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Abstract

Let s < t be two fixed positive integers. We study sufficient minimum degree conditions for a

bipartite graph G, with both color classes of size n = k(s + t), which ensure that G has a Ks,t-

factor. Our result extends the work of Zhao, who determined the minimum degree threshold which

guarantees that a bipartite graph has a Ks,s-factor.

1 Introduction

For two (finite, loopless, simple) graphs H and G, we say that G contains an H-factor if there exist
v(G)/v(H) vertex-disjoint copies of H in G. As a synonym, we say that there exists an H-tiling of G.
Obviously, if G contains an H-factor, then v(G) is a multiple of v(H). For a fixed graph H , necessary
and sufficient conditions on the minimum-degree of G which guarantee that G contains an H-factor
were studied extensively. Results in this spirit include the Tutte 1-factor Theorem (see [7]), the Hajnal-
Szemerédi Theorem [4], and series of improving results by Alon and Yuster [1, 2], Komlós [5], Zhao and
Shokoufandeh [8], and by Kühn and Osthus [6]. In [6] the answer to the problem is settled (up to a
constant) for any H . It was shown that the relevant parameters are the chromatic number and the
critical chromatic number of H .
The additional information that G is r-partite might help to decrease the minimum-degree threshold

for G containing an H-factor. The conjectured r-partite version of the Hajnal-Szemerédi Theorem [3]
is such an example. (Recently a proof of the approximate version of the r-partite Hajnal-Szemerédi
Theorem was announced by Csaba.) In this paper we determine the threshold for the minimum-degree
of a balanced bipartite graph G which guarantees that G contains a Ks,t-factor, for arbitrary integers
s < t. If the cardinalities of both color classes of G are n, a necessary condition for G having a Ks,t-factor
is that n is a multiple of s + t. The sufficient minimum-degree condition is given in Theorem 2, and a
matching lower bound is provided in Theorem 3. Our work can be seen as an extension of the work of
Zhao [9], who investigated the case s = t.

Theorem 1 (Zhao, [9]). For each s ≥ 2 there exists a number k0 such that if G = (A,B;E) is a bipartite
graph, |A| = |B| = n = ks, where k > k0, and

δ(G) ≥
{ n

2
+ s− 1 if k is even,

n+3s
2

− 2 if k is odd,

then G has a Ks,s-factor.

Moreover, Zhao showed that the bounds in Theorem 1 are tight. We extend those results to Ks,t-
factors with s < t.
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Theorem 2. Let 1 ≤ s < t be fixed integers. There exists a number k0 ∈ N such that if G = (A,B;E)
is a bipartite graph, |A| = |B| = n = k(s+ t), with k > k0, and

δ(G) ≥
{ n

2
+ s− 1 if k is even,

n+t+s
2

− 1 if k is odd,

then G has a Ks,t-factor.

On the other hand, we show that these bounds are best possible.

Theorem 3. Let 1 ≤ s < t be fixed integers. There exists a number k0 ∈ N such that for every k > k0
there exists a bipartite graph G = (A,B;E), |A| = |B| = k(s+ t) = n, such that

δ(G) =
{ n

2
+ s− 2 if k is even,

n+t+s
2

− 2 if k is odd and t ≤ 2s+ 1,

and G does not have a Ks,t-factor.

The bounds in Theorem 2 and 3 exhibit a somewhat surprising phenomenon: for the case when k is
even the bound is independent of the value t, while for the case k is odd, the minimum-degree condition
depends on t. Moreover, we note that our results are not tight for the case t > 2s + 1 and k odd. We
are very grateful to Andrzej Czygrinow and Louis DeBiasio for drawing our attention to an oversight in
Theorem 3 in an earlier version of this note.

2 Lower bound

In this section we prove Theorem 3. We treat three cases (based on the parity of k and on the relation
between s and t) separately. The proof of Theorem 3 is constructive, i.e., we will construct a graph G
with the demanded minimum-degree and then argue that G does not contain a Ks,t-factor.
The building blocks of our constructions are the graphs P (m, p), wherem, p ∈ N. The graphs P (m, p)

were introduced in [9]. We just state their properties, which will be used throughout this section.

Lemma 4. For any p ∈ N there exists a number m0 such that for any m ∈ N,m > m0 there exists a
bipartite graph P (m, p) = (P1, P2;EP ) satisfying

• |P1| = |P2| = m,

• P (m, p) is p-regular, and

• P (m, p) does not contain a copy of K2,2.

In all constructions we assume that n is large enough.

2.1 Case k is even

For two integers m and q we write Q(m, q) to denote (any of possibly many) bipartite graph Q(m, q) =
(Q1, Q2;EQ) with the following properties:

• |Q1| = m, |Q2| = m− 2,

• Q(m, q) does not contain any K2,2,

• deg(x) ∈ {q − 1, q} for any vertex x ∈ Q1, and

• deg(y) = q for any vertex y ∈ Q2.

