
ar
X

iv
:0

80
6.

12
91

v2
  [

m
at

h.
PR

] 
 3

0 
Ju

n 
20

09

COMPUTING EXPECTED TRANSITION EVENTS IN REDUCIBLE
MARKOV CHAINS∗

BRIAN D. EWALD† , JEFFREY HUMPHERYS‡§ , AND JEREMY M. WEST‡¶

Abstract. We present a closed-form, computable expression for the expected number of times
any transition event occurs during the transient phase of a reducible Markov chain. Examples of
events include time to absorption, number of visits to a state, traversals of a particular transition,
loops from a state to itself, and arrivals to a state from a particular subset of states. We give an
analogous expression for time-average events, which describe the steady-state behavior of reducible
chains as well as the long-term behavior of irreducible chains.
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1. Introduction. In this paper we present a method for computing the expecta-
tion of transition events that occur during the transient phase of a reducible Markov
chain using the Hadamard product and a generalized (1, 2)-inverse; see [1]. Some
examples of transition events are the time to absorption, the number of visits to a
state, the number of traversals of a transition, the number of loops from a state to
itself, and the arrivals to a state from a particular subset of states.

Meyer [12] showed among other things that the group generalized inverse, a special
case of the Drazin inverse, can be used to determine (i) the expected number of
visits to any transient state, and (ii) the probability of absorption into a particular
state. Whereas Meyer’s method determines the expected number of occurrences of
state events, our method computes the expected number of occurrences of transition
events. Nonetheless, by summing over all transitions entering a given state, one can
also compute the expected number of occurrences of state events, therefore, counting
transitions is not an alternative to counting states, but a generalization. Indeed, we
provide examples of quantities that are easily determined using transition information
but are cumbersome, at best, to compute with state events.

We describe a transition event with a matrix, which we call a mask, where the
entries of the mask are the weights assigned to each transition of the Markov chain.
For example, the mask for the expected time to absorption assigns a unit weight to
each transition that leaves a transient state and zero to all other transitions. The
main result of this paper is a closed-form, computable expression for the expected
value of a transition event; see Theorem 2.6.

In §2, we define the random variables associated with a mask and give an expres-
sion for the expectation of these random variables on reducible Markov chains. Next
we examine the time-average of a mask, which yields both the long-term behavior of
irreducible chains and the steady-state behavior of reducible chains. In §3, we give
examples of masks. In §4, we address the numerical issues of conditioning, stability,
and complexity. In §5, we compare expectations computed using our results to a
Monte Carlo simulation as a verification of our methods.
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2. Main Results. In this section we develop a closed-form expression for the
expectation of a transition event. After dispensing with the preliminaries, we treat
the absorbing chain case, that is, where the ergodic classes are single states. Next,
we generalize to reducible chains. Finally, we show how masks can be used to deter-
mine the steady-state behavior of reducible chains and the time-average of irreducible
chains.

2.1. Preliminaries. To avoid confusion with the transition matrix T we denote
the transpose of a matrix by A∗. Let A ⊙ B denote the Hadamard product, that is
(A⊙B)i,j = Ai,jBi,j .

Theorem 2.1 (see [6]). Let x ∈ R
n and A,B ∈ R

m×n be given and let D =
diag(x). Then (ADB∗)i,i = [(A⊙B)x]i.

In this paper we consider finite, stationary (temporally homogeneous) Markov
chains, denoted Xk; see for example [3]. Here, S = {s1, . . . , sn} is the state space. If
µ ∈ R

n is stochastic, that is µi ≥ 0 and ‖µ‖1 = 1, then Pµ is the unique probability
measure on Ω = S × S × · · · satisfying Pµ(X0 = si) = µi and having transition
probabilities associated with the Markov chain Xk. Furthermore, Eµ is expectation
with respect to Pµ. The column-stochastic matrix T ∈ R

n×n with entries

Ti,j = P (Xk+1 = si | Xk = sj) (2.1)

is the transition matrix. The k-step transition probabilities are found in T k. To
summarize,

Pµ(Xk = si) =
[

T kµ
]

i
. (2.2)

A mask is a matrix M ∈ R
n×n that describes the weights assigned to the transi-

tions of a Markov chain. Here Mi,j is the weight assigned to the transition from sj to
si. The transition event for M is the random variable whose value on any realization
is the sum of the mask entries,

YM =

∞
∑

k=0

MXk+1,Xk
. (2.3)

Lemma 2.2. Given M ∈ R
n×n,

EµMXk+1,Xk
=

n
∑

i=1

[

(M ⊙ T )T kµ
]

i
. (2.4)

Proof. By total probability,

EµMXk+1,Xk
=

n
∑

i,j=1

Mi,jPµ(Xk+1 = si, Xk = sj)

=

n
∑

i,j=1

Mi,jPµ(Xk+1 = si|Xk = sj)Pµ(Xk = sj)

