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Abstract. We give a construction of statistically hiding commitment schemes (those in which
the hiding property holds against even computationally unbounded adversaries) under the minimal
complexity assumption that one-way functions exist. Consequently, one-way functions suffice to
give statistical zero-knowledge arguments for any NP statement (whereby even a computationally
unbounded adversarial verifier learns nothing other than the fact that the assertion being proven
is true, and no polynomial-time adversarial prover can convince the verifier of a false statement).
These results resolve an open question posed by Naor et al. [J. Cryptology, 11 (1998), pp. 87-108].
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1. Introduction. As first discovered by Shannon [3] for the case of encryp-
tion, most interesting cryptographic tasks are impossible to achieve with absolute,
information-theoretic security. Thus, modern cryptography aims to design protocols
that are computationally intractable to break. Specifically, following Diffie and Hell-
man [4], this is typically done by showing that breaking the protocol is as hard as some
intractable problem from complexity theory. Unfortunately, proving lower bounds of
the sort needed seems beyond the reach of current techniques in complexity theory
and indeed would require at least proving P # NP.

Given this state of affairs, research in the foundations of cryptography has aimed
to design cryptographic protocols based on complexity assumptions that are as weak
and general as possible. This project was enormously successful in the 1980s. In a
beautiful sequence of works, it was shown that many cryptographic primitives, such
as pseudorandom generators, pseudorandom functions, private-key encryption, au-
thentication, digital signatures, (computationally hiding) commitment schemes, and
(computational) zero-knowledge proofs, could be constructed from any one-way func-
tion [5, 6, 7, 8, 9], and moreover this complexity assumption is minimal in the sense
that each of these primitives (and indeed almost any cryptographic task) implies the
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existence of one-way functions [10, 11]. Moreover, it was shown that many of the
remaining primitives, such as public-key encryption, collision-resistant hashing, and
oblivious transfer, could not be reduced to the existence of one-way functions in a
“black-box” manner [12, 13].

However, a few important primitives resisted classification into the above cat-
egories. That is, it was only known how to build these primitives from seemingly
stronger assumptions than the existence of one-way functions, yet there was no black-
box separation between these primitives and one-way functions. In this work, we
are interested in two such examples—statistically hiding commitment schemes and
statistical zero-knowledge arguments for NP.

1.1. Statistically hiding commitments. A commitment scheme defines a
two-stage interactive protocol between a sender S and a receiver R; informally, after
the commit stage, S is bound to (at most) one value, which stays hidden from R, and
in the reveal stage R learns this value. The two security properties hinted at in this
informal description are known as binding (namely, that S is bound to at most one
value after the commit stage) and hiding (namely, that R does not learn the value to
which S commits before the reveal stage).

As with most cryptographic primitives, each of these security properties comes
in two main flavors—computational security, whereby a polynomial-time adversary
cannot violate the property except with negligible probability, and the stronger notion
of statistical security, whereby even a computationally unbounded adversary cannot
violate the property except with negligible probability. (An even stronger notion is
that of perfect security, in which we do not even allow a negligible probability of
breaking the scheme.) Naturally, statistical security, when achievable, is preferable to
computational security. However, it can be shown that there do not exist commitment
schemes that are simultaneously statistically hiding and statistically binding. Thus,
at best we can hope for one of the two properties to be statistical and the other to be
computational.

The complexity of statistically binding commitment schemes has been understood
for a long time; they can be constructed from any one-way function [8, 5], and con-
versely, one-way functions are necessary for commitment schemes, even with both
security properties computational [10]. In this work, however, we are interested in
statistically hiding commitments, which have some advantages over statistically bind-
ing commitments. Specifically, when commitment schemes are used in constructing
larger protocols, one typically needs the binding property to ensure the integrity of
commitments that are opened during the protocol execution itself and the hiding
property to ensure that the unopened commitments remain secret even after the pro-
tocol execution. Thus, for the binding property, we need only be concerned with the
adversary’s current resources, and thus it may be safe for this property to be com-
putational. For the hiding property, however, we need to consider resources that the
adversary may gain far into the future, and thus statistical security is preferable.

Some of the most important examples of cryptographic protocols based on com-
mitments are the zero-knowledge protocols for proving membership in an arbitrary
NP language [9, 14]. In the protocol of [9], the hiding property of the commitment
scheme translates to the zero-knowledge property of the protocol (i.e., the verifier
learns nothing other than the fact that the assertion being proven is true), and the
binding property of the commitment translates to the soundness property of the pro-
tocol, (i.e., the prover cannot convince the verifier of a false assertion). Thus, the
existence of statistically hiding commitments implies that arbitrary NP statements
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can be proven with statistical zero knowledge and computational soundness; that is,
every language in NP has a statistical zero-knowledge argument system [14, 15, 16].

Using statistically hiding commitments and the resulting statistical zero-knowledge
arguments in known reductions [9, 17], one can actually transform any two-party pro-
tocol that is secure against passive (a.k.a. honest-but-curious) adversaries into one
that is secure against malicious adversaries while preserving statistical security for
one of the two parties.

Perfectly hiding commitment schemes and perfect zero-knowledge arguments for
NP were first shown to exist based on specific number-theoretic assumptions [14, 15,
18, 19, 20] or, more generally, based on any collection of claw-free permutations [21,
22]. The assumption for statistically hiding commitment schemes and statistical zero-
knowledge arguments was reduced further to collision-resistant hash functions [23, 24].
Even though it seems intuitive that the computational binding property of statistically
hiding commitments should be closely related to collision resistance, the beautiful
work of Naor et al. [16] showed that actually any one-way permutation can be used to
construct a perfectly hiding commitment scheme. Recently, Haitner et al. [25] reduced
the assumption further by constructing statistically hiding commitments based on
regular one-way functions with known preimage size, and more generally on one-way
functions where the preimage sizes can be efficiently approximated. The question
of whether an arbitrary, unstructured one-way function implies statistically hiding
commitments or statistical zero-knowledge arguments for NP, however, was left open.

1.2. Our results. In this paper, we resolve the complexity of statistically hiding
commitments.

THEOREM 1.1. If one-way functions exist, then statistically hiding commitment
schemes exist.

By Impagliazzo and Luby [10], the existence of commitment schemes implies the
existence of one-way functions, and thus the above result is tight.

As discussed above, combining Theorem 1.1 and standard constructions of zero-
knowledge protocols from commitments (cf., [9, 14, 15, 16, 26]), we obtain our second
main result.

THEOREM 1.2. If one-way functions exist,' then every language in NP has a
statistical zero-knowledge argument system.

The assumption that one-way functions exist also seems to be essentially minimal
here: Ostrovsky and Wigderson [27, 11] showed that a zero-knowledge argument
system for a hard-on-average problem implies the existence of one-way functions, and
it follows from [26] that a zero-knowledge argument system for a language outside of
AM N coAM (or even outside SZKP) implies the existence of “nonuniform” one-way
functions, where both the efficiency and security refer to polynomial-sized circuits
(and security holds for infinitely many input lengths).

To avoid a lengthy detour into zero knowledge, we omit the formal definitions and
proofs needed for Theorem 1.2 and instead refer the reader to [26], where our work
plays a key role in proving unconditional results about zero-knowledge arguments.

1.3. Our techniques. We begin by using one-way functions to construct a vari-
ant of commitment schemes called 2-phase commitment schemes, recently introduced

IThe standard definitions of zero knowledge and soundness are nonuniform notions of security,
and thus this theorem requires assuming the existence of one-way functions that are secure even
against nonuniform adversaries.
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by Nguyen and Vadhan [28].? We then use this 2-phase commitment scheme to-
gether with wniversal one-way hash functions (whose existence is also implied by
the existence of one-way functions [7]) to construct the desired statistically hiding
commitment scheme.

1.3.1. 2-phase commitments from any one-way function. 2-phase com-
mitment schemes are commitment schemes with two phases, each consisting of a
commit stage and a reveal stage. In the first phase, the sender commits to and re-
veals one value vy, and subsequently, in the second phase, the sender commits to and
reveals a second value vo. We say that the 2-phase commitment is hiding if both
phases are hiding and say that it is 1-out-of-2-binding, symbolically written as @)—
binding, if the following holds: with high probability, the sender will be forced to
reveal the correct committed value in at least one of the phases (but which of the two
phases can be determined dynamically by the malicious sender?). More specifically,
with high probability after the first-phase commit, there is a single value such that if
the sender decommits to any other value, then the second commitment is guaranteed
to be binding (in the standard sense).

Even though we draw upon [28] for the notion of 2-phase commitments, there
are many differences between the contexts of the two works and their constructions
of 2-phase commitments. In [28], the goal was to prove unconditional results about
prover efficiency in zero-knowledge proofs (specifically, that one can transform zero-
knowledge proofs with inefficient provers into ones with efficient provers). This was
done by showing that every problem having a zero-knowledge proof has an “instance-
dependent” 2-phase commitment scheme, where the sender and receiver get an in-
stance x of the problem as auxiliary input and we only require hiding to hold when
x is a “yes instance” and binding when x is a “no instance.” Here, we are giving
conditional results (assuming the existence of one-way functions) and are obtaining
standard (as opposed to instance-dependent) 2-phase commitments. Moreover, the
focus in [28] is on statistically binding 2-phase commitments; thus here we need to
develop new formulations to work with the computational binding property.

Our initial construction, which gives a 2-phase commitment scheme satisfying a
“weak hiding” property, is inspired by the construction of [28]. Indeed, the second
phase in [28] was also introduced to deal with nonregular functions (corresponding to
“nonflat distributions” in their setting), and our construction can be seen as applying
the same idea to a variant of the protocol of [25]. However, in [28], this construction
immediately gives a “strong hiding” property, whereas much of the technical work in
the current paper comes from amplifying the “weak hiding” property we obtain into
a strong one.

Like [28], another complication is that our initial construction does not provide
a single 2-phase commitment scheme, but rather polynomially many schemes, one of
which is weakly hiding and all of which are (f)-binding. After applying our amplifica-
tion procedure and the transformation discussed below to each of these schemes, we
obtain polynomially many standard commitments, at least one of which is statistically
hiding and all of which are computationally binding; these can then be combined into
a single statistically hiding commitment scheme using standard techniques.

2Using methods from [28], one can directly construct statistically zero-knowledge arguments for
NP from 2-phase commitments and thereby prove Theorem 1.2. However, it is conceptually simpler
to prove Theorem 1.1 and then deduce Theorem 1.2 using standard constructions.
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1.3.2. From 1-out-of-2-binding commitments to standard commitments.
We would like to use a 2-phase commitment scheme to construct a (standard) com-
mitment scheme. A naive attempt would simply have the receiver randomly choose,
after the first commit phase, whether to stick with the first-phase commitment or to
use the second-phase commitment as the actual commitment instead. The intuition
is that since the commitment is (f)—binding, the sender cannot cheat in both phases
together and thus the receiver would catch a cheating sender with probability one
half (which we can then boost using standard techniques). The problem is, however,
that the sender can decide in which phase he will cheat after knowing the receiver’s
choice. Hence, the sender can cheat successfully in both cases without violating the
(3)-binding of the underlying protocol.

Our additional idea is to use a universal one-way hash function in order to force
the sender to decide in which phase it is about to cheat before knowing the receiver’s
choice. Universal one-way hash functions are a relaxation of collision-resistant hash
functions that were defined by Naor and Yung [23] and shown to be constructable
from any one-way function by Rompel [7]. (See also [29].) We show that the above
problem can be solved by having the sender provide a universal one-way hash of the
secret he has committed to in the first phase. This turns out to (computationally)
determine whether the first or second phase will be binding while leaving enough
entropy in the first-phase secret to still achieve hiding.

1.4. Subsequent work. As the above suggests, our construction and its analy-
sis are rather involved. Fortunately, a much simpler and more direct construction has
recently been found [30]. Some of the techniques we develop here (such as those for
working with collision probability as a measure of hiding in section 6) may nevertheless
still be useful for other purposes.

1.5. Outline. We present the basic notation and definitions in section 2. As
a warm-up, we present constructions of statistically hiding commitments based on
one-way permutations in section 3 and from regular one-way functions with known
preimage size in section 4. In section 5, we show how to construct 2-phase commit-
ments from regular one-way functions with unknown preimage size, and in section 6,
we extend it to any one-way function. Finally, in section 7, we present our transfor-
mation from 2-phase commitments to (standard) statistically hiding commitments.

2. Definitions.

2.1. Basic notation. If X is a random variable taking values in a finite set U,
then we write z <~ X to indicate that z is selected according to X. If S is a subset
of U, then z < S means that z is selected according to the uniform distribution on
S. When the universe U is clear from context, we write u(S) = |S|/|U| to denote
the density of S. We adopt the convention that when the same random variable
occurs several times in an expression, all occurrences refer to a single sample. For
example, Pr[f(X) = X] is defined to be the probability that when z <~ X, we have
f(z) = x. We write U, to denote the random variable distributed uniformly over
{0,1}™. The support of a random variable X is Supp(X) = {z : Pr[X =z]| > 0}.
A random variable is flat if it is uniform over its support. If X and Y are random
variables, then X ® Y denotes the random variable obtained by taking independent
random samples z <~ X and y <~ Y and outputting the pair (z,7). We write ®* X to
denote the random variable consisting of k£ independent copies of X. For an event E,
X|g denotes the random variable X conditioned on E. The statistical difference (also
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known as the variation distance) between random variables X and Y taking values
in U is defined to be A(X,Y) = maxgcy [Pr[X € S]—Pr[Y € S]|. We say that X
and Y are e-close if A(X,Y) <e.

A function ¢ : N — [0, 1] is called negligible if £(n) = n=“(1). We let neg(n) denote
an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we mean that
there exists a negligible function e(n) such that for every n, f(n) < e(n)). Likewise,
poly(n) denotes an arbitrary function f(n) = n°W.

For a probabilistic algorithm A, we write A(x;r) to denote the output of A on
input x and coin tosses 7. In this case, A(x) is a random variable representing the
output of A for uniformly selected coin tosses. PPT (probabilistic polynomial-time)
refers to probabilistic algorithms (i.e., Turing machines) that run in strict polynomial
time. A nonuniform PPT algorithm is a pair (A, ), where Z = 21, 29, .. . is an infinite
sequence of strings in which |z,| = poly(n), and A is a PPT algorithm that receives
pairs of inputs of the form (z, z|;). (The string z, is called the advice string for A
for inputs of length n.) Nonuniform PPT algorithms are equivalent to (nonuniform)
families of polynomial-sized Boolean circuits.

Two probability ensembles {X,, }nen and {Y;, }bnen are computationally indistin-
guishable if for every PPT D, there exists a negligible function € such that for all
n €N,

|Pl“ [D(lnaXn) = 1] — Pr [D(lnayn) = 1]' < E(lxl)

Similarly, we say that {X,,} and {Y,,} are statistically indistinguishable if the above
is required for all functions D (instead of only PPT D’s). Equivalently, {X,} and
{Y,,} are statistically indistinguishable if X,, and Y,, are e(n)-close for some negligible
function € and all n € N.

An interactive protocol (A, B) consists of two algorithms that compute the next-
message functions of the (honest) parties in the protocol. Specifically, A(z,a, a1, ...,
ay; 1) denotes the next message 41 sent by party A when the common input is z,
A’s auxiliary input is a, A’s coin tosses are r, and the messages exchanged so far are
a1, ...,ar. There is a special message, halt, which immediately halts the interaction,
at which time each party can compute one more message, which is their private output.
Sometimes we will refer to protocols with a joint output, which is required to be a
deterministic polynomial-time function of just the common input and transcript of
messages exchanged (and not the parties’ auxiliary inputs or private coin tosses). We
say that party A (resp., B) is probabilistic polynomial-time (PPT) if its next-message
function can be computed in polynomial time (in |z| + |a| + |a1| + - - + |ag])-

For an interactive protocol (A, B), we write (A(a), B(b))(x) to denote the random
process obtained by having A and B interact on common input x, with (private)
auxiliary inputs a and b to A and B, respectively (if any), and with independent
random coin tosses for A and B. We call (A, B) polynomially bounded if there is a
polynomial p such that for all z,a,b, the total length of all messages exchanged in
(A(a), B(b))(x) is at most p(|z|) with probability 1. Moreover, if B* is any interactive
algorithm, then A will immediately halt in (A(a), B*(b))(z) if the total length of the
messages ever exceeds p(|z|); we have the analogous requirement for B interacting
with any A*. We call a protocol (A, B) a polynomial time if (A, B) is polynomially
bounded and both A and B are PPT.

The number of rounds in an execution of the protocol is the total number of mes-
sages exchanged between A and B, not including the final accept/reject message.
We call the protocol (4, B) public coin for A (resp., B) if all the messages sent by A
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(resp., B) are simply the output of its coin tosses (independent of the history), except
for the final halt message and A’s (resp., B’s) private output, which is computed as
a deterministic function of the transcript.

We associate several random variables with the interaction (A(a), B(b))(z). The
private output of A is denoted by output 4(A(a), B(b))(z), and view 4 (A(a), B(b))(zx)
denotes A’s view of the interaction; i.e., its values are transcripts (y1,7ve,...,%;7),
where the v;’s are all the messages exchanged and r is A’s coin tosses. Similarly,
output z(A(a), B(b))(z) and viewp(A(a), B(b)) denote B’s private output and view,
respectively. The joint output, if any, is denoted by output(A(a), B(b))(x).

2.2. One-way functions. The most basic primitive of modern cryptography is
a one-way function, which is a function that is easy to compute but hard to invert.

DEFINITION 2.1. Let s: N — N be any function. A function f: {0,1}* —
{0,1}* 4s an s(n)-secure one-way function, or equivalently has security s(n), if f
is computable in polynomial time and for every PPT A,

Pr A", f(y) € f7H(FW)] < 1/s(n)

y—{0,1}"

for all sufficiently large n. Function f is a one-way function if f is s(n)-secure for
every polynomial s. If the above holds also for nonuniform PPT A, we say that f is
nonuniformly secure.

One-way function f is a reqular one-way function if there exists a function g: N —
N such that Vz € Supp(f(Uy)), {y € {0,1}" : f(y) = z}| = g(n); g(n) is called the
preimage size of f. We say that f is known-regular if g(n) can be computed in time
poly(n).

Without loss of generality, we can consider only one-way functions (regular or
nonregular) that are length-preserving, that is, for all y € {0,1}*, |f(y)| = |y|. This
is because general one-way functions can be converted into ones that are length-
preserving (cf., [31, p. 39]).

2.3. Commitment schemes. Another basic primitive of modern cryptography
is a (bit) commitment scheme, which is a two-stage protocol between a sender and a
receiver. In the first stage, called the commit stage, the sender commits to a private
bit b. In the second stage, called the reveal stage, the sender reveals b and proves that
it was the bit to which she committed in the first stage. We require two properties
of commitment schemes. The hiding property says that the receiver learns nothing
about b in the commit stage. The binding property says that after the commit stage,
the sender is bound to a particular value of b; that is, she cannot successfully open
the commitment to two different bits in the reveal stage.

DEFINITION 2.2. A commitment scheme is a polynomial-time interactive protocol
Com = (S, R) with the following properties:

1. Scheme Com proceeds in two stages: a commit stage and a reveal stage. In
both stages, the sender S and the receiver R receive a security parameter 1™
as common input.

2. At the beginning of the commit stage, sender S receives a private input b €
{0,1}, which denotes the bit that S is supposed to commit to. The com-
mitment stage results in a joint output, which we call the commitment ¢ =
output((S(b), R)(1™)), and a private output for S, which we call the decom-
mitment string d = outputg(S(b), R)(1™). Without loss of generality, ¢ can
be taken to be the full transcript of the interaction between S and R, and d
to be the private coin tosses of S.
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3. In the reveal stage, sender S sends the pair (b,d), where d is the decommit-
ment string for bit b. Receiver R accepts or rejects based on b, d, and c.
4. R will always accept (with probability 1) if both sender S and receiver R follow
their prescribed strategy.
A commitment scheme is public coin if all messages sent by the receiver are indepen-
dent random coins.

Next, we define the hiding and binding properties of commitment schemes.

DEFINITION 2.3.  Commitment scheme Com = (S, R) is statistically (resp.,
computationally) hiding if for every (resp., PPT) R*, the ensembles {viewg-(S(0),
R*)(1™)}nen and {viewg~(S(1), R*)(1™)}nen are statistically (resp., computationally)
indistinguishable, where view g« (S(b), R*) denotes the view of R* in the commit stage
interacting with S(b).

DEFINITION 2.4. Commitment scheme Com = (S, R) is statistically (resp., com-
putationally) binding if for every (resp., PPT) S*, there exists a negligible function
€ such that the malicious sender S* succeeds in the following game with probability at
most €(n):

On security parameter 1™, S* interacts with R in the commit stage
obtaining commitment c¢. Then S* outputs pairs (0,dy) and (1,d;)
and succeeds if in the reveal stage R(0,dy,c) = R(1,d;, c) = accept.
If the above holds for every nonuniform PPT S*, we say that Com is computationally
binding with nonuniform security.

Constructing commitment schemes based on any one-way function. Naor [8] con-
structed commitment schemes that are computationally hiding and statistically bind-
ing from any pseudorandom generator, which in turn can be based on any one-way
function [5]. The main result of this paper, Theorem 1.1, shows that commitment
schemes that are statistically hiding and computationally binding can be based on
any one-way function.

3. Statistically hiding commitments from one-way permutations. Con-
sider a one-way permutation f: {0,1}"™ — {0,1}". Naor et al. [16] obtained a statis-
tically hiding commitment scheme based on f by using a protocol called interactive
hashing as a subroutine. Our agenda for this section is as follows: we will first in-
formally describe interactive hashing and state the two main properties that we want
from it; then, in section 3.1 we give an informal description of the Naor et al. [16]
scheme, henceforth called the NOVY commitment scheme; and finally, in section 3.2,
we give a formal definition of interactive hashing and a protocol satisfying that defi-
nition.

Interactive hashing is a protocol between a sender Syy and a receiver Ryy. The
sender begins with a private input z, and at the end both parties output zp and z;
such that z € {29, 21}. Informally, an interactive hashing protocol has the following
two properties:

1. Hiding: If the sender’s private input z is uniformly random, then every re-
ceiver, even computationally unbounded malicious ones, fails to learn which
of zg or z1 equals to z.

2. Binding: The sender, including PPT malicious ones, can only “control” the
value of at most one of the two outputs; the value of the other output should
be essentially uniformly distributed.

3.1. The NOVY commitment scheme. Using an interactive hashing pro-
tocol as a subroutine, Naor et al. [16] constructed the following statistically hiding
commitment scheme.
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1. S chooses a uniform z « {0,1}"™ and computes z = f(z).

2. S and R engage in an interactive hashing protocol using z as S’s private input.
Let zp and z; be the common outputs, and let z = z4 for some d € {0,1}.

3. To commit to bit b, S sends c=b® d to R.

4. To decommit, S sends b, d, and = to R. R verifies the decommitment by
checking if c=0® d and z4 = f(x).

Let us informally argue why the above scheme constitutes a statistically hiding
and computationally binding commitment. First, we argue its hiding property. We
have mentioned that z is uniform in {0,1}" because f is a permutation and x is
chosen uniformly in {0,1}™. By the hiding property of interactive hashing, even a
computationally unbounded malicious receiver does not know if z = zy or z = 21, or
equivalently, it does not know if d = 0 or d = 1. Therefore, the scheme is statistically
hiding. Next, we argue its binding property. By the binding property of interactive
hashing, at least one of the outputs, say, z,, is uniform in {0,1}" and outside the
sender’s control. Therefore, if the sender is able to decommit to both 0 and 1, it must
find a preimage of z,. This is equivalent to finding a preimage of f(U,,), and this task
is computationally infeasible since f is a one-way permutation. Hence, the scheme is
computationally binding.

