
ON THE INHERENT SEQUENTIALITY OF CONCURRENT
OBJECTS

FAITH ELLEN∗, DANNY HENDLER† , AND NIR SHAVIT‡

Abstract. We present Ω(n) lower bounds on the worst case time to perform a single instance
of an operation in any non-blocking implementation of a large class of concurrent data structures
shared by n processes. Time is measured by the number of stalls a process incurs as a result of
contention with other processes. For standard data structures such as counters, stacks, and queues,
our bounds are tight. The implementations considered may apply any primitives to a base object.
No upper bounds are assumed on either the number of base objects or their size.

Key words. Distributed data structures, Lower bounds, Covering, Memory contention

AMS subject classifications. 68Q25, 68W15

1. Introduction. The effective parallelization of shared data structures is a key
element in the design of scalable applications for coming generations of multicore
processors. A key question that arises is whether some widely used sequential data
structures such as counters, queues, and stacks, can be effectively parallelized. Ac-
cording to folklore, they are inherently sequential. Informally, this means that, in any
parallel implementations of these data structures, the measurable (“wall clock”) time
it takes to perform n operations, each by a different process, is no better than that of
sequential implementations, that is, n times the cost of a single operation. This paper
presents tight time complexity bounds that formally prove the inherently sequential
nature of many shared data structures.

To formally model inherently sequential data structures, we address their consis-
tency, progress, and time complexity. The standard consistency condition for shared
data structures is linearizability [21]. It captures the notion that operations must ap-
pear to be atomic, even though they may overlap in time. The progress condition we
consider is obstruction-freedom [18]. Lower bounds for it imply the same lower bounds
for stronger non-blocking progress conditions such as wait-freedom and lock-freedom
[19].

In a realistic multiprocessor setting, the time for performing data structure oper-
ations is dominated by the cost of accessing memory. Moreover, as suggested in the
pioneering work of Dwork, Herlihy, and Waarts [10] and Gibbons, Matias, and Ra-
machandran [14, 15], realistic memory access costs must take into account not only
the time to perform an operation on an object, but also the delays resulting from
waiting for other processes that access the object at the same time. These delays,
called stalls, are an inherent part of multiprocessor behavior [7] and affect the mea-
surable time of operations. To capture this real world behavior, researchers such as
Merritt and Taubenfeld [25], Cypher [9], and Anderson and Kim [2] use a worst case
time complexity measure that counts both the number of accesses to shared objects
and the number of stalls incurred.

As an example, consider the question of providing a non-blocking linearizable
implementation of a shared counter. If the hardware supports a fetch&increment op-
eration, then the simplest way of implementing a counter shared by n processes is to

∗University of Toronto, Canada (faith@cs.toronto.edu).
†Ben-Gurion University, Israel (hendlerd@cs.bgu.ac.il).
‡Massachusetts Institute of Technology, USA and Tel-Aviv University, Israel

(shanir@cs.tau.ac.il).

1

2 F. ELLEN, D. HENDLER, AND N. SHAVIT

have all processes share a single object on which each performs fetch&increment oper-
ations. Unfortunately, this centralized implementation has a serious drawback: in the
situation where all processes attempt to access the counter simultaneously, one pro-
cess will have to wait for the other n− 1 processes to complete their fetch&increment
operations. According to our measure, it will execute one fetch&increment and incur
n − 1 stalls. One can think of a stall as taking the same time as it takes another
process to complete its fetch&increment. In this case, the measurable time the n
concurrent operations take from start to finish is at least the time it would take to
execute the operations sequentially, one after the other. The literature does contain
other, highly decentralized, non-blocking coordination structures, such as counting
networks [4, 20], that use multiple objects supporting read-modify-write operations to
implement shared counters. However, all such structures provide counters that either
have linear worst case time complexity or are not linearizable [20, 26, 27]. The results
we present in this paper show that this is not a coincidence: a counter is indeed an
inherently sequential data structure. There is no decentralized implementation that
has better worst case time complexity than the centralized solution.

The counter is just one example. Although non-blocking data structures are
widely available and have been deployed in real-world software packages [23], in many
cases, we still lack a basic understanding of the limitations to achieving high scalability
in their design. For many of the standard concurrent data structures, including coun-
ters, queues, and stacks, the best non-blocking linearizable implementations known,
using any read-modify-write primitives, have Θ(n) time complexity. The best previ-
ous lower bounds on the time complexity of implementing these data structures from
arbitrary read-modify-write primitives were Ω(

√
n) [16]. Thus, it was open whether

the linear upper bounds were inherent.

This paper provides linear lower bounds on the worst case number of stalls per
operation in linearizable obstruction-free concurrent implementations of a large class
of objects, including common data structures such as counters, queues, and stacks,
from arbitrary read-modify-write primitives. Note that any operation on a single
shared object can be expressed as a read-modify-write primitive.

We use a new variant of a covering argument [8, 13] to prove linear lower bounds
for implementations of objects in a new class, G, that includes shared counters [20]
and single-writer snapshots [1, 3, 6]. Covering arguments bring processes to a state
in which they are poised to overwrite certain shared objects, causing a loss of infor-
mation, which leads to incorrect behavior. Unlike previous covering arguments, ours
does not hide information. Rather, processes are brought to states where they will
access objects concurrently with other processes, thus incurring memory stalls. We
build an execution in which, in the course of performing a single high level operation,
we cause a process to incur a sequence of n − 1 stalls, one with every other process
in the system. It does not matter for the proof whether these stalls are on the same
or different objects. The implication is that, if measured by a wall clock, the time
it would take for all the operations to complete is at least linear in the number of
processes.

This lower bound proof does not apply to implementations of objects such as
queues and stacks. However, we are able to prove a similar result for such implemen-
tations by way of a reduction. For example, if we initialize a queue with sufficiently
many consecutive integers, we obtain an implementation of a counter that can sup-
port a bounded number of fetch&increment operations, each simulated by a single
dequeue operation. Under the assumption that each instance of the dequeue opera-

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 3

tion accesses a bounded number of distinct base objects, we construct an execution
of bounded length, in which n− 1 stalls are incurred by a process performing a single
instance of fetch&increment.

The rest of this paper is organized as follows. Section 2 begins with a survey
of the recent related work. Section 3 describes the model we consider. We define
the class of objects G and prove the lower bound for this class in Sections 4 and 5,
respectively. In Section 6, we present the reduction that extends our linear time lower
bound to stacks and queues.

2. Related Work. There is an extensive body of work on lower bounds in shared
memory computation. The interested reader can find a survey in [13]. For the sake
of brevity, we focus on recent work aimed at deriving lower bounds for implementing
common data structures on real machines.