=
n
∑

i,j=1

Mi,jTi,j
[

T kµ
]

j
=

n
∑

i=1

[

(M ⊙ T )T kµ
]

i
.
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2.2. Cumulative Events on Absorbing Chains. Let A ⊂ S denote the ab-
sorbing states. That is, sj ∈ A if P (Xk+1 = sj | Xk = sj) = 1, or equivalently,
Tj,j = 1. A Markov chain Xk is absorbing if A 6= ∅ and there exists k ∈ N such that

P (Xk ∈ A | X0 = sj) > 0, j = 1, . . . , n. (2.5)

In other words, an absorbing chain is a reducible chain in which the ergodic classes are
single states; see for example [1, 8, 9, 11]. Without loss of generality, the transition
matrix of an absorbing chain assumes the form

T =

[

AT 0
BT I

]

, (2.6)

where AT ∈ R
t×t and t = n−|A| is the number of transient states. Thus, AT and BT

are the transitions leaving the t transient states. In particular, the diagonal entries of
AT are strictly less than 1. Furthermore,

T k =

[

Ak
T 0

BT

∑k−1
m=0A

m
T I

]

. (2.7)

Lemma 2.3 (see [11]). If T is the transition matrix of an absorbing Markov chain

then the spectral radius of AT satisfies ρ(AT ) < 1. Moreover, (I −AT )
−1 exists and

(I −AT )
−1 =

∞
∑

k=0

Ak
T . (2.8)

Lemma 2.4. Let M,T ∈ R
n×n be given, where T is the transition matrix of an

absorbing Markov chain. If Mj,j = 0 whenever sj ∈ A then

∞
∑

k=0

(M ⊙ T )T k = (M ⊙ T )

[

(I −AT )
−1 0

0 0

]

. (2.9)

Proof. If sj ∈ A then (M ⊙ T )i,j = 0 for i = 1, . . . , n. Using the block form (2.6)
for M ,

M ⊙ T =

[

AM ⊙AT 0
BM ⊙BT 0

]

.

Combining this with (2.7),

(M ⊙ T )T k =

[

(AM ⊙AT )A
k
T 0

(BM ⊙BT )A
k
T 0

]

= (M ⊙ T )

[

Ak
T 0
0 0

]

.

Hence,

∞
∑

k=0

(M ⊙ T )T k = (M ⊙ T )

∞
∑

k=0

[

Ak
T 0
0 0

]

= (M ⊙ T )

[

(I −AT )
−1 0

0 0

]

.

Throughout the paper, let

Q =

[

I −AT 0
0 0

]

, and Q− =

[

(I −AT )
−1 0

0 0

]

. (2.10)
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Note that Q− satisfies (I − T )Q−(I − T ) = (I − T ) and Q−(I − T )Q− = Q− so that
Q− is a (1,2)-inverse of I − T ; see for example [1]. However, it is not always the case
that ((I − T )Q−)∗ = (I − T )Q− or that (Q−(I − T ))∗ = Q−(I − T ). Hence, Q− is
neither the Moore-Penrose inverse, nor is it the Drazin inverse of I − T since I − T
and Q− do not necessarily commute. However, it is straightforward to show that Q−

is both the Moore-Penrose inverse and the Drazin inverse of Q.

Theorem 2.5. Let M,T ∈ R
n×n and µ ∈ R

n be given, where T is the transition

matrix of an absorbing Markov chain and µ is stochastic. Set D = diag(Q−µ). If

Mj,j = 0 for all sj ∈ A then the random variable (2.3) has expectation

EµYM = tr(MDT ∗). (2.11)

Proof. Suppose that Mi,j ≥ 0 for all i, j so that YM is an increasing series.
Then by the Monotone Convergence Theorem, see [3], we may exchange the order of
summation and expectation,

EµYM =

∞
∑

k=0

EµMXk+1,Xk
.

Applying Lemma 2.2,

EµYM =

∞
∑

k=0

n
∑

i=1

[

(M ⊙ T )T kµ
]

i
=

n
∑

i=1

[

∞
∑

k=0

(M ⊙ T )T kµ

]

i

.

By Lemma 2.4 and Theorem 2.1,

EµYM =

n
∑

i=1

[

(M ⊙ T )Q−µ
]

i
= tr(MDT ∗).

For general M , let Z be the random variable Z =
∑∞

k=0 |MXk+1,Xk
|. For all

m ∈ N,

∣

∣

∣

∣

∣

m
∑

k=0

MXk+1,Xk

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|MXk+1,Xk
| = Z.

The nonnegative case indicates that Eµ|Z| = EµZ < ∞ so that the Dominated
Convergence Theorem allows us to exchange the order of summation with expectation.
The remainder of the argument is identical to the nonnegative case.

Remark. Theorem 2.5 indicates that the conditionMj,j = 0 for sj ∈ A is sufficient
to guarantee that Eµ|YM | < ∞. This condition is practically necessary; if sj ∈ A
satisfies Pµ(Xk = sj) > 0 for some k ∈ N then Mj,j 6= 0 implies that Eµ|YM | = ∞.
Thus, Mj,j = 0 is required of all absorbing states that are “reachable.”