3.2. Interactive hashing. Interactive hashing was introduced by Ostrovsky,
Venkatesan, and Yung [32] in the context of oblivious transfer protocols. As men-
tioned above, it was applied to the construction of statistically hiding commitments
by Naor et al. [16], and it will also prove to be a powerful and useful tool in our
result. For our application, we will need the sender to commit to multiple bits in
one execution of interactive hashing. Consequently, we extend the notion of interac-
tive hashing to allow multiple outputs (instead of just two output strings). Since the
number of outputs could be possibly superpolynomial, we succinctly describe the set
of outputs as the image of a polynomial-sized circuit C': {0,1}* — {0,1}%, where k
and ¢ are polynomially related to the security parameter. (We will not actually need
superpolynomially many outputs in this paper but use this more general formulation
because it may be useful in future work.)

In addition to allowing for multiple outputs, our application of interaction hashing
also requires a more refined notion of computational binding than the one provided
by Naor et al. [16].> It is for this reason that we consider the notion of what it
means to be a witness for a given relation W as follows: For a relation W, define
the set of witnesses for z as W, = {x : W(z,2) = 1}, and we naturally refer to any
x € W, as a witness for z. (A natural choice, utilized in the analysis of the NOVY
commitment scheme described above, is W = {(z,2) : f(z) = z} for a one-way
function/permutation f.)

DEFINITION 3.1. An interactive hashing protocol with multiple outputs is a
polynomial-time protocol (Sta, Riu) where both parties receive common inputs (19, 1%)
and Sy receives a private input z € {0,1}9. At the end of the interaction, the common
output is a (polynomial-sized) circuit C': {0,1}* — {0,1}9, and the private output of
Sty is a string d € {0,1}*. We call q the input length and k the output length. The
protocol (Stu, Riu) has to satisfy the following security properties.

1. Correctness: For all R* and all z € {0,1}9, it is the case that C(d) = z, where
C = (Sm(z), R*)(17,1%) is the common output, and d = outputg,, (S (z), R*)

3 Although the notion of interactive hashing was introduced by Ostrovsky, Venkatesan, and Yung
[32], it was Naor et al. [16] who proved a computational binding property of interactive hashing that
allows for its application to statistically hiding commitments based on any one-way permutation.
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is the private output of St

2. Hiding: For all R*, random variables (V,D) and (V,Uy) are identically dis-
tributed, where the view of receiver R* is V = view g« (S (Uy), R*), and the
private output of Sty is D = outputg, (Sm(U,), R*).

3. Binding: There ezists an oracle PPT algorithm A such that for every
adversary S* and any relation W, denoting the common output as C' =
(S*, Rmr)(19,1%), and private output of S* as ((xo,do),(v1,dy)) =
outputg. (S*, R), if it is the case that

Pr[xo S WC(do) Nx1 € WC(dl) Ady # dl] > g,

where the above probability is over the coins of Ry and S*, then it is also
the case that

Pr [A% (2,191 &) e W,] >27F. o),
Zh{or?l}q[ (2,19,1%,¢) ] (e/q)

Remark 3.2. We make three remarks regarding Definition 3.1.

1. The security requirements should hold for computationally unbounded R* (for
correctness and hiding) and computationally unbounded S*. In addition, the
relation W need not be polynomial-time computable.

2. To simplify notation, we often write A5™ (2), or even A(z), to denote A% (z, 19,
1%, e).

3. Although the private output of the honest sender Sty is always a string d, the
private output of the cheating sender S* is arbitrary; hence, we can assume
without loss of generality that S* breaks binding by producing two pairs of
strings (xo,dp) and (z1,dy).

The interactive hashing protocol given in [32, 16], henceforth called the NOVY
Interactive Hashing protocol, satisfies Definition 3.1 with k¥ = 1. To obtain an inter-
active hashing protocol with multiple outputs (i.e., the case when k > 1), we simply
end the NOVY Interactive Hashing protocol k£ — 1 rounds earlier.

Pror1ocoL 3.3. Interactive hashing with multiple outputs (Sim, Rin)-

Inputs:

1. Input length 19 and output length 1*, both given as common input.

2. String z € {0,1}9, given as private input to sender Siy.

Protocol:

Riu: Select ho, ha, ..., hg_r—1 such that each h; is a random vector over GF[2] that
is outside the span of {hg,h1,...,hi—1}.
Forj=0,....,q—k—1, do the following:
RIH — SIH~' Send hj.
St — R Send ¢; = (h;, z).

Output:
e Common output is a circuit C: {0,1}F — {0,1}9 computing an injective affine
transformation whose image is {z : (hj,z) =¢; ¥j=0,...,¢—k —1}.

e Private output of S is a string d € {0,1}* such that C(d) = z.
THEOREM 3.4. There exists an interactive hashing protocol with multiple outputs,
namely, Protocol 3.3.

4The correctness property of protocols is typically defined for honest parties; in our setting this
would be Sty and Ryyg. In our applications, however, it is convenient to have a stronger correctness
property that also holds against malicious receivers R*.
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The correctness of Protocol 3.3 is easy to see. Hence, we divide the proof of this
theorem into lemmas establishing the hiding and binding properties of Protocol 3.3.
LEMMA 3.5. Protocol 3.3 satisfies the hiding property of Definition 3.1. In other
words, letting interactive hashing (Siu, Riu) be as in Protocol 3.3, we have for all R*
that (V, D) is distributed identically to (V,Uy), where V. = view g« (S1u(Uy), R*) is the
view of receiver R*, and D = outputg,  (S1a(Uq), R*) is the private output of Sta.
Proof. The view of any R* will be the hash functions hg, h1,...,hq—r—1 together
with Sig’s responses co,ci,...,cq—k—1. Conditioned on such a view, the sender’s
private input Z = U, is uniformly distributed in the k-dimensional affine subspace
{#: (hj,z) = ¢; ¥j}, and hence the value D s.t. C(D) = Z is uniformly distributed
in {0,1}*. d
LEMMA 3.6. Protocol 3.3 satisfies the binding property of Definition 3.1. That
is, letting interactive hashing (Siu, Ri) be as in Protocol 3.3, there exists an oracle
PPT algorithm A such that
for every S* and any relation W, denoting the common output as C' =
(S*, Rur)(19,1%), and private output of S* as ((xo,do), (v1,d1)) =
outputg. (S*, Rm), if it is the case that

Pr[xo S WC(do) Nx1 € WC(dl) Ndy # dy € {0, 1}k] > e,

where the above probability is over the coin tosses of Ry and S*,
then it is also the case that

Pr [AS (2,19, 1F W] = Q(2qg~327F).
AT (B 1010 8) € We] = (g2

Proof. Note that C(dp) and C(dy) are two distinct elements in {0,1}? and that
both elements are consistent with the transcript of the protocol; i.e., an honest Sty
getting each of these elements as input would have acted in the same way as S*
does in the interaction. Thus, we are in the setting of the recent interactive hashing
theorem presented by Haitner and Reingold [33], and the proof follows by [33, Theorem
3.9].5 O

3.2.1. Information-theoretic bounds. We think of the string d as a k-bit
string commitment associated to one of the 2¥ outputs strings, namely, z = C(d),
and a witness x € W, = Wc(y) as a decommitment to d. Intuitively, the knowledge
of x gives the sender the ability to decommit to d. The binding property, read in its
contrapositive, says that if it is hard to find a witness for a uniformly random string
z, then it is hard for a sender to successfully decommit to two different values. Note
that this hypothesis—that it is hard to find a witness for a uniformly random z—says
that for every PPT A, there is a negligible set T4 of z’s on which A succeeds in finding
a witness. In general, the set T4 may depend on the adversary A. In several places,
however, we will need only the special case of a static set as captured in the following
lemma.

LEMMA 3.7 (binding for static sets). For any protocol (Siu, Riu) satisfying the
binding condition of Definition 3.1, the following holds: For all S* and any set T C

5 Actually, [33, Theorem 3.9] directly applies to the case that the h;’s are uniformly random
vectors rather than being constrained to be linearly independent as in Protocol 3.3. However, up
to ¢ uniformly random g¢-dimensional vectors will be linearly independent with at least constant
probability. Thus, if S* breaks Protocol 3.3 with probability greater than e, then it also breaks the
version with uniformly random vectors with probability Q(e), and [33, Theorem 3.9] applies.
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{0,1}4, denoting the common output as C = (S*, Ri)(19,1%), we have

Pr[3dy # dy such that C(dy),C(dy) € T] < O(q*) - (u(T) - 2¥)1/2,
where the above probability is taken over the coins of S* and R and p(T') dof |T|/24
denotes the density of T.

Setting k = 1 in the above lemma gives an information-theoretic bound of the
NOVY Interactive Hashing protocol; information-theoretic bounds on NOVY In-
teractive Hashing were studied in the context of memory-bounded oblivious trans-
fer [34, 35, 36]. Our bound is not tight but suffices for our applications. For tighter
bounds, we refer the reader to [34, 36], or for a constant-round interactive hashing
protocol that is binding for static sets, we refer the reader to [35].

Compare the bound of Lemma 3.7 to the case where the adversarial sender S*
had control of only one output string. This means that the rest of the 2 — 1 output
strings are distributed uniformly on {0,1}9, and hence the bound would be roughly
w(T) - (2% —1). The reason for this is that S* will make the string that it controls lie
in T, and the probability that at least one of the rest of the 2¥ — 1 strings lie in 7" is
at most (7)) - (2¥ — 1), by a union bound. The above bound is almost as good, and,
in particular, if u(7) is negligible and k logarithmic, both probabilities are negligible.

Proof of Lemma 3.7. Define the relation W = {(a,b) : a € T'}, that is, W(a,b) =1
if a € T (for all values of b), and 0 if a ¢ T (no matter what the value of b is). Suppose
there exists an S* that with probability ¢ produces two elements dy # dy such that
both C(dy),C(dy) € T. Then, by Lemma 3.6, there will be a procedure that is
given a random z « {0,1}? and makes z € T with probability p = Q(27% . £2/¢8).
Since T is a fixed set, it must be the case that p < p(7). This implies that ¢ =
Og") - (u(T) - 2912 1

4. Statistically hiding commitments from known-regular one-way func-
tions. Our first hurdle is to relax the permutation structure of f to just assuming
that f is a regular one-way function with known preimage size of, say, 2"~ for some
known value of ¢t € {1,2,...,n}. This is the setting considered by Haitner et al. [25],
and we review ideas from their construction in this section. To simplify the con-
struction and analysis, we further assume f has a known superpolynomial security
s(n) = n*MW. (Haitner et al. [25] do not make this assumption, and we will also not
need it in our final construction based on an arbitrary one-way function.)

Observe that the statistical hiding property of the NOVY commitment scheme
based on one-way permutation f relies only on the fact that f is a permutation because
we require that f(U,) be uniform. Now if f just a regular function, then f(U,,) might
no longer be uniform, but instead all we can say is that f(U,,) is a flat distribution
with support Supp(f(U,,)) of size 2. We will use pairwise-independent hash functions,
a notion to be discussed next, to obtain an almost-uniform distribution from f(U,).

4.1. Hashing and randomness extraction. The entropy of a random variable
X is

H00= B e =al

where here and throughout all logarithms are of base 2. This notion of entropy
corresponds to Shannon entropy or information entropy in the information theory
literature. Intuitively, H(X) measures the amount of randomness in X on average (in
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bits). For a worst-case measure of randomness, the min-entropy of X is most often
used and is defined as

. 1
Hoo(X) = i Log Pr[X = x]} '

In general, Hoo(X) < H(X), but when X is flat (i.e., uniform on its support),
then H(X) = Hoo (X) = log |Supp(X)].

A family of hash functions H = {h : {0,1}" — {0,1}™} is pairwise-independent
(a.k.a. strongly 2-universal) if for any two x # ' € {0,1}" and any two y,y’ € {0,1}™
when we randomly choose h « H, we have Pr[h(z) = y and h(z') = y'] = 272%™,

An example of a pairwise-independent family of hash functions for n > m is the
family H = {hqp: {0,1}" — {0,1}™}, where hop(z) = (a - & + )|, arithmetic is
done in the field GF(2"), and |, denotes taking the first m bits. We define £(n,m)
to be the number of bits required to describe an element of the hash function family
‘H. In our example, it takes 2n bits to describe each hash function h, since both a
and b are elements of GF(2"); hence, a family of pairwise-independent hash functions
‘H mapping n-bit strings to m-bit strings exists with ¢(n,m) = 2n. We will use the
following property of pairwise-independent hash functions to obtain an almost-uniform
random variable from a random variable with sufficient min-entropy.

LEMMA 4.1 (Leftover Hash Lemma [37, 5]). Let random variable H denote a
uniformly random hash function from a family of pairwise-independent hash functions
H mapping n-bit strings to m-bit strings, and let X be a random variable taking values
in {0,1}™. For any e > 0, if Hoo(X) > m + 2log(1/¢e), and H is independent from
X, then the random variable (H, H(X)) is e-close in statistical distance to uniform.

4.2. The commitment scheme. Let us return to our regular one-way
function f: {0,1}" — {0,1}" with known preimage size 2"~ ! and known security
s(n) = n*M. Consider a family of pairwise-independent hash functions H = {h: {0,1}"
— {0,1}'72}, where t = H(f(U,)) and A = 1logs(n). Let random variable H
represent a random hash function selected from H. By the Leftover Hash Lemma,
Lemma 4.1, random variable Z = (H, H(f(Uy,))) is (1/s(n))*M-close to uniform,
which statistically gives indistinguishability from uniform because s(n) = n*(\). So if
we designate z = (h, h(f(z))) as the sender’s private input to the interactive hashing
protocol (Protocol 3.3), even an all-powerful receiver will not get more than a neg-
ligible advantage to guess which one of the outputs is z. This hints at the following
commitment scheme.

ProTocoL 4.2. Commitment scheme (S, R) is based on a reqular one-way
function f:{0,1}™ — {0,1}"™ with known preimage size 2"t and known security
s(n) = nvM,

Commit stage.

1. Let H = {h: {0,1}" — {0,1}'=2}, where t = H(f(U,)) and A =
1logs(n). S selects a uniform x «— {0,1}" and a hash function h — H
and computes y = f(x) and z = (h, h(y)).

2. S and R engage in interactive hashing (Protocol 3.3) with S acting as
S, R acting as R, parameters k = 1 and ¢ = |z|, and S having
private input z. Their common output is a circuit C: {0,1} — {0,1}9,
and the sender receives a bit d € {0,1} such that C(d) = z.

3. To commit to the bit b, S sends c =d®b to R. The commitment of b is
represented as the pair (C,c).
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Reveal stage. To decommit, S sends bits b and d, string x, and hash function h to R.
R wverifies the decommitment by checking if ¢ = d®b and C(d) = (h, h(f(x))).
As we have argued previously, the sender’s private input z is statistically close
to uniform, and hence by the hiding property of interactive hashing, this implies
that the commitment scheme is statistically hiding. As for the binding property, the
one-wayness of f intuitively guarantees that the set T of w’s for which a sender S*
can compute an element of f~!(w) is of density at most 1/s(n) in the range of f;
that is, the size of T is at most 2H(F(Un))—logs(n)  Thys, for any fixed h, the fraction
of z = (h,h(w)) such that w € T is at most 2H(f(Un))—logs(n) jot=4 — g(p)=1/2 —
neg(n). By the binding property of interactive hashing stated in Lemma 3.7, the
probability that S* can force both C'(0), C'(1) € T is negligible, and hence, the scheme
is computationally binding. The complete argument to prove the binding property
is actually more subtle because the set T" is not actually fixed in advance, and so we
need to employ the stronger binding property given in Definition 3.1. We omit the full
proof, because this is merely a warm-up example to motivate our actual construction
and proof in subsequent sections.

5. 1l-out-of-2-binding commitments from unknown-regular one-way
functions. Our next hurdle is to remove to the constraint on knowing (i.e., being
able to efficiently compute) the preimage size. For this setting, let us consider a reg-
ular one-way function f: {0,1}" — {0, 1}" with preimage size 2", for an unknown®
value of t € {1,2,...,n}, but with known security s(n) = n*(").7 Constructing sta-
tistically hiding commitments even in this setting was still an open problem prior to
our work.

Let us examine why we need to know the correct value of ¢ in the previous scheme
of Protocol 4.2. If the value of ¢ is too high, that is, t > H(f(U,)), then the scheme is
no longer hiding (but would be binding). This is because the Leftover Hash Lemma,
Lemma 4.1, no longer applies, since in this case the min-entropy H(f (U, )) is too small
relative to t. On the other hand, if the value of ¢ is too low, that is, t < H(f(U,)), then
the scheme is no longer binding (but would be hiding). To see this, at least intuitively,
observe that when ¢ is very small, we are hashing f(U,,) to a very small set {0,1}/=4;
in other words, h collapses too many elements in f(U,). As a consequence, inverting
h(f(U,)) could be easy (even though inverting f(U,,) is hard), and this allows us to
break the binding property of our scheme.

All hope, however, is not lost. We can still use Protocol 4.2, trying all values of
t € {1,2,...,n}, to do our first phase commitments. And to overcome the difficulty
of ensuring both hiding and binding, we will introduce a second phase that will be
binding when ¢ < H(f(U,,)) and hiding when ¢ 2 H(f(U,)); this is obtained by the
sender using a hash of the preimage = as an input to another execution of interactive
hashing. This means that for the right value of ¢t = H(f(U,)), both phases will be
hiding, but for any value of ¢, at least one phase is binding. What we are describing
here is a 2-phase commitment scheme with a 1-out-of-2 binding property, notions that
we formally define in the next section.

5.1. 2-phase commitment schemes. As mentioned previously, we will work
with 2-phase commitment schemes, an alternate variant of commitments introduced

SWhat we mean by unknown is that we are not able to compute the preimage size efficiently.

"Like in section 4, we consider only length-preserving functions, that is, |f(z)| = |z| for all
z € {0,1}*, to avoid introducing new parameters. Our construction can nevertheless be easily
generalized to regular one-way functions that are not length-preserving.
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by Nguyen and Vadhan [28]. These are commitment schemes with two sequential and
related stages such that in each stage, the sender commits to and reveals a value.

DEFINITION 5.1. A 2-phase commitment scheme (S, R), with security parame-
ter n and message lengths (k1(n), ka(n)), consists of four polynomial-time interactive
protocols: the first commitment stage (S}, RY), the first reveal stage (S}, RL), the sec-
ond commitment stage (S?, R?), and the second reveal stage (S2, R2). (We also write
S = (81,5%) and R = (R, R?) to denote the first and second phases of S and R,
respectively.) For us, both reveal phases will always be noninteractive, consisting of a
single message from the sender to the receiver.

1. In the first commitment stage, S! receives a private input oM e {0, 1}k
and coin tosses rs. At the end of the interaction, both St and R} output a
commitment ¢ . (Without loss of generality, we can assume that M s the
transcript of the first commitment stage.)

2. In the first (noninteractive) reveal stage, both S} and R} receive as common
input the commitment c(l), and Srl recetves as private input its previous coin
tosses rs. St sends R: a pair (v with v interpreted as a decommit-
ment for o) e {0,1}%1. R accepts or rejects based on M, oM and M,
After that, both S} and R output a string 7. (Without loss of generality, we
can assume that T is the transcript of the first commitment stage and the first
reveal stage and includes RL’s decision to accept or reject.)

3. In the second commitment stage, both S% and R? receive as common input the
string T, and S? receives a private input o® e {0,1}*2 and its previous coin
tossesrg. At the end of the interaction, both S? and R? output a commitment
. (Without loss of generality, we can assume that ¢ is the concatenation
of 7 and the transcript of the second commitment stage.)

4. In the second (noninteractive) reveal stage, both S? and R? receive as com-
mon input the commitment 6(2), and Sf receives as private input its previous
coin tosses rg. S? sends R? a pair (02,42 with v?) interpreted as a de-
commitment for ) € {0,1}%2. R2 accepts or rejects based on ¢'?), 0(?) and
2

o We insist that scheme (S, R) have perfect completeness. That is to say, if
both sender S and receiver R follow their prescribed strategies, then R will
always accept in both phases (with probability 1).

e The sender and receiver’s algorithms, denoted by S = (S*,5?) = ((SL,S}),
(52,52)) and R = (RY,R?) = ((RL,R}),(R?, R?)), respectively, are com-
putable in polynomial time.

e Scheme (S, R) is public coin if all messages sent by R to S are independent
random coins.

Remark 5.2 (2-phase commitment schemes). We make several remarks regarding
Definition 5.1.

1. We generally consider schemes that have the same message length for both
phases. When this is the case, namely, k = k1 = ko, we say our 2-phase
commitment scheme has message length k. It is only in section 7 that we will
use the feature of different message lengths.

2. Instead of providing sender S with decommitment values as private outputs
of the commitment phases, we simply provide it with the same coin tosses rg
throughout (so it can recompute any private state from the transcripts of the
previous phases). The receiver R, however, operates using independent coin
tosses in each phase and does not need to keep a private state.
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Hiding for 2-phase commitment schemes. As for standard commitment schemes,
we define the security of the sender in terms of a hiding property. Stated informally,
the hiding property for a 2-phase commitment scheme says that both commitment
phases are hiding. Note that since the phases are run sequentially, the hiding property
for the second commitment stage is required to hold even given the receiver’s view of
the first stage.

DEFINITION 5.3. 2-phase commitment scheme (S, R), with security parameter
n and message lengths (k1(n), ka(n)), is statistically hiding if, for all adversarial re-
cewers R*, the following hold:

1. The views of R* when interacting with the sender in the first phase on any
two messages are statistically indistinguishable. Namely, for all oM, (1) €
{0,1}*,  the probability  ensembles  {viewpg«(S} (cM), R*)(1™)}
and {view p- (S, R*)(l")}neN are statistically indistinguishable.

2. The views of R* when interacting with the sender in the second phase are sta-
tistically indistinguishable no matter what the sender committed to in the first
phase. Namely, for all o™ € {0,1}%, and all 0®,52) € {0,1}*2, the proba-
bility ensembles {view g (S%2(c™@), R*)(T, 1”)}n€N and {view g (S%(7?)), R*)
(T,1™)}nen, where T = transcript(S*(c™M), R*)(1"), are statistically indis-
tinguishable.

We stress that the second condition of the above hiding definition (Definition 5.3)
requires that the view of receiver in the second phase be indistinguishable for any two
messages even given the transcript of the first phase, T = transcript(S!(c™), R*)(1™).

1-out-of-2 binding for 2-phase commitment schemes. The 1-out-of-2 binding prop-
erty, informally stated, says that at least one of the two commitment phases is binding.
In other words, for every PPT malicious sender S*, at most one of the two phases is
bad in that S* can decommit a given commitment to two different messages in that
phase. We allow this bad phase to be determined dynamically by S*. Moreover, we
require that the second phase be statistically binding if the sender breaks the first
phase. Our construction achieves this stronger property, and using it simplifies some
of our proofs.

DEFINITION 5.4. 2-phase commitment scheme (S, R), with security parameter
n and message lengths (k1(n), ka(n)), is computationally 1-out-of-2 binding if there
exists a “binding set” B of first phase transcripts such that for every function e(n) =
1/ poly(n), the following hold:

1. Every PPT S* succeeds in the following game with probability at most e(n)
for all sufficiently large n:

(a) S* and RL interact and output a first-phase commitment c(1).
(b) S* outputs two full transcripts A = (7, k) and X = (7,%) of both phases
with the following three properties:

e Transcripts X\ and X\ both start with prefiz ¢().

o Transcript X contains a successful opening of ¢V to the value ¢V €
{0,1}% wusing a first-phase transcript T not in B, and R! and R?
both accept in \.

e Transcript A contains a successful opening of ¢V to the value 3V €
{0,1}* using a first-phase transcript T not in B, and R} and R?

neN

both accept in .
(c) S* succeeds if all of the above conditions hold and o™ # ™).
2. For every (even computationally unbounded) sender S*, the first-phase tran-
scripts in B make the second phase statistically binding. In other words, for
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all S*, all 7 € B, and all sufficiently large n, with probability at least 1 —e(n)
over ¢®) = (S*, R?)(7), there is at most one value c® € {0,1}* such that
Fy@ R2(c?) 63 4(2)) = accept.

