to do this is to define a metric on
the space of random elements of a metric space. One popular choice is the Prokhorov
metric, ρ, which we define here. It has the property that if ρ(X,Y ) = 0 for random
elements X and Y if and only if X and Y have identical distributions.

For a set A ⊂ S and ǫ ≥ 0 we define Aǫ, the set of all points within distance ǫ of
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A by

Aǫ = {x ∈ S | inf
y∈A

d(x, y) ≤ ǫ} = {x ∈ S | d(x,A) ≤ ǫ}. (3.1)

The Prokhorov metric is defined as follows.
Definition 3.1. [3, p. 72] For random variables X and Y in S

ρ(X,Y ) := inf {ǫ > 0 | P(X ∈ A) ≤ P(Y ∈ Aǫ) + ǫ} .

If we identify random elements of S that have the same distribution, then ρ is
a metric on the set of random elements [9, p. 394]. If (S, d) is separable (as are all
examples in this paper) random elements Xn converge in distribution to X if and
only if ρ(Xn, X) → 0 [9, p. 395]. Note that ρ(X,Y ) ≤ 1 always.

A straightforward way to measure how close X is to X∆t in distribution is to
consider ρ(X,X∆t), where we view X and X∆t as random elements of (C[0, T ])m.
However, we generalize this idea by measuring how close the distributions of low
dimensional functions of the full trajectories are. We consider the map Π: Rm → R

k,
and we measure ρ(Π(X),Π(X∆t)), where Π(X) and Π(X∆t) are random elements
of (C[0, T ])k. Choosing k = m and Π to be the identity gives the approximation
in distribution of X∆t to X so this is a generalization of the original idea. As an
example, suppose the differential equations definingX describe the motion of a system
of particles in R

2, so that the dimension of the system is 4n. To study the position
of one particle as a function of time, one could let Π: R4n → R

2 be the function that
simply returns the position of the first particle in the system. This choice in analogous
to what we did for our model system in Section 2.

With these definitions in mind, we are led to a quantification of our belief that
Π(X) and Π(X∆t) are close in distribution: we conjecture that

ρ(Π(X),Π(X∆t)) < ǫ, (3.2)

for some small ǫ. For the conjecture to be applicable to molecular dynamics, we must
be able to control ǫ and the length of the time interval T in terms of ∆t. We conjecture
that for all sufficiently small ∆t there are some C,D,E, p > 0

ρ(Π(X),Π(X∆t)) < C∆tp,

for T < D exp(−E/∆t).
One of the consequences of approximation in distribution with respect to the

Prokhorov metric is that it allows us to bound the error we make in computing the
expectation of functionals of the paths. Suppose that G : (C[0, T ])k → R is a bounded
Lipschitz continuous function of the paths. Let the norm ‖ · ‖BL be defined on the
set of all such G by

‖G‖BL := sup
x

|G(x)| + sup
x 6=y

|G(x) −G(y)|

‖x− y‖∞
,

where the suprema are taken over all x, y ∈ (C[0, T ])k [9, p. 390]. We can define a
another metric on the space of random elements of (C[0, T ])k by

β(X,Y ) := sup
‖G‖BL≤1

|EG(X)− EG(Y )|,
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originally defined in [10]. For any two random elements X and Y of a metric space,
we have [9, p. 398]

ρ(X,Y ) ≤

(

3

2
β(X,Y )

)1/2

, (3.3)

and [9, p. 411]

β(X,Y ) ≤ 2ρ(X,Y ).

So (3.2) would imply β(Π(X),Π(X∆t) < 2ǫ, and so

|EG(Π(X)) − EG(Π(X∆t))| < 2‖G‖BLǫ. (3.4)

Of course, most functions G of interest are not bounded, but similar results can be
obtained for unbounded, locally Lipschitz G in the case that G(Π(X)) and G(Π(X∆t))
have finite moments; see [8] for an example.

3.2. Weak Shadowing. As we have discussed, numerical trajectories and ex-
act trajectories started at the same initial condition typically rapidly diverge. One
idea that has been proposed is that for every numerical trajectory there is an exact
trajectory starting at a different initial condition that stays close to the numerical
trajectory over long time intervals. This idea is known as shadowing. An early ver-
sion of shadowing is described by Bowen [5] for Axiom A systems, though see [2], [4,
p. 381], and [26, p. 38] for earlier descriptions. A general result in this area is that if
a system satisfies a uniform hyperbolicity condition, then shadowing is possible over
infinite time intervals [22]. This fact was used in [23] to study the long-time averages
over trajectories computed with a symplectic method under the assumption that the
Poincaré section of the flow is uniformly hyperbolic.