2.3. Cumulative Events on Reducible Markov Chains. We now generalize
to a reducible Markov chain; see for example [9, 11, 12]. We assume that the transition
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matrix T is in canonical form

T =





























T11 0 . . . 0 0 0 . . . 0
T21 T22 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
Tr1 Tr2 . . . Trr 0 0 . . . 0
Tr+1,1 Tr+1,2 . . . Tr+1,r Tr+1,r+1 0 . . . 0
Tr+2,1 Tr+2,2 . . . Tr+2,r 0 Tr+2,r+2 0

...
...

. . .
...

...
...

. . .
...

Tm1 Tm2 . . . Tmr 0 0 . . . Tmm





























. (2.12)

The blocks T11 through Trr are the transient classes and the blocks Tr+1,r+1 through
Tmm are the ergodic classes. Here, ρ(Tii) < 1 for i ≤ r. The ergodic classes of a
reducible chain generalize the notion of an absorbing state to a collection of states.
We generalize the block form (2.6) for T to

T =

[

AT 0
BT ET

]

, (2.13)

where AT and BT correspond to the transient states and ET is block diagonal con-
taining the ergodic classes. Let E denote the set of ergodic states.

Theorem 2.6. Set D = diag(Q−µ). For a reducible Markov chain T , if Mi,j = 0
whenever si, sj ∈ E, then the random variable (2.3) has expectation

EµYM = tr(MDT ∗). (2.14)

Proof. Since ρ(Tii) < 1 for all the transient classes it follows that ρ(AT ) < 1 as in
Lemma 2.3. The condition Mi,j = 0 for sj ∈ E guarantees the result of Lemma 2.4.
With these results, the remainder of the proof is identical to the proof of Theorem
2.5.

2.4. Time-Average Events. Masks may be used for a general Markov chain,
although the random variable in (2.3) may not converge. However, the limit

G = lim
N→∞

1

N

N
∑

k=0

T k (2.15)

does exist. Set S = I − T and let G = I − SS#, where S# is the group generalized
inverse, or Drazin inverse, of S; see for example [1, 9, 12]. Then G is the projector
onto the null space of S along the range of S.

Theorem 2.7. Set D = diag(Gµ). Then for any stochastic T , the random

variable

YM = lim
N→∞

1

N

N
∑

k=0

MXk+1,Xk
(2.16)

has expectation

EµYM = tr(MDT ∗). (2.17)
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Proof. Let γ = max {|Mi,j | | 1 ≤ i, j ≤ n}. Then for all N ∈ N,

1

N

N
∑

k=0

MXk+1,Xk
≤ 2γ

so that we may apply the Dominated Convergence Theorem. This and the linearity
of expectation give

EµYm = lim
N→∞

1

N

N
∑

k=0

EµMXk+1,Xk

=

n
∑

i=1

[

(M ⊙ T )

(

lim
N→∞

1

N

N
∑

k=0

T k

)

µ

]

i

=

n
∑

i=1

[(M ⊙ T )Gµ]i = tr(MDT ∗).

Remark. If T is reducible, the value of M on the transitions leaving transient
states is irrelevant; the value of YM on any realization depends only on the ergodic
class that is entered. Thus, YM represents the steady-state behavior of T in this case.
For example, in the case of an absorbing chain

EµYM =
∑

sj∈A

Pµ(Xk → sj)Mj,j . (2.18)

If we fix sj ∈ A and set Mj,j = 1 with all other entries zero, then EµYM is the
probability of absorption into sj given the initial distribution µ.

3. Examples. In this section we present examples of masks for determining
some of the canonical quantities for reducible chains given by Meyer [12]. Then we
give some novel examples that show the flexibility of transition events.

3.1. Canonical Examples. Meyer showed that S# and I − SS# contain the
following values for absorbing chains:

(i) For si ∈ A, (I − SS#)i,j is the probability of being absorbed into state si
when initially in state sj .

(ii) If si, sj /∈ A then S#
i,j is the expected number of times the chain will be in

state si when initially in state sj .
(iii) The expected number of steps until absorption when initially in state sj /∈ A

is
∑

si /∈A S
#
i,j .

For general reducible chains, Meyer suggests representing the ergodic class by a
single state and using the above results to determine the same quantities. We can
express these quantities in terms of transition events. Furthermore, we may do so on
any reducible chain without having to convert to an absorbing representation. For
any ergodic class Em, let

Mi,j =

{

1 si ∈ Em, sj /∈ E ,
0 otherwise.

(3.1)

Then YM is 1 on any realization which enters Em and zero elsewhere. Thus, EµYM is
the probability of absorption into Em which gives (i) for any reducible chain.
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For (ii), given sh /∈ E , let

Mi,j =

{

1 i = h, sj /∈ E ,
0 otherwise.

(3.2)

Then EµYM is the expected number of arrivals at state sh given the initial distribu-
tion µ. Setting Mi,j = 1 when j = h instead of i = h gives the expected number
of departures from state sh. These quantities may differ depending on the initial
distribution.

To find (iii) let

Mi,j =

{

1 sj /∈ E ,
0 otherwise.

(3.3)

Then EµYM is the expected number of steps until absorption into some ergodic class.
In the next two examples, the desired quantities correspond directly with transi-

tions, not states. Therefore, using transition events is more natural than attempting
to reproduce the results using state information.