Jayanti, Tan, and Toueg [22] also use a covering argument to prove linear time
and space lower bounds for implementations of perturbable objects from historyless
primitives [12] and resettable consensus. Their time lower bounds are different than
ours for a number of reasons: They count the number of shared memory accesses,
not stalls. Unlike the class G, defined in Section 4, the class of perturbable objects is
defined in terms of low-level executions. In our opinion, this makes the definition of
perturbable somewhat more difficult to understand and use. Finally, the set of histo-
ryless primitives they consider is a restricted subset of the class of all read-modify-write
primitives, which we consider. Many real-world primitives, such as fetch&increment,
load-linked, store-conditional, and compare&swap are not historyless. In fact, objects
that support only historyless primitives have consensus number at most 2 [17].

Dwork, Herlihy, and Waarts [10] give the first formal complexity model for con-
tention in shared-memory multiprocessors. They introduce the notion of stalls in
order to capture the delays incurred by processes while waiting to access shared lo-
cations. The idea was that stalls are reflected in the observed execution time for
processes. They derive lower bounds on the number of stalls incurred by wait-free
implementations of counting networks and consensus objects.

Gibbons, Matias, and Ramachandran introduce the Queue-Read Queue-Write
(QRQW) asynchronous PRAM model [14]. Their model allows concurrent reads and
writes to shared memory locations, each of which is viewed as having a queue which
can service a single request at a time.

Hendler and Shavit prove Ω(
√
n) time lower bounds on a class of objects called

Influence(n), that includes objects such as linearizable queues, stacks, counters and
hash tables [16]. They prove that any lock-free implementation of such objects has
an execution in which some operation either has to access Ω(

√
n) distinct objects, or

incurs Ω(
√
n) memory stalls.

3. Model. We consider a standard model of an asynchronous shared memory
system [17, 24], in which processes communicate by applying operations to shared
objects.

An object is an instance of an abstract data type. It is specified by a set of possible
values, an initial value (which may differ according to the algorithm), and a set of
operations that provide the only means to manipulate the object. The application of
an operation by a process to a shared object can change the value of the object. It
also returns a response to the process that can change its state. The resulting value
of the object and the response can depend on the value of the object prior to the
application of the operation and which process applies it.

4 F. ELLEN, D. HENDLER, AND N. SHAVIT

An implementation of an object that is shared by a set of n processes provides
a representation for the object from a set of shared base objects, each of which is
assigned an initial value, and algorithms for each process to perform each operation
on the object being implemented. To avoid confusion, we say that an operation is
performed on an implemented object and a primitive is applied to a base object.
Since we are considering lower bounds on worst case complexity, we may assume,
without loss of generality, that all primitives are determinstic: Allowing an adversary
to choose how primitives behave can’t make the proofs harder.

We consider RMW base objects, which support a set of read-modify-write primi-
tives. A read-modify-write primitive applied by a process to a base object atomically
updates the value of the object with a new value, which is a function g(v, w) of the old
value v and any input parameters w, and returns a response h(v, w) to the process.

Fetch&add is an example of a read-modify-write primitive. Its update function
is g(v, w) = v + w, and its response value is v, the previous value of the base object.
Fetch&increment is a special case of fetch&add where w always equals 1. Read is
also a read-modify-write primitive. It takes no input, its update function is g(v) = v
and its response function is h(v) = v. Write is another example of a read-modify-
write primitive. Its update function is g(v, w) = w, and its response function is
h(v, w) = ack. A read-modify-write primitive is trivial if g(v, w) = v, so it never
changes the value of the base object to which it is applied; otherwise, it is nontrivial.
Read is an example of a trivial primitive; write and Fetch&increment are examples of
nontrivial primitives.

A historyless primitive either never changes the value of the object (it is trivial) or
always changes it to a new value that does not depend on its current value (g(v, w) is
not a function of v). Read and write are examples of historyless primitives. Fetch&add
is an example of a primitive that is not historyless. An object is historyless if it
supports only historyless primitives.

An event consists of a process, a base object, and a primitive, together with values
for its input parameters, which is applied by the process to the base object. We say
that the process applies the event and that the process or the event accesses the base
object. An event whose primitive is nontrivial is called a nontrivial event.

Suppose a process p wants to perform an operation on an implemented object O.
The implementation of O provides an algorithm for performing this operation, which
p executes. While executing this algorithm, p does local computation and applies
primitives to base objects. Which events are applied by p while it is performing
an operation on an implemented object may depend on input parameters to the
operation, the responses it received from events that it applied previously, and, hence,
indirectly, on events that other processes applied.

A configuration describes the value of each object and the state of each process.
An execution is a (finite or infinite) sequence of events in which, starting from an initial
configuration, each process applies events and changes state according to its algorithm,
based on the responses it receives. Any prefix of an execution is an execution. If EE′

is an execution, then the sequence of events E′ is called an extension of E. The value
of a base object r in the configuration that results from applying all the events in a
finite execution E is called r’s value immediately after E. If no event in E changes
the value of r, then r’s value immediately after E is the initial value of r.

An operation instance is an operation (together with values for its input parame-
ters) by a specified process on the implemented object. In an execution, each process
performs a sequence of operation instances. A process can perform only one operation

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 5

instance at a time. The events of an operation instance applied by some process can
be interleaved with events applied by other processes. If the last event of an operation
instance Φ has been applied in an execution E, we say that Φ completes in E. In this
case, we call the value returned by Φ in E the response of Φ in E. We say that a
process p is active immediately after a finite execution E if, in E, p has applied at
least one event of some operation instance Φ and Φ is not complete in E. We say
that a process is idle immediately after E if, during E, it completes every operation
instance that it starts. If p is not active, then we can treat it as if it is idle, since
any local steps it has performed since last completing an operation instance do not
affect other processes. In an initial configuration, each base object has its initial value
and all processes are idle. If a process is active in the configuration resulting from
a finite execution, then it has exactly one enabled event. This is the next event the
process will apply, according to the algorithm it is using to apply its current opera-
tion instance to the implemented object. If a process is idle, the first event of any
operation instance that can be performed by that process is enabled. If a process p
has an enabled event e immediately after execution E, we say that p is poised to apply
e immediately after E.

If the sequence of events applied by a process is the same in two executions and
each of these events returns the same response in both executions, then the executions
are indistinguishable to the process. If two finite executions are indistinguishable to
a set P of processes and the value of each base object in a set S is the same at the
end of both executions, then any sequence of events by processes in P that only apply
primitives to objects in S is either an extension of both of these executions or neither.
In the first case, the resulting executions are indistinguishable to all processes in P .