However, many systems that arise in applications are not uniformly hyperbolic [18,
Appendix B]. To the best of our knowledge, the only example of a physically realizable
Hamiltonian system that is uniformly hyperbolic on one of its energy levels is due to
Hunt and Mackey [18], and this system is uncharacteristic of systems that arise in
molecular dynamics. (Many billiard systems have been shown to be ergodic and even
mixing, but fail to be uniformly hyperbolic because the vector field is discontinuous at
bounces [18, Appendix B].) For more realistic systems shadowing has been numerically
demonstrated over long but finite time intervals [12], [16]. It remains to be seen
whether shadowing over the long trajectories computed in molecular dynamics is
possible.

Let us specify formally what shadowing would consist of in our situation. Fixing
a time interval [0, T ] we say that Y , an actual trajectory of the system, ǫ-shadows the
numerical trajectory X∆t if

‖Y −X∆t‖∞ ≤ ǫ.

Assuming that it is possible to shadow every numerical trajectory in this way, let S∆t

be the map that takes the initial condition of the numerical trajectory X∆t to the
initial condition of the exact trajectory Y that shadows X∆t. This gives us our first
version of shadowing.

Shadowing Version 1. There exists S∆t : R
m → R

m such that if Y0 = S∆tX0

then

‖Y −X∆t‖∞ ≤ ǫ.
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This version of shadowing is not sufficient for our purposes: it is not strong
enough to show something like (3.4). The difficulty is that even though each numerical
trajectory is close to some exact trajectory, it could be that the distribution of Y is
completely different from that of X . This can result even if the distribution of X0

and Y0 are close because of the rapid divergence of trajectories of the system. This
would in turn imply, since X∆t is close to Y for every X0, that X∆t is not close to X
in distribution.

In order for the statistical properties of Y to be similar to that of X , it is neces-
sary that the map S∆t preserves the measure on the initial condition X0. We are lead
to the following concept of shadowing for initial value problems with a probability
measure on the initial conditions:

Shadowing Version 2. Given that X0 has distribution ν on R
m there is a map

S∆t on R
m such that S∆tX0 also has distribution ν and

‖Y −X∆t‖∞ ≤ ǫ.

In practice we want to allow the possibility that shadowing is not possible for
some initial conditions. So to weaken Shadowing Version 2 slightly we conjecture:

Shadowing Version 3. Given that X0 has distribution ν on R
m there is a map

S∆t on R
m such that S∆tX0 also has distribution ν and

Pν(‖Y −X∆t‖∞ > ǫ) < ǫ.

With our application in mind there is an important way we can further weaken
Shadowing Version 3. As in the previous subsection, let Π: Rm → R

k be a map that
takes configurations of the whole system and extracts lower dimensional information.
Then we could conjecture:

Shadowing Version 4. Given that X0 has distribution ν on R
m there is a map

S∆t on R
m such that S∆tX0 also has distribution ν and

Pν(‖Π(Y )−Π(X∆t)‖∞ > ǫ) < ǫ. (3.5)

This final form of shadowing is what we call weak shadowing.
In the context of molecular dynamics, establishing weak shadowing for some phys-

ically interesting Π would be relevant if for all sufficiently small ∆t there were con-
stants A,B,C, p > 0 such that (3.5) held with ǫ = A∆tp for all T = B exp(−C/∆t).
Note that all versions of shadowing presented here hold immediately for small ǫ if T
is fixed and ∆t is allowed to be arbitrarily small. However, this limit is not of interest
in molecular dynamics.