3.2. Expected Path Lengths. Consider an object that moves between n states
with transition probabilities Ti,j and suppose that sn is absorbing. Let d(sj , si) be
the distance between sj and si and set

Mi,j =

{

0 j = n

d(sj , si) otherwise.
(3.4)

The random variable (2.3) describes the distance traveled on any realization. If the
initial position of the object has distribution µ then Theorem 2.5 indicates that the
expected distance traveled is given by (2.11).

3.3. Application From Physics. Consider a hydrogen atom that is excited
by an external energy source so that the atom’s electron is perpetually changing
energy states. Let {s1, . . . , sn} be the various allowable energy levels and Ti,j be the
probability that the atom’s electron moves from sj to si. Also, let µ be the distribution
on the electron’s initial position. To determine the portion of light emitted by the
hydrogen atom that is in a particular range, say the visible light range, we setMi,j = 1
for any transition that emits visible light and Mi,j = 0 otherwise. Then the portion
of light that is visible in any realization is the time-average random variable given by
(2.16). Applying Theorem 2.7, the expected portion of visible light is given by (2.17).

3.4. Composite Markov Chains. Suppose T1 ∈ R
n1×n1 and T2 ∈ R

n2×n2 are
stochastic matrices. Let T = T1 ⊗ T2 ∈ R

n1n2×n1n2 be the Kronecker product of
T1 and T2; see for example [4, 6, 10]. For simplicity, we label the entries of T by
T(i1,i2),(j1,j2) which represents the i2, j2 entry of the i1, j1 block of T and is equal to
T(i1,i2),(j1,j2) = [T1]i1,j1 [T2]i2,j2 . It is straightforward to check that T is also stochastic.
Indeed, if Xk is the Markov chain of T1 with states {s1, . . . , sn1

} and Yk is the Markov
chain of T2 with states {t1, . . . , tn2

} then

T(i1,i2),(j1,j2) = P (Xk+1 = si1 , Yk+1 = ti2 | Xk = sj1 , Yk = tj2). (3.5)

Similarly, given stochastic µ1 ∈ R
n1 and µ2 ∈ R

n2 , the vector µ = µ1 ⊗ µ2 ∈ R
n1n2 is

stochastic and the same indexing scheme applies:

Pµ(X0 = si1 , Y0 = ti2) = µ(i1,i2). (3.6)
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This generalizes in the obvious way for any finite number of transition matrices.
Suppose T0 is a competitive system and the states are ordered such that higher

indices represent being closer to winning. Then the p-wise Kronecker product T =
T0 ⊗ · · · ⊗ T0 represents competition between p players taking turns. It is natural to
ask what the expected number of lead changes is.

For clarity, let p = 2. We count a lead change if a player comes from behind and
ends in the lead. If a tie is either created or broken on a turn, we count a half a lead
change. The mask for two-player lead changes is given by

M(i1,i2),(j1,j2) =







































0 sj1 ∈ A or sj2 ∈ A
1 j2 < j1 and i2 > i1

1 j2 > j1 and i2 < i1

1/2 j2 = j1 and i2 6= i1

1/2 j2 6= j1 and i2 = i1

0 otherwise.

(3.7)

When sj1 ∈ A the (i1, j1) block is zero. For sj1 /∈ A the (i1, j1) block is

M(i1,·),(j1,·) =





























0 . . . 0 1/2 1 . . . 1
...

...
...

...
...

0 . . . 0 1/2 1 . . . 1
...

1/2 . . . 1/2 0 1/2 . . . 1/2 0

1 . . . 1 1/2 0 . . . 0
...

...
...

...
...

...
1 . . . 1 1/2 0 . . . 0





























. (3.8)

When p > 2, there are at least two natural ways to define a lead change. The
first is to count a lead change whenever the player in the lead is passed by another.
We count a half lead change for breaking or establishing a tie in the leading position.
The second way to extend lead changes for p > 2 is to count the permutations in the
players positions. For example, if j1 > j2 > · · · > jp and i1 < i2 < · · · < ip, then this
complete lead change gets a weight of M(i1,...,ip),(j1,...,jp) = 1+ · · ·+ p = p(p+ 1)/2.

4. Computation. In this section we discuss the conditioning of (2.14). We then
provide an algorithm and analyze its complexity and stability.

4.1. Conditioning. We take our definition of conditioning from Trefethen and
Bau [13, p. 90]. For a function f : Rn → R

m, denote

δf(x) = f(x+ δx)− f(x), (4.1)

where x, δx ∈ R
n. The relative condition number of f at x ∈ R

n is

κ(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖f(x)‖

/‖δx‖
‖x‖ = lim

δ→0
sup

‖δx‖≤δ

‖δf(x)‖
‖δx‖

‖x‖
‖f(x)‖ . (4.2)

In this section, we give bounds on κ = supx κ(x) for the function f(T,M, µ) =
tr(MDT ∗) defined by (2.14). We treat this as three separate conditioning problems
by analyzing the conditioning of f with respect to each inputM,T, and µ individually;
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see, for example [13, Lecture 18]. This affords an understanding of the sensitivity of
(2.14) to perturbations in each input.