A linearization of an execution [21] is an ordering of all complete operation in-
stances and a subset of the incomplete operation instances in the execution such that,
if Φ completes in the execution before Φ′ begins, then Φ appears before Φ′ in the or-
dering. Furthermore, the results of each of these operation instances in the execution
are the same as the results of the corresponding operation instance in the sequential
execution in which the operation instances are performed in that order and which is
consistent with the specification of the implemented object. An implementation is
linearizable if all its executions are linearizable. Throughout this paper, we assume
that all implementations are linearizable, unless otherwise noted.

A sequence of events E is p-free if process p applies no events in E. In a solo
sequence of events, all events are by the same process. An implementation satisfies
solo-termination [12] if, for each finite execution and each process active immediately
after that execution, there is a finite solo extension in which the process completes
its operation instance. An implementation is obstruction-free [18] if it satisfies solo
termination.

In shared-memory systems, when multiple processes attempt to apply nontrivial
events to the same object simultaneously, the events are serialized and operation
instances incur stalls. Stalls capture the real world behavior of a multiprocessor
machine’s memory and interconnection medium, which handle multiple accesses to a
single shared memory location sequentially.

Definition 3.1. Let e be an event applied by a process p as it performs an oper-
ation instance Φ in an execution E = E0e1 · · · ekeE1, where e1 · · · ek is the maximal
consecutive sequence of events immediately preceding e that apply nontrivial primi-
tives to the same base object accessed by e and that are applied by distinct processes
different than p. Then e incurs k memory stalls in E. The number of stalls incurred

6 F. ELLEN, D. HENDLER, AND N. SHAVIT

by Φ in E is the sum of the number of memory stalls e incurs in E, over all events
e of Φ in E.

On a real machine, the stalls incurred by a process and the events the process
applies are reflected in the observed “wall clock” execution time for the process. For
many of the objects we consider, each operation can be implemented using a single
read-modify-write event. In this case, when k operations are performed concurrently,
the worst case time complexity of one operation is proportional to the time to complete
all k operations in a sequential implementation. This is because there is an execution
in which the event associated with one of these operations incurs k memory stalls.

The interested reader should note that Definition 3.1 is slightly stricter than the
original definition by Dwork, Herlihy, and Waarts [10]. (Thus, our lower bounds
also apply to their definition.) Their definition also includes stalls caused by events
applying trivial primitives such as read. Our definition is also stricter than that of
the Asynchronous QRQW model of Gibbons, Matias, and Ramachandran [14], which
only allows read, write, and test&set primitives and counts stalls due to all of these.

4. The Class G. In this section, we define a general class G of objects to which
our lower bound applies. It is closely related to the class of perturbable objects [22].
Whether an object belongs to the class G only depends on its sequential specification.
Roughly, any object in this class has an initial value, a process p, and an operation
such that, for sequences of operation instances in which p performs one instance Φ of
this operation (and no instances of any other operations), it is possible to change Φ’s
response by having another process q′ perform additional operation instances prior to
Φ.

Definition 4.1. An object O shared by n processes is in the class G if it has an
initial value, a process p, an instance Φ of an operation on O by p, and an infinite
sequence Υq of operation instances on O by each process q 6= p such that, for every
process q′ 6= p and for every interleaving AA′ of finite prefixes of Υq, one for each
q 6= p, where

• each operation instance in A′ is by a different process and
• A′ is q′-free,

there is a finite prefix QQ′ of Υq′ , such that Q is the sequence of operation instances
performed by q′ in A and, for every interleaving HH ′ of QQ′ and the sequences of
operation instances performed by each other process in AA′, where

• each operation instance in H ′ is by a different process,
• H ′ is q′-free, and
• for all q 6= p, q′, all or all but one of the operation instances by process q

precedes Q′ in HH ′,
the responses of Φ are different when AΦ and HΦ are each performed on O starting
with its initial value.

Informally, if the operation instances in Q′ are performed before Φ and after the
other operation instances in AA′, except for possibly the last operation instance by
each process q 6= q′, then Φ is guaranteed to have a different response. The reason for
allowing different interleavings is to capture the possibility of different linearizations
in different executions.

The following result is a simple consequence of Definition 4.1.
Proposition 4.2. If an object O ∈ G can be implemented from an object O′ so

that each instance of an operation on O involves one instance of an operation on O′,
then O′ ∈ G. In particular, if every operation supported by an object O ∈ G is also
supported by object O′, then O′ ∈ G.

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 7

Many common objects are in G. Furthermore, determining whether an object is
in G is relatively easy. We present a few examples of such proofs. They are similar
to, but simpler than, analgous proofs in [22].

A modulo-m counter is an object whose set of values is the set {0, 1, . . . ,m−1}, for
some m > 1. It supports a single parameterless operation, fetch&increment modulo
m. The fetch&increment modulo m operation atomically increments the value of the
object to which it is applied and returns the previous value of the object, unless the
object has the value m − 1, in which case, it sets the value of the object to 0 (and
returns m− 1).

Proposition 4.3. A modulo-m counter object shared by n ≤ m processes is in
G.

Proof. Consider a modulo-m counter with initial value 0 and any two processes
p and q′. The only operation supported by a modulo-m counter is fetch&increment
modulo m.

Let AA′ be any finite p-free sequence of instances of fetch&increment modulo m
performed on this object such that each operation instance in A′ is by a different
process and A′ is q′-free. Let a and a′ denote the number of operation instances in A
and A′, respectively. Then a mod m is the response of Φ in AΦ and a′ ≤ n− 2.

Let Q denote the (possibly empty) sequence of operation instances performed
by q′ in A. Let Q′ be a sequence of b = n − a′ − 1 instances of fetch&increment
modulo m by process q′. Consider any interleaving HH ′ of QQ′ and the sequences
of operation instances performed by each other process in AA′. Suppose that each
operation instance in H ′ is by a different process and H ′ is q′-free. Then H ′ contains
at most n− 2 operation instances and H contains between a+a′+ b− (n− 2) = a+ 1
and a+a′+ b = a+n−1 operation instances. Thus the response of Φ in HΦ must be
one of the values (a+ 1) mod m, (a+ 2) mod m, . . . , (a+n− 1) mod m. Since n ≤ m,
none of these values is equal to a mod m.

A counter is an object whose set of values is the integers. It supports a single
parameterless operation, fetch&increment, that atomically increments the value of
the object to which it is applied and returns the previous value of the object. A
modulo-m counter can be implemented from a counter: To perform fetch&increment
modulo m, it suffices to perform fetch&increment and take the remainder when the
value returned is divided by m. Thus, it follows from Propositions 4.2 and 4.3 that
a counter shared by any number of processes is in G. Fetch&add takes one integer
parameter and adds it to the object to which it is applied. Since it is a generalization
of fetch&increment, fetch&add objects are also in G.