Such graphs Q(m, q) do exist for fixed q and large m. One way to construct them is by taking the graph
P (m, q) = (P1, P2;EP ) from Lemma 4, selecting two vertices w1, w2 ∈ P2 such that they do not share
a common neighbor in P1, and then take Q(m, q) to be the subgraph of P (m, q) induced by the vertex
sets P1, P2 \ {w1, w2}. In particular, the graph Q(m, 0) is the empty graph.
Now we describe the construction of the graph G. Partition A = A1 + A2, B = B1 + B2, |A1| =

|B1| =
n
2
+ 1, |A2| = |B2| =

n
2
− 1. The graph G is described by
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• G[Ai, Bi] is a complete bipartite graph for i = 1, 2, and

• G[A1, B2] ∼= G[B1, A2] ∼= Q(n/2 + 1, s− 1).

We have δ(G) = n
2
+ s − 2. The fact that there exists no Ks,t-factor is implied immediately by the

fact that there is no subgraph isomorphic to Ks,t whose vertices would touch both A1 and B2, or A2

and B1.

2.2 Case k is odd, 2s+ 1 ≥ t > s+ 1

Let k = 2l + 1, n = k(s + t). Note that n−t+s+2

2
is an integer. Partition A = A1 + A2 + A∗, B =

B1 +B2 +B∗, |A1| = |A2| = |B1| = |B2| =
n−t+s+2

2
, |A∗| = |B∗| = t− s− 2. The graph G is described

by

• G[Ai, Bi] is a complete bipartite graph for i = 1, 2,

• G[A∗, Bi] and G[B∗, Ai] are complete bipartite graphs for i = 1, 2,

• G[A1, B2] ∼= G[A2, B1] ∼= P (n−t+s+2

2
, s− 1),

• the graph G[A∗, B∗] is empty.

We have δ(G) = n+t+s
2

− 2. To see that G does not have a Ks,t-factor, we argue as follows. Suppose
for contradiction that G has a Ks,t-factor. Fix a Ks,t-factor of G. First, observe that there cannot be a
copy isomorphic to Ks,t intersecting both A1∪B1 and A2∪B2. Let r1 and r2 be the number of copies of
Ks,t in the tiling whose color class of size t touches A1 and B1, respectively. Let Ac and Bc be vertices
covered by these r1 + r2 copies. It holds

A1 ⊂ Ac ⊂ A1 ∪ A∗ and B1 ⊂ Bc ⊂ B1 ∪B∗ . (1)

If r1 6= r2 then ||Ac| − |Bc|| ≥ t− s, which contradicts (1). Thus, r1 = r2. We conclude that

l(s+ t) + s+ 1

s+ t
≤ r1 ≤

l(s+ t) + t− 1

s+ t
,

a contradiction to the integrality of r1.

2.3 Case k is odd, t = s+ 1

By R(m, q) we denote (any of possibly many) bipartite graph R(m, q) = (R1, R2;ER) with the following
properties:

• |R1| = m, |R2| = m− 1,

• R(m, q) does not contain any K2,2,

• for any vertex x in R1, it holds deg(x) ∈ {q − 1, q}, and

• for any vertex y in R2, it holds deg(y) = q.

For fixed q and large m the existence of such a graph R(m, q) follows by a construction analogous to the
construction of the graph Q(m, q).
Let k = 2l + 1. Partition A = A1 + A2, B = B1 + B2, |A1| = |B1| = l(s + t) + s, |A2| = |B2| =

l(s+ t) + s+ 1. The graph G is described by

• G[Ai, Bi] is a complete bipartite graph for i = 1, 2,

• G[B2, A1] ∼= G[A2, B1] ∼= R((n+ 1)/2, s− 1).

One immediately sees that δ(G) = n+t+s
2

− 2 and no Ks,t-tiling of G exists.
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3 Upper bound

We prove Theorem 2 in this section. The proof of Theorem 2 utilizes the previous work of Zhao [9]. We
will need the following lemma, which allows us to find many vertex disjoint copies of certain stars. For
h ∈ N, an h-star is a graph K1,h, its center is the unique vertex in the part of size one. Moreover, for a
graph G and two disjoint sets A,B ⊂ V (G) we define

δ(A,B) = min{deg(v,B) : v ∈ A} , ∆(A,B) = max{deg(v,B) : v ∈ A}

and

d(A,B) =
e(A,B)

|A||B|
.