In order for weak shadowing to have the same explanatory power as Approxima-
tion in Distribution, we need to show that it also allows us to bound the difference
between EG(X) and EG(X∆t) for reasonable functions G, as in (3.4). To see that
it does, again define ‖ · ‖BL as in the previous subsection and note that for any
G : (C[0, T ])k → R, G is bounded by ‖G‖BL and G has ‖G‖BL as a Lipschitz con-
stant. In that case:

|EG(Π(X)) − EG(Π(X∆t))| = |EG(Π(Y ))− EG(Π(X∆t))|

≤ ‖G‖BLǫ + 2‖G‖GLP(‖Π(Y )−Π(X∆t)‖ > ǫ)

< 3‖G‖BLǫ,

where we have used the fact that X and Y have the same distribution in the first
equality. This result is precisely (3.4) with a different constant.
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4. Proof of Main Result. Our main result, Theorem 1.1 in Section 1, asserts
that Approximation in Distribution (Equation (3.2)) and Weak Shadowing (Equation
(3.5)) are equivalent. In this section we first state a more general result, Theorem 4.1,
and then show how Theorem 1.1 follows from it. Then we present the proof of Theo-
rem 4.1 which uses our main technical result, Theorem 4.3.

We say that a measure ν on a space S is non-atomic if ν({x}) = 0 for every point
x ∈ S.

Theorem 4.1. Let Φ, Φ̂ : Rm → (C[0, T ])k be measurable maps and let ν be a
non-atomic measure on R

m. Let X0 be a random vector in R
k with distribution ν.

Then the following are equivalent for all ǫ > 0:
(A) Approximation in distribution:

ρ(Φ(X0), Φ̂(X0)) < ǫ.

(B) Weak Shadowing: There is a map S : Rm → R
m such that SX0 also has

distribution ν and

P(‖Φ(SX0)− Φ̂(X0)‖∞ > ǫ) < ǫ.

Proof. To show that (A) implies (B) it is only necessary to apply Theorem 4.3 with
(S, d) = (T, e) = (Rm, ‖ · ‖), X = Y = X0, (S̄, d̄) = ((C[0, T ])k, ‖ · ‖∞), Π1 = Φ1,
Π2 = Φ2. The theorem then gives a map ψ : Rm → R

m such that ψX0 has the same
distribution as X0 and

P(‖Φ(ψ(X0)))− Φ̂(X0)‖∞ > ǫ) < ǫ.

To show that (B) implies (A), it is only necessary to see that (B) implies

ρ(Φ(SX0), Φ̂(X0)) < ǫ

Since SX0 is equal in distribution toX0 and equality in distribution is preserved under
measurable maps, Φ(SX0) is equal to Π(X0) in distribution. Since the Prokhorov
metric ρ only depends on distributions, we have that ρ(Φ(X0), Φ̂(X0)) < ǫ as required.

Proof of Theorem 1.1. Let Φ be the map that takes initial condition X0 to Π(X).
Let Φ̂ be the map that takes X0 to Π(X∆). Let ν be the distribution of X0. Then
the theorem follows.

Remark: Though we have motivated our result in terms of Φ being the exact
flow of a system of differential equations and Φ̂ being the trajectory generated by a
numerical method, the result can be much more broadly applied. In particular, Φ and
Φ̂ can be the flow maps of any two dynamical systems on the same state space.

It only remains to prove Theorem 4.3, which is the heart of Theorem 4.1 above.
Theorem 4.3 is similar to the Strassen-Dudley Theorem [9, 30] which we state here
for reference:

Theorem 4.2. ([3, p. 73]) Let (S, d) be a separable metric space. If X and Y
are random elements of S with ρ(X,Y ) < β, then there are random elements X̄ and
Ȳ of S defined on a common probability space such that X̄ has the same distribution
as X, Ȳ has the same distribution as Y and

P(d(X̄, Ȳ ) > β) < β.

�
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In contrast, our theorem is as follows. Recall that the distribution of X , a random
element of S, is non-atomic when P(X = x) = 0 for all x ∈ S.

Theorem 4.3. Let X be a random element of the separable complete metric
space (S, d). Let Y be a random element of the separable complete metric space (T, e).
Suppose that the distributions of both X and Y are non-atomic. Let (S̄, d̄) be another
separable complete metric space, and let Π1 : S → S̄ and Π2 : T → S̄ be measur-
able maps. Let ρ denote the Prokhorov metric on random elements of (S̄, d̄). If
ρ(Π1(X),Π2(Y )) < β then there is a measurable map ψ : S → T such that Ȳ = ψX
has the same distribution as Y and

P(d̄(Π1(X),Π2(Ȳ )) > β) < β. (4.1)

Taking (S̄, d̄) = (S, d) = (T, e) and Π1 and Π2 to be the identity gives the following
simple corollary that is easier to compare with Theorem 4.2.