The value of a single-writer binary snapshot object is a binary vector of compo-
nents, one for each process. It supports two operations: scan and update. For each
v ∈ {0, 1}, the operation instance update(v) by process p sets the value of the compo-
nent for p to v. A scan operation instance returns a vector consisting of the values of
the n components.

Proposition 4.4. A single-writer binary snapshot object is in G.
Proof. Consider a single-writer binary snapshot object with initial value 0 in every

component. Let Φ be an instance of a scan operation by some process p and, for each
q 6= p, let Υq be an alternating sequence of instances of update(1) and update(0)
operations by process q. Let AA′ be any interleaving of finite prefixes of Υq, one for
each q 6= p, such that each operation instance in A′ is by a different process and A′ is
q′-free for some process q′ 6= p. Let Q be the (possibly empty) sequence of operation
instances performed by q′ in A. Let QQ′ be the prefix of Υq′ that contains one more

8 F. ELLEN, D. HENDLER, AND N. SHAVIT

operation instance than Q.
Consider any interleaving HH ′ of QQ′ and the sequences of operation instances

performed by each other process in AA′ such that H ′ is q′-free. Then the responses
of Φ in AΦ and HΦ differ in the component for q′.

An m-valued compare&swap object, for any positive integer m, has the set of
values {0, 1, . . . ,m− 1}. It supports the operations read and compare&swap(u,v) for
all u, v ∈ {0, . . . ,m − 1}. If the value of the object is u, the compare&swap(u,v)
operation atomically changes the value of the object to v and returns true; otherwise
the object’s value is not changed and the operation returns false.

Proposition 4.5. An m-valued compare&swap object shared by n ≤ m processes
is in G.

Proof. Consider an m-valued compare&swap object with initial value 0. Let Φ be
an instance of a read operation by some process p. For each j ∈ {0, . . . ,m−1}, let αj

denote the sequence of operation instances compare&swap(1,j), compare&swap(2,j),
. . ., compare&swap(m-1,j) and, for each q 6= p, let Υq = (αn−1

0 · · ·αn−1
m−1)∗.

Let AA′ be any interleaving of finite prefixes of Υq, one for each q 6= p, such that
each operation instance in A′ is by a different process and A′ is q′-free for some process
q′ 6= p. Let Q be the (possibly empty) sequence of operation instances performed by
q′ in A. Let u be the value returned by Φ in AΦ.

Let v ∈ {0, . . . ,m − 1} − {u} be different from the first argument of the last
instance of compare&swap performed by process q in AA′ for all q 6= p, q′ such that
AA′ is not q-free. The existence of v follows from the assumption that m ≥ n. Let
QQ′ be any finite prefix of Υq′ such that Q′ ends in αn−1

v .
Consider any interleaving HH ′ of QQ′ and the sequences of operation instances

performed by each other process in AA′, where each operation instance in H ′ is by a
different process, H ′ is q′-free, and for all q 6= p, q′, all or all but one of the operation
instances by process q precedes Q′ in HH ′. Then H = H ′′αvα

′′, where each instance
of compare&swap in α′′ either has its first component different than v or its second
component equal to v. Regardless of what value the m-valued compare&swap object
has immediately after H ′′, its value immediately after H ′′αv is v and it remains v
after every remaining operation instance in H. Then the response of Φ in HΦ is
v 6= u.

A binary LL/SC object has values (b, S), where b ∈ {0, 1} and S is any subset of
the processes. It supports two operations load-linked and store-conditional. Suppose
a binary LL/SC object has value (b, S). If process p performs load-linked, then p is
added to the set S, if it is not already in S, and the value b is returned. Now consider
the result when process p performs store-conditional(b′), for b′ ∈ {0, 1}. If p ∈ S,
then true is returned and the new value of the object is (b′, φ). If p 6∈ S, then false is
returned and the value of the object does not change.

Proposition 4.6. A binary LL/SC object is in G.
Proof. Consider binary LL/SC object with initial value (0, φ). Let Φ be an

instance of a load-linked operation by some process p. For each process q 6= p, let

Υq = ((load-linked, store-conditional(1))n−1(load-linked, store-conditional(0))n−1)∗.

Let AA′ be any interleaving of finite prefixes of Υq, one for each q 6= p, such that each
operation instance in A′ is by a different process and A′ is q′-free for some process
q′ 6= p. Let Q be the (possibly empty) sequence of operation instances performed by
q′ in A. Let u be the value returned by Φ in AΦ. Let QQ′ be any finite prefix of Υq′

such that Q′ ends in (load-linked, store-conditional(1− u))n−1.

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 9

Consider any interleaving HH ′ of QQ′ and the sequences of operation instances
performed by each other process in AA′, where each operation instance in H ′ is
by a different process, H ′ is q′-free, and for all q 6= p, q′, all or all but one of the
operation instances by process q precedes Q′ in HH ′. Then H = H ′′αα′′, where
α = load-linked, store-conditional(1 − u) by process q′ and α′′ consists of instances
of load-linked, instances of store-conditional(1 − u) by process q′, and instances of
store-conditional by processes q 6= p, q′ that do not perform load-linked in α′′.

Regardless of what value the binary LL/SC object has immediately after H ′′, its
value immediately after H ′′α is (1−u, φ) and the value of its first component remains
1− u after every remaining operation instance in H. Thuus the response of Φ in HΦ
is 1− u 6= u.

Next, we prove that two other common objects are not in G. A stack is an
object whose value is any finite list of elements from some domain V . It supports
two operations. For v ∈ V , push(v) appends v to the end of the list and returns an
acknowledgement. If the list is nonempty, pop removes the last element from the list
and returns it; otherwise, it simply returns a special symbol ⊥ 6∈ V .

Proposition 4.7. A stack is not in G.

Proof. Suppose a stack is in G. Then there exist an initial configuration, an
operation instance Φ by some process p, and a sequence of operation instances Υq,
for each process q 6= p, that satisfy the conditions of Definition 4.1.

Since a push operation only returns an acknowledgement, Φ has to be an instance
of pop. If Υq contains only instances of pop for all q 6= p, then, starting from the
initial configuration, after any sufficiently long interleaving of prefixes of Υq, one for
each q 6= p, the stack is empty and Φ returns ⊥. This contradicts Definition 4.1.
Therefore, there is a sequence Υq that contains at least one instance of push.