The factor ‖x‖/‖f(x)‖ in (4.2) is independent of the perturbation δx and may be
pulled outside the limit. Our general approach in bounding the condition number is
to evaluate, for each input separately, the absolute condition number

lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖δx‖ (4.3)

and then multiply by ‖x‖/‖f(x)‖ to obtain (4.2).
Although the one-norm is a natural choice for column-stochastic matrices, M

and D are not stochastic and the trace in (2.14) corresponds more naturally to the
Frobenius inner product on the space of matrices. Therefore, we give bounds on
the condition number κ in terms of the Frobenius norm ‖A‖F =

√

tr(A∗A). By
Cauchy-Schwarz, |tr(A∗B)| ≤ ‖A‖F‖B‖F . Furthermore, the Frobenius norm satisfies
the submultiplicative property, that is, ‖AB‖F ≤ ‖A‖F‖B‖F . Therefore,

|tr(MDT ∗)| = |tr(T ∗MD)| ≤ ‖T ‖F‖M‖F‖D‖F . (4.4)

Theorem 4.1. Set

κ =
‖M‖F‖T ‖F‖(I −AT )

−1‖2
|tr(MDT ∗)| . (4.5)

The relative condition numbers for the expectation of transition events have the fol-

lowing bounds:

κM ≤ κ, (4.6a)

κT ≤ κ(1 + ‖T ‖F‖(I −AT )
−1‖2), (4.6b)

κµ ≤ κ. (4.6c)

Proof. Recall from Theorem 2.6 and (2.10) that D = diag(ν), where ν = Q−µ.
Since µ is stochastic and ‖ · ‖2 ≤ ‖ · ‖1 we obtain the bound ‖µ‖2 ≤ ‖µ‖1 = 1.
Therefore,

‖D‖F =

(

n
∑

i=1

d2ii

)1/2

= ‖ν‖2 = ‖Q−µ‖2 ≤ ‖(I −AT )
−1‖2. (4.7)

For κM , fix T and µ and treat f(M) = tr(MDT ∗) as a function ofM only. We remark
that D is independent of M . Therefore, for a perturbation δM of M we obtain

‖δf(M)‖F = |tr((M + δM)DT ∗)− tr(MDT ∗)|
= |tr(δMDT ∗)| ≤ ‖δM‖F‖T ‖F‖(I −AT )

−1‖2

by (4.4) and (4.7). Hence,

lim
δ→0

sup
‖δM‖F≤δ

‖δf(M)‖F
‖δM‖F

≤ ‖T ‖F‖(I −AT )
−1‖2.

Multiplying by ‖M‖F/‖f(M)‖F = ‖M‖F/|tr(MDT ∗)| we obtain (4.6a).
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The matrix D depends on both T and µ. We denote by DT+δT and Dµ+δµ the
diagonal matrix obtained from T + δT and µ + δµ, respectively, and use a similar
notation for ν. A perturbation δT of T causes a perturbation in Q−. If δAT is the
submatrix of δT corresponding to AT , then

[

(I −AT − δAT )
−1 0

0 0

]

= (Q− δQ)−, (4.8)

where δQ is δAT padded with zeros. In the limit as δ → 0, ‖δAT ‖F ≤ ‖δT ‖F ≤ δ
implies that the inverse (I −AT − δAT )

−1 exists. Note that

ν = Q−µ =

[

(I −AT )
−1 0

0 0

]

µ =

[

ν̃
0

]

, (4.9)

where ν̃ ∈ R
t is the transient portion of ν. If µ̃ and δν̃T also represent the transient

portions of µ and δνT , respectively, then

(I −AT − δAT )(ν̃ + δν̃T ) = µ̃. (4.10)

Since (I −AT )ν̃ = µ̃, it follows that

δν̃T = (I −AT − δAT )
−1δAT ν̃. (4.11)

Consider f(T ) = tr(MDT ∗) as a function of T only, where M and µ are fixed. Then

‖δf(T )‖F = |tr(MDT+δT (T + δT )∗)− tr(MDT ∗)|
≤ |tr(M(DT+δT −D)T ∗)|+ |tr(MDT+δT δT

∗)|
≤ ‖M‖F‖DT+δT −D‖F ‖T ‖F + ‖M‖F‖DT+δT ‖F ‖δT ‖F , (4.12)

by (4.4). We require bounds on ‖DT+δT −D‖F and ‖DT+δT ‖F . In terms of ν we have
‖DT+δT −D‖F = ‖ν+ δνT − ν‖2 = ‖δνT ‖2. Since ‖ν‖2 = ‖ν̃‖2 and ‖δνT ‖2 = ‖δν̃T ‖2,
applying (4.11) yields

‖δνT‖2 ≤ ‖(I −AT − δAT )
−1‖2‖δAT ‖2‖ν‖2. (4.13)