Some remarks on this definition:

1. Note that we require condition 1 to hold against PPT adversaries, but condi-
tion 2 must hold against all, even computationally unbounded, adversaries.

2. Condition 2 has an equivalent reformulation that is more similar to condition
1. Specifically, we can require for all $*, all 7 € B, and all sufficiently large
n, S* succeeds in the following game with probability at most £(n): S* and
R? interact to get a second-phase commitment ¢(?). After the interaction S*
outputs a pair of full transcripts A, X and we say that S* succeeds if both A
and A begin with prefix @ (which in turn contains 7 as a prefix), R2? accepts
in both A and A, and A and A contain decommitments to two distinct values
o#a.

3. Conversely, an equivalent reformulation of condition 1 says that for every PPT
S* and every e(n) = 1/ poly(n), the following holds for all sufficiently large n:
with probability at least 1—¢(n) over ¢! &(S*, RL), there is at most one value
o) € {0,1}* for which there is at least an (n) probability (conditioned on
¢M) that S* subsequently outputs a full accepting transcript A = (7, ) with
7 = (W, 0M ~M) ¢ B. Thus, we think of ¢(!) as a commitment to this
unique value of o).

4. Note that for S* to break condition 1 (or its equivalent formulation above), it
must produce a full transcript that makes both R. and R? accept. Thus, the
decommitment for the first phase should not really be considered “complete”
until a corresponding second-phase transcript is produced. The reason we do
not have the honest sender provide such a “full decommitment” during the
first-phase reveal is that this would compromise the hiding property of the
second phase.

5. If a 2-phase commitment is both statistically hiding and computationally
l-out-of-2 binding, then the transcripts 7 generated in the first-phase inter-
action between the honest sender (S!, R!) will lie outside B with all but
negligible probability. Indeed, the statistical hiding property of the second
phase implies that the second phase cannot be statistically binding (except
with negligible probability), and thus by condition 2 the first-phase transcript
7 must be outside of 5.

5.2. Our 2-phase commitment scheme. We now describe our 2-phase com-
mitment scheme for general functions f: {0,1}" — {0,1}", not necessarily regular
nor one-way—as we shall later see, it is the regularity condition that gives the hiding
property and the one-wayness of the function that gives the binding property of our
scheme. Let H = {h: {0,1}" — {0,1}"} be a family of pairwise-independent hash
functions. As shown in section 4.1, we have a family whose description of each element
takes ¢(n,m) = 2n bits. It will be convenient to make ¢(n,m) +m = ¢(n) for some
fixed polynomial ¢(n), so that for every y € {0,1}", |h,h(y)] = ¢(n). This can be
done by padding random bits to the description of h.

In addition, it will be convenient to work with protocols where the sender has
no input @) to be committed to, but rather privately receives an output d) at
the end of each phase j € {1,2} of the commitment. If we can ensure that d\¥) is
close to uniform given the receiver’s view, such a protocol can be easily turned into
a commitment scheme: the sender can commit to a o) of its choice by sending
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d9) @ o) at the end of the commit stage.

On the other hand, it will be convenient to have a special private input 2 € {0, 1}"
that corresponds to a portion of sender’s coin tosses. The reason for this is that later
we will want to discuss properties of the protocol when x is chosen randomly from a
subset I" C {0, 1}™ rather than uniformly from the entire space.

ProToOCOL 5.5. 2-phase commitment scheme (S,R) based on f: {0,1}" —

{0,1}™.

Parameters: Integerst € {1,2,...,n}, k1 = ks =k €{1,2,...,n}, Ay € {0,1,...,t},
and Ay € {0,1,...,n—t}.

Sender’s (special) private input: String x € {0,1}". (Again, this is not the value to
which the sender is committing, but is rather part of its coins, which will be
chosen uniformly at random by S unless otherwise specified.)

First-phase commit:

1. S sets y = f(x).
2. LetHy = {h1: {0,1}" — {0, 1}}=21} be a family of pairwise-independent
hash functions. Scl chooses a random hash hy «— Hi and computes
2 = (b1, b (y)) € {0,139
3. (SL,RY) run the interactive hashing protocol (Syz(z(V), Ru)(19,1%),
given by Protocol 3.3, with S! and R acting as Sty and Ry, respec-
tively. Let circuit C: {0,1}* — {0,1}7 be the common output and
dM € {0,1}* (with CM (d)) = M) ) be Sry ’s private output in (Syu(z™M),
RIH)(lq, 1k).
First-phase sender’s private output: String dV) e {0,1}*.
First-phase reveal:
St sends the tuple vV = (dM),y, hy).
Receiver RY. accepts if and only if CM(dV) = (hy, hy(y)).

Second-phase commit:

Second-phase common input: First-phase transcript T = transcript(S*(z), RY),
which in particular includes the string y.

1. Let Ho = {ha: {0,1}" — {0,1}"~*=22} be a family of pairwise-indepen-
dent hash functions. S* chooses a random hash hy < Ho and computes
22 = (hg, hQ(ZIJ)) S {0, 1}(1.

2. (52, R?) run the interactive hashing protocol (St (w), Rg) (19, 1%), given
by Protocol 3.3, with Sf and RE acting as Sty and Ry, respectively. Let
circuit C?): {0,1}F — {0,1}9 be the common output and d® € {0,1}*
be St ’s private output in (St(2?), R )(19,1%).

Second-phase sender’s private output: String d?) e {0,1}*.
Second-phase reveal:

52 sends the tuple v?) = (d®,z, hy).

Receiver R? accepts if and only if f(z) =y and C?(d?) = (ha, ha(z)).

THEOREM 5.6. Suppose f : {0,1}" — {0,1}" is a regular one-way function
with (known) security s(n) = n*M). Then for any setting of parameters such that
t € [H(f(Un)),H(f(Uy)) + 1], k = O(logn), and A1 = Ay = Llogs < max{t,n — t},
Protocol 5.5 is a 2-phase commitment scheme that is statistically hiding and computa-
tionally 1-out-of-2 binding. Moreover, the computational 1-out-of-2 binding property
holds regardless of the setting of t or the regularity of f.
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In order to apply the above theorem, it needs to be verified that if we set ¢t =
|H(f(Un))], then 1logs < min{t,n —t}. This can be easily made to hold by padding
the input of f. Specifically, given a one-way function f : {0,1}" — {0,1}", the
function f’: {0,1}3" — {0,1}3" defined by f'(x,y,z) = (f(x),y) for |z| = |y| = |z
is a regular one-way function with security s < 2" and output entropy H(f'(U,)) €
[n,2n], so %1ogs <n/4 <min{t,n’ —t}, where n’ = 2n is the input length of f’.

Because we do not know how to efficiently compute the correct value of t =
H(f(Uy)), we are forced to try out all values of t = 1,2,...,n to get a collection of
commitment schemes, as stated in the next corollary. While having a collection of
schemes instead of a single scheme may seem inconvenient, in section 7 we will show
how to convert such a collection of 2-phase commitments into a single commitment
scheme that is statistically hiding and computationally binding (in the standard sense
of binding).

COROLLARY 5.7. Given a reqular one-way function f : {0,1}™ — {0, 1}"™ with
known security s(n) = n*®, we can construct in time polynomial in n a collection of
public-coin 2-phase commitment schemes COM = {Comy, ..., Com,}, such that

o there exists an index i € {1,2,...,n} such that scheme Com; is statistically
hiding, and

o for every index i € {1,2,...,n}, scheme Com; is computationally 1-out-of-2
binding.

For notational convenience and generality, the above corollary and some of our
subsequent results are stated in terms of finite functions f : {0,1}" — {0,1}" for a
fixed value n of the security parameter. When we say that the function f is “given,”
this can be interpreted as being given the boolean circuit computing f (or, more
generally, given f as an oracle), and “constructing” the commitment schemes Com;
can be interpreted as constructing the boolean circuits (or, more generally, circuits
with oracle gates for evaluating f) that compute the next-message functions of the
protocol.

We divide the proof of Theorem 5.6 into Lemmas 5.8 and 5.9, which establish
the statistical hiding and computational 1-out-of-2 binding properties of Protocol 5.5,
respectively.

LEMMA 5.8. If f : {0,1}" — {0, 1}" is a regular function, then Protocol 5.5, with
any setting of parameters satisfying t € [H(f(U,)), H(f(Upn)) + 1], k < q(n), Ay =
Ay = w(logn) < min{t,n — t}, is statistically hiding in the sense of Definition 5.3.

Proof. Since t < H(f(U,)) + 1, the Leftover Hash Lemma (Lemma 4.1) tells us
that random variable Z() = (Hy, Hy(f(U,))) is 2~%(A1)_close to the uniform. Then
by the hiding property of interactive hashing (Definition 3.1), the first commitment
phase is 27(41)_hiding, which suffices because A; = w(logn).

Let 7 be the transcript of the first phase and y the string sent in the first reveal
phase. Let random variable X represent selecting at random a string from the set
f~'(y). Since X is a flat source with entropy n — H(f(U,,)) > n —t, and ho maps to
strings of length n—t— Ao, we apply the Leftover Hash Lemma once more to conclude
that random variable Z(?) = (Hy, Ho(X)) is 2-(%2)_close to the uniform, even given
7. By the hiding property of interactive hashing, the second commitment phase is
2~ UA2)_hiding, which in turn is statistically hiding since Ay = w(logn). O

LEMMA 5.9. If f: {0,1}" — {0,1}"™ is an s(n)-secure one-way function (not
necessarily regular), then for any value of t € {1,2,...,n}, Protocol 5.5, with any
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setting of parameters such that k = O(logn), Ay = Ay < min{$log(s(n)),t,n —t},
is computationally 1-out-of-2 binding in the sense of Definition 5.4.

Intuitively, the proof of Lemma 5.9 will proceed as follows. We will show that
with high probability the first commit phase binds the (cheating) sender to a unique
“heavy” string y, i.e., a string whose probability mass under f(U,,) is at least roughly
2~%. During the first reveal phase, the sender can choose to reveal either this heavy
string or a “light” string. In the former case, the first phase is computationally
binding, and in the latter, the second phase is statistically binding.

Formally, we define the binding set B as follows:

For every t € {1,2,...,n}, define the set of light strings to be L; =
{y € {0,1}" : Pr[f(U,) = y] < 271=23} for a parameter Az that we
will set at the end of the proof. Define the binding set B to be the
set of transcripts where the sender reveals y € L.

Now, we break the proof of Lemma 5.9 into Claims 5.10 and 5.11 below, which
establish the binding property for the first and second phases, respectively.

CLAIM 5.10. For the binding set B defined above, if there exists a PPT S* that
succeeds with probability e = €(n) in the game in condition 1 of Definition 5.4, then
there exists a PPT B that can invert f with success probability at least

9 1/ poly(n) - 2~ (k+A1+A3),

Proof. We define a relation W as follows:

W= {(z(l),aj) . 3hy such that both 2V = (hy, by (f(x))) and f(z) ¢ Lt} .

Suppose we have a PPT S* that succeeds with probability greater than € in the
game described in condition 1 of Definition 5.4. In particular, this means that S* after

interacting with Ryy will, with probability greater than e, produce pairs (dél), xo) and

(d\V, 21) such that d\V £ d\V, (CD(dy),z0) € W, and (CV(dy),21) € W. By the
binding property of interactive hashing (condition 3 of Definition 3.1), there exists a
PPT A such that

o(1)
(1) -k (&
(1) z(l)f{ro,l}q[A(Z ) S Wz(l)] > 2 (q) s

where the above probability is taken over the coin tosses of A and v < {0,1}1.

Consider an algorithm B that on input y picks a random hash function hy «— H;
and outputs A(hy,hi(y)). We let n = hi(y) and compute the probability that B
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inverts f as follows:

Pr[B(f(U. ) € FHF(UR))]
- E ZPr (h1, h1(f(Un))) =z A f(z) = f(Uy)]

hi—H1

- h1EH1 Z Pr[f(Un) = f(ﬁ)] : Pr[A(hl, ’17) = x]
RS s.t. n:h1(f(m))

= EH Z Pr[f(Un) = f(z)] - Pr[A(h1,n) = 7]
. L7 s.t. weW(hlm)

> 27178 Pr[A(hy,n) = ]| (v € Wi, ) = f(2) ¢ L)

LT st 2€Winy )

= 2—t—A3 . 2t—A1 . P Alh , cw
(hl,n)Hnlxr{m}t—Al[ (h1,n) (k1))

T hi—H

o(1)
< 9= (Bi+As) 9=k | (2) (by (1))

= c9W 1/ poly(n) - 2~ A2 (since g = poly(n)) . O

CrAaM 5.11. For the binding set B defined above, condition 2 of Definition 5.4
is satisfied with € = poly(n) - 2~ HAs=A2) . gk/2

Proof. Let y € L; be the string sent in the first reveal phase. This means
that Pr[f(U,) = y] < 27723, or equivalently |f‘1(y)‘ < 2"7t=A3_ Define set T =
{(h2,ha(z)) : ha € Ha,x € f~1(y)}, and let u(T) denote the density of the subset T'.
Since hy maps {0,1}" to {0,1}"7*=22 we have

n—t—A
( ) |f | 2ntAs — 9R2—Ag
- 2n t— AQ - 21’L t—Ao :

Applying Lemma 3.7, we have
Pr (262),z§2)) = output(S*, Ru) satisfies z(() ), @ er| < poly(g)-2~HAs=A2) 9k/2

which then concludes our proof since ¢ is a fixed polynomial in n. O

Proof of Lemma 5.9. Set Ag = %log s(n), and we are given that & = O(logn)
and Ay = Ay < 1log(s(n)). With this setting, Claim 5.11 shows that condition
2 in Definition 5.4 is satisfied with e(n) = poly(n) - 2-2(°85(") — neg(n), since
s(n) = n*M. Condition 1 of Definition 5.4 is also satisfied with negligible probability
£(n) because otherwise f can be inverted with probability

(M. 1/ poly(n) - 2~ (k+A1+483) > cO() . 1/ pholy(p) - 2 (QUean)+(3/4)-(log s(n))
= %W 1/ poly(n) - s(n) >/,
which is greater than 1/s(n) if € is nonnegligible. O

6. l-out-of-2-binding commitments from any one-way function. Our
next hurdle is to remove the regularity assumption. It turns out that this is the
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most technically challenging step. (We also need to remove the need for known secu-
rity, but this will follow as a byproduct of our approach to removing the regularity
assumption.) Similar to our construction from regular one-way functions (with un-
known preimage size) in section 5, our construction based on any one-way function
yields a collection of 2-phase commitments, as stated below.

THEOREM 6.1. Given a one-way function f : {0,1}"™ — {0,1}", we can construct
in time polynomial in n a collection of m = poly(n) public-coin 2-phase commitment
schemes COM = {Comy, ..., Com,,} with message lengths (ki1,k2) = (n,n), such that

e there exists an index i € {1,2,...,m} such that scheme Com; is statistically
hiding, and

e for every index i € {1,2,...,m}, scheme Com; is computationally 1-out-of-2
binding.

Note that this theorem provides 2-phase commitment schemes for long messages,
specifically those with length equal to the input length n of the one-way function
f. Essentially the same proof can provide schemes with message length k(n) for any
desired polynomial k. Alternatively, we can apply the above theorem to the function
f(x1,.. . xk) = (f(x1),..., f(xg)), which has input length n’ = k - n and is one-way
if f is.

A collection of 2-phase commitment schemes as above turns out to suffice for ob-
taining statistical zero-knowledge arguments for all of NP (see [28, 1]). Hence, Theo-
rem 6.1 suffices to establish Theorem 1.2, which states that statistical zero-knowledge
arguments for all of NP can be based on any one-way function. However, in sec-
tion 7, we will show how to transform the above collection of 2-phase commitment
schemes into a single commitment scheme that is statistically hiding and computa-
tionally binding (in the standard sense of binding). This proves Theorem 1.1, the
main theorem of this paper, and gives a more modular proof of Theorem 1.2 (simply
by plugging the commitments into [9]).

We prove Theorem 6.1 in sections 6.1-6.3.

6.1. Overview. We now present an overview of how we generalize our con-
struction for regular one-way functions with unknown preimage size (Protocol 5.5) to
arbitrary one-way functions. As shown in Lemma 5.9, this protocol already achieves
1-out-of-2 binding when f is any one-way function (for every value of t). Thus the
challenge is the hiding property. (Another issue is that Protocol 5.5 requires a one-
way function with known security. It turns out that our method for handling the
hiding property also eliminates the need to know the security.)

As discussed in section 5, for regular one-way functions with unknown preimage
size, Protocol 5.5 has a hiding first phase when the parameter ¢ satisfies t < H(f(U,,))
and has a hiding second phase when ¢ satisfies t 2 H(f(U,)). Intuitively, when f

is not regular, we should replace the fixed value H(f(U,)) with the dynamic value

H(y) ef log(1/ Pr[f(U,) = y]), where y = f(x) is the value chosen by the sender

in the preprocessing step, because Hy(y) can be viewed as measuring the amount of
entropy in y. The approximable preimage-size one-way functions studied by Haitner
et al. [25] come equipped with an algorithm that estimates Hy(y), but for general
one-way functions, this quantity may be infeasible to compute.

A weakly hiding scheme (details in section 6.2). One natural approach is to have
the sender choose t at random and hope that it is close to Hy(y). When we choose
t too small, only the first phase will be hiding, and when we choose ¢ too large,
only the second phase will be hiding. But we have a nonnegligible probability of
d = 1/n that t ~ H¢(y), and thus both phases will be hiding. Thus we have a 1-
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out-of-2-binding commitment scheme satisfying a weak hiding property, where with
probability § = 1/n, both phases are hiding, and it is always the case that at least
one phase is hiding. Actually, in order to simplify our analysis, we will include ¢ as
a parameter to the protocol. Then there exists a choice of ¢ such that the protocol
is weakly hiding in the sense above, and for all choices of ¢ the protocol is 1-out-of-2
binding. At the end, we will enumerate over all values of ¢, resulting in a collection of
commitment schemes as claimed in Theorem 6.1, albeit with a weak hiding property.

Unfortunately, we do not know how to directly construct statistically hiding com-
mitments from weakly hiding 1-out-of-2-binding commitments. Thus instead, much
of the effort in this paper is devoted to amplifying the weak hiding property, where
d = 1/n, into a strong hiding property, where 6 = 1 — neg(n), while maintaining the
1-out-of-2 binding property.®

Amplifying the hiding property (details in section 6.3). We do not amplify the
hiding probability from 6 = 1/n to 6 = 1 — neg(n) in one shot, but instead perform
a sequence of logn iterations, each one of which increases 0 by roughly a factor of 2.
This results in § = (1), and then we are able to get § = 1 — neg(n) in just one more
amplification step.

How do we double 67 A natural idea is to consider several executions of the
previous weakly hiding scheme. Specifically, if we take m = O(1) executions, the
probability that at least one of the executions has both phases hiding is roughly m - 6.
Moreover, each of the remaining m — 1 executions have either the first phase hiding or
the second phase hiding. Thus, for some value of 3, there are 3 + 1 first phases that
are hiding and m — 3 second phases that are hiding. It turns out that we can choose 3
so that this exact (8 + 1, m — 3) breakdown given that one execution has both phases
hiding occurs with probability Q(1/y/m). Thus we are in the situation described with
probability m - § - Q(1/y/m) = Q(y/m - 0) > 24 for a large enough constant m.

Now our aim is to combine the outcomes of the weakly hiding schemes in such a
way that when the above-described situation occurs, which happens with probability
at least 26, both phases are hiding. Notice that the secret values o1, ..., 0, € {0,1}*
to which the sender commits in the first commit phases have entropy (even min-
entropy) at least (8 + 1) - k conditioned on the receiver’s view (because (5 + 1) of
them are hiding), and similarly the sender’s secrets in the second commit phases have
entropy at least (m — () - k conditioned on the receiver’s view. Let us compare this
to the situation with binding. Since each execution is 1-out-of-2 binding, a cheating
polynomial-time sender can break the binding property for either at most § of the
first phases or at most m — (3 — 1 of the second phases. Thus the number of possible
values to which the sender can open in each case is at most 2 - 2% in the first phase
or at most 2" (m=F=1) where the 2™ factor in the first bound comes from the sender’s
ability to choose which subset of executions to break (and it is this factor that limits
us to taking m to be a constant). We can view these as strong forms of entropy upper
bounds m + kG and k- (m — 8 — 1). In at least one phase, there will be an entropy
gap of at least k — m.

How can we exploit these entropy gaps? It turns out that interactive hashing,
again, is a useful tool. Specifically, in the first phase we have the sender choose a ran-

80ne may wonder why we do not now apply the compiler of section 7, which converts strongly
hiding 2-phase commitments into standard commitments. Even if that compiler could be made to
work for weakly hiding 2-phase commitments (producing a weakly hiding standard commitment), an-
other obstacle is that the compiler requires a 2-phase commitment with polynomial message length,
whereas our weakly hiding commitment has only a logarithmic message length (similarly to Theo-
rem 5.6). It turns out that our amplification procedure also increases the message length as needed.
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dom pairwise-independent hash function h; mapping to approximately (5+ 1) -k bits
and use (h1, h1(o1,...,0m,)) as the input to the interactive hashing protocol, and anal-
ogously for the second phase. By the Leftover Hash Lemma, this pairwise-independent
hashing results in an almost-uniform distribution, so the interactive hashing hiding
property applies. As for the binding property, the bound on the number of the
sender’s choices gets translated to saying that the sender’s input (in the first phase)
comes from a set T’ of density 2-(*~"), so the interactive hashing binding property
applies. The analysis for the second phase is similar. Formalizing these ideas, we get
a new l-out-of-2-binding commitment scheme in which both phases are hiding with
probability at least 20.

When we try to iterate this amplification step O(logn) times, we run into a new
difficulty. Specifically, the above sketch hides the fact that we pay entropy losses of
w(logn) in both the hiding and binding analyses. The entropy loss of w(logn) in
the hiding property comes from the Leftover Hash Lemma in order to ensure that
(hi,h1(o1,...,0m)) has negligible statistical distance from uniform. The entropy
loss of w(logn) in the binding property comes from needing the u(T') - 2% factor to be
negligible when applying Lemma 3.7. This forces us to go, in one step of amplification,
from a commitment scheme for secrets of length k to a scheme for secrets of length
k —m — w(logn). As in Lemma 5.9, we can take the initial secret to be of length
k = O(logs(n)) = w(log(n)) if the one-way function has known security s(n) = n*).
But to tolerate logn losses of w(logn), we would need s(n) = n®{1°8™) (ie., at least
quasi-polynomial security).

To get around this difficulty, in the amplification, we work with more relaxed,
average-case measures of entropy for both the hiding and binding analyses. Specif-
ically, for hiding, we keep track of the expected collision probability of the sender’s
secret, conditioned on the receiver’s view. (Actually, we use the expected square root
of the collision probability.) For binding, we work with the expected number of values
to which the sender can open. In both cases, we require only that these expectations
to be within a constant factor of the ideal values, which are 2= and 1, respectively.
With these measures, it turns out that we need only lose O(m) = O(1) bits in the
entropy gap with each amplification step. Moreover, once we amplify § to a constant,
we can afford to take the number of executions m to equal the security parameter
n and get an §2(n)-bit entropy gap in the final amplification step. This allows us to
achieve exponentially strong statistical hiding even when we do not know the security
and start with secret length of k = O(logn).

The hiding analysis of the above construction works only for certain values of ¢
in the weakly hiding scheme, and for certain values of the (’s in the amplification
steps. We try out all possible values of ¢ and (’s, thus obtaining a collection of
poly(n) schemes, at least one of which is strongly hiding and all of which are 1-out-of-
2 binding. Notice that the number of possible choices of ¢t and the §’s is polynomial
innsince t € {1,2,...,n}, the §’s in the each step except for the last are in the range
{0,1,...,m — 1} for some constant m, and the last § is in the range {0,1,...,n}.