Let A be the shortest prefix of Υq that ends in an instance of push. Let a be the
value pushed by the last operation instance in A. Let Q′ be any finite prefix of Υq′

for some q′ 6= p, q. Let H be any interleaving of A and Q′ that ends in an instance
of push(a). Then Φ returns a in both AΦ and HΦ. This contradicts Definition 4.1.

A queue is also an object whose value is any finite list of elements from some
domain V and which supports two operations. For v ∈ V , enqueue(v) appends v to
the end of the list and returns an acknowledgement. If the list is nonempty, dequeue
removes the first element from the list and returns it; otherwise, it simply returns a
special symbol ⊥ 6∈ V .

Proposition 4.8. A queue is not in G.

Proof. Suppose a queue is in G. Then there are an initial configuration, an
operation instance Φ by some process p, and a sequence of operation instances Υq,
for each process q 6= p that satisfy the conditions of Definition 4.1.

Since an enqueue operation only returns an acknowledgement, Φ has to be an
instance of dequeue. If Υq contains only instances of dequeue for all q 6= p, then,
starting from the initial configuration, after any sufficiently long interleaving of pre-
fixes of Υq, one for each q 6= p, the queue is empty. Thus, Φ returns ⊥ in both AΦ
and AQ′Φ, contrary to Definition 4.1. Therefore, there is a sequence Υq, for some
process q 6= p, which contains at least one instance of enqueue.

Let δe be the shortest prefix of Υq that ends in an instance of enqueue. Let
a be the value enqueued in e. Let ` ≥ 0 be the number of elements in the queue
immediately after δ has been performed starting from the initial configuration.

Let q′ 6= q, p be any other process. If Υq′ contains fewer than ` dequeues, let

10 F. ELLEN, D. HENDLER, AND N. SHAVIT

A = δeQ, where Q is the shortest prefix of Υq′ that contains all of its dequeues. Then
for any finite prefix QQ′ of Υq′ , the response of Φ is the same in AΦ and AQ′Φ,
contrary to Definition 4.1. Therefore, Υq′ contains at least ` dequeues.

Let Q be the shortest prefix of Υq′ that contains ` dequeues and let A = δeQ.
Then Φ returns a in AΦ. Consider any prefix QQ′ of Υq′ . Let `′ ≥ 0 be the number of
elements in the queue immediately after δQQ′ is performed starting from the initial
configuration. Then QQ′ contains at least `′ enqueues. Let σ′ be the shortest suffix of
QQ′ that contains `′ enqueues and let σ denote the remainder of QQ′, i.e. σσ′ = QQ′.
After H = δσeσ′, the queue contains `′ + 1 elements, beginning with a. Thus, Φ
returns a in HΦ. This contradicts Definition 4.1.

5. A Time Lower Bound for Objects in G. In this section, we prove a linear
lower bound on the worst case number of stalls incurred by an operation instance in
any obstruction-free implementation of an object in class G. To do this, we use a
covering argument. However, instead of using poised processes to hide information
from a certain process, we use them to cause an operation instance by this process to
incur n−1 stalls. Specifically, we construct an execution containing a single operation
instance performed by process p that incurs one stall as a result of contending for an
object with a single nontrivial event by each of the other processes. We call this an
(n− 1)-stall execution. It is formally defined as follows.

Definition 5.1. Let E be a set of executions of an implementation of an object
O. An execution Eσ1 · · ·σi ∈ E is a k-stall E-execution of object O for process p if

• E is p-free,
• there are distinct base objects O1, . . ., Oi and disjoint sets of processes S1,
. . ., Si whose union has size k such that, for j = 1, . . . , i,

– each process in Sj is poised to apply a nontrivial event to Oj immediately
after E, and

– in σj, process p applies events by itself until it is poised to apply its first
event to Oj, then each of the processes in Sj accesses Oj, and, finally,
p accesses Oj,

• all processes not in S1 ∪ · · · ∪ Si are idle immediately after E,
• p starts at most one operation instance in σ1 · · ·σi, and
• in every ({p}∪S1∪· · ·∪Si)-free extension E′ of E, with EE′ ∈ E, no process

applies a nontrivial event to any base object accessed in σ1 · · ·σi.
In a k-stall E-execution for p, the operation instance Φ performed by process p

incurs k stalls, since it incurs |Sj | stalls when it accesses Oj , for j = 1, . . . , i. Note
that, if the empty execution is in E , then it is a 0-stall E-execution for any process
p. In this case, p starts no operation instance. In all other cases, p starts exactly one
operation instance in σ1 · · ·σi. We say that E is a k-stall execution when p and O are
understood and E is the set of all executions of an implementation of O.

Figure 5.1 depicts the configuration that is reached after the prefix E of an 8-stall
execution Eσ1 · · ·σ4 is executed. In this configuration, process p has not yet begun
to perform its operation instance and only processes in the set S1 ∪ S2 ∪ S3 ∪ S4 are
active. Each of the processes in the set Si written above base object Oi is poised to
apply a nontrivial event to Oi. The arrow into the base object Oi represents the prefix
of σi consisting of the solo execution by p until it is poised to apply its first event to
Oi. In σi, p will access Oi and incur |Si| stalls from the events of the processes in Si.
In total, p will incur 8 stalls in the execution Eσ1 · · ·σ4.

To prove the following lower bound, we inductively construct an (n − 1)-stall
execution for some process p. At each step of this construction, we use Definition

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 11

p

O3O1 O2 O4

S1 = {p1, p2, p7} S4 = {p3, p5}S3 = {p4}S2 = {p6, p8}

Fig. 5.1. The configuration after the prefix E of an 8-stall execution Eσ1 · · ·σ4 is executed.

4.1 and the last property of Definition 5.1 to show there is an extension in which
process p accesses an additional base object at which it incurs stalls from nontrivial
primitives applied by another set of processses. Among all such extensions, we choose
one in which a maximal number of processes are poised at this additional base object
to ensure that the last property of Definition 5.1 will continue to hold.

Theorem 5.2. In any obstruction-free n-process linearizable implementation of
an object in class G from RMW base objects, the worst case number of stalls incurred
by a single operation instance is at least n− 1.

Proof. Let O be an object in G. Then there are an initial value, an operation
instance Φ by some process p, and an infinite sequence of operation instances Υq for
each process q 6= p that satisfy the conditions of Definition 4.1.

Let E be the set consisting of the empty execution and all executions of some
implementation of O in which p performs Φ and every process q 6= p performs a finite
prefix of Υq. It suffices to prove the existence of an (n − 1)-stall E-execution for p.
To obtain a contradiction, suppose there is no such execution.