Lemma 5 (Zhao, [9]). Let 1 ≤ h ≤ δ ≤ M and 0 < c < 1/(6h+7). Suppose that H = (U1, U2;EH) is a
bipartite graph such that ||Ui| −M | ≤ cM for i = 1, 2. If δ = δ(U1, U2) ≤ cM and ∆ = ∆(V2, V1) ≤ cM ,
then we can find a family of vertex-disjoint h-stars, 2(δ−h+1) of which have centers in U1 and 2(δ−h+1)
of which have centers in U2.

As in [9] we distinguish between an extremal and a non-extremal case. If we find a Ks+t,s+t-factor
in G we are done, as each copy of Ks+t,s+t can be split into two copies of Ks,t and hence we have a
Ks,t-factor. Thus the theorem stated next is just a corollary of [9, Theorem 4.1].

Theorem 6 (Zhao, [9]). For every α > 0 and positive integers s < t, there exist β > 0 and a positive
integer k0 such that the following holds for all n = k(s + t) with k > k0. Given a bipartite graph
G = (A,B;E) with |A| = |B| = n, if δ(G) > (1

2
− β)n, then either G contains a Ks,t-factor, or there

exist
A1 ⊂ A, B1 ⊂ B such that |A1| = |B1| = ⌊n/2⌋, d(A1, B1) < α.

Therefore, we reduce the problem to the extremal case. Let α = α(t) > 0 be small. As in the proof
of Theorem 11 in [9], define

A′

1=
{

x ∈ A : deg(x,B1) < α
1

3
n
2

}

, B′

1=
{

x ∈ B : deg(x,A1) < α
1

3
n
2

}

,

A′

2=
{

x ∈ A : deg(x,B1) > (1− α
1

3 )n
2

}

, B′

2=
{

x ∈ B : deg(x,A1) > (1− α
1

3 )n
2

}

,

A0=A−A′

1 −A′

2, B0=B −B′

1 −B′

2,
G1=G[A′

1, B
′

1], G2=G[A′

2, B
′

2].

Similarly as in the proof of Theorem 11 in [9], we assume that removing any edge from G would violate

the minimum-degree condition and then change A′

i and B
′

i a little so that ∆(G1),∆(G2) < α
1

9n. Vertices
in A0 ∪B0 are called special.

3.1 k is even

To exhibit the existence of a tiling in this case, it is sufficient to translate carefully the proof of Case I
of Theorem 11 from [9]. We give a sketch of the proof below and refer the reader to the corresponding
places in [9] for more details.
Set V = (A′

1, B
′

1, A
′

2, B
′

2). First assume, that no member of V contains more than n/2 vertices. We
add vertices from A0 and B0 into sets of V in such a way, that every set has size exactly n/2. Then, we
may apply arguments used in [9], based on Hall’s Marriage Theorem, to find a Ks+t,s+t tiling.
Next, assume that there is only one set in V which has more than n/2 elements. Without loss of

generality, assume that it is A′

2, i.e., |A
′

2| = c > n/2. Lemma 5 applied to the graph G[A′

2, B
′

2] yields
the existence of c − n/2 disjoint s-stars with centers in A′

2. We move the centers of the stars into A′

1

and extend each of the stars into a copy of Ks,t (each of these copies lies entirely in A′

1 ∪ B′

2, with
the color class of size s being contained in B′

2). We distribute vertices of B0 into B′

1 and B′

2 so, that
|B′

1| = |B′

2| = n/2. Then, it is easy to finish the entire tiling. This is done in three steps. In the
first step, we find in an arbitrary manner c − n/2 copies of Ks,t (disjoint with the previous ones) in
G[A′

1, B
′

2] placed in such a way, that the color-class of size s lies in A′

1. This step ensures us, that the
cardinalities of untiled (i.e., those vertices which are not covered by the partial Ks,t-factor) vertices in
the both color-classes of G[A′

1, B
′

2] are equal and divisible by s + t. In the second step, all yet untiled
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vertices of G[A′

1, B
′

2] which were originally special vertices are tiled. In the third step, the tiling is in an
analogous manner defined for G[A′

2, B
′

1].
Now, assume that two diagonal sets of V , say A′

2 and B′

1 have sizes more than n/2. Then we apply
separately Lemma 5 to G[A′

2, B
′

2] and G[A′

1, B
′

1] to obtain families SA and SB of disjoint s-stars with
centers in A′

2 and B′

1, such that |A
′

2| − |SA| = |B′

1| − |SB| = n/2. We move the centers of the stars to
A′

1 and B′

2 and proceed as in the previous case.
The remaining case is when two non-diagonal sets from V have size more than n/2. Assume these

are A′

2 and B′

1. We apply Lemma 5 to the graph G[A′

2, B
′

2] to obtain families SA,SB of disjoint s-stars
with centers in A′

2 and B′

2, such that |A
′

2| − |SA| = |B′

2| − |SB | = n/2. We proceed as in the previous
cases.