6.2. Weakly hiding and 1-out-of-2-binding commitments. As discussed
in section 5, for the case of regular one-way functions with unknown preimage size,
Protocol 5.5 has a hiding first phase when the parameter ¢ satisfies ¢t < H(f(U,)) and
has a hiding second phase when ¢ satisfies ¢t 2 H(f(U,,)). When f is not regular, then
there will be one value of t € {1,2,...,n} such that Hy(y) ~ t with probability = 1/n

over y < f(U,), where Hy(y) dof log(1/ Pr[f(Uy,) = y]) measures the entropy in the
specific output y). This is the case because there are only n possible choices for the
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value of t.

With this observation in mind, our 2-phase commitment scheme from general
one-way functions will be the same as the scheme in Protocol 5.5, with setting of
parameters t = tg, k = O(logn) and A1 = Ay = 2logn, for some ¢y € {1,2,...,n}.
In other words, the same scheme—with slightly different setting of parameters—used
in the case of regular one-way functions is also applicable to general one-way functions.

This commitment scheme (using general one-way functions), as we will show, is
computationally 1-out-of-2 binding, but only statistically hiding in both phases with
probability at least 1/n (hence, called weakly hiding). In order to obtain a tighter
analysis when we amplify this scheme, we depart from the standard measures of hiding
and binding used in section 5. Instead, we measure the statistical hiding property of
our 2-phase commitments using the expected square root of the collision probability of
the sender’s secret, denoted as CP/2, and defined in section 6.2.1. We measure the
binding property by analyzing the expected number of values to which an adversarial
sender can open.

Later, in section 6.3, we show how to boost the statistical hiding probability to
1 — 272 while maintaining the computational 1-out-of-2 binding property.

6.2.1. Properties of collision probability.
DEFINITION 6.2. For any random variable A, we define its collision probability
as the probability that two independent samples from A are equal. In other words,

def — 2 — _
CP(A)= Y (PrlA=a])’ = E [Pr[A=ad].
a€Supp(A)
Measuring the collision probability of a random variable is equivalent to measuring
its Renyi entropy of order 2, defined as

1 1

aPA—a] 8 TP(A)

Hy(A) = log E

DEFINITION 6.3. For any random variable A, we denote the square root of its
collision probability as

CP/2(4) ¥ \/CP(A).

For any two (possibly correlated) random variables A and B, we define the expected
square root of A’s collision probability given B as

CPY2(AB) ™ E_ [CP1/2(A|BZZ,)} .

We think of CPY/2(A|B) < V2F as saying that A has conditional Renyi entropy
of at least k given B. We use the expected square root of the collision probability
(as our measure of hiding) instead of just expected collision probability in order to
ensure that conditioning on a random variable Z can only decrease the conditional
Renyi entropy by at most log(|Supp(Z)|) bits. (See Lemma 6.7 below for details.)

The following lemmas show that CP'/2 behaves nicely as an entropy measure.
Proofs are in the appendix.

LEMMA 6.4. For independent pairs of random variables (X1,Y1), ..., (Xm, Ym),

CPY2((Xy,..., Xpn)|(Y1, ..., Vi) = [ CPV2 (X, |Y)).

i=1
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Note that X; and Y; can be correlated; it is required only that the pair (X;,Y;) be
independent from the other tuples.

In terms of conditional Renyi entropy, Lemma 6.4 states that the entropy is
additive for independent random variables. We will actually need a generalization of
Lemma 6.4 to deal with somewhat dependent random variables, as stated in the next
lemma.

LEMMA 6.5. Suppose random variables (X1,Y1), ..., (Xm, Ym) satisfy the follow-
ing conditions for some values of ay, ..., € RT and all i =1,2,...,m:

1. For every (y1,...,yi—1) € Supp(Y1,Ya,..., Y1),

CPl/Q(Xi|Y1:y1,w,Y¢_1:yi_1 | Yi|Y1:y1,~~,Yi_1:yi_1) < .

2. For every (y1,...,y:) € Supp(Y1,Ya,....Y:), the i + 1 random variables
X1, Xo,..., X, and Y41 are independent after conditioning on Y1 = y1,...,Y;
= Yi-

Then,

CPY2((X1, ., Xon) (Y1, Vo)) < [ e

The next lemma shows that pairwise-independent randomness extraction (h, h(z))
preserves the CP'/2 measure.

LEMMA 6.6 (Randomness Extraction Lemma). Let (X,Y) be any (possibly
correlated) pair of random wvariables, and let random wvariable H denote a random
hash function from a family of pairwise-independent hash functions H with range
{0,1}*. Suppose the hash functions from H are represented by (q — «)-bit strings and
CPY2(X|Y) < V2-(a+3). If H is independent from (X,Y), then

CPY2((H,H(X))|Y) < V2-(a-1),

In other words, if X has at least o + 3 bits of conditional Renyi entropy given Y,
then we can extract a bits from X that have conditional Renyi entropy at least o — 1.
Notice that this entropy loss is only 4 bits, as compared to 2 log(1/¢) if we require that
the output be e-close to uniform as in the Leftover Hash Lemma (Lemma 4.1). This
constant loss of conditional Renyi entropy allows us to do a tighter hiding analysis in
section 6.3.1.

LEMMA 6.7. For any triple of (possibly correlated) random variables X, Y, and
Z7

CPY2(X|Y) < CPY3(X|(Y, Z)) < /|Supp(Z)| - CPY/2(X|Y).

This says that conditioning on random variable Z can only decrease the con-
ditional Renyi entropy, but does so by at most log(|Supp(Z)|) bits. For Shannon
entropy, a stronger statement can be proven, namely, that conditioning on Z reduces
entropy by at most H(Z) bits: H(X|Z) > H(X)—H(Z) (omitting the random variable
Y for simplicity). This follows from the chain rule H(X, Z) = H(Z) + H(X|Z), noting
that H(X, Z) > H(X). However, the chain rule does not hold for conditional Renyi
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entropy.”

The final lemma is a stronger variant of the previous Leftover Hash Lemma
(Lemma 4.1), with its hypothesis stated in terms of collision probability.

LEMMA 6.8 (Leftover Hash Lemma, strengthened [37, 5]). Let random variable H
denote a random hash function from a family of pairwise-independent hash functions
H with range {0,1}%. For anye > 0, if CP(X) < &2-27% and H is independent from
X, then random variable (H, H(X)) is e-close in statistical distance to uniform.

6.2.2. Average-case hiding and binding properties of interactive hash-
ing. We now analyze the interactive hashing protocol, namely, Protocol 3.3, in terms
of average-case measures. For hiding, we use the CP'/2 measure introduced in the
previous section. For the binding property, we present an average-case variant of
Lemma 3.7, where we look at the expected number of outputs that lie in any set T,
rather than bound the probability that there is more than one output in I'.

LEMMA 6.9 (hiding of interactive hashing in cpl/2 measure). Let (Siu, Rig) be
the interactive hashing protocol in Protocol 3.3. If the sender Sig’s input comes from
a random variable Y over {0,1}7 and W is any (possibly correlated) random variable
(representing the receiver’s a priori information about Y ), then for any receiver R*,

CP'2(Z|(W,V)) < V2i-k . CPY2(Y W),

where Z = outputg, (S (Y), R*)(1%,1%) and V = viewg- (S (Y), R*)(17,1F).

Proof. Without loss of generality, we may assume that R* is deterministic. (The
randomized case then follows by taking expectation over R*’s coins.) Now that R* is
deterministic, the hash functions sent hg,...,hq—r—1 by R* are fully determined by
Sta’s responses ¢, ..., cq—g—1 € {0,1} (refer to Protocol 3.3). Hence, the number of
possible different views of R* is bounded by 2¢~%. This implies that |Supp(V)| < 297F,
where V' = viewg- (St (Y), R*)(1¢,1%). By Lemma 6.7,

CP'2(Y|(W,V)) < v/[Supp(V)] - CPY/2(Y|W) < V2a=k . CPV2(Y|W).

Observe that given any particular instantiation of W = w and V = v, the distri-
bution of outputg,, (St (Y), B*)(19, 1%)|w—w,v =, has the same collision probability as
Y |w=w v=o (indeed, they are in bijective correspondence). Hence, CPY/2(Z|(W,V)) =
CPY2(Y|(W,V)) < V2¢-k.CPY2(Y|W). O

LEMMA 6.10 (binding of interactive hashing in expected measure). Let (Siu, Rin)
be the interactive hashing protocol in Protocol 3.3. For any fized subset T C {0,1}9,
and for any sender S*, setting C = output((S*, R)(19,1%)), we have

E[{z:C(z) € T}|] < max{24,2F1 . ;(T)} < 24 + 21 . (1),

where the above expectation is taken over the coins of S* and Ryy.

This lemma and its proof are inspired by the work of Goldreich, Goldwasser,
and Linial [38], who studied a protocol similar to interactive hashing for a different
purpose (namely, random selection protocols).

91n terms of collision probability, a chain rule would say CP/2(X, Z) = CP'/2(Z)-CP'Y/2(X|2).
This is not true in general, as can be observed by noting that (CP/2(X,Z)/CPY/2(Z))? =
CP(X, Z)/ CP(Z) equals the expectation CP(X|z—.) over z chosen according to the distribution Z,
where Pr[Z = z] = Pr[Z = z]2/ CP(Z), while CP1/2(X|Z) (and any natural definition of conditional
Renyi entropy) is defined by taking an expectation over Z. By choosing a random variable Z where Z

is very different from Z, and choosing appropriate conditional distributions X|z—., examples can be
constructed where CP/2(X, Z) is both much larger and much smaller than CP1/2(Z).CPY/2(X|Z).
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Proof. Without loss of generality, we may assume that S* is deterministic. (Else,
we can fix its coins to maximize the expectation.) Note that for iteration j = 0,...,¢—
k — 1, Ry will send a random h;, partitioning the set of possible outputs into two
sets {y : h;(y) = 0} and {y : hj(y) = 1}, and S* chooses a side of the partition by
sending a bit ¢;. For all j > 0, let U; = {y € {0,1}? : h;(y) = ¢;Vi < j} denote the
set of compatible elements of the universe at iteration j, and let 7; = U; N'T" denote
the set of compatible elements of T. We write u(T}) = |T}|/|U;| = |T;| - 277 and
denote the density of T; within U;, and p; = Ep[] (T})], where the expectation is
taken over random choices of hg,...,h;j—_1. For convenience of notation, we denote
the hash function h;’s range as {£1} instead of {0,1}.

Consider a particular set T; and a particular hash function h;. Observe that for
every y #y' € Tj, Pry,[h;(y) = h;j(y")] < 1/2. Hence,

(2) Elh;(w)hi(y)] <0 Vy#y €T;.

Observe that the set Tj11 = {y € T : hj(y) = ¢;}, and thus

T3 + |2y er, 1Y)

T3, | < max, Hy € Tj : hj(y) = c}

ce{£1 2
Therefore,
Bu(Tj1)] = w(Ty) +2- - E 1Y hyy)
hy by yeT;
2
< u(Ty) + 27 (a9 }]? Z hj(y) (Cauchy-Schwarz/Jensen)
I yeT;
= u(Ty) +27 D T+ Eh;(y)h;(y)]
y£y
< u(Ty) +27 9 -/ |Ty| (by 2)
= p(Ty) + /27 u(T5).
Consequently,
pitr =, B , 1(T4)]
= e EhA_l[E[“(TJ‘H)H

IN
=

h
N (O RRVERTNTES)

w(T5)] + \/2—(‘1—j) - Eh (W(T;)]  (Cauchy—Schwarz/Jensen)
0ye-stj—1

IN
=

ho,...;hj—1
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Assume that the p;’s are monotonically increasing (otherwise, we can make it
s0). This gives us

qg—k—1
ok <o+ Y /270y
=0

q—k—1

< po + \/Hg—k Z V2-(a=39)  (u;’s are monotonically increasing)
=0

< Ho + \/Hq—k 6/2"
Hq—k

> (i i > 24-27),

< po +

giving us p1g—x < 2p0 = 2u(T) if p1g—x > 24-27%. This means that i, is either less
than 24 - 27% or less than 2u(T). Therefore, we can conclude that

E[|{z:C(2) € T}| : C = output((S*, Rm) (1%, 1%))] = pg—r - 2*
< max{24,2"1. y(T)}. O

6.2.3. Protocol 5.5 is hiding in CP'/2 measure. We are now ready to ana-
lyze the hiding property of Protocol 5.5 in terms of the CP'/? measure. To do so, we
say what it means for a scheme to be é-hiding in CP'/? measure in Definition 6.11
below. But before going into that definition, we first establish some notation that is
used throughout this part of the section.

With the sender’s input being x, we let random variable view g« (S!(z), R*) denote
the view of receiver R* in the first commit phase, random variable output (S} (z), R*)
denote the sender’s private output in the first phase, and random variable
transcript(S!(z), R*) denote the first (commit and reveal) phase transcript.

Using similar notation, with the transcript being 7 and sender’s input being x, we
let random variable view g (S%(z), R*)(7) denote the view of receiver R* in the second
commit phase, random variable outputg(S%(z), R*)(7) denote the sender’s private
output in the second phase, and random variable transcript(S?(z), R*)(7) denote the
second (commit and reveal) phase transcript. We write I'; in viewg«(SL(I), R*)—
and similarly for others—to mean that the sender’s private input is chosen uniformly
from a set I'y.

DEFINITION 6.11. For a parameter § € [0, 1], 2-phase commitment scheme (S, R)
is said to be 6-hiding in CPY/? measure if there exist two sets T1,Ty C {0,1}" such
that the following three properties hold.

(H.1) Ty Uy ={0,1}" and u(T1 NT) > 0.

(H.2) When the sender’s private input x is chosen uniformly from I'1, the sender’s
private output in the first phase has low collision probability given the re-
ceiver’s view. Formally, for any adversarial receiver R*,

CPY2(A|V) < V2-(=1)

for (A, V) = (outputg(SH(I), R*), view g« (S:(I'1), R*)).

(H.3) When the sender’s private input x is chosen uniformly from T, the sender’s
private output in the second phase has low collision probability given the re-
ceiver’s view. Formally, for every adversarial receiver R* and every T €
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Supp(T), where T = transcript(S*(I%), R*), we have

CPY2(B,|W,) < V2-(-1)

for (B, W) = (outputg(S2(I2), R*), viewr: (S2(I2), R*))|r=r-

Remark 6.12. Being §-hiding in CP'/? measure in Definition 6.11 roughly means
that the scheme is always hiding in at least one phase, and hiding in both phases
occurs with probability 6.

LEMMA 6.13 (Protocol 5.5 is (1/n)-hiding in CP'/2 measure). Let f: {0,1}" —
{0,1}™ be any function (not necessarily one-way) such that |f~1(y)| € [2n?,2"/n?]
for every y € {0,1}™. There exists an integer to € {[2logn],2,...,n—[2logn]} such
that Protocol 5.5, with setting of parameters t = to, Ay = Ag = [2logn], and any
ke{l,...,q}, is (1/n)-hiding in CP'Y/? measure.

Proof. Without loss of generality, we may assume that R* is deterministic since
we can fix the coins of R* that maximize the above collision probabilities. We prove
that (S, R) satisfies the above three properties of Definition 6.11 as follows.

Property (H.1). Define p(y) = Pr[f(U,) = y], and for t € {[2logn],2,...,n —
[2logn]}, let Ay = {y € {0,1}" : 27 < p(y) < 271} Since Ui Ay = f({0,1}7),
there exists an index to such that Pr[f(U,) € Ay] > 1/n. Define sets I'y and T'y as
follows:

Iy = {z:p(f(a)) <27},

Ty ={z:p(f(x)) =277}
By the definition of I'; and I's, we have that u(I'y NT2) = Pr[f(U,) € Ay > 1/n,
and also I'y UT'y = {0,1}™.

Property (H.2). In the case when the sender’s private input z € I'y, we bound
the collision probability of the first phase secret as follows:

- p(y) \°
CP(f()= 3 | <M(r1)>

yef(T
< < max p(y)) . Z p(y) | - ! 2
yef(T1) ver D) (')
< 27t y(Ty) - ()2
< 9—(to—logn—1) (since u(T'y) > 1/n).

Observe that CP(f(I')) < 2~ (fo~legn=1) < 9=(to=A1+3)  Therefore, we can apply
the Randomness Extraction Lemma, Lemma 6.6, to get CPY/2(Z(1) < 2-(a—1),
where ZW) = (Hy, H,(f(I'1))) and H; is an independent random hash from .

Next, let A = outputg(SL(I1), R*) denote the private output of the sender S
in the first phase of Protocol 5.5, which in turn is equal to the output of Syy in the
interactive hashing protocol, so equivalently A = outputg, (Syr(Z™"), R*). Similarly,
let V = viewpg- (S!(I1), R*) denote the view of the adversarial receiver R* in the first
phase, which in turn is equal to the view of R* in the interactive hashing protocol, so
equivalently V = view g+ (St (Z(V), R*).

The final step is to use the hiding property of interactive hashing given by
Lemma 6.9 to bound the collision probability of A (the private output of the sender
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S) given V (the view of the adversarial receiver R*) as follows:

CPl/z(A|V) < V2a-k. m < V92a—k . \/27((1,1) _ \/2,(,%1)'

Property (H.3). In the case when the sender’s private input = € I'y, we analyze
the collision probability of the second phase secret as follows. First we observe that for
any x,z’ € {0,1}" such that f(z) = f(2), the first phase transcripts for both = and
2" are identically distributed, that is, transcript(S!(z), R*) = transcript(S*(z'), R*).
Thus, if we fix a first-phase transcript 7 € transcript(S*(z), R*) containing a value
y = f(x) in the reveal phase, any element in I'y , = f~!(y) C I's is equally likely to
have generated 7. Also observe that the I'p ,’s form a partition of I's.

Note that by definition, |T'y,| > 2", and hence CP(I%,) < 9= (n—to) <
2~ (n—to—A2+3)  Therefore, we can apply Randomness Extraction Lemma, Lemma 6.6
to get CPY/2(Z(2) < v2-(a=1) for Z() = (Hy, Hy(Is,y)).

Next, let B, = outputg(SZ(I2,), R*)(7) denote the private output of the sender
S in the second phase, which in turn is equal to the output of Sty in the interactive
hashing protocol, so equivalently B, = outputg, (S (Z?), R*). Similarly, let W, =
view g« (S2(I,), R*)() denote the view of the adversarial receiver R* in the second
phase, which in turn is equal to the view of R* in the interactive hashing protocol, so
equivalently W, = view - (Si(Z®), R*).

The final step is to use the hiding property of interactive hashing given by
Lemma 6.9 to bound the collision probability of B, (the private output of the sender
S) given W, (the view of the adversarial receiver R*) as follows:

CPY2(B,|W,) < V20-F . \[CP(Z(®) < V2i=k . \/2-(=D) = \/2-(—1). [0

6.2.4. Protocol 5.5 is 1-out-of-2 binding in expected measure. The def-
inition of 1-out-of-2 binding in Definition 5.4 considers the first phase (resp., second
phase) to be broken if the sender S* produces valid decommitments to two differ-
ent values after the first commit stage (resp., second commit stage). In this section
and section 6.3, we will work with a relaxed notion where we simply bound the ez-
pected number of values to which a cheating sender can open. To this end, we define
openings(S*, R') (resp., openings(S*, R?)) to be a random variable denoting the set
of values to which the sender successfully opens in phase 1 (resp., phase 2), where
“successfully” opens is defined for each phase analogously to Definition 5.4. (Defini-
tion 5.4 refers to sender strategies that produce decommitments to one or two values
in each reveal phase; here we consider a natural generalization where the sender tries
to decommit to many values in each phase.) More formally, for a 2-phase commitment
scheme (S, R) and a “binding” set B, we define openings(S*, R!)(B) as follows:

e S* and R! interact to get first-phase commitment ¢(1).

e After the interaction, S* outputs a sequence of values dgl), ey dél) and cor-
responding full transcripts Ay, ..., A¢ of both phases. Recall that \; = (74, k),
where 7; and k; are the first-phase and second-phase transcripts, respectively.

e We let openings(S*, R')(B) be the set of distinct values dgl) whose opening
\; is valid, where by valid we mean that A; begins with prefix ¢(!), \; contains
a decommitment of ¢!) to the value dz(-l) with first-phase transcript 7; ¢ B,
and both R! and R? accept in \;.

Analogously, we define openings(S*, R?)(7), where 7 is a first-phase transcript, as
follows:
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e S5* and R? interact to get second-phase commitment c(2).

e After the interaction, S* outputs a sequence of values de), ey df) and cor-
responding full transcripts A1, ..., As.

e We let openings(S*, R?)(7) be the set of distinct values d§2> whose opening
\; is valid, where by valid we mean that \; starts with prefix ¢(?) (which in
turn contains 7 as a prefix), \; contains a decommitment of ¢ to the value

dEQ), and R? accepts in \;.

Now, we can describe the binding property of Protocol 5.5 in this language (even
when the underlying one-way function has unknown security).

LEMMA 6.14 (Protocol 5.5 is 1-out-of-2 binding in expected measure). For every
integer t € {1,2,...,n}, k = O(logn), Ay = O(logn), and Ay = O(logn), the
following holds for the 2-phase commitment scheme (S, R) in Protocol 5.5 based on
one-way function f:{0,1}" — {0,1}":

There exists a binding set B for (S, R) where the following hold.

(B.1) No PPT adversary S* can break the first-phase binding with
nonnegligible probability in the sense of Definition 5.4. That
is, for every PPT S*, we have |openings(S*, RY)(B)| < 1 with
probability 1 — neg(n) over the coins of S* and R..

(B.2) For all T € B and every adversarial sender S*,

E [|openings(5*, R*)(7)|] < 2,

where the above expectation is taken over the coins of S* and
R2.

Proof. We follow the proof of the binding property in Lemma 5.9, using both
Claims 5.11 and 5.10 from that proof. Let B = {y € {0,1}" : Pr[f(U,) = y] <
2*’5’A3} be the same binding set as defined in both claims. We set A3 = Ay +
O(logn) to be large enough so that the binding parameter poly(n) -2~ ?(As=Az2) . gk/2
in Claim 5.11 is at most 27%. (This can be done since k = O(logn).) Now,
Claim 5.11 states that if 7 € B, then the second commitment phase is binding.
This implies that |openings(S*, R?)()| > 2 with probability at most 27%. Since
|openings(S*, R?)(7)| < 2 (the commitment is to a k-bit string), taking expectations
we have

E [|openings(S*, R*)(7)|] <2 27F +1-(1-27%) < 2.

To see why property (B.1) holds, let € = e(n) be the probability for which PPT
S* breaks the first phase binding. Observe that the inversion success probability of f
from Claim 5.10 is
60(1) . 1/p01y(n) . 27(k+A1+A3) _ 60(1) . 1/p01y(n) . 27(k+A1+A2+O(logn))
o)

~ poly(n)’
since all k, A1, Ay = O(logn). This forces e(n) to be a negligible function. O

6.3. Converting weakly hiding to strongly hiding commitments. In the
previous section, we established that Protocol 5.5, with appropriate choice of pa-
rameters, is 1/n-hiding in CP/? measure (hence, only weakly hiding), and 1-out-of-2
binding in expected measure. Our goal in this section is to show how to boost the
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hiding probability to 6 = 1 — neg(n), therefore making the scheme strongly hiding,
while maintaining the 1-out-of-2 binding property.

We first show how to double the hiding probability by combining a constant num-
ber of schemes to obtain a new scheme. We then repeat this doubling amplification
process O(logn) times to boost the hiding probability from 1/n to a constant ¢ > 0,
hence obtaining an 2(1)-hiding scheme. Finally, we boost it all the way to 1 — neg(n)
by combining polynomially many Q(1)-hiding schemes. This is all achieved via a
hiding amplification procedure stated next. (See section 6.1 for an overview.)