Let 0 ≤ k ≤ n−2 be the largest integer for which there exists a k-stall E-execution
for process p. Let Eσ1 · · ·σi be such a k-stall E-execution with base objects O1, . . . , Oi

accessed by sets of processes S1, . . . , Si, where |S1 ∪ · · · ∪ Si| = k. We will prove that
there exists a (k + k′)-stall execution for some k′ ≥ 1.

Let σ be an extension of Eσ1 · · ·σi in which process p applies events by itself
until it completes its operation instance Φ and then each process in S1 ∪ · · · ∪ Si

applies events by itself until it completes its operation instance. The obstruction-
freedom property of the implementation guarantees that σ is finite. Let v be the
value returned by Φ in Eσ1 · · ·σiσ.

Consider a linearization AΦA′ of the E-execution Eσ1 · · ·σiσ. Then Φ returns
value v in AΦ and AA′ is an interleaving of a finite prefix of Υq, for each q 6= p. Since
all processes not in S1∪· · ·∪Si are idle immediately after E and no operation instance
begins in Eσ1 · · ·σiσ after Φ’s first event, A′ contains at most k ≤ n − 2 operation
instances, each performed by a different process in S1 ∪ · · · ∪ Si.

Let q′ be a process not in S1 ∪ · · · ∪ Si ∪ {p} and let Q be the (possibly empty)
sequence of operation instances performed by q′ in A. Since the object O is in class
G and A′ is q′-free, there is a finite prefix QQ′ of Υq′ that satisfies the requirements
of Definition 4.1.

Let τ be the solo extension of E by process q′ in which it performs all of the
operation instances in Q′. The obstruction-freedom of the implementation guarantees
that τ is finite. Because Eσ1 · · ·σi is a k-stall E-execution and τ is ({p}∪S1∪· · ·∪Si)-
free, τ applies no nontrivial event to any base object accessed in σ1 · · ·σi. Therefore
the value of each base object accessed in σ1 · · ·σi is the same immediately after E and
Eτ . Consequently, σ1 · · ·σi is an extension of Eτ . Furthermore, the value of each base
object accessed in σ1 · · ·σi is the same immediately after Eσ1 · · ·σi and Eτσ1 · · ·σi.

12 F. ELLEN, D. HENDLER, AND N. SHAVIT

p-free E

E′({p} ∪ S1 · · ·Si)-free

σ1 · · ·σi

σ1 · · ·σi σi+1

σ

Fig. 5.2. The construction in the proof of Theorem 5.2.

Let σ′ be an extension of Eτσ1 · · ·σi in which p applies events by itself until it
completes its operation instance Φ and then each process in S1∪· · ·∪Si applies events
by itself until it completes its operation instance.

LetHΦH ′ be a linearization of the operation instances performed in Eτσ1 · · ·σiσ′.
Then HH ′ is an interleaving of QQ′ and the sequences of operation instances per-
formed by each other process in AA′. Since all processes not in S1 ∪ · · · ∪ Si are idle
immediately after E and Eτ and no operation instance begins in Eτσ1 · · ·σiσ′ after
Φ’s first event, H ′ contains no operation instances by q′, each operation instance in
H ′ is by a different process, and for all q 6= p, q′, all or all but one of the operation
instances by process q precedes Q′ in H.

We claim that during τ , process q′ applies a nontrivial event to some base object
accessed by p in σ. Suppose not. Then p applies exactly the same sequence of events
in σ′ and gets the same responses from each as it does in σ. Hence p will also return
the value v in execution Eτσ1 · · ·σiσ′. This implies that v is the response of Φ in
HΦ, which contradicts the fact that O is in G.

Now, we construct a (k + k′)-stall execution EE′σ1 · · ·σiσi+1 for some k′ ≥ 1,
with one additional base object, Oi+1. This base object is not necessarily the base
object accessed by p in σ to which q′ applies a nontrivial event. The construction
is illustrated in Figure 5.2. To ensure that the resulting execution satisfies the last
requirement in Definition 5.1, as many processes as possible are poised to perform
nontrivial events to Oi+1. To achieve this, we use properties of the class G.

Let F be the set of all finite ({p}∪S1 ∪ · · · ∪Si)-free extensions F of E such that
EF ∈ E . Let Oi+1 be the first base object accessed by p in σ to which some process
applies a nontrivial event during some F ∈ F . Oi+1 is well-defined since τ ∈ F and,
during τ , process q′ applies a nontrivial event to some base object accessed by p in σ.
Since Eσ1 · · ·σi is a k-stall E-execution, no F ∈ F applies a nontrivial event to any
of O1, . . . , Oi, so Oi+1 is distinct from these base objects. Let k′ be the maximum
number of processes that are simultaneously poised to apply nontrivial events to Oi+1

in event sequences in F . Let E′ be an extension of E in F such that a set Si+1 of k′

processes are simultaneously poised to apply nontrivial events to Oi+1 immediately
after EE′ and all processes not in {p} ∪ S1 ∪ · · · ∪ Si ∪ Si+1 are idle immediately
after EE′. Note that, by obstruction freedom, we can extend any execution to one in
which each process in a given set is idle. Specifically, for each process in the set that
is not idle, append a solo sequence of events by that process, in which it completes
its pending operation.

Since E′ is ({p} ∪ S1 ∪ · · · ∪ Si)-free and E is p-free, EE′ is also p-free. Further-
more, for j = 1, . . . , i, each process in Sj is poised to apply a nontrivial event to Oj

immediately after E and, hence, immediately after EE′.

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 13

Let σi+1 be the prefix of σ up to, but not including p’s first access to Oi+1,
followed by an access to Oi+1 by each of the k′ processes in Si+1, followed by p’s first
access to Oi+1. Then σ1 · · ·σi+1 is an extension of EE′. Note that p starts only one
operation instance in EE′σ1 · · ·σiσi+1.

If α is a ({p} ∪ S1 ∪ · · · ∪ Si ∪ Si+1)-free extension of EE′ with EE′α ∈ E , then
E′α ∈ F . Since Eσ1 · · ·σi is a k-stall E-execution, E′α applies no nontrivial events
to any base object accessed in σ1 · · ·σi. By definition of Oi+1 and the maximality of
k′, α applies no nontrivial events to any base object accessed in σi+1.

Hence EE′σ1 · · ·σiσi+1 is a (k + k′)-stall E-execution. Since k < k + k′ ≤ n− 1,
this contradicts the maximality of k.