Corollary 4.4. Let (S, d) be a separable complete metric space. Let X and Y
be random elements of S with non-atomic distributions. If ρ(X,Y ) < β, then there is
measurable map ψ from (S, d) to itself such that Ȳ = ψX has the same distribution
as Y and

P(d(X, Ȳ ) > β) < β.

This result is stronger than Theorem 4.2 in that instead of being forced to have
a new probability space and define two new random variables X̄ and Ȳ , we are able
to leave X as it is and define Ȳ to be a random variable on the same space that X
is defined on. This extra strength is necessary for us in order to make the connection
with shadowing in Theorem 4.1. The extra cost is that we assume that the metric
spaces in whichX and Y live are complete and, more importantly, that the probability
distributions of X and Y are non-atomic.

To see that the assumption of non-atomicity is essential in Corollary 4.4, and hence
in Theorem 4.3, consider the following example. For any ǫ ∈ (0, 1/2) let Ω = {0, 1}
and let F be all the subsets of Ω. Let the probability measure P be defined by
P(0) = 1/2− ǫ, P(1) = 1/2+ ǫ. Then (Ω,F ,P) is a probability space. Define random
variables X and Y by X(0) = 0, X(1) = 1, Y (0) = 1, Y (1) = 0. It is straightforward
to check that ρ(X,Y ) = ǫ. However, Y is the only random variable on (Ω,F ,P) that
has the same distribution as Y , and P(|X − Y | > 1/2) = 2ǫ. So P(|X − Y | > ǫ) > ǫ,
and the result cannot hold.

Now we turn to the proof of Theorem 4.3. Many of the ideas used in the proof
of the Strassen-Dudley Theorem reappear here, including the use of the Marriage
Lemma. Before the proof we need several lemmas that allow us to construct measure
isomorphisms between various spaces and also to divide spaces into many pieces of
equal measure.

Lemma 4.5. [25, p. 327] Let (S, d) be a complete separable metric space with
Borel σ-algebra B(S). Let µ be a non-atomic probability measure on (S,B(S)). Let
([0, 1], B([0, 1]), λ) be the unit interval with Lebesgue measure defined on the Borel
sets. Then there is a subset S0 of S with µ(S0) = µ(S) and subset L0 of [0, 1] with
λ(L0) = λ([0, 1]) such that there is a measurable invertible ψ : S0 → L0 such that
µ(ψ−1A) = λ(A) for all A ∈ B([0, 1]) ∩ L0.

Lemma 4.6. Let (S, d) and (T, e) be two complete separable metric spaces with
Borel σ-algebras B(S) and B(T ) respectively. Let µS and µT be non-atomic probability
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measures on (S,B(S)) and (T,B(T )) respectively. Then there is a measurable map
ψ : S → T such that

µS(ψ
−1A) = µT (A)

for all A ∈ B(T ). Proof. Use Lemma 4.5 to construct subsets of full measure
S0 and T0 in S and T with measure preserving invertible maps ψ1 : S0 → L1 and
ψ2 : T0 → L2. Let S̃0 = ψ−1

1 L1 ∩ ψ
−1
1 L2 and let ψ equal ψ−1

2 ψ1 restricted to this set.
Let T̃0 be the image of S0 under ψ. Now extend ψ in an arbitrary measurable way to
all of S.

Lemma 4.7. Let (S, d) be a complete separable metric space with Borel σ-algebra
B(S). Let µ be a non-atomic probability measure on (S,B). Given any subset T ∈
B(S) with µ(T ) = m ≤ 1 and any finite set of real numbers mi, i = 1, . . . , n with
∑

imi = m there is a partition of T

T = ∪n
i=1Ti

with µ(Ti) = mi, i = 1, . . . , n.

Proof. We begin by proving the result for the (S, d) being the unit interval [0, 1]
and µ Lebesgue measure. Then we use the previous lemma to establish the general
case.

Let T be a Borel subset of [0, 1] with Lebesgue measure m. Consider the function
σ : [0, 1] → [0,m] defined by

σ(x) = λ(T ∩ [0, x]).