ALGORITHM 6.15. Hiding amplification procedure, denoted as Amplify.

Input: 2-phase commitment (S, R).

Additional Input Parameters: These are given in unary and are listed below:
Security parameter n.

Number m of schemes (S, R) to be combined.

Integer r denoting S’s private input length.

Integer k denoting S’s private output length.

Integer k' denoting S’s private output length.

Integer thresholds oy and as, for the first and second commit phases,
respectively.

Output: 2-phase commitment (S,R), as described by Protocol 6.16.

To reduce unnecessary clutter, we write (S, R) = Amplify(S, R) when the rest of
the parameters are clear from context.

ProTocoL 6.16. Amplified scheme (S,R) from hiding amplification of base
scheme (S, R).

Sender’s private input: = = (x1,...,2,) € {0,1}"".
First-phase commit:

1. (SLRL) do m sequential executions of (S, RY), using x; for S}’s private
input in the ith evecution. Let (S}[i](z;), RL[i]) denote the ith execution
of (SY,RL). Define a; = outputg(Si[i](z;), RL[i]) € {0,1}*, and let
a=(ay,...,am).

2. Let Hy = {h1: {0,1}"F — {0,1}*'} be a family of pairwise-independent
hash functions. S' chooses a random hash hy «— Hi and computes
y = (h, hn(a)) € {0, 1}

3. (SL,R}) run the interactive hashing protocol (Siy(y™), Riy)(19,1%),
given by Protocol 3.3, with S' and R' acting as Sfy and R}y, respec-
tively.

Let circuit C: {0,1}* — {0,1}9 be the common output, and dV) e
{0,1}¥ be Sky’s private output in (Sk;(y™M), Ri;)(19,1%).
First-phase sender’s private output: String dV) e {0, 1}¥"
First-phase reveal:
St sends tuple v = (dV), a, hl)O(’yg), . ,77(,%)), where ’yi(l) is the first phase
revelation string of St[i] in the above execution of (St[i](wx;), RL[i]).
Receiver RY accepts if and only if C(dV) = (hy,hi(a)) and RL[i] accepts
(’yi(l),ai) foralli e {1,2,...,m}.
Second-phase commit:
Second-phase common input: Transcript T containing (11,...,Tm), where
each 7; = transcript(S1[i](z;), R[i]).

1. (S2,R2) do m sequential executions of (S%, R?), using x; for S?’s secret
and transcript T; in the ith evecution. Let (S2[i](z;), R%[i])(7i) denote
the ith execution of (S?, R?). Define b; = outputg(S2[i](z:), R2[i])(m;) €

Al .



1186 HAITNER, NGUYEN, ONG, REINGOLD, AND VADHAN

{0,1}*, and let b= (by,...,by).

2. Let Ho = {ho: {0,1}™F — {0,1}°2} be a family of pairwise-independent
hash functions. S2 chooses a random hash hy «— Ha and computes
y? = (ha, ha(b)) € {0,1}9.

3. (S2,R2) run the interactive hashing protocol (SZ;(y®), R%;)(19,1%),
given by Protocol 3.3, with S? and R? acting as Si; and R¥y, respec-
tively.

Let circuit C: {0,1}* — {0,1}7 be the common output and d® e
{0, 1} be 82, s private output in (SZ;(y@), R%;)(19,1%).
Second-phase sender’s private output: String d?) e {0, 1}’“,.
Second-phase reveal:
S2 sends tuple v = (d® b, hy) o (7%2), ces ,(3)), where 71-(2) is the second-
phase revelation string of S2[i] in the above execution of (S2[i](z;), R2[i]).
Receiver R? accepts if and only if C®(d?) = (ha, hao(b)) and R2[i] accepts
(’yi(z),bi) forallie {1,2,...,m}.

Starting from a weakly hiding scheme (Sy, Rp) of Protocol 5.5, we iteratively apply
the amplification process Amplify, as described by Algorithm 6.17 below, to achieve
a new scheme (S, R) that we will show to be statistically hiding. Let D > 1 denote a
large enough integer constant. We will set the number of schemes to be combined to
be m = D in all but the last iteration, in which we set m = n.

ALGORITHM 6.17. Iterative amplification procedure.

Input: Function f : {0,1}"™ — {0,1}"™, constant integer D > 1, and thresholds t €
{1,2,...,Tl}, B1y...,00 € {0,1,...,D—1}, Bet+1 € {O,l,...,n}.

1. Let £ = [logn], ko = (16D) - ¢, and (So, Ro) be the 2-phase commitment
scheme based on function f:{0,1}" — {0,1}"™ from Protocol 5.5 using
parameters t, k = ko, and A1 = Ay = [2logn].

2. Forj=1,2,...,L, repeat the following:

(a) Set kj = kj_l — 8D — 8.

(b) Set (55, R;) = Amplify(S;_1, Rj_1) for settings of parameters m =
D,r=n-DI7' k=kj_1, K =kj, an = (8; + 1)(kj—1 — 1) — 3,
and Qg = (D — ﬁj)(l@;l — 1) - 3.

3. Set (S,R) = Amplify(S¢, Ry) for settings of parameters m = n, r = n-D*,
k=ke, K =n, ag = L(ﬁeH + %5n)kJ, and as = L(n — Byt + %5n)kJ,
where § = 1/D.

Output: 2-phase commitment scheme (S,R).

LEMMA 6.18. If scheme (So, Ro) used by Algorithm 6.17 runs in polynomial time,
then scheme (S,R), the output of Algorithm 6.17, also runs in polynomial time.

Proof. Scheme (S,R) consists of n - D = n- DOU°8") — poly(n) executions of
(S0, Rp)- In addition, each amplification procedure Amplify adds an overhead time of
poly(n) since both the sender and receiver are doing interactive hashing. Since there
are only 1 +mn+nD +nD?+ -+ D! = poly(n) amplification steps, the overhead
time is polynomial. Hence, scheme (S,R) runs in polynomial time if (So, Ro) does,
too. O

The rest of this section, which is technically involved, is devoted to proving the
hiding and binding properties of the final scheme (S, R). (In process, we also analyze
the hiding and binding properties of intermediate schemes (S;, R;).)

6.3.1. Hiding amplification. The following two lemmas, Lemmas 6.19 and
6.20, provide us with a way to understand the hiding property (in the CPpl/? measure)
of amplified scheme (S, R) in terms of its base scheme (S, R). Lemma 6.19 basically
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says that the hiding probability doubles when we go from (S;_1, R;—1) to (S;,R;) =
Amplify(S;_1,Rj_1) (refer to step 2(b) in Algorithm 6.17). So if we start up with a
1/n-hiding scheme (Sy, Ro), in £ = logn iterations, we will get a scheme (S¢, R¢) with
Q(1)-hiding. Lemma 6.20 essentially argues that the final amplification step boosts
the hiding probability all the way to 1 —neg(n) (in both phases) when starting from
a scheme that is 2(1)-hiding. With these two lemmas, we can establish that the final
scheme (S, R) = Amplify(Sy, R¢) is statistically hiding in both phases.

LEMMA 6.19 (intermediate step hiding amplification). For every sufficiently
large constant D € 7%, the following holds: If scheme (S, R) is 0-hiding in CP'/?
measure, then there exists an integer 3 € {0,1,..., D — 1} such that scheme (S,R) =
Amplify(S, R), with parameters m = D, k' =k—8D—8, a1 = (8+1)(k—1) -3, and
as = (D — B)(k — 1) — 3, is &’'-hiding in CP'/? measure for §' = min{26,1/D}.

Proof. Without loss of generality, we may assume that R* is deterministic since
we can fix the coins of R* that maximize the collision probability. Throughout this
proof, the value of m will be fixed to D, although we will keep writing m. Let the
d-hiding properties, as stated in Definition 6.11, of (S, R) be (H.1), (H.2), and (H.3),
respectively. We will prove that (S, R) satisfies Definition 6.11 with Properties (H'.1),
(H'.2), and (H'.3) by showing that Property (H.1) implies (H'.1), and so forth.

Property (H.1) implies (H'.1). Let I'y and I's be the corresponding sets for (S, R).
Define the sets I') and I'}, in terms as follows (the value of 3 will be determined later):

F/l = {($1,...,Z‘m) : E|i1,...,ig+1 such that Liyyeey Tigyy EFl},
F/2 = {($1,...,Z‘m) : Hil,...,im_g such that $i1,...,$im7B S FQ}.

By the way we defined I'] and I}, together with the fact that I'y UTy = {0,1}", it
is the case that I'y UT%, = {0,1}™". This is because either at least 8+ 1 of the x; are
in I'y (in which case, (z1,...,2m,) € T'}) or else at most (§ of the x; are in I'y, which
implies that at least m — § of the x; are in I's (in which case (z1,...,zm) € ).

We are given that p(I'y NTg) > §. Define 6’ = min{d, 1/(2m)}. What we need to
show is that p(I'y NT%) > §’. Choose any subset S C I'y NIy such that u(S) = §'.
Hence, we have

Pr Jexactly one 2; € S] =mé'(1 — &)™ >mé'(1—1/(m—1))"!

T1,..Tm—{0,1}7

= Q(md’).

Given that exactly one x; € S, assume without loss of generality that z,, € S.
Let p; denote the conditional probability that exactly ¢ of the rest of the m — 1 z;’s
are in I'; \ I'2. Choose 8 € [0,m — 1] to maximize p;, i.e., § = argmax, p;. Let [;
for s = 1,2,...,m — 1 be a binary random variable indicating whether z; € I'; or
not; note that these are independent random variables conditioned on the fact that
Ty € S. Let p be the mean of the I;’s. By a Chernoff bound,

|

This means that greater than half of the probability mass is in the interval p - (m —
1) £ 3+/m — 1. Since we chose § = argmax, p; in a maximal way, we have

S Li—p-(m—1)| >3Vm - 11 < 2e((m=1)/3)-B/Vm=1)" 1 /9.

1
P exactl of z;’sarein I'1 \ S | exactly one z; € S| =Q | — | .
m1>~»»,zm£ 0,1}7‘[ * y A s e m 1\ | * yones ] (\/ﬁ)
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Knowing that T'; UTy = {0,1}", if exactly 8 of z;’s in I'; \ S and exactly one
x; € S, then there must be at least m — 1 — 8 of x;’s in T's \ S. Consequently,

(@1, 2m) €TINS = Q(md’) - Q <L>

vm
— (o)
> 20’ = min{24,1/m},

T
T1,eeey T —{0,1}7

where the last inequality holds when m = D is a large enough constant.

Property (H.2) implies (H'.2). In the first commitment phase (S!, R*), the cheat-
ing receiver R* interacts with m sequential executions of S!. Here we must analyze
the case when S!’s private input in these m executions, given by x = (x1,...,Z.m),
is distributed uniformly in T'j. We let A;(z) denote the private output of the sender
and V;(x) the view of the receiver in the ith execution, for x being the private input
for SL. That is, fori = 1,...,m,

Ai(z) = outputg(Sk(z:), R*(Va,..., Vic1));
Vi(x) = viewg-(Si (i), R*(V1,..., Vie1)).

Note that while the sender’s behavior in the ith execution is independent of the pre-
vious executions, the cheating receiver may base its strategy on its previous views.
We want to bound CPY2(A”(I])|V"(I})), where A”(I'}) = (Ay(IY),..., An(IY]))
represents the combined first-phase private outputs of the m senders, and V" (I')) =
(VA (), ..., V(1)) represents the view of R* when interacting with these m senders.
Note that random variable I'| represents an independent random element from the
set T'). To do this, we consider, for each I C [m] of size at least 8 + 1, the ran-
dom variable I'f|; for private input of the sender S, where I'f|; represents choos-
ing ; uniformly in I'y for 4 € I, and uniformly in T'y for i ¢ I. To get a bound
on CPY2(A"(I}|)|V"(I}|r)), we will have to refer to Lemma 6.5 and see why the
(A;,V;)’s satisfy the two conditions of the lemma.

Conditioned on the any previous view—namely, Vi(IY|1) = v1,...,Viei(Iy]1) =
vy for any wy,...,v;_1—it is the case that CPY2(A;(I']|7)|Vi(I}|;)) < v2-(-1)
if ¢ € I. This follows from Property (H.2) because the receiver R* can incorporate
the previous view v1,...,v;—1 as advice (since R* is unbounded), and then the only
randomness in the definition of A; and V; is the sender’s coins z; « (I'|7);, which are
uniform in I’y (even conditioned on v1,...,v;—1). This shows that the first condition
of Lemma 6.5 is satisfied.

For the second condition, what we need to show is that conditioned on V4 (I'f|1) =
V1, ..., Vi(I'{|1) = vi, the random variables Ay (IY|1),..., Ai(I']|1), Vix1(I'{|1) are in-
dependent. This can be seen by induction on ¢ as follows. It is vacuously true for
i = 0. Assuming it is true for i = j — 1, we prove it for i = j as follows. First
condition on v1,...,vj—1. By inductive hypothesis, Ay,..., A;_1,V; are independent
(omitting I'{|; from the notation for readability). Moreover, since we have conditioned
on vi,...,vj—1, we have that A; and V; are functions of only (IY|r);, the sender’s
coins in the jth execution, which is independent of A;,...,A;_1 (because we have
used only (I'|7)1,...,(I1]r)j—1 so far). Thus, if we condition on V; = v;, A; remains
independent of Ay,...,A;_1. Vjy1 is independent of A;,..., A; because now it is
only a function of (I7|7);41, which has not been used yet.

Applying Lemma 6.5, we have

(3) CPY2(A" (| n)[V"(I]]1)) < V2= Frnt-n),
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since from property (H.2) it is the case that for all i € I, CPY/2(A4,|V;) < v2-(k-1)
(even conditioned on the previous views), and |[I| > G+ 1.

Now, to bound CPY/2(A”(I'})|V"(I'})) where X is uniform in T}, we observe that
I'l = I'{|z, where T is the random variable on subsets I of size at least §+ 1 given by

Priz=I= Pr [{i:z; ey} =1

(11,...75Em)<—1ﬂ1

In other words, sampling from I'j can be broken into two steps; first sampling an
I «— 7, and then sampling z; < T’y for i € I, and 2; < I'y for i ¢ I. Therefore, we
have

CPY2(A"(I{|7)|V"(I{|z)) < CPY2(A"(I{|7)|(V"(I'{|z),Z))  (by Lemma 6.7)
=B [CP” 2(A"(Iy | )|V (I 1))

(4) <V 2-(B+D(k-1)
=V 27(0(14’3)7

with the last inequality following from (3). Therefore we can apply the Randomness
Extraction Lemma, Lemma 6.6, to get CPY/2(Hy, H,(A"(I'})))|V"(I'})) < v2-(a-1),
where H; is an independent random hash from H;.

Next, let A’ = outputg(S'(I'}), R*) denote the private output of the sender S in
the first phase, which in turn is equal to the output of Sty in the interactive hashing
protocol, so equivalently A" = outputg,, (St (Q), Riy), where Q = (Hy, H1 (A" (I7))).
Similarly, let V' = view g~ (S*(I'}), R*) denote the view of the adversarial receiver R*
in the first phase, which in turn is equal to the view of R* in the interactive hashing
protocol together with V", so equivalently V' = (viewg:, (Sm(Q), Ryy), V") for the
same Q = (Hy, Hi(A"(I7))).

The final step is to use the hiding property of interactive hashing given by
Lemma 6.9 to bound the collision probability of A’ (the private output of the sender
S) given V' (the view of the adversarial receiver R*) as follows:

CPY2(A'|V') < V20 . CPY2(QIV") < V24K . /2-(a=1) = \/2-(-1),

Property (H.3) implies (H'.3). Fix a transcript 77 € Supp(T’), where random
variable T' = transcript(S*(I'y), R*). Transcript 7/ contains first-phase transcripts
(T1,...,7m) for the m executions of (S, R). Similarly to the above proof of Property
(H'.2), we define the following random variables:

Bl(l‘) = outputS(Sf(xi), R* (Wl, ey Wi_l)(ﬂ')),
Wl(x) = VieWR* (S’cz(xz), R*(Wl, ey Wifl)(Ti)),

where x; is the private input of the sender in the ith execution of the (S, R). As above,
we want to bound CPY?(B”(X,)|W”(X,:)), where random variable B”(X,/) =
(B1(X;), ..., Bmn(X;)) represents the combined second-phase private outputs of the
m senders, and random variable W (X /) = (W1 (X,),..., W,,,(X,/)) represents the
view of R* when interacting with these m senders, with X, being a shorthand for
I3 1(ry)=7- To do this, we consider, for each subset J C [m] of size at least m — 3, the
random variable X ; for private input of the sender S, where X ; represents choosing
x; uniformly in I'y for i € J and uniformly in I'y for i ¢ J.
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It is important to note that even when we condition on T/(X ;) = 7/, the compo-
nents (Xi,...,X;,) of X; remain independent, and the distribution of X;|r/(x,)=r
is equivalent to X;|r(x,)=r,, Where we condition only on the transcript of the ith ex-
ecution. (Similarly to the inductive proof above, it can be shown that (X1,...,X,,)
are independent given the receiver’s view V;,, of the m executions of S!. The only ad-
ditional information revealed about the X;’s in the first phase is (41, ..., A;,), where
A; is a function only of X; once we condition on V;,,.)

Thus from property (H.3), we have for all i € J, CPY2(B;(Xs.)|Wi(Xs.)) <

2=(=1where X, = I3| |t (ry,)=r, and this holds even conditioned on the
previous views. Similarly to the first phase, we apply Lemma 6.5 to show that

CPY2(B"(X 1 )|W"(X j0)) < V2= (m=@k=1),

Again, analogously to the first phase, we observe that X, = X s . for an appro-
priate random variable J on sets of size at least m — 3, and thus

(5) CPY2(B" (X)) |[W" (X)) < /2 (m=B)(k=1)
= \/ 27((12"1’3)'

By the Randomness Extraction Lemma, Lemma 6.6, we get

CPY2(Hy, Hy(B" (X)W (X)) < V2-(a=1),

The final step is to use the hiding property of interactive hashing given by
Lemma 6.9 to bound the collision probability of B, (the private output of the sender
S) given W, (the view of the adversarial receiver R*) as follows:

CPY2(BL|W.) < V2i=F . \/o—(a=1) = \/o-(v-1)_

LEMMA 6.20 (final step hiding amplification). The following statement holds
for every constant § > 0 and every integer k > 100/0: If scheme (S,R) is -
hiding in CPY?2 measure, then there exists an integer 3 € [0,n] such that scheme
(S,R) = Amplify(S, R), with parameters m = n, k' = n, ox = (B + +én)k|, and
g = L(n -6+ %(M)/ﬂ , 1s statistically hiding in the sense of Definition 5.3.

Proof. Let the d-hiding properties, as stated in Definition 6.11, of (S, R) be (H.1),
(H.2), and (H.3), respectively. To prove that scheme (S, R) is statistically hiding, it
suffices to show that there exist sets I}, T, C {0, 1}"" such that the following hold for
every adversarial receiver R*:

(H'.1) Both p(T), u(Th) > 1 — 27 %),
(H'.2) (A", V")is 27 close to (U,, V'), where A’ = outputg(SL(I7), R*)
denotes the private output of the sender S in the first phase, and
V' = viewg- (SL(I7), R*) denotes the view of the adversarial re-
ceiver R* in the first phase.
(H'.3) For all 7/ € Supp(T’), (BL,, W) is 2= _close to (U, W),
where random variable (B.,,W/,) = (outputg(S2(I}y), R*),
viewp«(S2(I%), R*))|1/=r, and random variable T/ =
transcript(S*(I4), R*). In other words, B, is the private output
of the sender S in the second phase given that the first-phase
transcript is 7/ and W/, is the view of the adversarial receiver
R* in the second phase given that the first-phase transcript is

T
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Property (H.1) implies (H'.1). Let T'; and I's be the corresponding sets for (S, R),
and let p = p(T). Set 8 = Lpn — %5nJ, = {pn — %5TLJ, and v2 = |[(1 —p+ d)n—
—+6n]. Note that 3 € [0,n] since p € [,1].

Define the sets I} and I', as follows:

Iy ={(x1,..., @) : Fi1,..., iy, such that @;,,..., 2, €T},
Iy ={(x1,..., @) : 3i1,..., i, such that x;,,...,z; € Ta}.

To lower bound 1(I'), note that (1) —v1/n = p—|pn — 50n| /n > L6 = Q(1)
since 6 = §(1). Using a Chernoff bound, we get

w(l})=1— Pr [fewer than 7; of the x;’s are in ']

(z1,-52n)

=1—27%Mm),

To analyze p(I'y), we note that u(I'y)—y2/n > (1—p+68)— (1 — p+ §)n — £56n| /n
> 56 =Q(1). Using ananalysis similar to that above, we get u(I'5) = 1 — 275",

Property (H.2) implies (H'.2). Using the same notation and analysis as in the
proof of Lemma 6.19, we let A;(x) denote the private output of the sender and V;(z)
the view of the receiver in the ith execution for o being the private input for SL. That
is, fori=1,...,n,

Ai(x) = outputg (St (x;), R*(Vi, ..., Vii1));
Vi(x) = viewg- (St (z:), R*(Vi, ..., Vie1)).

Let A”(I]) = (A1(IY),..., An(I'])) represent the combined first-phase private out-
puts of the n senders and V" (I')) = (VA(IY),...,Vi(IY)) represent the view of R*
when interacting with these n senders before interactive hashing is done. From now
on, we simplify notation by making A” = A”(I']) and V"' = V"(I7).

Similar to (4) and as in the proof of Lemma 6.19, we obtain

CPI/Z(A/I|VI/) < 9—y1-(k—1)

And by a Markov bound, we know that with probability greater than 1 — 2=™ over
U/I - VI/’

(6) CP(A/I|VN:»U”) < 2771(k71) . 22n < 27a17(1/24)6kn+3n < 27(oz1+n)7

with the last inequality following from & > 100/4.

Consider v € V" such that (6) holds. Let Q = (Hy, H1(A")), where Hy is
an independent random hash from H;. Because H; is independent, Q|y/—,» =
(Hy, Hi(A"|vr—y)), and we can apply the Leftover Hash Lemma, Lemma 6.8, to
obtain that Q|y»—,~, the input to the interactive hashing protocol, is 2-2(1)_close to
uniform.

Next, let A’ = outputg(S(I]), R*) denote the private output of S in the first
phase, which in turn is equal to the output of Sty in the interactive hashing protocol,
so equivalently A" = outputg,, (S (Q), R*). Similarly, let V' = viewg- (S (1Y), R*)
denote the view of the adversarial receiver R* in the first phase, and let iy =
view gs (St (Q), Riy) denote the view of receiver R* during the interactive hashing
execution only. Observe that V' = (V”,Vig), recalling that V" is the view of R*
when interacting with these n senders, before interactive hashing is done.
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Because Q|y =, the input to interactive hashing, is 2-92(1)_close to uniform, we
know that (A'|vr/—yr, Via|vizyr) is 2-")_close to (Un, Viu|vr =), as guaranteed
by the hiding property of interactive hashing (see Definition 3.1). So S’s private
output A’|yv—,~ is hidden from R* for any v’ € V" satisfying (6). Finally, note that
(6) is satisfied for all but a 27" fraction of v" « V”| so it follows that (4’,V’) is
2= _close to (U, V'), as required.

Property (H.3) implies (H'.3). Using ideas similar to those in the proof of Lemma
6.19, we can proceed as above and obtain that Property (H'.3) holds assuming
(H.3). O

6.3.2. Binding preservation. In the execution of Algorithm 6.17, we obtained
¢ intermediate commitment schemes [(S;, R;)]1<j<¢, and one final commitment scheme
(S,R). Our goal is to prove that the final scheme (S, R) satisfies the 1-out-of-2 binding
property of Definition 5.4. To achieve our goal, we inductively show that the expected
number of openings a sender can produce in the intermediate schemes is bounded by
some constant, namely, 32. (This is captured by Lemma 6.22 below.) Then in the
final step, for scheme (S, R), we show how to shrink this expectation to a value that
is very close to 1, thereby proving that scheme (S, R) satisfies the 1-out-of-2 binding
property. (This in turn is captured by Lemma 6.24.)