6. A Time Lower Bound for Stacks and Queues. Stacks and queues are
not in G. Nevertheless, in this section, we prove the same lower bound as in Theorem
5.2 on the worst case number of stalls incurred by a single instance of pop or dequeue,
provided there is a bound on the number of distinct base objects it accesses. In
particular, this assumption holds for any implementation that uses a bounded amount
of shared memory. We derive this lower bound using a reduction from a counter to a
stack or a queue.

First, we consider any obstruction-free implementation of a counter in which
there is a bound on the number of distinct base objects accessed by a single in-
stance of fetch&increment. We show that there exists an execution of bounded length
in which some process p incurs n − 1 stalls while performing a single instance of
fetch&increment. This execution is constructed inductively. However, the number of
stalls does not necessarily increase at successive steps of our construction. Instead, we
use a potential function and show that its value increases. This function gives more
weight to stalls that p incurs earlier.

Lemma 6.1. Consider any obstruction-free linearizable implementation of a
counter with initial value 0, shared by n processes, from RMW base objects. Sup-
pose there exists a constant d (which may depend on n) such that, in every execution,
each instance of fetch&increment accesses at most d different base objects. Then there
exists an execution that contains at most n(n− 1)d +n instances of fetch&increment,
in which some process incurs n− 1 stalls while performing one of these instances.

Proof. Fix a process p and an instance Φ of fetch&increment by p. The construc-
tion proceeds in phases. In phase r ≥ 0, we construct an execution Erσr,1 · · ·σr,irρr
with the following properties:

• Er is p-free,
• there are distinct objectsOr,1, . . . , Or,ir and disjoint sets of processes Sr,1, . . . , Sr,ir

whose union has size kr, such that, for j = 1, . . . , ir,
– each process in Sr,j is poised to apply a nontrivial event to Or,j imme-

diately after Er, and
– in σr,j , process p applies events until it is poised to apply its first event

to Or,j , then each of the processes in Sr,j accesses Or,j , and, finally, p
accesses Or,j ,

• Er contains at most nr instances of fetch&increment, and
• ρr is a solo execution by process p in which it completes Φ.

In this execution, p incurs kr stalls. We construct such an execution with kr = n− 1.
Note that Erσr,1 · · ·σr,ir is not necessarily a kr-stall execution. In particular,

processes not in Sr,1 ∪ · · · ∪ Sr,ir may be active immediately after Er, and there may
be ({p} ∪ Sr,1 ∪ · · · ∪ Sr,ir)-free extensions of Er containing nontrivial events applied
to objects accessed in σr,1 · · ·σr,ir .

14 F. ELLEN, D. HENDLER, AND N. SHAVIT

Since the number of stalls, kr, is an integer between 0 and n− 1, proving that kr
increases with r would imply that there is a phase r ≤ n − 1 such that kr = n − 1.
But kr+1 may be smaller than kr in our construction. Instead, we define a potential
function Ψ : N→ {0, . . . , (n−1)d} and prove that, if kr < n−1, then Ψ(r) < Ψ(r+1).
This implies that there is a phase r ≤ (n− 1)d such that kr = n− 1.

To define Ψ(r), let πr denote the sequence of the at most d different base objects
accessed by p in the execution Erσr,1 · · ·σr,irρr in the order they are first accessed by
p. In particular, each of the objects Or,1, . . . , Or,ir occurs in πr. Moreover, if j < j′,
then Or,j precedes Or,j′ in πr. Suppose that Or,j occurs in position wr(j) of πr, for
j = 1, . . . , ir. Then let

Ψ(r) =

ir∑
j=1

|Sr,j | · (n− 1)d−wr(j).

Note that Ψ(r) can usually be viewed as a d-digit number in base n − 1 whose u’th
most significant digit is the number of processes in Sr,1 ∪ · · · ∪Sr,ir poised at the u’th
object in πr. (The only exception is when kr = n−1 processes are poised at the same
object.) Thus an additional stall to an object O contributes more to the potential
function than any number of stalls to objects that p first accesses after accessing O.

Let E0 denote the empty execution, containing no instances of fetch&increment.
Let i0 = k0 = 0 and let ρ0 denote the solo extension of E0 in which p performs Φ
until it completes. Then Ψ(0) = 0.

Suppose that, for some r ≥ 0, we have constructed Erσr,1 · · ·σr,irρr with kr <
n− 1. We will construct Er+1σr+1,1 · · ·σr+1,ir+1

ρr+1 such that Ψ(r + 1) > Ψ(r).
Since kr < n−1, there exists a process q 6∈ Sr,1∪· · ·∪Sr,ir∪{p}. Consider the solo

extension γ of Er by q in which γ completes n instances of fetch&increment. We prove
that γ applies a nontrivial event to some base object accessed by p in Erσr,1 · · ·σr,irρr.
Assume not. Then Er and Erγ are indistinguishable to process p. It follows that
σr,1 · · ·σr,irρr is an extension of Erγ and Erγσr,1 · · ·σr,irρr is indistinguishable from
Erσr,1 · · ·σr,irρr to process p. In particular, p receives the same response from Φ
in both of these executions. Let a be the number of fetch&increment instances that
complete in Er. Then there are a + n instances of fetch&increment that complete
in Erγ. Since p invokes Φ after Erγ, linearizability implies that Φ’s response in
Erγσr,1 · · ·σr,irρr is at least a + n. Since p is idle immediately after Er and p is
the only process that invokes an instance of fetch&increment in σr,1 · · ·σr,irρr, there
are at most a+ n instances of fetch&increment that are invoked in Erσr,1 · · ·σr,irρr.
By linearizability, Φ’s response in Erσr,1 · · ·σr,irρr is at most a + n − 1. This is a
contradiction. Thus γ applies at least one nontrivial event to one of the base objects
accessed by p in Erσr,1 · · ·σr,irρr.

Let γ′ be the shortest prefix of γ such that q is poised to perform a nontrivial
event at one of these base objects immediately after Erγ

′. Let Er+1 = Erγ
′. Since

Er is p-free, so is Er+1. Since Er contains at most nr instances of fetch&increment
and γ′ contains at most n instances, it follows that Er+1 contains at most n(r + 1)
instances.