Since λ is non-atomic σ is continuous. Let m̄0 = 0 and m̄i =
∑i

j=1mj . Let Ti =

σ−1([m̄i−1, m̄i)) for 1 ≤ i ≤ n− 1 and Tn = σ−1([m̄n−1m̄n]). It is straightforward to
show that the Ti satisfy the required conditions.

For the case of general (S, d), let ψ, S0, L0 be as given by Lemma 4.5. The
subset of [0, 1] given by ψ(T ∩ S0) has measure m. By the previous case this can
be partitioned into n subsets Ri with λ(Ri) = mi that are all subsets of L0. Let
Ti = ψ−1(Ri) for 1 ≤ i ≤ n− 1 and Tn = ψ−1(Rn) ∪ (T \ S0). It is straightforward
to show that Ti have the required properties.

Lemma 4.8. Let (S, d) be a complete separable metric space with non-atomic
probability measure µ on it. Let (S̄, d̄) be another complete separable metric space and
Π: S → S̄ a measurable map. For any ǫ > 0 there is a δ < ǫ and a finite partition of
S

S = S∗ ∪ (∪n
k=1Sk),

such that
(i) µ(Sk) = δ for all k,
(ii) diam(Π(Sk)) < ǫ for all k,
(iii) µ(S∗) < ǫ.
Moreover, this is possible for all sufficiently small δ.

Proof. Let xi, i ≥ 1 be a dense sequence of points in S̄. Let Bi ⊂ S be the inverse
image under Π of the open ball of radius ǫ/2 about xi in S̄. For i ≥ 1 let

B̄i = Bi \ ∪
i−1
j=1Bj .
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Then the B̄i are disjoint, diam(Π(B̄i)) < ǫ and have union S. Choose m such that

m
∑

i=1

µ(B̄i) > 1− ǫ/2.

Now choose a sufficiently small δ so that mδ < ǫ/2. Using Corollary 4.7 divide each
B̄i into ki sets B̄i,j with µ(B̄i,j) = δ and one additional set B̄∗

i with µ(B̄∗
i ) < δ. Now

there are finitely many sets B̄i,j all having measure δ. Call these sets Sk. Condition
(i) is then satisfied. Each has diameter less than ǫ, since each is a subset of some B̄i.
So condition (ii) is satisfied. If we let S∗ = S \ ∪n

k=1Sk we have

µ(S∗) = µ

(

S \

m
∑

i=1

µ(B̄i)

)

+

m
∑

i=1

µ(B̄∗
i )

≤ ǫ/2 +mδ = ǫ,

showing that condition (iii) is satisfied.
Proof of Theorem 4.3. Let α = ρ(Π1(X),Π2(Y )) < β. Consider any ǫ > 0, which

we will fix later to obtain the required result.
Use Lemma 4.8 to construct finite partitions of S and T ,

S = S∗ ∪ (∪n
i=1Si), T = T ∗ ∪ (∪n

i=1Ti),

such that

P(X ∈ S∗) < ǫ, P(Y ∈ T ∗) < ǫ,

and for all i

diam(Π1(Si)) < ǫ, diam(Π2(Ti)) < ǫ,

P(X ∈ Si) = P(Y ∈ Ti) = δ < ǫ.

We can use the same δ for both S and T since Lemma 4.8 shows that for each ǫ the
construction is possible for all sufficiently small δ.

We will construct a 1-1 mapping φ from the set {1, . . . , n} to itself such that for
most i we have d̄(Π1(Si),Π2(Tφ(i))) < α+ ǫ. In other words, for most i there will be a
point in Π1(Si) and a point in Π2(Tφ(i)) that are within distance α+ ǫ of each other.
Based on φ, we will then use Lemma 4.5 to construct a map ψ on S that takes Si to
Tφ(i) and such that ψX has the same distribution as Y . We will construct the map φ
with the help of the Marriage Lemma of König and Hall [9].

Lemma 4.9. (See [9, p. 406].) Let K denote a relation on {1, . . . , n} such that
for all subsets A of {1, . . . , n}

|{j ∈ A : iKj for some i ∈ A}| ≥ |A| (4.2)

where | · | denotes cardinality. Then there is a 1-1 mapping φ of {1, . . . , n} to itself
such that iKφ(i) for all i.