In the definition of the computational 1-out-of-2 binding property (Definition 5.4),
we stipulated that the adversarial sender in the second phase can be computationally
unbounded, whereas the adversarial sender in the first phase must be probabilistic
polynomial time (PPT). It will be rather messy to work with PPT senders; hence
we will abstract away the PPT requirement by showing, in the next section, how to
convert any PPT sender violating the 1-out-of-2 binding property in the first phase
into a computationally unbounded sender with a special unique binding property. A
sender with the unique binding property, intuitively, will not break the (first-phase)
binding property of any execution of the initial schemes (S, Ry) but might still break
the binding property of the intermediate schemes (S;, R;) (or final scheme (S, R)).
Intuitively, we can restrict our attention to such senders because of the computational
1-out-of-2 binding property of the initial scheme (Sp, Ry). Once we have a sender
with the unique binding property, the analysis of the amplification steps is entirely
information theoretic.

To formally define the unique binding property for senders, we observe that
schemes [(S;, R;j)]i<j<¢ and (S,R) each contain multiple executions of initial scheme
(S0, Ro). Hence, when a cheating sender S* interacts with R;, it is actually also in-
teracting with the ith execution of Ry for each i = 1,2,..., which we will denote by
Ry[i]. Formally, we define a (computationally unbounded) cheating sender strategy
S*[i] that interacts with this single execution of Ry[i] (more precisely, the first commit
stage R} .[i]) by simulating all of the other messages of R; on its own until the end of
the first commit stage of Ro[¢]. Then it enumerates over all choices for the subsequent
messages of R; and outputs all of the resulting full transcripts of S*’s interactions
with Rp[é] (including both phases).

Let Bf be the binding set guaranteed by Lemma 6.14 for (Sp, Ro) with parameter ¢.
Then we define the random variable openings(S*[i], R}[i])(B§) as follows, analogously
to section 6.2.4:

o S*[i] and R} [i] interact to get first-phase commitment ¢!). (According to
the definition of S* above, S*[i] accomplishes this by simulating the rest of
the interaction of S* and R; on its own.)

e After the interaction, S*[i] outputs a sequence of values dgl), . ,dél) and
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corresponding full transcripts Ai,...,\¢ of both phases. Recall that \; =
(14, ki), where 7; and k; are the first-phase and second-phase transcripts,
respectively. (According to the definition of S* above, S*[i] accomplishes
this by enumerating over all possible continuations of the interaction of S*
and R; and outputting all of the resulting transcripts of the interaction with
Rolil.)

e We let openings(S*[i], Ri[i])(Bo) be the set of distinct values dl(l) whose open-
ing \; is valid, where by valid we mean that \; begins with prefix ¢!, \;
contains a decommitment of ¢(!) to the value dl(-l) with first-phase transcript
i ¢ Bfj, and both R, and R, accept in \;.

DEFINITION 6.21 (unique binding property of sender). For an intermediate
scheme (S;, R;) or the final scheme (S,R) with parameter t, a (deterministic) sender
S* has the unique Bf-binding property if for all i we have

| openings(S* [i], Rg[i]) (B5)| < 1

with probability 1 (over the coins of S*[i]' and R}[i]), where S*[i] and openings(S*[i],
R}[i))(BE) are defined as above.

The following two lemmas, Lemmas 6.22 and 6.24, provide us with a way to
understand the binding property (in an average-case sense) of (S, R), the amplified
hiding scheme as presented in Protocol 6.16, in terms of (S, R). We might occasionally
drop the superscripts 1 and 2 from the notation if it is clear which phase we are
referring to.

LEMMA 6.22 (intermediate step binding preservation). For every sufficiently
large constant D € N, the following holds: For all integers t € [1,n], j € [1,4],
B1,...,0; €{0,1,...,D—1}, letting (S, R;) be the intermediate commitment schemes
obtained in the execution of Algorithm 6.17 with parameters D, t, and (1, ... 7ﬁj),ll
there exists a binding set B; = B;(t, 81, ..., 5;) such that the following two conditions
hold:

(B.1) For every deterministic sender S* with the unique Bf-binding

property,
E Hopenings(S*,R})(Bj)H < 32,

where the expectation is taken over the coin tosses of le-.
(B.2) For every T € B; and for every deterministic sender S*,

E [|openings(S*, R?)(7)|] < 32,

where the expectation is taken over the coin tosses of R?.

Proof. We proceed to prove by induction on j. In fact, we will start with a base
case of j = 0; i.e., consider the scheme (Sp, Ry) from section 6.2. By Definition 6.21,
the scheme (Sp, Rp) satisfies condition (B.1), and by Lemma 6.14, it satisfies condition
(B.2).

For the inductive step, we assume (S}, R;) satisfy both (B.1) and (B.2) and show
that so does (Sj+1,Rjt1). Note that (Sj41, Rj41) is obtained by the amplification
procedure (Protocol 6.16) that combines m sequential executions of (S;, R;), i.e.,

10Note that S*[i] is probabilistic even if S* is deterministic, because it simulates all of the random
choices of R; other than those of Rgli].
1 Note that (S;, R;) does not depend on 841, ..., Be11-
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(Sj+1, Rjy1) = Amplify(S;, R;). Hence, for convenience of notation we will denote
(S, R;) and (Sj41,Rj+1) as (S,R) and (S,R), respectively. The ith execution of
(S, R) in (S, R) is denoted as (S]i], R[i]), which is not to be confused with the subscript
indexing notation of (S5, R;).

Also, throughout this proof, the value of m will be fixed to D, although we will
keep writing m. Let B = B; be the binding set for (S, R). We define our new binding
set B = Bj11 for (S,R) in terms of B and = ;41 as follows:

B/:{(Tl,...,Tm) : E|j1,...,jg+1 such that Tjis->Tjasn EB}

That is, a transcript 7/ = (71,...,7n) € B if and only if at least 5+ 1 of the 7;’s are
in B. So, 7/ ¢ B’ if and only if at least m — § of the 7;’s are not in B.

Property (B.1). Consider a deterministic S* with the unique Bf-binding property
interacting with R'. The random coins of R! can be broken up into independent
random coins of R[1],..., R'[m] and Rly, the receiver in the interactive hashing.

Recall that the m executions of (S,R) in (S,R) are sequential. We want to
focus on the interaction of S* with (the commit phase of) R'[i]. To do so, for each
possible setting of the coin tosses r1,...,7,_1 for R[1],..., RY[i — 1], define a sender
strategy S*[[i]](r1,...,7i—1) that interacts with R![i], as follows: S*[[i]](r1,...,7i—1)
simulates S* using fixed coins r; for all the previous R!'[j]’s (for all j < ) and after
the interaction with R[i], S*[[i]] outputs all the valid openings that occur in some
continuation of S*’s interaction with R[i] (by enumerating over all coins of the future
R[j]’s, j > i, the coins of Rly, and the coins of R?). Observe that S*[[i]](r1,...,7i—1)
inherits the unique Bf-binding property from S*.

Let Xi(r1,...,7:) = |openings(S*[i](r1, ... ,ri—1), R'[i](r:))(B)]; this counts the
number of valid decommitments in the ith execution, when the sender uses simulated
coins 71, . ..,r;—1 and R![i] uses coins 7;. Let U = (U1, ..., U,,), where U; denotes the
uniform random variable on coins r; for R[i]; note that these are independent because
the honest receiver tosses independent coins for each execution. We now consider the
random variables X;(U) = X;(Uy,...,U;).

By our induction hypothesis applied to S*[[i]](r1,...,7i—1), for all fixed (r1,...,
ri—1), we have

EU][Xi(UﬂUl =7r1,..,Uis1 =rim1] = [];3 [(Xi(r1,...,mio1, Up)] < 32.

i

Because the previous X;(U)’s for j < i depend only on Uy, ...,U;, we have that
the expected value of X; is less than 32 even given any previous values of X;’s. That is,
E [Xi|X1:w17...,X¢,1:wi,J < 32 for every (z1,...,2;-1) € Supp(X1,...,X;-1). The
following claim allows us to bound the expectation of the product of these random
variables.

CrLamM 6.23. Let Yi,...,Yy be nonnegative real-valued random wvariables such
that for all i = 1,2,....¢, we have E[Yi|ly,=y,.. v 1=y; ] < a; € R, for every
(yla e ay’i—l) S Supp(}/b s a)/i—l)' Th’ena

14

[Iv:

i=1

14

< HOZZ'.
=1

E
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Proof of Claim 6.23. Note that

E[Ylyé] = E [yl"'yffl 'E[Yé|y1:y1,m7ye—1:y£—1u
(Y15e0y0—1)=—(Y1,...,Ye 1)
<E[Y;---Yi1- oy
=ap-EY1- Y],

and the claim follows by induction on £. d

As noted above, it is always the case that E [X;] < 32, regardless of the instan-
tiation of previous X;’s for j < i. Note that Claim 6.23 also applies to computing
the expectation of [],.; X; for any subset J C [m], since any subset of the X;’s
(preserving the right order) satisfies the condition of the claim.

Once the m commitments R![i] are complete, we can define a random variable
A = A(U) that denotes the set of values a = (ai,...,am)’s for which the sender
S* produces a valid opening with respect to B’ in some continuation of the protocol
when receiver R!'[i] uses coin tosses U;. By the definition of B, this means that
a = (a1,...,a;,) is valid only if at least m — 3 of those are a;’s corresponding to
decommitments that are not in B. For those a;’s corresponding to decommitments
that are in B, the number of possible values that a; can take on is X;(U). And
for those a;’s corresponding to decommitments that are not in 3, we can bound the
number of possible values that a; can take on by 2% (since a; is a k-bit string).

BAD)] <E > I[xo]I2

JC[m),|J|>m—pBicJ i¢J
_ ) k
SR B €
JC[m),|J|>m—p3  LicJ i¢J

< > [I32-T]2" (by Claim 6.23)

IS >m—Bi€]  igJ
<2m.39m=B . (2k)P (because 32 < 2")
< 2(ﬁ+1)(k—1)+6m—k+1 — 2041—(]6—67?’7.—4).

Define random variable T3 = T1(U) = {(h1,h1(a)) : @ € A hy € Hy}. Since
E[|A]] < 200~ (=6m=4) and the range of h; € H; is of length oy, the expected density
of Ty satisfies E[u(Ty1)] < E[JA]] - 27 < 2-(¢+=6m=1) \where the expectations are

taken over the coin tosses U = (Uy, ..., U,, ). Note that T; is independent of the coins
of Rl in the first-phase interactive hashing (though not independent of the coins of
RY).

Finally, we have

E_ [|openings(S*,R")(B)|] < E [

coins R Ty, coins RllH

(d® . cW W) e Tl}H ,

where, in the second expectation, C") = output(S*, RY;). By Lemma 6.10,

E H{d<1> oW (@M ¢ Tl}H <24+ 281 E[u(Ty)] < 32,

. 1
Ty, coins Ryy

with the last inequality following from &’ = k — 8m — 8.
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Property (B.2). We use the same approach as above, except this time, we consider
all deterministic S*, as opposed to only those with the unique binding property. Also,
we need to fix a binding transcript 7 = (71,...,7,) € B’. Let J be the set of indices
such that r; € B.

Analogously to the proof of Property (B.1), we define S*[[[i]]](r1,...,7i—1) for
every possible setting r1, ..., r;_1 of coin tosses for receivers R?[1],. .., R%[i—1], and we
set X;(r1,...,r;) = |openings(S*([[i]]](r1,...,ri—1), R?[i](r:))(r;)|. By our induction
hypothesis, for all i € J, we have

E I:X'L'|X1211,...,Xi_1:1i_1j| < 32

for any (x1,...,2;,-1) € Supp(Xy,...,X;—1), where we define the random variables
X, =X;(Uq,...,U;) and U = (Uy, . ..,U,,) with U; being uniform over the coin tosses
r; for R2[i].

Let random variable B = B(U) denote the set of values b = (b, ..., by,) for which
the sender S* produces a valid opening in some continuation of the protocol. Noting
that X; can be as large as 2¥ for indices i ¢ J, we have

E[B<E|[]X: Hz’f]
U lies i¢J
<II32-T]2* (by Claim 6.23)
icJ i¢J
< 32°F1. (gkym—F-1 (because 32 < 2%)
< gm=A)(k=1)—(k=6m) (because m > 5)

— 2a27(k76m73) ]

Let random variable Ty = T5(U) = {(hz, ha(b)) : b € B, hy € Hz}. Since E[|B]] <
202=(k=6m=3) and the range of ho € Hs is aw, the expected density of Ty satisfies
E[u(Ty)] < E[|B|]- 27 < 2=(k=6m=3) where the expectations are taken over U =
(U1,...,Un). Note that T» is independent of the coins of RI2H in the second-phase
interactive hashing (though not independent of the coins of R?). Finally, we have

coins R T5, coins RI2H

E _[|openings(S*,R?)(7")|] < E [

(d® . (@) e TQ}H 7

where, in the second expectation, C?) = openings(S*(T%), Riu). By Lemma 6.10,

B al

coins RI2H T

{d® . 0@ () e Tg}H < 24+ 2K E[u(Ty)] < 32,

with the last inequality following from k' = k — 8m — 8. O

LEMMA 6.24 (final step binding preservation). For every sufficiently large con-
stant D € N, the following holds: For all integerst € [1,n], B1,...,08: € {0,1,...,D—
1}, and Bes1 € [0,n], letting (S,R) be the final output of Algorithm 6.17 with parame-
ters D, t, and (01, .., Bet1), there exists a binding set B’ such that the following two
conditions hold:

(B.1) For every deterministic sender S* with the unique Bf-binding
property, with probability 1 — 2= over the coins of R',

openings(S*,R")(B')| < 1.
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(B.2) For every T € B' and for every deterministic sender S*, with
probability 1 — 2= over the coins of R?,

‘openings(S*7 RZ)(T)| <L

Proof. From Lemma 6.22, we have scheme (Sy, Ry) with an associated binding set
B = B, satisfying both conditions (B.1) and (B.2) in Lemma 6.22. Scheme (S,R) =
Amplify(Se, Re), and hence we will need to show that the amplification boosts the
binding by making sure both |0penings(5’*, Rl)(B’)‘ <1and ‘openings(S*, Rz)(7)| <
1 with probability 1 — 272,

Throughout this proof, the value of m will be fixed to n (as in step 3 of Algo-
rithm 6.17), although we will keep writing m. We define our new binding set B’ for
(S,R) in terms of B and 8 = (41 as follows:

B/:{(Tl,...,’rm) : 3j17”~7j5+1 such that Tjis-+sTigp EB}

That is, a transcript 7/ = (71,...,7m) € B if and only if at least 5+ 1 of the 7;’s are
in B. Thus, 7/ ¢ B’ if and only if at least m — 3 of the 7;’s are not in B.

Property (B.1). Using the same analysis and notation as in the proof of Lemma
6.22, we have that

BllA]) < 27 - 32m7F . (2k) < gfk+om,

where A is the random variable denoting the set of values a = (a1, ..., a,,) for which
the sender S* produces a valid opening with respect to B’ in some continuation of the
protocol and U = (Uy, ..., U,,) denotes coin tosses for R![1],..., R*[m].

Since § = Q(1) and k = k; > logn, observe that oy = | (3 + 26n)k| = Bk + w(n)
for large enough values of n. Let random variable Ty = {(h1,hi(a)) : h1 € Hi,a €
A}). Since the range of hy € Hy is {0,1}, the density of I'; satisfies

EUJ[H(Tl)] < E[JA|] - 27 < 2Pk+0m . 2~ (Bktw(n)) — g-w(n)

since m = n. Thus, with probability at least 1 — 27" over the coin tosses U of
RY1],..., R'[m], we have that

,LL(Tl) S 2—w(n) .on S 2—277,.
By Lemma 3.7, we can conclude that for such a Ty (with p(T7) < 2727),

re, |

s pl
coins Ryy

{a) oW @MW) e Tl}} > 1} < poly(n) - (2727 . 2F")1/2 = 9=0(m),

Finally, we have

Pr Hopenings(S*,Rl)‘ > 1]

coins R!
—2n
= coins R%}?r  RL ['u(Tl) > 2 ]
+ Pro [{dV:cW@V) e 1) > 1 | p(Tr) <27 ]
coins Ryy

— 9—Un)
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Property (B.2). Fix any 7/ € B’. Again, we use the same analysis and notation
as in the proof of Lemma 6.22 to get

E[|B|] < 320+ . (2k)ym—B-1 < g(m=B)k+5m
U

where B is the random variable denoting the set of values b = (b1, ..., b,,) for which
the sender S* produces a valid opening in some continuation of the protocol and
U = (Uy,...,Uy,) denotes coin tosses for R?[1],..., R?[m].

Since § = Q(1) and k > logn, observe that as = |[(n — 3+ $6n)k| = (n — B)k +
w(n) for large enough values of n. Let random variable To = {(ha, ha(b)) : he €
Ha,b € B}. Since the range of ho € Ha is {0,1}?2, the density of T, satisfies

E[u(Ty)] <E[|B|]- 2722 < 2(m=Bk+5m  g—((n=Fk+w(n)) — g-w(n)
U

since m = n. Thus, with probability at least 1 — 27" over the coin tosses U of
R?[1],..., R?[m], we have that

‘LL(TQ) < 2—w(n) .gn < 2—277,.

By Lemma 3.7, we can conclude that for such a Ty (with u(Ty) < 2727,

Pr H{d(2) L C@ (@) ¢ TQ}‘ >1] =279,

coins RfH
Finally, we have

Pr__[|openings(S*,R?)(7")| > 1]

coins R

< Pr T > 2—277,

_COinSR%)"',Ri [:U“( 2) }

+ Pr [Hd(?) O (AP € T} | u(Ts) < 272,1}
coins Riy

_g0m)

6.4. A collection of 1-out-of-2-binding commitments. In this section, we
prove Theorem 6.1, which is restated below.

RESTATEMENT OF THEOREM 6.1. Given a one-way function f : {0,1}" —
{0,1}™, we can construct in time polynomial in n a collection of m = poly(n) public-

coin 2-phase commitment schemes COM = {Comy, ..., Com,,} with message lengths
(k1,k2) = (n,n), such that
o there exists an index i € {1,2,...,m} such that scheme Com; is statistically
hiding, and
e for every index i € {1,2,...,m}, scheme Com; is computationally 1-out-of-2
binding.

6.4.1. Proof of Theorem 6.1. To obtain the desired collection of 2-phase com-
mitment schemes, we apply Algorithm 6.17 to the weakly hiding scheme (So, Ry),
which can be constructed based on any one-way function f : {0,1}" — {0,1}"™. More
precisely, we obtain a collection of commitments by enumerating over all the polyno-
mially many choices of the integers t € {[2logn],2,...,n — [2logn]|}, B1,...,0¢ €
{0,1,...,D — 1}, and B¢41 € {0,1,...,n}. Note that the number of choices is
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n-D' (n+1) = poly(n), as D = O(1) and ¢ = logn. By Lemma 6.18, the re-
sulting commitment schemes Comy, ..., Com,, all run in polynomial time. The hiding
and binding properties of these schemes are given by Lemmas 6.25 and 6.26, which
together establish Theorem 6.1.

LEMMA 6.25. For every sufficiently large constant D € N, the following holds:
Let f: {0,1}™ — {0,1}" be any function (not necessarily one-way) such that |f~1(y)| €
[2n2, 2" /n?] for every y € {0,1}". Then there exist integers t € {[2logn],2,...,n —
[2lognl}, Bi,...,00 € {0,1,...,D — 1}, and B¢y1 € {0,1,...,n} such that the 2-
phase commitment scheme (S,R) produced by Algorithm 6.17 with parameters D, t,
and (B1,...,Be+1) is statistically hiding in the sense of Definition 5.3.

As we observed earlier with Theorem 5.6, the condition on the preimage sizes of f
can be easily made to hold by padding the input of f. Specifically, given any function
f:40,1}™ — {0,1}™, the function f'(z,y, 2) = (f(z),y) with |z| = |y| = |2| has input
length n’ = 3n, has all preimage sizes between 27'/3 and 227/3 | and is one-way if f
is.

Proof. We prove by induction on j = 0,...,¢ that there exist ¢, 51,...,; such
that (S;, R;) is §;-hiding in CP1/2 measure for §; = min{27/n,1/D}. The base case
of j = 0 is simply Lemma 6.13. The induction step is provided by the intermediate
step hiding amplification lemma, Lemma 6.19. Specifically, if by induction we choose
t,B1,...,0i—1 such that (S;_1,R;_1) is d;_1-hiding, the lemma tells us that there
exists (; such that (S;, R;) is ¢’-hiding for ¢’ = min{20;_;,1/D} = §;.

Finally, we apply the final step hiding amplification lemma, Lemma 6.20, to
obtain a (¢41 such that (S,R) is statistically hiding. The lemma applies because
§¢ = min{2¢/n,1/D} = Q(1) (recall that ¢ = [logn] and D = O(1)), and k, =
(16D) - £ — (8D + 8) - £ > 100/, for sufficiently large n. O

LEMMA 6.26. For every sufficiently large constant D, the following holds: If f :
{0,1}™ — {0,1}™ is one-way, then for all integers t € {[2logn],2,...,n—[2logn]},
Bi,...,8 € {0,1,...,D — 1}, and Bey1 € {0,1,...,n}, the 2-phase commitment
scheme (S,R) produced by Algorithm 6.17 with parameters D, t, and (B1,...,Be+1) 18
computationally 1-out-of-2 binding in the sense of Definition 5.4. (Here the function
f on which the scheme is based needs to be hard to invert.)

Proof. Let B’ be the binding set given by Lemma 6.24. That lemma establishes
that the 2-phase commitment scheme (S, R) produced by Algorithm 6.17 satisfies the
second condition of Definition 5.4 with respect to B’. In addition, it also satisfies
the first condition for all S* with the unique binding property. Stated formally, for
every deterministic (and computationally unbounded) S* with the unique B§-binding

property,

(7) Pr [|openings(S*,R")(B')| < 1] =1 - 9-2n)

where the probability is taken over the coins of R!.

Thus, it suffices to prove is that any PPT S* breaking the first condition of
Definition 5.4 (with respect to B') with probability e will either (i) yield a PPT S that
violates the computational 1-out-of-2 binding property of (Sp, Rg) with probability at
least €2M) / poly(n), or (i) yield a computationally unbounded S that has the unique
Bi-binding property and violates (7).

From now on, let € be the probability that S* breaks the second condition of
Definition 5.4 with respect to scheme (S,R). This probability is taken over the coin
tosses of both the receiver R and the cheating sender S*. We will write S*(r) to denote
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S* with its coin tosses fixed to r. By our definition of (S, R), it contains polynomially
many executions of (Sp, Ro). Let N = n - D* denote the number of such executions.

Let z denote a transcript of (S*, R). Contained in z is also a first-phase commit-
ment z[i] for the ith execution of Ry, denoted Ri[i] (for all i =1,2,...,N). Let 2[i]
be the partial transcript of z up to and including the first commit stage of Ry[i]. Note
that z[é] is a suffix of £[i], and 2[i] is a prefix of z.

For all indices ¢ € [N], partial transcripts £[i] ending with the first commit stage
of Ry[i] and d € {0,1}*0, and coin tosses r for S*, define

Dizlildr = (SPE - [z contains a valid opening of z[i] to value d |z begins with Z[i]]

where the probability is taken over the coin tosses of R (which includes coins of the
subsequent executions Ry[j], j > 4, as well as coins for many executions of Ryy). As
usual by a valid opening, we mean that S* sends a full transcript A[i] = (7[i], &[i]) of
both phases of its interaction with Ro[¢] such that A[i] begins with z[i], A[{] contains
a decommitment of z[i] to value d with a first-phase transcript 7[i] ¢ Bf, and both
R{[i] and R3[i] accept in A[i].