Clearly, ‖δAT ‖2 ≤ ‖δT ‖2 ≤ ‖δT ‖F . Combining this fact with (4.7) we obtain,

‖DT+δT −D‖F = ‖δνT ‖2 ≤ ‖(I −AT − δAT )
−1‖2‖(I −AT )

−1‖2‖δT ‖F . (4.14)

We now turn our attention to ‖DT+δT ‖F = ‖ν + δνT ‖2 ≤ ‖ν‖2 + ‖δνT ‖2. Using (4.7)
and (4.14),

‖DT+δT ‖F ≤ ‖(I −AT )
−1‖2 + ‖(I −AT − δAT )

−1‖2‖(I −AT )
−1‖2‖δT ‖F . (4.15)

Putting (4.12), (4.14), and (4.15) together, we have

‖δf(T )‖F
‖δT ‖F

≤ ‖M‖F‖(I −AT )
−1‖2 (4.16a)

+ ‖M‖F‖T ‖F‖(I −AT − δAT )
−1‖2‖(I −AT )

−1‖2 (4.16b)

+ ‖M‖F‖(I −AT − δAT )
−1‖2‖(I −AT )

−1‖2‖δT ‖F . (4.16c)

In the limit as δ → 0, (4.16c) is zero and (I −AT − δAT )
−1 = (I −AT )

−1 in (4.16b),
hence

lim
δ→0

sup
‖δT‖F≤δ

‖δf(T )‖F
‖δT ‖F

≤ ‖M‖F‖(I −AT )
−1‖2

(

1 + ‖T ‖F‖(I −AT )
−1‖2

)

.
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Multiplying by ‖T ‖F/‖f(T )‖F = ‖T ‖F/|tr(MDT ∗)| we obtain (4.6b).
Denote by δνµ the change in ν due to a perturbation δµ of µ. This satisfies

ν + δνµ = Q−(µ+ δµ). (4.17)

By multiplying and canceling equal terms, we obtain

δνµ = Q−δµ. (4.18)

We now consider f(µ) = tr(MDT ∗) as a function of µ, where M and T are fixed.
Applying (4.4) we obtain

‖δf(µ)‖F = |tr(MDµ+δµT
∗)− tr(MDT ∗)| ≤ ‖M‖F‖T ‖F‖δνµ‖2.

Using (4.18) we have ‖δνµ‖2 ≤ ‖(I −AT )
−1‖2‖δµ‖2. Thus,

lim
δ→0

sup
‖δµ‖≤δ

‖δf(µ)‖F
‖δµ‖2

≤ ‖M‖F‖T ‖F‖(I −AT )
−1‖2. (4.19)

Since µ is stochastic, ‖µ‖F = ‖µ‖2 ≤ ‖µ‖1 = 1. Hence, multiplying (4.19) by
‖µ‖F/‖f(µ)‖F ≤ 1/|tr(MDT ∗)| we obtain (4.6c).

Since T is stochastic, ‖T ‖F ≤ √
n. In all the examples in §3, ‖M‖F is no more

than order n2. Therefore, the magnitude of κ depends primarily on two factors:
‖(I − AT )

−1‖2 and |tr(MDT ∗)|. As I − AT becomes singular, ‖(I − AT )
−1‖2 is

unbounded. In this case, the conditioning may be poor, which is to be expected since
the conditioning of the linear system (I −AT )ν = µ is also poor.

The conditioning may also be poor if tr(MDT ∗) is close to zero, particularly when
‖M‖F‖T ‖F‖(I−AT )

−1‖2 is relatively large. As the trace is a summation, cancelation
of large magnitude terms with opposite signs results in poor conditioning. However,
in all the examples in §3, M is nonnegative. Since D and T are always nonnegative,
cancellation is not a problem in this case, although the order of summation may affect
roundoff errors; see [5, p. 63].

Even when M is nonnegative, tr(MDT ∗) may be small due to orthogonality.
Recall that tr(A∗B) is the Frobenius inner product on R

m×n. Therefore, tr(MDT ∗) =
tr(DT ∗M) = 〈TD,M〉F = ‖TD‖F‖M‖F cos θ where θ is the angle between TD and
M . If these matrices are nearly orthogonal, the condition number may be large. This
orthogonality often results from measuring events that are very unlikely to occur.

The quadratic dependence on ‖T ‖F‖(I − AT )
−1‖2 in the upper bound for κT is

to be expected since EµYM = tr(MDT ∗) depends on T in two places: the product
DT ∗ and the computation of ν.

4.2. Implementation. In this section we provide an algorithm for computing
(2.14). As before, µ̃ and ν̃ are the first t entries of µ and ν, respectively, where t is
the number of transient states. Let Mj · Tj denote the standard inner product of the
jth columns of M and T . Then (2.14) may be expressed as

tr(MDT ∗) =

n
∑

i=1

[(M ⊙ T )ν]i =

t
∑

j=1

νjMj · Tj . (4.20)

Algorithm 4.2. The following computes (4.20) for the inputs T,M , and µ where
T is in canonical form (2.12).
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1. Solve (I − AT )ν̃ = µ̃ by forming the QR factorization of (I − AT ) using
Householder relfections; see, for example [5, 13].