Ideally we would define the relationK on {1, . . . , n} by saying that iKj if d̄(Π1(Si),Π2(Tj))
< α + ǫ, and then using the Marriage Lemma to construct a mapping φ such that
d̄(Π1(Si),Π2(Tφ(i))) < α+ ǫ for all i. However, in general (4.2) does not hold for this
definition of K, and such a φ does not exist.

Instead, we construct a map φ such that d̄(Π1(Si),Π2(Tφ(i))) < α + ǫ only for
most i, as follows. We append to {1, . . . , n} k extra indices n+1, . . . , n+ k. Now for
i, j ∈ {1, . . . , n+ k} we say that iKj if either
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1. d̄(Π1(Si),Π2(Tj)) < α+ ǫ,
2. i > n, or
3. j > n.

Now let A be a subset of {1, . . . , n + k}. Either A contains at least one of n +
1, . . . , n + k or it doesn’t. In the former case (4.2) holds immediately. In the latter
case, let SA = ∪i∈ASi. We have that

P(X ∈ SA) = |A|δ.

Let

B = {z ∈ S : d̄(Π1(SA),Π2(z)) < α+ ǫ},

so that

P(Y ∈ B) = P(d̄(Π1(SA),Π2(Y )) < α+ ǫ)

≥ P(d̄(Π1(SA),Π2(Y )) ≤ α)

= P(Π2(Y ) ∈ Π1(SA)
α)

Then since ρ(Π1(X),Π2(Y )) = α,

P(Π1(X) ∈ Π1(SA)) ≤ P(Π2(Y ) ∈ Π1(SA)
α) + α.

This fact yields

P(Y ∈ B) ≥ P(Π1(X) ∈ Π1(SA))− α ≥ P(X ∈ SA)− α = |A|δ − α.

So the number of sets Tj that have some portion in B is at least

(|A|δ − α− P(Y ∈ T ∗))/δ ≥ |A| − (α + ǫ)/δ.

For all these j ≤ n there is some i ∈ A such that iKj.
When we include all the j > n, the total number of j such that iKj for some

i ∈ A is then at least |A| − (α + ǫ)/δ + k. So if we let k = ⌈(α + ǫ)/δ⌉, and then
relation K on {1, . . . , n+ k} satisfies the conditions of the Marriage Lemma.

This gives us that there is a 1-1 map φ̄ between {1, . . . , n+k} and itself such that

iKφ̄(i) for all i. We want to get a map 1-1 map φ on {1, . . . , n} so that iKφ(i) for most

i. Consider what φ̄ does to the set {1, . . . , n}. At least n − k elements get mapped
back to {1, . . . , n}. Let φ(i) = φ̄(i) for these elements. For all the others, just let φ(i)
be extended to be 1-1 on {1, . . . , n}.

Now we have an invertible map φ on {1, . . . , n} such that for n−k of the elements
i

d̄(Π1(Si),Π2(Tφ(i))) < α+ ǫ.

Using Lemma 4.6, for each i there is a map ψi : Si → Tφ(i) such that for any measur-
able subset C of Si

P(X ∈ C) = P(Y ∈ ψi(C)).

Again use Lemma 4.6 to construct a map ψ∗ : S
∗ → T ∗ such that P(X ∈ C) = P(Y ∈

ψ∗(C)) for all measurable C ⊂ S∗. Now let ψ : S → T be defined by requiring that
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ψ restricted to Si is ψi and that ψ restricted to S∗ is ψ∗. Then for any measurable
subset C of S

P(X ∈ C) = P(Y ∈ ψC).

This means that if we let Ȳ = ψX , for any measurable subset D of S

P(Ȳ ∈ D) = P(ψX ∈ D) = P(X ∈ ψ−1D) = P(Y ∈ ψψ−1D) = P(Y ∈ D)

as required.
It remains to show that Ȳ satisfies equation (4.1). Now for n− k indices i

d̄(Π1(Si),Π2(Tφ(i))) < α+ ǫ.

If X ∈ Si then Ȳ ∈ Tφ(i) and

d̄(Π1(X),Π2(Ȳ )) < α+ ǫ+ 2ǫ,

since Π1(Si) and Π2(Tφ(i)) have diameters smaller than ǫ. So with probability at least
δ(n − k) we have that d̄(Π1(X),Π2(Ȳ )) < α + 3ǫ. Since 1 = nδ + P(X ∈ S∗) and
P(X ∈ S∗) < ǫ,

P(d̄(Π1(X),Π2(Ȳ )) ≥ α+ 3ǫ) < kδ + ǫ = δ⌈(α+ ǫ)/δ⌉+ δ ≤ α+ ǫ+ 2δ < α+ 3ǫ.