Let K = 2% where kg is the message length in (Sp, Ry). We have two cases to
consider.

Case 1. There exists an i € [N] such that, with probability at least e/4NK over
2[i] and 7, there exists d # d’ with both p; z(j,4,r, i 21,0, > €/4ANK.

In this case, we violate the computational 1-out-of-2 binding property of (Sy, Ro)
by considering the following sender S interacting with Roli].

1. Select a random 4 < [N] and coin tosses r for S*.

2. Run S*(r) with R, simulating all of the messages of R internally
except for those of Ry[i]. Halting after the first commit stage of
Ryli], we obtain a partial transcript 2[i]. From Z[i], we get z[i],
the first-phase commitment of Ro[i].

3. Record the current state ¢ of S*(r) and R.

4. Continue the execution of S*(r) with R from v twice using in-
dependent randomness for R.

5. Examine the transcripts to look for valid decommitments to two
different values d, d’.

Because our goal is to violate the computational 1-out-of-2 binding property of
(S0, Rp), we succeed in the above algorithm if d # d’ and decommitments produced are
valid. We calculate our success probability as follows: We guess the correct index i €
[N] with probability 1/N. Given that we guess the correct i, we get the desired Z[i] and
r with probability at least /4N K. Now, when we do two independent continuations
of 2[i] we arrive at two different decommitted values with probability greater than
(e/ANK)?. Consequently, we violate the computational 1-out-of-2 binding property
of (Sp, Ro) (i.e., win the game in condition 2 of Definition 5.4) with probability greater

than

1 € ( € )2_(5)0(1)

N 4NK \4NK/) \n ’
since K = 2F0 = 20008n) — poly(n) and N = n- D’ = n-0(1)°0°8™) = poly(n). This
forces € to be a negligible function.

Case 2. For all i € [N], it holds that with probability greater than 1 — e/4NK
over Z[i] and 7, there is at most one d such that p; s[4, > €/4NK.
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Define d*(2[i],r) to be the value of d that maximizes p; :;],q4,-- Taking a union
bound over other possible values d’ # d*(Z[i], ), we have that

(gr( - [in z, S*(r) opens some z[i] to a value other than d*(2[i], )]

a 3 €

< - <4NK - K+ 25}1); [exists more than one d such that p; s),q,» > m})
€ €

N ( K )
<V \ive "t TNk

€
< 5

Let S(r) be the adversary that mimics S*(r) except that it halts and fails if
S*(r) attempts to open some z[i] to a value other than d*(Z[i],r) for some i € [N]
and 2[i]. By the above calculations, the final outcome of (S,R") will differ only the
original final outcome of (S*, R!) with probability at most £/2 over r and the coins of
R!. In addition, for each r, S (r) has the unique Bf-binding property. By (7) above,
for every r, | openings(S(r),RY)(B')| > 1 occurs with at most negligible probability
over the coins of R!. Hence, | openings(S*(r),RY)(B’)| > 1 occurs with probability
at most neg(n) + /2 over r and the coins of R'. We started off assuming that S*
breaks property (B.1) of scheme (S,R) with probability at least e, that is to say
| openings(S*, RY)(BE)| > 1 with probability at least e. Thus € < neg(n) + £/2, which
implies that € = neg(n). O

7. Standard commitments from 1-out-of-2-binding commitments. In
this section we show how to transform any (f)—binding 2-phase commitment scheme
into a standard computationally binding commitment scheme, which is statistically
hiding given that the 2-phase commitment is. Applied to our result from the previ-
ous section, this gives a family of commitment schemes that are all computationally
binding, and one of which is statistically hiding. In the next section, we show how
to convert any such family into a single statistically hiding commitment scheme. We
accomplish this using a novel application of a universal one-way hash family, whose
existence can be based on any one-way function [7] (see also [29]). Thus, our trans-
formation can be based on any one-way function.

7.1. Overview. We would like to use a 2-phase commitment scheme to construct
a (standard) commitment scheme. A naive attempt to design the commitment scheme
may go as follows: First, the sender commits to some random string x using the
first-phase commit stage. Then, the receiver flips a coin phase € {first,second}, if
phase = first; then the first-phase commitment is used as the commitment (e.g.,
the sender sends to the receiver the exclusive-or of its secret with z). Otherwise
(phase = second), the two parties execute the first-phase reveal stage, and if successful
(i.e., the receiver does not reject), they use the second-phase commitment (invoked
with the transcript of the first phase as input) as the commitment.

The intuition is that since the commitment is (?)—binding, the sender cannot
cheat in both phases together, and thus the receiver would catch a cheating sender
with probability one half. The problem is, however, that the sender can decide in
which commitment he likes to cheat after knowing the value of phase. Hence, the
sender can cheat successfully in both cases without violating the @)-binding of the
underlying protocol.
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Our additional idea is to use universal one-way hash functions (UOWHFS) in
order to force the sender to decide in which phase it is about to cheat before knowing
the value of phase. A family of universal one-way hash functions is a relaxation
of collision-resistant hash functions that were defined by Naor and Yung [23] and
shown to be constructable from any one-way function by Rompel [7].}2 A family of
universal one-way hash functions is a family of compressing functions such that no
efficient adversary can succeed in the following game with nonnegligible probability.
The adversary should first announce a value x. Then, on a uniformly selected hash
function f (given to the adversary after it announces x), it succeeds if it can find
a2’ # x such that f(2') = f(x).

Our implementation is as follows: After the first-phase commit stage, the receiver
selects a random (universal one-way) hash function f and the sender sends back
y = f(z). The protocol proceeds essentially as the naive protocol above, where any
time the first-phase reveal stage is executed in the naive protocol revealing the value x’
(either in the reveal stage for phase = first or in the commit-stage for phase = second),
the receiver also verifies that f(z') = v.

Assuming the hash function f is sufficiently compressing, the string x remains
quite unpredictable even though f(x) is sent to R (in the new variant of the protocol).
Thus, in the case that phase = first, we can still use the “entropy” remaining in x to
hide the sender’s secret (assuming it is sufficiently shorter than |z|—|f(z)|). To show
the statistical hiding in the complementary case when phase = second, it is sufficient
to note that sending f(z) does not compromise the hiding property of the second-
phase commitment. All in all, the protocol is statistically hiding for both choices of
phase, and thus it is statistically hiding.

To argue about the binding of the protocol, recall that the 1-out-of-2-binding
property informally states that with high probability after the first-phase commit
stage, there exists a single value T that allows the sender to cheat in the second-
phase commitment. Now, if the sender sends y such that f(Z) = y, then in order to
cheat in the case phase = first, it will have to open the first-phase commitment to
a value =’ # T such that f(z') = y = f(Z). This would imply the breaking of the
universal one-way hash function. On the other hand, if f(Z) # y, then in the case
phase = second the sender is forced to open the first-phase commitment to a value
different than z. This guarantees that the sender cannot cheat in the second-phase
commitment, and thus in this case our protocol is binding. In conclusion, since y is
sent before phase is chosen, we are guaranteed that our protocol is weakly binding
(since intuitively there always exists a choice of phase that prevents the sender from
cheating). We complete the construction by amplifying the above protocol into a
full-fledged statistically hiding commitment scheme using standard techniques.

7.2. The transformation. We present the transformation algorithm using an
arbitrary family of functions F and will require only that F to be a universal one-way
hash family when we want to prove the hiding and binding security properties.

ALGORITHM 7.1. The transformation, denoted as 2-to-1-Transform.

Input: security parameter 1™, 2-phase commitment scheme (S, R) with message lengths
(k1,k2) = (n,1), and a family of functions F = U, Fn = {f: {0,1}" —
{0,1}m}.

Output: Commitment scheme (S,R) as described by Protocol 7.2.

12 A version of Rompel’s result [7] that holds also for uniform adversaries was recently written by
Katz and Koo [29], who also added missing details and fixed some errors.
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Hence, we write the commitment scheme obtained as (S, R) = 2-to-1-Transform((S,
R), F).
ProOTOCOL 7.2. Standard commitment scheme (S,R) from 2-phase commitment
scheme (S,R).
Security parameter: 1", given as common input to both S and R.
Sender’s private input: Bit b € {0,1}.
Commit stage:
1. S selects a uniform o «— {0,1}".
2. S and R engage in (SL(c),RL)(1™), with S acting as S. and R acting as
RL. Let ¢M) be the common output of St and RY after the interaction.
3. R chooses f < F, and sends it to S.
4. S sends y = f(o) to R.
5. R flips a random coin, represented by phase — {1,2}, and sends phase

to S.

If phase = 1, then proceed as follows:

(a) S selects a random hash h «— H, where H is a family of pairwise-
independent hash functions with domain {0,1}"™ and range {0, 1},
and sends (h,b® h(o)) to R.

(b) S and R both output (¢, f,y, phase = 1,h,b@® h(c)) as the com-
mitment.

If phase = 2, then proceed as follows:

(a) S runs Sk to obtain the decommitment message vV and first-phase
transcript T corresponding to both o and ¢V. S sends (0,7(1),7) to
R.

(b) S and R engage in (S?(b),R?)(1",7), with S acting as S? and R
acting as R2. Let ¢(?) be the common output of S? and R? after the
interaction.

(¢) S and R both output (cV), f,y, phase = 2,c?) as the commitment.

Reveal stage:

To decommit to bit b, do the following depending the value of phase.

If phase = 1, then the following occur:
1. S sends (b,0) to R.
2. If y = f(o) and the last component of the commitment equals b ® h(o),

then R accepts. Otherwise, R rejects.

If phase = 2, then the following occur:
1. S runs S? to obtain the decommitment message 72 and sends (b,v?)

to R.

2. If y = f(o) and both R: and R? accept (¢V,0,7) and (¢, b,~v?)
respectively, then R accepts. Otherwise, R rejects.

7.3. Analyzing the transformation. The hiding and binding security prop-
erties of Protocol 7.2 will rely on properties of F being a universal one-way hash
family.

Our plan for the remainder of this section is as follows: (i) we present the definition
of a universal one-way hash family due to Naor and Yung [23]; (ii) we separate the
properties of a universal one-way hash family into two parts; and finally, (iii) we
prove the hiding and binding properties of Protocol 7.2 based on these two separate
properties.

Universal one-way hash family. In order to define a universal one-way hash family,
we need to understand what it means for a family of functions to be polynomial-time
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computable.
DEFINITION 7.3. A family of functions F =J,, Fn = {f: {0,1}" — {0,1}} is
polynomial-time computable if the following hold.
e Fuery function f € F, is described by a bitstring of length p(n) for some
polynomial p. By abuse of notation, we also denote this description by f and
write f <~ F,, to mean that it is chosen uniformly at random in {0, 1}P("™). (A
more general definition would allow the description of the function to be se-
lected according to any polynomial-time samplable distribution, even one that
requires private coin tosses. However, our stronger “public-coin” definition is
achieved by existing constructions and can be useful in applications such as
constructing public-coin zero-knowledge arguments.)
o There exists a deterministic polynomial-time algorithm F such that for every
n and every f € F,, given the description of the function f and a string
x € {0,1}", F outputs the value of f(x).
DEFINITION 7.4. A polynomial-time computable family of functions F = J,, Fn =
{f:{0,1}™ — {0,1}™} is a universal one-way hash family if m < n and for all PPT
A the following is negligible in n:

Pr[(z,state) « A(1"), f < Fn, 2’ — A(x,state, f) : 2’ # x/\f(x’) = f(z)].

Remark 7.5.

e In the above definition, we allow the adversary to transfer additional informa-
tion, i.e., state, between the selection of z and finding the collision. This state
variable does not appear in the definition in Katz and Koo [29], which is oth-
erwise identical to the above. However, any universal one-way hash family F
meeting their weaker definition can be converted into one meeting the above
definition by selecting f <~ F and s <~ {0,1}" and defining f'(z) = f(z @ s).
(Intuitively, the random shift s turns an arbitrary point x selected by the
adversary into a uniformly random point out of the adversary’s control.)
The original definition of Naor and Yung [23] (also used by Rompel [7]) does
not involve the adversary before f is chosen at all but rather requires that
for all x € {0,1}", A(x, f) has a low probability of producing a collision
(over the choice of f and A’s coin tosses). Their definition is suited for the
case of nonuniform security (as the arbitrary x can be viewed as nonuniform
advice), in which case it becomes equivalent to ours (since A can also have
state hardwired nonuniformly).

e Although it is more natural for the security be parameterized in terms of the
output length, namely, m, our applications do not require hash functions that
are shrinking by more than a polynomial factor. Hence, for this reason, and
in part for consistency, we keep n as our security parameter.

e Naor and Yung [23] showed that by starting with a universal one-way hash
family that is compressing by only one bit, namely, m = n — 1, more com-
pression can be achieved, say, m < n/2, by iterative application of several
hash functions chosen from the family. Moreover, it is easy to verify that the
same construction holds also with respect to Definition 7.4. Hence, without
loss of generality, we can assume that our universal one-way hash family has
the feature that m < n/2.

Two properties of a universal one-way hash family. A universal one-way hash
family satisfying Definition 7.4 has the following two main properties.
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Large preimages: Most of the preimages have a large size. This follows from the
compressing nature of hash functions: the output length m is much shorter
than the input length n. (Recall that we can get a universal one-way hash
family with m < n/2.) We formalize this property in Definition 7.6.

Target collision resistance: It is hard to find collisions with a value x announced
before the hash function is given. We formalize this property in Definition 7.7

DEFINITION 7.6. A family of functions F = U, Fn = {f: {0,1}" — {0,1}™}
has the large preimages property if for every f € F most elements in the range of f
have large preimage sizes. Stated precisely, there exist a function a(n) = w(l) and a
negligible function £ such that for all values of n, the following holds:

Pr[lr > 0] >1-
P [l @] =) 21 e
for every function f € F,.

DEFINITION 7.7. A family of functions F = J,, Fn = {f: {0,1}" — {0,1}} has
the statistical (resp., computational) target collision resistance property if for every
A (resp., every PPT) the following is negligible in n:

Pr[(z,state) « A(1"), f < Fn, 2’ — A(x,state, f) : 2’ # x/\f(x’) = f(z)].

Remark 7.8. In this paper we are using only families of functions that are com-
putational target collision—resistant. Yet whenever possible we also state the results
with respect to families with statistical target collision—resistant, because this gener-
alization has proved useful in subsequent work [39].

Large preimages and target collision-resistance are opposing properties. Specifi-
cally, it is impossible for a single family of functions to have large preimages and have
statistical target collision resistance. The power of a universal one-way hash family
comes from the fact that it has the large preimages property and has computational
target collision resistance.

LEMMA 7.9. If F =, Fn = {f: {0,1}" — {0,1}™} for m < n/2 is a universal
one-way hash family, then F has both the large preimages and the computational
target collision—resistance property.

Proof. The computational target collision resistance property follow directly from
Definition 7.4. Hence, all we need to show is that the compressing nature of F, when
m < n/2, implies the large preimages property.

Fix f € F, and group the elements with small preimages into a set S = {y €
{0,13™: |fHw)| < 24n=m}  Since m < n/2, every element y ¢ S has a preimage
of size |f‘1(y)‘ > 2in—m > on/4 — pw() Ty complete the proof, we bound the
probability of landing in .S, by a union bound over the elements in S (for which there
are at most 2™):

E)I’l}n [f(z) € S]=Pr[3y € S with f(U,) = y]
2%117171

2n

< L9M =274 —qeg(n). O

Hiding. Having separated the properties of a universal one-way hash family into
those having large preimages and those having target collision resistance, we now
show that the large preimages property of F translates to the hiding property of the
commitment scheme (S, R) = 2-to-1-Transform((S, R), F).
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LeEMMA 7.10. If the family of functions F has the large preimages property, and
the 2-phase commitment scheme (S,R) is statistically hiding, then scheme (S,R) =
2-to-1-Transform((S, R), F) is statistically hiding.

Proof. We need to show that for any adversarial receiver R* the views of R* in
(S(0), R*) and (S(1), R*) are statistically indistinguishable. (In this proof, we drop
the security parametrization of 1" because it is clear from context.) We can, without
loss of generality, consider only deterministic R* because we can fix the adversary’s
coin tosses to maximize its distinguishing advantage. In the rest of this proof, we use
indistinguishability and hiding to mean those of the statistical variant.

Let P denote the value of phase sent by R*, and we break our hiding anal-
ysis into cases in which P = 1 and P = 2. To formalize this case analysis, we
say that random variables X and Y are indistinguishable on event E if for all D,
[Pr[D(X)=1AE]—Pr[D(Y)=1A E]| is negligible (in the security parameter n).
We will show that the random variables viewg-(S(0), R*) and viewpg~(S(1), R*) are
indistinguishable on both events P = 1 and P = 2, thus allowing us to conclude that
the scheme is hiding.

First, we analyze the case when P = 2. Let the random variables ¥ and F
denote S’s choice of o and the value of f sent by R*, respectively. Observe that
P is a deterministic function of the random variables Vi = viewg: (SL(X), R*) and
Y = F(¥). In turn, V3 and Y are deterministic functions of the first-phase transcript
T = transcript(S*(¥), R*), which includes both the commit and reveal stages. This is
because we can compute the view of the receiver from the first-phase transcript and
the first-phase transcript also contains the value of o, from which we can compute
y = f(o). For bit b € {0,1}, let random variable V5(b) = viewr-(S2(b), R*)(T),
recalling that T = transcript(S'(X), R*). Because (S,R) is hiding, its second-phase
commitment is hiding even given the first-phase transcript: this means that (V2(0), T)
is indistinguishable from (V2(1),T). Since P is a deterministic function of T, random
variables (V5(0),T) and (V2(1),T) are indistinguishable on event P = 2. Finally,
since view g+ (S(b), R*)| p=2 is a deterministic function of (V5(b), T)|p=2 for b € {0, 1},
we have that viewpg-(S(0), R*) and viewg-(S(1), R*) are indistinguishable on event
P=2.

Next, we analyze the case when P = 1. The hiding property of the first phase
gives us

(V17 E) s (‘/1; Un)a

where U, represents a uniform random variable over {0, 1}™ and is independent from
V7 and 3. Recall that the random variable F' denotes the function f sent by R*.
Since F' is a deterministic function of V3, we get

(W, F,F(X), %) =, (W1, F,F(U,),U,).

Now, let the random variable H represent the hash function h selected by S when
phase = 1. Note that H is independent of V;, F, 3, and U,, so

(8) (i, F,Y,H H(Y)) ~s (Vi, F,F(Uy),H,H(U,)),

recalling that Y = F(X).

We need to establish that H(U,) is close to uniform so that we have hiding. The
next claim does this for us.

CLAIM 7.11. Suppose the family of functions F = J,, Frn has the large preimages
property. Let the random variable H denote a random hash function from a family
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of pairwise-independent hash functions with domain {0,1}" and range {0, 1}, let ran-
dom variable U, denote a uniform string in {0,1}™, let random variable U] denote a
uniform string in {0,1}, and let H, U, and U; all be independent. For every f € F,,
(f(Uy), H, H(U,,)) is indistinguishable from (f(Uy,), H,U7).

Proof of Claim. The large preimages property of F guarantees that with proba-
bility 1 —neg(n) over y < f(Uy,), the min-entropy Heo (Un| ¢, )=y) = w(logn). For y
satisfying this condition, we apply the Leftover Hash Lemma, Lemma 4.1, to get that
(y, H, H(Un|(v,)=y)) is indistinguishable from (y, H, H(Uy| s, )=y))- 0

Because H and U, are independent from the rest of the random variables (and
are independent from each other), Claim 7.11 states that

(9) (VlvFvF(Un)vHvH(Un)) s (VlaFvF(Un)vHv U{),

where U] is an independent random variable representing a uniform random variable
over {0,1}. Combining (8) and (9), we get

(VlvvaHvH(Z)) s (VlvFvF(U”)vHv U{)v
which leads to

(Vl,F,KH,O@H(E)) %S(VlvFvF(U”)vHvo@U{)
= (Vl,F,F(Un),H,l@U]/_)
zs(‘/la-F;}/aI{al69‘[{(2))

Since P is a deterministic function of V3 and Y, random variables (V4, F,Y, H,0 ®
H(X)) and (V4,F,Y,H,1 ® H(X)) are indistinguishable on event P = 1. Since
view g« (S(b), R*)|p=1 is a deterministic function of (Vi,F,Y,H,b & H(X))|p=1 for
b € {0, 1}, we have that viewg«(S(0), R*) and viewpg+(S(1), R*) are indistinguishable
on event P = 1. O

Binding. We show that the target collision resistance property of F translates to
the binding property of the commitment scheme (S,R) = 2-to-1-Transform((S, R), F)
obtained from the 2-to-1-Transform. Because we will be able to show only that (S, R)
is binding with probability close to 1/2, we first define what it means to for a scheme
to be binding with probability ¢ for some § € [0, 1].

DEFINITION 7.12. Commitment scheme (S, R) is statistically (resp., computa-
tionally) d(n)-binding if, for every S* (resp., every PPT) and every large enough
value of n, sender S* succeeds in the following game with probability at most §(n):

On security parameter 1™, S* interacts with R in the commit stage
obtaining commitment c¢. Then S* outputs pairs (0,dy) and (1,d;)
and succeeds if in the reveal stage R(0,do,c) = R(1,d1,c) = accept.

The standard notion of binding as given in Definition 2.4 corresponds to being
computationally 1/p(n)-binding for every polynomial p.

LEMMA 7.13. If the family of functions F is statistically (resp., computationally)
target collision—resistant, and the 2-phase commitment scheme (S,R) is statistically
(resp., computationally) @) -binding, then the scheme (S, R) = 2-to-1-Transform((S, R),
F) is statistically (resp., computationally) (1/2+1/p(n))-binding for every polynomial
p and sufficiently large n.

Proof. We will focus on the case of computational binding. The statistical case
will follow from the fact that the proof is “black-box.” Specifically, our proof will
(implicitly) give efficient reductions My, My such that given any sender strategy
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S* that breaks the (1/2 + 1/p(n))-binding property of (S,R) as oracle, either M7
will break the target collision resistance property of F with nonnegligible probability
or M5" will break the @)—binding property of (S,R). If both F and (S,R) have
statistical (resp., computational) security, then this is impossible for every strategy
(resp., every PPT strategy) S*, and we deduce that (S, R) must be statistically (resp.,
computationally) (1/2 + 1/p(n))-binding.

Unless stated otherwise, we take probabilities over the entire interaction between
S* and R in both the commit and reveal stages. We say that S* succeeds if it is
able to produce decommitments to two different messages for commitment T in the
reveal phase (recall that the reveal stage is noninteractive). We want to prove that
Pr[S* succeeds] < 1/2+1/p(n). We will do this by breaking the probability space into
events F1, ..., E5 corresponding to the various cases in the intuitive proof outline given
in section 7.1. We will show that Pr[\/, E;] = 1, Pr[Eq] = 1/2, and Pr[S™ succeeds A
E;] <1/4p(n) for i = 2,...,5, and this will suffice to prove the lemma.