3.2 k is odd

Let k = 2l+ 1. We say that a set of special vertices (A0 and/or B0) is small if its size is less than t− s.
Otherwise, it is called big.
We distinguish four cases.

• Both A0 and B0 are small. Then there exist i, j ∈ {1, 2}, such that |A′

i|, |B
′

j | ≥ l(s+ t) + s+ 1. If
i = j, then we apply Lemma 5 to the graph Gi and find families SA, SB of pairwise disjoint s-stars
with centers in A′

i and B′

i respectively, so that |A
′

i| − |SA| = |B′

i| − |SB | = l(s+ t) + s. Move the
centers of the stars in A′

3−i and B′

3−i. After the changes we shall tile two graphs: G[A′

1, B
′

2] and
G[A′

2, B
′

1]. Note, that both those graphs are not balanced. The tiling procedure is analogous to
the previous cases (when k is even); the only difference is that one copy of Ks,t has to be found in
the graphs first to make each of them balanced.

If i 6= j, we can assume that |A′

j |, |B
′

i| ≤ l(s + t) + s. Since if this does not hold, then we could
change one index and continue as in the case when i = j. We will show that one can add vertices
to A′

j and to B′

i so that |A
′

j | = l(s + t) + s and |B′

i| = l(s + t) + t. Then, the existence of the
tiling will follow by standard arguments. We apply Lemma 5 to the graph Gj to obtain a family of
|B′

j | − (l(s+ t) + s) vertex disjoint s-stars with centers in B′

j and end-vertices in A′

j . If we moved
all the centers to B′

i and all the vertices of B0, the cardinality of B
′

i would be

|B′

i|+ (|B′

j | − (l(s+ t) + s)) + |B0| = l(s+ t) + t .

The same applies for A′

j . Therefore, by removing some of the vertices, we may attain |A′

j | =
l(s+ t) + s and |B′

i| = l(s+ t) + t. Then, the existence of a tiling follows.

• A0 is small and B0 is big. Then at least one B
′

i (say B
′

2) has at most l(s+ t)+s vertices. Lemma 5
asserts that we can find a family SB of disjoint s-stars with centers in B′

1 and end-vertices in A′

1,
such that |B′

1| − |SB| ≤ l(s+ t) + s. This implies, that we can find vertices (in B0 or centers of the
stars of SB) which can be moved to B

′

2 so that |B
′

2| = l(s+ t) + t.

As A0 is small, one of A
′

1 and A
′

2 must have at least l(s+ t)+s+1 vertices. The tiling can be found
by standard arguments if we achieve to have |A′

1| = l(s + t) + s. If |A′

1| > l(s + t) + s, Lemma 5
yields existence of a family SA of disjoint s-stars with centers in A′

1 and end-vertices in B′

1 such
that |A′

1|−|SA| = l(s+t)+s. Moving the centers to A′

2, we achieve |A
′

1| = l(s+t)+s. Assume that
|A′

1| ≤ l(s+ t)+s. The size of A′

2 is k(s+ t)−|A′

1|− |A0| > l(s+ t)+s. Lemma 5 yields existence of
a family SA of disjoint s-stars in G2 centered in A

′

2 with the property that |A
′

1|+ |SA| = l(s+ t)+s.
Moving the centers to A′

1 yields demanded A′

1 = l(s+ t) + s.

• A0 is big and B0 is small. The analysis of this case is analogous to the previous one.

• Both A0 and B0 are big. We shall show in the next paragraph, that we can achieve A
′

1 to be of
size l(s + t) + s and of size l(s + t) + t. An analogous procedure can be used to show the same
property for the set B′

1. Then, the existence of the tiling follows immediately; one prescribes the
cardinalities of A′

1 and B′

1 to be equal to the same number l(s+ t) + s.

If |A′

i ∪ A0| < l(s + t) + t for some i ∈ {1, 2}, then we have |A′

3−i| > l(s + t) + s. Appealing to
Lemma 5 we can remove centers of s-stars from A′

3−i in such a way that |A
′

3−i| = l(s + t) + s.
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Also, by moving t − s vertices from the big set A0 to A
′

3−i arrive at |A
′

3−i| = l(s + t) + t. Then,
the partial Ks,t-tiling can be extended to a Ks,t-factor.

Finally, if both |A′

1| ≤ l(s+ t)+ s and |A′

2| ≤ l(s+ t)+ s then we redistribute some vertices (again,
appealing to Lemma 5, and using the set A0) to arrive at the situation when |A′

1| = l(s+ t) + s,
|A′

2| = l(s+ t) + t. Then the tiling can be extended as before.
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