Choosing ǫ so that α+ 3ǫ < β then gives our result. �

5. Discussion. Suppose we are considering a particular molecular dynamics sim-
ulation over a long time interval [0, T ] started from random initial conditions. We wish
to determine what statistical features of its trajectories are computed reliably. A sim-
ple baseline conjecture would be that all statistical features of the trajectories are
computed accurately. As we have detailed above, a quantitative version of this con-
jecture would be to say that ρ(X,X∆t) = ǫ for some small ǫ > 0. Then Theorem 1.1
states that with probability greater than 1− ǫ, the numerical trajectory is shadowed
by an exact trajectory to within error ǫ. In this case, it should be possible to detect
shadow trajectories numerically using the techniques of [17], even though the shad-
ows computed will not necessarily have the correct measure on their initial conditions.
Find such shadow trajectories would be partial confirmation that ρ(X,X∆t) is small.

The other possibility is that ρ(X,X∆t) is not small. Suppose instead that ρ(X,X∆t) >
1/2. Now (3.3) implies that β(X,X∆t) > 1/6. This means that

‖EG(X)− EG(X∆t)‖ > 1/6 (5.1)

for some G : (C[0, T ])m → R with ‖G‖BL. Hence one way to confirm that ρ(X,X∆t)
is large is to find such a G such that we empirically observe (5.1).

In principle this approach is reasonable, but in practice the space of all functions
G : (C[0, T ])m → R with ‖G‖BL = 1 is huge for a realistic molecular dynamics simu-
lation. In practice it may be that only for very unusual functions G do EG(X) and
EG(X∆t) disagree significantly. One practical way to approach this is to start with
very low-dimensional systems. The lowest dimensional system that is a reasonable
model of molecular dynamics consists of two particles on a two-dimensional periodic
domain [31]. For example, one could study the system we considered in Section 2
but with only two particles. Using the software available to compute exact shadow
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trajectories of numerical trajectories [17] would show where shadowing is not possible
and could suggest what functions G are likely candidates.

We have been considering the case where Π is the identity, for which it may be
that ρ(Π(X),Π(X∆t)) is large. The other direction to study these systems is to choose
a Π that is a very low dimensional function of the state of the system and then see
if it is possible to numerically perform weak shadowing with this choice. Currently
there have not been algorithms developed to do this, but it is a direction for future
work.

Finally, besides these numerical/experimental approaches there are more analyti-
cal approaches. These would involve studying one of the model systems for molecular
dynamics available that are analytically tractable. Both the systems studied in [19]
and [21] consist of single particle coupled to a bath of a very large or infinite number
of smaller particles. In both cases it is shown that the distribution of the path of the
large particle converges to a stochastic process that can be simply described through
low-dimensional stochastic differential equations. These situations are clean enough
that similar results for the numerical discretization of the Hamiltonian equation may
be possible, thus establishing approximation in distribution for the path of the dis-
tinguished particle. Our result then allows us to conclude that weak shadowing is
possible.

Our work allows the possibility of studying the reliability molecular dynamics in
a variety of contexts from one of two directions: either the statistical one through the
computing of histograms, or the dynamical one through the computing of shadowing
trajectories.

Acknowledgements. The author would like to thank Robert Skeel, Wayne
Hayes, and Nilima Nigam for comments on earlier versions of this manuscript.

REFERENCES

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press,
Oxford, 1989.

[2] D. V. Anosov. Geodesic flows on closed Riemann manifolds with negative curvature. Proceed-
ings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian
by S. Feder. American Mathematical Society, Providence, R.I., 1969.

[3] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A
Wiley-Interscience Publication.

[4] R. Bowen. Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer. Math.
Soc., 154:377–397, 1971.

[5] R. Bowen. ω-limit sets for axiom A diffeomorphisms. J. Differential Equations, 18(2):333–339,
1975.

[6] E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of some sampling
methods for molecular dynamics. M2AN Math. Model. Numer. Anal., 41(2):351–389, 2007.
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