2. Compute the first t columns of R = TD, where D = diag(ν) by scaling the
jth column of T by νj .

3. Compute ψ =
∑t

j=1Mj · Rj .

We refer to Steps 1-2 as the setup. This portion of the algorithm depends only
on T and µ. Furthermore, Step 3 depends only on M . If several transition events are
to be determined for the same chain and initial distribution, the setup need only be
computed once.

Remark. The matrix I − AT is invertible and diagonally dominant by columns.
Gaussian Elimination on such a system requires no pivots and is stable [5]. However,
the theoretical bounds for Gaussian Elimination are insufficient to provide satisfactory
bounds for Algorithm 4.2 beyond n ≈ 2300. It is well-known that Gaussian Elimina-
tion generally performs much better in practice than numerical analysis suggests [5].
This does not change the asymptotic complexity of Algorithm 4.2 but does improve
the constants.

4.3. Complexity. Recall that I−AT ∈ R
t×t, where t is the number of transient

states. It is well known that the temporal complexity of Step 1 is O(t3) and the spatial
complexity is O(t2); see, for example [2, 5, 13]. Steps 2 and 3 both have temporal and
spatial complexity O(nt). Therefore, the setup requires O(t3 + nt) time and O(nt)
space. Once the setup is completed, (4.20) may be computed in O(nt) time and space
for each mask representing a transition event.

4.4. Stability. In this section we give bounds on the backward errors introduced
in the computation of Algorithm 4.2. We rely on the notation of Higham [5]. In
particular, let u denote the unit roundoff and let

γk =
ku

1− ku
, and γ̃k =

cku

1− cku
, (4.21)

where c is a small integer constant independent of k. The following result is useful in
manipulating bounds involving γk.

Lemma 4.3 (see [5, pp. 67]). If |δ| ≤ γk and |ε| ≤ γj then (1+ δ)(1+ε) = (1+ ξ)
where |ξ| ≤ γk+j .

Theorem 4.4. Given T , M and µ the value ψ̂ computed by Algorithm 4.2 is the

exact solution for the inputs T + ∆T,M + ∆M , and µ, where ∆T and ∆M satisfy

the following column-wise bounds

‖∆Tj‖2 ≤ 2
√
nγ̃n2‖Tj‖2, and ‖∆Mj‖2 ≤ (1 + 2

√
n)γ̃n2

√

1− 4
√
nγ̃n2

‖Mj‖2, (4.22)

provided 1− 4
√
nγ̃n2 > 0.

Proof. The computed solution obtained in Step 1 satisfies the following column-
wise backward error bounds [5, p. 361]:

(I −AT −∆AT )ν̂ = µ̃+∆µ̃, where ‖∆AT j‖2 ≤ γ̃n2‖(I −AT )j‖2, 1 ≤ j ≤ t,

Since Tj is stochastic, 1 = ‖Tj‖1 ≤ √
n‖Tj‖2, hence

‖(I −AT )j‖2 ≤ 1 + ‖Tj‖2 ≤ (
√
n+ 1)‖Tj‖2 ≤ 2

√
n‖Tj‖2.
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Setting

∆T =

[

∆AT 0
0 0

]

,

we obtain the bound

‖∆Tj‖2 = ‖∆AT j‖2 ≤ 2
√
nγ̃n2‖Tj‖2. (4.23)

Since D is diagonal, the computation in Step 2 to produce the matrix R = TD
involves only a single multiplication in each entry of R. Therefore, the computed
result satisfies,

R̂i,j = (1 + δi,j)ν̂jTi,j, |δi,j | ≤ u, 1 ≤ i ≤ n, 1 ≤ j ≤ t,

where δi,j is the relative error caused by roundoff in the multiplication ν̂jTi,j . Step

3 is the inner product of two nt × 1 vectors: vec M · vec R̂. The computed result
satisfies the following bound on backward errors,

ψ̂ =
t
∑

j=1

n
∑

i=1

(1 + εi,j)Mi,jR̂i,j =
t
∑

j=1

ν̂j

n
∑

i=1

(1 + εi,j)(1 + δi,j)Mi,jTi,j ,

where εi,j is the backward error of the (i, j) entry that results from the computation
of the inner product and satisfies |εi,j | ≤ γnt. This error bound is independent of the
order of summation; the bounds may be improved by a careful ordering of the terms [5,
p. 63]. Since |δi,j | ≤ u ≤ γ1, Lemma 4.3 guarantees that (1+εi,j)(1+δi,j) = (1+ξi,j)
where |ξi,j | ≤ γnt+1. To obtain (4.22), we require a perturbation ∆M satisfying

n
∑

i=1

(1 + ξi,j)Mi,jTi,j =

n
∑

i=1

(M +∆M)i,j(T +∆T )i,j , 1 ≤ j ≤ t.