The first event, F;, will depend on the random variables C' = viewg- (S*,R}),
representing S*’s view of the first-phase commit (this determines the entire state of
the interaction (S*, R), since by Definition 5.1 the honest receiver maintains no private
state after the commit phase other than the commitment string); Y, denoting the hash
value sent by S* after the first-phase commit; P, representing the value of phase; and
F, representing the choice of the function f <~ F. We would also like to consider
whether or not Y equals f(¥X*), where ¥* intuitively represents the value to which
C' is a commitment, i.e., the “unique” value that will enable S* to break the binding
property of the second phase. However, since the commitment scheme may be only
computationally binding, >* is not defined information-theoretically. Thus, we define
it as the most likely value to which S* will open the first-phase commitment (with a
transcript not in B). Formally, for each first-phase commit transcript ¢ € Supp(C),
we define
(10)

(S*, R) outputs an accepting full transcript A = (7, )

such that 7 ¢ B and 7 contains an opening to o, C=c|,

plo| ] =Pr

where the probability is over the random coins of S* and R, and we say full transcript
A is accepting if both R} and R? accept in A\. With this measure, we define o*[c] =
argmax, plo | ¢], breaking ties arbitrarily (say, by choosing the lexicographic smallest
o). Then we define the random variable £* = o*[C].

The intuition described in section 7.1 suggests a case analysis based on whether or
not Y = F(X*). According to that intuition, the scheme will be binding if Y = F(X*)
and P =1 (by target collision-resistance of F) or if Y # F(X*) and P = 2 (by the 1-
out-of-2 binding property), and these events happen with probability 1/2 (because P
is randomly chosen after ¥*, I, and Y are determined). This intuition can be turned
directly into a proof in the case that F has nonuniform target collision-resistance,
since the value of ¥* (which is determined before F') can be hardwired into the
adversary breaking F. However, to prove our result for uniform adversaries as claimed,
we need to ensure that ¥* = ¢*[C] can be efficiently computed (before being given
F, as per Definition 7.7). We observe that this is the case if p[X* | C] > 1/4p(n),
because then if we simulate a continuation of the execution of (S*, R) starting after
C, we have a nonnegligible probability of 3* being revealed. On the other hand, the
case that p[X* | C] < 1/4p(n) turns out to be analyzable similarly to the case that
Y # F(¥*); in both cases we simply use the fact that S* is unlikely to produce a
successful opening to X*.
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With the above in mind, we begin by analyzing the event in which we do not
expect the scheme to be binding.
CLAIM 7.14. For the event

lﬁ:{ KY=F@ﬂWWMP|ﬂ>1mmmﬂAw:2]}
VIY # F(E9) vV (p[E" | C] < 1/4p))| A [P =1] |7

we have Pr[Ei] =1/2.

Proof of Claim. P is chosen randomly in {1,2} after C, ¥*, F, and Y are
determined. O

Now we want to show that the scheme is binding on the complement of F;. First
we handle the case that P = 1.

CLAM 7.15. For the event

By ={[Y = F(E)] A =" | C] > 1/4p(n)] A [P = 1]},

we have Pr[S* succeeds \ Es] < 1/4p(n).

Proof of Claim. Suppose for contradiction that Pr[S* succeeds A E3] > 1/4p(n);
we will show that we can break the target collision-resistance property of F with
nonnegligible probability. In order to do so, we need to output an element = before
seeing the hash function, and then given a random function f<- F, we need to output
a’ # x such that f(z) = f(a’). We do this as follows. First we simulate the interaction
between S* and R up to the end of the first-phase commitment and record ¢ as the
sender’s view so far. Then we continue the interaction from ¢ to the end and set x
to be the value of o sent by S* in the protocol (if no valid value is given, we set = to
some default value). (In case phase = 1 and S* produces two values for o in breaking
the scheme, choose one of the two at random.) Now we output z, store state = c,
and receive a random hash function f <~ F. We now rerun the interaction between
S* and R, starting with the view (c, f), and set 2’ to be the value of ¢ sent by S* in
the protocol (again choosing randomly if phase = 1 and S* produces two values).

To see that this strategy breaks the target collision—resistance property with non-
negligible probability, consider the second completed execution of the interaction be-
tween S* and R (the one with the given, random, hash function f, which we now de-
note as a random variable F'). By assumption, with probability greater than 1/4p(n)
in this execution, it holds that S* succeeds, Y = F(X*), p[E* | C] > 1/4p(n), and
P = 1. Since S* succeeds and P = 1, it must be the case that S* produces two
successful openings Y1, ¥ to the first-phase commit. At least one of these is different
from X*, yet both must satisfy F(2;) =Y = F(X*). With probability at least 1/2, we
output ¥; # ¥* as 2/. Now, conditioned on all this, we argue that we had nonnegligi-
ble probability (of at least (1/2)-1/4p(n)) of outputting X* as z: (prior to receiving F').
This follows because p[¥* | C| > 1/4p(n). Therefore, we break the target collision—
resistance property with probability at least (1/4p(n))-(1/2)-(1/2)-(1/4p(n)), which
is a contradiction. O

Now we turn to the complement of E; in case P = 2, namely, the event

E'={[(Y # F(Z")) V (p[=* | C] < 1/4p(n))] A [P = 2]}.

Since we are now restricted to P = 2, there is a single first-phase decommitment value
produced by S* which we denote by the random variable X.

First we argue that it is almost always the case in E’ that 3 # ¥* (assuming S*
succeeds).
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CLAIM 7.16. For the event
Es=FE A=Y,

we have Pr[S* succeeds \ E3] < 1/4p(n).

Proof of Claim. In E’, either we have Y # F(3*), in which case S* cannot succeed
unless ¥ # 3*, or we have p[X* | C] < (1/4(p(n))), in which case S* successfully opens
to value X* with probability at most 1/4p(n). O

So now, instead of E’, we can focus on the event that {[¥ # X*] A [P = 2]}.
For this, we have two cases, depending on whether the transcript T of the first-phase
commitment (including the reveal) gives a binding second phase or not.

CLAIM 7.17. For the event

By ={E#XA[P=2]A[T B},
we have
Pr[S™ succeeds A Eq] < 1/4p(n).

Proof of Claim. If T € B, then the second-phase commitment is binding. Since
P =2, §* can succeed only with negligible probability. 0
CLAIM 7.18. For the event

Es ={[X# XA [P=2]A[T ¢B]},
we have
Pr[S™succeeds A Es) < 1/4p(n).

Proof of Claim. Assume for contradiction that Pr[S* succeeds A E5| > 1/4p(n).

By Markov bound, this implies that with probability at least 1/8p(n) over ¢ &0, it
holds that

(11) Pr[S* succeeds A E5|C = c] > 1/8p(n).

We will use this to break the (?)-binding of (S, R). Similarly to the proof of Claim 7.15,
we carry out two executions of (S*, R) beginning with the same first-phase commit c.
Assume that ¢ satisfies (11). Then, with some probability g[c] greater than 1/8p(n),
the first execution will produce an accepting full transcript whose first phase is not in
B, with an opening to some value o # 0* = 0*[c]. Note that conditioned on C' = ¢,
the probability that a random execution produces an accepting full transcript with
an opening to some ¢’ # o must also be at least ¢[c], since ¢ is no more likely than
o*[c]. Tt follows that with probability at least (1/8p(n)) - ¢[c] - q[c] = Q(1/p(n)?), we
can output two transcripts A and X such that the following hold:

e both transcripts are accepting and start with ¢,

e the part of the first-phase commitment in both transcripts is not in B,

e the first-phase commitment in X is decommitted to a different value than the

one in A.
Namely, we break the (f) -binding of (S, R) with nonnegligible probability. O
With the above claims, we complete the proof. By inspection, we have Pr[\/, E;] =

1, and thus

4
Pr[S* succeeds] < Pr[E] + ZPr[S* succeeds A E;] <
i=1

1

* p(n)’

N =

as desired. 0
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Boosting the binding. The commitment scheme (S,R) from Lemma 7.13 is only
(2 + neg(n))-binding. Nonetheless, by the following “folklore” claim, (S,R) implies a
commitment scheme that is neg(n)-binding and preserves the same hiding property
as the original scheme.

CrLAIM 7.19. There exists an efficient procedure that for any function 6 >
1/ poly(n) converts a statistically (resp., computationally) (1 — 6(n))-binding com-
mitment scheme (S,R) into a commitment scheme (S, R) that is statistically (resp.,
computationally) binding. Furthermore, if (S,R) is statistically (resp., computation-
ally) hiding, so is (S, R).

Proof. The protocol (S, R) is defined as follows: in order to commit to a bit b,
the two parties run ¢ = [n/d§] = poly(n) independent executions of the commit stage
of (S(b),R) one after the other, where S and R act as S and R, respectively. In the
reveal stage, S decommits, via the reveal stage of (S, R), all the ¢ commitments and R
accepts if and only if all the commitments are opened successfully to the same value.
The hiding of the above scheme follows by a straightforward hybrid argument. For
the binding part, let S* be a PPT trying to break the binding of (S, R). We show
that S* breaks the binding of (S, R) only with negligible probability, and since S*
was arbitrarily chosen, it follows that (S, R) is computationally binding.

We say that S* breaks the binding of the ith execution of (S,R) if while trying
to break the binding of (S, R) it successfully opens the ith commitment into two
different values. Notice that this event depends on several random variables: C;,
the coins of S* and the coins of R in the first i — 1 executions; C};, the coins of R
in the ith execution; and Cs;, the coins of R in executions ¢ + 1,...,¢. For settings
(c<iyci) € Supp(C<y, C;), we define g;(c<;, ¢;) to be the probability over Cs; that S*
breaks the binding of the ith execution conditioned on (C<;, C;) = (c<i, ¢;).

For an arbitrary positive polynomial p, define a prefix c«; as bad if Pr{q;(c<;, C;) >
1/p(n)] > 1 —0 4+ 1/p(n), and otherwise call c; good. We will now show that
Pr[C; is bad] < 1/p(n). Suppose not. Then we can construct an efficient algorithm
S* that breaks the binding of (S,R) with probability 1 — ¢ + 1/3p(n). In the commit
stage, S* first finds a value c<; for which Pr[¢;(c<;, C;) > 1/2p(n)] > 1 — 46+ 1/2p(n)
and “hardwires” this value into S*. Note that the above can be done efficiently and
with overwhelming success probability by random sampling, given oracle access to
S*'IB

When interacting with R, S* acts as S* does in the ith execution of (S*, R). With
probability at least 1—d+1/2p(n) over the coins ¢; of R, we have ¢;(c<;, ¢;) > 1/2p(n).
If this occurs, then by randomly continuing the simulation of (S*, R) with O(n-p(n))
independent choices of Cs;, S* will be able to break the binding with probability
1 —neg(n). Thus, S* breaks the binding of (S, R) with probability 1 — § + 1/2p(n) —
neg(n) >1—49+1/3p(n).

Let E; be the event that for some 7, C.; is bad. By the above and a union
bound, Pr[F;] < t/p(n). Let E2 be the event that for some 4, ¢;(C<;, C;) < 1/p(n)
but S* breaks the binding of the ith execution. By the definition of g;, we have

3For any given value of c<;, we can evaluate, with save but negligible error probability, the value
of Pr(gi(c<i, Ci) > 1/2p(n)] up to an additive error 1/4p(n). (In order to do so, we sample n - p(n)
uniformly chosen continuations of the commit and reveal stages of (S*, R), and we compute the
fraction of continuations in which S* breaks the binding of the ith commitment). Thus, we can find
a value of c<; for which Pr{g;(c<;,Ci) > 1/2p(n)] > 1 — 6 4+ 1/2p(n) by sampling n - p(n) values for
c<j, and for each of these values we evaluate Pr[g;(c<;, C;) > 1/2p(n)].



1212 HAITNER, NGUYEN, ONG, REINGOLD, AND VADHAN

Pr[E2] < t/p(n). Finally, we have
Pr[S* breaks the binding A =Ey A —FEj5]

< Pr

/\[(O<i good) A (:(C<i; Ci) > 1/p(n))]]

/\ [(C<;j good)

j<i

= HPr [(CQ good) A (¢;(C<i, Ci) > 1/p(n))
i=1

Ng;(C<j, Cj) > 1/p(n))]

<(1—=d+1/p(n))
= neg(n) +t/p(n),

where the last inequality can be seen by considering any fixed value C; = c<;, which
fixes the event on which we are conditioning in the ith factor and whether C.; is
good or bad. If c¢.; is bad, then the probability in the ith factor is 0. If c¢-; is good,
then the probability (over just C;) is at most (1 — 0 + 1/p(n)) by the definition of
good. Taking p(n) to be an arbitrarily large polynomial, we deduce that S* breaks
the binding with negligible probability. a

Having established the appropriate claims and lemmas, we now state what is
achievable from our transformation.

THEOREM 7.20. There exists an efficient procedure (call it 2-to-1-Full Transform)
that takes as input a security parameter 1™, a 2-phase commitment scheme (S,R)
with message lengths (ki,k2) = (n,1), and a family of functions F = |J,Fn =
{f:{0,1}™ — {0,1}} and outputs a commitment scheme (S, R)=2-to-1-FullTransform
((S,R), F) satisfying the following properties:

o If (S,R) is statistically hiding and F has the large preimages property, then
(S, R) is statistically hiding.

o If (S,R) is statistically (resp., computationally) @) -binding and F has statis-
tical (resp., computational) target collision-resistance, then (S, R) is statisti-
cally (resp., computationally) binding (in the standard sense of binding).

e If (S,R) is public coin, then (S, R) is also public coin.

Proof. We describe the 2-to-1-FullTransform algorithm, recapping what we have
done thus far, as follows.

1. Apply Algorithm 7.1 on (S,R) and F to obtain a (standard) commitment
scheme (S,R). Lemmas 7.10 and 7.13 state that for the right properties of
both (S, R") and F (see the first two items in 7.20 above), (S,R) is hiding
and (1/2 + neg(n))-binding.

2. Next, using Claim 7.19, boost the binding of (S, R) to obtain a scheme (S, R)
that is neg(n)-binding while not affecting the hiding property. Output (S, R)
as our desired scheme.

As for the preservation of the public coin property, observe that the messages sent
by R that are specific to the 2-to-1-Transform are choosing f « F and selecting
phase « {0,1}, both of which are public coin operations. O

8. Putting it together. Now, we put together everything from the previous
sections to establish our main theorem.

RESTATEMENT OF THEOREM 1.1. Given a one-way function f : {0,1}"™ — {0,1}",
we can construct in time polynomial in n a public-coin commitment scheme (S, R) that
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is statistically hiding and computationally binding.

The statistical hiding property holds regardless of whether or not f is secure (hard
to invert). On the other hand, if f is uniformly (resp., nonuniformly) secure, than
(S,R) will be computationally binding with uniform (resp., nonuniform) security.

Proof of Theorem 1.1. We start off by constructing a collection of 2-phase com-
mitment schemes from f using Theorem 6.1. For any polynomial k(n) (which we will
choose below) we can construct in time polynomial in n a collection of m = poly(n)
public-coin 2-phase commitment schemes COM = {Comy,...,Com,,} with message
lengths (k(n), 1) such that

e there exists an index i € {1,2,...,m} such that scheme Com; is statistically
hiding, and

e for everyindexi € {1,2,...,m}, scheme Com; is computationally @)-binding.

(As remarked after Theorem 6.1, we can obtain 2-phase commitments with message

lengths (k(n), k(n)) for any polynomial k that we choose. Using only 1 bit of the

second-phase message (padding with k& — 1 zeros), we obtain message lengths (k,1).)

Now in order to apply Theorem 7.20, from f we use [7, 29] to obtain a
universal one-way hash family 7, = {f: {0,1}*™) — {0,1}*"/2} for some
polynomial & (which we use to determine the message length for the 2-phase com-
mitment above).!* Let the resulting (standard) commitment schemes be Com) =
2-to-1-FullTransform(Com;, F). By Theorem 7.20 and Lemma 7.9, we know that

e Com; is statistically hiding if Com; is statistically hiding,

e Com! is computationally binding if Com; is computationally (f)—binding, and

3
e Com! is public coin if Com; is public coin.
This means that we now have a collection of public-coin (standard) commitment

schemes COM' = {Com{, ..., Com;, }, where m = poly(n), such that

e there exists an index i € {1,2,...,m} such that scheme Com/, is statistically
hiding, and
e for every index i € {1,2,...,m}, scheme Com) is computationally binding (in

the standard sense of binding).

We are almost done, except that we are still left with a collection of commitments
instead of a single commitment scheme. The following claim states that the latter
collection can be converted into the desired commitment scheme.

CLAIM 8.1. There is an efficient procedure that converts a polynomial collection of
commitment schemes, at least one of which is statistically hiding and all of which are
computationally binding, into a single commitment scheme that is statistically hiding
and computationally binding. In addition, if we start off with public-coin schemes, we
also end up with a public-coin scheme.

Proof. To commit to a bit b, we randomly secret-share b = by & --- & b,, and
commit to share b; using the ith commitment scheme. Alternatively, the proposition
can be deduced from [25, Thm. 5.2]. O

The main theorem statement is now complete since we now have a single commit-
ment scheme that is statistically hiding and computationally binding, and the only
complexity assumption made is the existence of one-way functions.

MSince we are using here the uniform definition of universal one-way hash family (i.e., where z
is sampled by A), we need to use the theorem of Katz and Koo [29]. In their theorem, however, it
is not explicitly defined whether or not the adversary can encode additional information (i.e., state)
between the declaration of z and finding the collision (see Remark 7.5). Fortunately, the stronger
version of this theorem required by our proof follows readily from their original proof.
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We now proceed to the additional properties mentioned. By inspection, we ob-
serve that the statistical hiding properties throughout the construction hold regardless
of the security of f (see, e.g., Lemma 6.13). As for nonuniform security, we observe
that our construction is “fully black-box” in the sense of [40]; in particular, the com-
putational binding property is proven by specifying for every polynomial p a PPT
reduction R such that if S* is any sender strategy (of arbitrary complexity) that
breaks the binding property with probability 1/p(n), then RS inverts f with nonneg-
ligible probability. In particular, if S* is a nonuniform PPT algorithm, then we obtain
a nonuniform PPT inverter for f, which cannot exist if f is nonuniformly secure. |

Appendix. Collision probability lemmas.
We prove the lemmas presented in section 6.2.1.

RESTATEMENT OF LEMMA 6.4. For independent pairs of random variables (X1,Y1),
R (X’m) Ym))

CP1/2((X17 ce 7Xm)|(Y17 .. 7Ym)) = HCP1/2(X1|Y;)
=1

Note that X; and Y; can be correlated; it is required only that the pair (X;,Y;) be
independent from the other tuples.
Proof. Since the X;’s are independent, for all y1,..., Y, we have

(12) CP((X1, .+, Xm)lvizyr.. Vomym) = | [ CP(Xilvi=y.)-

This gives us
CP1/2((X17 ey X)) (Y1, oY)

= E CP1/2 X,,,,7Xm
(Y10 Yom) [ (X )th,,,,ym)]

- PY/2(X; 12
= v lHC |Y)] (by 12)

= H E [ CPY2(X; |yt):| (by independence of Y;’s)

E

=[[crA(xily;). O

i=1
RESTATEMENT OF LEMMA 6.5. Suppose random variables (X1,Y1), ..., (Xm, Ym)
satisfy the following conditions for some wvalues of aq,...,c,, € RT and all i =

1,2,....m

1. For every (y1,...,yi—1) € Supp(Y1,Ya,..., Y1),
CPI/Q(Xi|Y1:y17~~~;Yi—1:yz‘71 | }/7;|Y1:f1117~~;yi—1:yi—1) < a;.
2. For every (y1,...,y;) € Supp(Y1,Ya,....Y:), the i + 1 random variables

X1, Xo, ..., X, and Y11 are independent after conditioning on Y1 = y1, ..
Y = y;.

)
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Then,
m
CPY2((X1,.. ., X) (Y1, Y)) < [ e

Proof. By induction, it suffices to prove
(13)
CPY2((X1,. ., X)) |(Y1, o, Yin)) < i - CPY2 (X1, oo, X)) |(Yey -+, Y1),
and then by iteratively expanding CPY/2 ((X1,..., X;n_1)|(Y1,...,Ym_1)) in terms of
a;’s, we get our result. To simplify notation, we write X, = X |vi=y1,..., Vi 1=ym 1

and Y, = Yo lvi=yi....Vin_1=ym_1 WheN Y1,..., Ym—_1 are clear from context. We prove
(13) as follows:

(14) CPY2((Xy,...,X)|(Y1,...,Ym))

1) =y By [P Xl )
(16) — (Yh'Pmel) )% {Cpl/z((Xl, . ,Xm)|y1,...,Y;,L)H

an =, B g [CPl/Q((Xl,...,Xm_1)|Y1,.,,,Y/n)'CPl/Q(Xm|Y1,m,Y/n)H
18 = B PO X)) B [CP ()]
(19) = B [CPVAX1 Kl v ) - ORIV

(20) < - (me}?YnH) CPY2((Xy,.. .,Xm_1)lyl,...,ym_1)}

(21) < - CPY2((X1,..., X )|(Yi, ..o, Y1)

Equation (17) follows because X1, ..., X,, conditioned on Y1 =y1,..., Y = Ym
are independent. Equation (18) follows because X1, ..., X,,—1 and Y;,, conditioned on
Yi=w1,...,Ym—1 = ym—1 are independent. Finally, (20) follows from the assumption
that for all (y1,...,yi—1) € Supp(Y1,Ya, ..., Y _1),

CPl/z(XrInlyr;z) = CPl/z(Xm|Y1:y1;~~~7ym,71:ym71 | Ym|Y1:y17~~~;Ym—1:ynz—1) < Q. D

RESTATEMENT OF LEMMA 6.6. (Randomness Extraction Lemma.) Let (X,Y") be
any (possibly correlated) pair of random wvariables, and let random wvariable H denote
a random hash function from a family of pairwise-independent hash functions H with
range {0,1}. Suppose the hash functions from H are represented by (¢—«)-bit strings
and CPY2(X|Y) < V2-(@+3) If H is independent from (X,Y), then

CPY2((H, H(X))|Y) < V26D,

Proof. We bound the value of CPY2((H, H(X))|Y) as follows:

CPY2(H,H(X)|Y)

= B [CPl/Q(H,H(X)IY:y)}

< yEY [CPI/Z(H) : \/CP(X|y:y) +2a] ( 21}15&{)0?((01%(12(){2);&) )

< E [CPl/Q(H) . (CPl/z(X|y:y) + \/2*0‘)} (Cauchy—Schwarz/Jensen)

= ey
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—cpm- (|, [or2xiv-y)] ) + Ve )

— CPY2(H) - (CPY2(X|Y) + V27 9)
= V2-(=a) . (CPY2(X|Y) + V2-) (since [h| = ¢ — )

< V2-(a-a) . <1 /2% n m)

< V2l (V2. v2)
=V, [

RESTATEMENT OF LEMMA 6.7. For any triple of (possibly correlated) random
variables X, Y, and Z,
CPY2(X|Y) < CPY2(X|(Y, Z)) < v/|Supp(Z)| - CPY2(X|Y).
Proof. For each y € Supp(Y’) and z € Supp(Z), let v, , € RSuP(X) he the vector
whose zth entry is vy, .(z) = Pr[X = 2 A Z = 2|Y = y|. With this, we compute for
each y

E :Uy,z
z 2

< Z lvy,2ll, (triangle inequality)
4

1/2
< /Supp(2) <Z ||Uyz|2> / (Cauchy-Schwarz/Jensen)
1/2
= /Supp(2) (Z vy < )
o\ 1/2
< \/W Z <Z vy,z(x)> (nonnegativity of vy .(z))

Supp

Since CPV2(X|y—,) = ||zsz|\2 and CP2 (X|y—,)| (Zly—y)) = 3. Iy, -
taking expectations over Y for both sides of the above inequalities yields the claim. O

RESTATEMENT OF LEMMA 6.8. Let random wvariable H denote a random hash
function from a family of pairwise-independent hash functions H with range {0,1}<.
For any € > 0, if CP(X) < &2 .27 and H is independent from X, then random
variable (H, H(X)) is e-close in statistical distance to uniform.

Proof. Let D =297 and L = 2*. We bound the statistical distance of (H, H(X))
from uniform as follows:

a0 — v, < YRy m ) - v,

\/D_

-/CP(H,H(X)) — 24

FJ 0+7) -7
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~ /CP(X)-L
- 2
<t
D)
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