Recall that ∆T was fixed above when solving the system (I − AT )ν̃ = µ̃. Canceling
the term Mi,jTi,j from the summation and regrouping,

n
∑

i=1

(ξi,jMi,jTi,j −Mi,j∆Ti,j) =

n
∑

i=1

∆Mi,j(Ti,j +∆Ti,j), 1 ≤ j ≤ t, (4.24)

Let ξj be the jth column of the matrix ξ = (ξi,j). For each j, the left hand side of
(4.24) is the scalar quantity

bj = (ξj ⊙Mj) · Tj −∆Tj ·Mj,

where, ξj ⊙Mj is the Hadamard, or entry-wise product. The system (4.24) is equiv-
alent to (Tj +∆Tj) ·∆Mj = bj , which, for nonzero Tj +∆Tj , has as a solution

∆Mj =
bj

‖Tj +∆Tj‖22
(Tj +∆Tj). (4.25)

Using our bound on ∆T , Cauchy-Schwarz guarantees

‖Tj +∆Tj‖22 = ‖Tj‖22 + 2Tj ·∆Tj + ‖∆Tj‖22 ≥ ‖Tj‖22 − 2‖Tj‖2‖∆Tj‖2
≥ ‖Tj‖22 − 4

√
nγ̃n2‖Tj‖22 = (1− 4

√
nγ̃n2)‖Tj‖22 > 0, (4.26)
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under the assumption 1 − 4
√
nγ̃n2 > 0. Therefore, the computed ψ̂ is the exact

solution (4.20) for the inputs M +∆M,T +∆T , and µ. In (4.23) we gave bounds for
∆T . By Cauchy-Schwarz,

‖∆Mj‖2 =
|bj |‖Tj +∆Tj‖2
‖Tj +∆Tj‖22

≤ |(ξj ⊙Mj) · Tj |+ |Mj ·∆Tj |
‖Tj +∆Tj‖2

≤ γnt+1‖Mj‖2‖Tj‖2 + ‖Mj‖2‖∆Tj‖2
‖Tj +∆Tj‖2

≤ γnt+1 + 2
√
nγ̃n2

√

1− 4
√
nγ̃n2

‖Mj‖2,

by (4.23) and (4.26) and the observation ‖Tj‖2 ≤ ‖Tj‖1 = 1, since Tj is stochastic.
Finally, the bounds t ≤ n− 1 and n ≥ 1 imply that nt+1 ≤ n2, so γnt+1 ≤ γn2 ≤ γ̃n2

and we obtain (4.22).
Remark. For fixed n, (4.22) simplifies to

(1 + 2
√
n)γ̃n2

√

1− 4
√
nγ̃n2

≤ 4
√
nγ̃n2

1− 4
√
nγ̃n2

= O(
√
nγ̃n2),

as u → 0. The quantity ∆Mj obtained in (4.25) is the solution to the optimization
problem

minimize ‖∆Mj‖2
subject to (Tj +∆Tj) ·∆Mj = bj .

5. Simulations. We conducted a numerical study by computing expectations
and comparing them to a Monte Carlo simulation. We used the game Chutes and
Ladders (or Snakes and Ladders), which is characterized by a substantial number of
states (82) and exhibits a gradual drift towards the absorbing state combined with
occasional large jumps. Furthermore, this game is a good illustration of composite
Markov chains as discussed in §3.4. The MATLAB script used for computing expecta-
tions and the code for the simulations can be found in [7]. We simulated the following
events in 100 million games and determined the sample mean for each. The results
are summarized in Table 5.1.

• Second-To-Last Square: This is the number of times that a player gets “stuck”
on the second-to-last square for spinning a number larger than 1.

• Large Ladder Traversal: The number of times a player traverses the largest
ladder from square 28 to square 84.

• Game Length: The number of turns in the game.
In addition to the above events the following were simulated for a two-player game.

• Lead Changes: The number of lead changes in the game as discussed in §3.4.
• First-player Advantage: This is the indicator event for the first player winning
when both players finish on the same turn. In expectation, it is the probability
that the first player wins by virtue of being the first player.

• First-player Win Frequency: This is the indicator event for the first player
winning. In expectation, this is the probability that the first player wins.

As can be seen in Table 5.1, the results agree up to at least three significant
digits in every case. The execution time for computing expectations, shown in the
last column of the table, indicates that even moderately large problems can feasibly
be solved using this approach; the 2-player Chutes and Ladders matrix has over 6500
rows. Parallelization would permit much larger problems, however, we expect that
for large n, simulation will be faster, just as Monte Carlo integration is more efficient
than quadrature for high-dimensional problems.
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Table 5.1
Comparison of Monte Carlo simulations with computed expectations.

Sample Computed Computation
Event Mean Expectation Time (sec)

Single-Player Events

Setup 1.8(-3)
Second-To-Last Square 1.2954 1.2958 1.3(-4)

Large Ladder 0.5895 0.5896 1.0(-4)
Game Length 39.596 39.598 2.9(-4)

Two-Player Events

Setup 2.5
Second-To-Last Square 1.1159 1.1166 8.1(-3)

Large Ladder 0.8181 0.8180 3.2(-2)
Game Length 26.513 26.513 3.1
Lead Changes 3.9679 3.9679 3.4

First-Player Advantage 0.0156 0.0156 6.2(-3)
First-Player Wins 0.5078 0.5078 1.4(-1)
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