Suppose that, immediately after Er+1, process q is poised at the object in position
u of πr. Let ir+1 = 1 + #{j | wr(j) < u}, so ir+1 − 1 ≤ ir is the number of objects
Or,j that occur before position u in πr. For j = 1, . . . , ir+1 − 1, define Or+1,j = Or,j ,
Sr+1,j = Sr,j , and σr+1,j = σr,j . Let Or+1,ir+1

be the object at which q is poised
immediately after Er+1. There are two cases: If Or+1,ir+1 ∈ {Or,1, . . . , Or,ir}, then
ir ≥ ir+1, and Or+1,ir+1 = Or,ir+1 . In this case, let Sr+1,ir+1 = Sr,ir+1 ∪ {q} and let

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 15

σr+1,ir+1
be the same as σr,ir+1

, except that q accesses Or+1,ir+1
immediately before

p does. If Or+1,ir+1
6∈ {Or,1, . . . , Or,ir}, let Sr+1,ir+1

= {q} and let σr+1,ir+1
denote

the extension of Er+1σr+1,1 · · ·σr+1,ir+1−1 in which process p applies events until it
is poised to apply its first event to Or+1,ir+1 , then q accesses Or+1,ir+1 , and, finally,
p accesses Or+1,ir+1 .

For j = 1, . . . , ir+1, each process in Sr+1,j is poised to apply a nontrivial event
to Or+1,j immediately after Er+1 and, in σr+1,j , process p applies events until it is
poised to apply its first event to Or+1,j , then each of the processes in Sr+1,j accesses
Or+1,j , and, finally, p accesses Or+1,j . Let kr+1 = |Sr+1,1∪· · ·∪Sr+1,ir+1

| and let ρr+1

be the solo extension of Er+1σr+1,1 · · ·σr+1,ir+1 in which p completes Φ. Obstruction-
freedom guarantees the existence of ρr+1. Let πr+1 be the sequence of all the different
base objects accessed by process p in Er+1σr+1,1 · · ·σr+1,ir+1

ρr+1 in the order they
are first accessed by p. For j = 1, . . . , ir+1, let wr+1(j) denote the position of Or+1,j

in πr+1. Note that wr+1(ir+1) = u and
∑ir

j=1 |Sr,j | = kr < n− 1.
Since σr+1,1 · · ·σr+1,ir+1−1 = σr,1 · · ·σr,ir+1−1, it follows that Sr+1,j = Sr,j and

wr+1(j) = wr(j) for j = 1, . . . , ir+1 − 1.
If Or+1,ir+1

∈ {Or,1, . . . , Or,ir}, then |Sr+1,ir+1
| = |Sr,ir+1

|+1 and u = wr+1(ir+1)
= wr(ir+1) ≤ wr(j)− 1 for ir+1 < j ≤ ir. Hence,

Ψ(r) =

ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) + |Sr,ir+1
| · (n− 1)d−wr(ir+1)

+

ir∑
j=ir+1+1

|Sr,j | · (n− 1)d−wr(j)

≤
ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) + |Sr,ir+1 | · (n− 1)d−u

+(n− 1)d−u−1 ·
ir∑

j=ir+1+1

|Sr,j |

<

ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) + |Sr,ir+1
| · (n− 1)d−u + (n− 1)d−u

=

ir+1−1∑
j=1

|Sr+1,j | · (n− 1)d−wr+1(j) + |Sr+1,ir+1
| · (n− 1)d−wr+1(ir+1) = Ψ(r + 1).

If Or+1,ir+1
6∈ {Or,1, . . . , Or,ir}, then |Sr+1,ir+1

| = 1 and either ir = ir+1 − 1, in
which case Ψ(r + 1) = Ψ(r) + |Sr+1,ir+1

| · (n − 1)d−u > Ψ(r), or u = wr+1(ir+1) <
wr(ir+1) ≤ wr(j) for ir+1 ≤ j ≤ ir. In this last case,

Ψ(r) =

ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) +

ir∑
j=ir+1

|Sr,j | · (n− 1)d−wr(j)

≤
ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) + (n− 1)d−u−1 ·
ir∑

j=ir+1

|Sr,j |

<

ir+1−1∑
j=1

|Sr,j | · (n− 1)d−wr(j) + (n− 1)d−u

16 F. ELLEN, D. HENDLER, AND N. SHAVIT

=

ir+1−1∑
j=1

|Sr+1,j | · (n− 1)d−wr+1(j) + |Sr+1,ir+1 | · (n− 1)d−wr+1(ir+1) = Ψ(r + 1).

Thus kr < n−1 implies Ψ(r) < Ψ(r+1). Since the range of Ψ is {0, . . . , (n−1)d},
it follows that kr = n − 1 for some r ≤ (n − 1)d. The total number of instances of
fetch&increment contained in Er is at most nr ≤ n(n − 1)d. No process performs
more than one instance in σr,1 · · ·σr,irρr. Therefore the total number of instances of
fetch&increment contained in Erσr,1 · · ·σr,irρr is at most n(n− 1)d + n.

To obtain our lower bound, we show that a stack or queue can be used to imple-
ment a counter that supports any bounded number of instances of fetch&increment.

Theorem 6.2. In any obstruction-free n-process linearizable implementation of a
stack or queue from RMW base objects, either the worst case number of stalls incurred
by a single instance of pop or dequeue is at least n − 1 or there is no bound on the
number of different base objects a single instance of pop or dequeue can access.

Proof. Assume there is an obstruction-free n-process linearizable implementation
of a stack or queue from RMW objects and a constant d (which can depend on n)
such that each instance of pop or dequeue accesses at most d different base objects.
A stack or queue can be used to implement a counter with initial value 0 shared
by n processes on which up to N = n(n − 1)d + n instances of fetch&increment
can be performed. Specifically, the stack is initialized with the list of elements N −
1, . . . , 1, 0 and the queue is initialized with the list of elements 0, 1, . . . , N − 1. To
perform fetch&increment on the counter, a process simply applies pop or dequeue.
The response it receives will be the number of instances of fetch&increment that were
linearized before it.

An implementation of a counter from RMW objects can be obtained by composing
the implementaion of counter from a stack (or queue) with the implementation of a
stack (or queue) from RMW objects. By Lemma 6.1, there is an execution of this
implementation that contains at most N instances of fetch&increment and, in which,
some process incurs n− 1 stalls while performing one of these instances. This implies
that the number of stalls incurred by the corresponding instance of pop or dequeue
incurs at least n− 1 stalls.

7. Conclusions. We formally prove the intuitive idea that there are objects
whose non-blocking linearizable implementations are inherently sequential. The re-
sults in this paper suggest that, as multicore machines grow in size, it might be
beneficial to replace linearizable implementations of strongly ordered data structures,
such as stacks and queues, with more relaxed data structures, such as pools and bags.

On a technical level, we note that the technique we used in the proof of Lemma
6.1 was employed in subsequent work by Attiya et. al [5], in which they studied the
complexity of obstruction-free implementations of data structures. One of the issues
they investigated was the complexity of solo-fast implementations, in which processes
can only apply historyless primitives when there is no contention, but can apply
additional, stronger, primitives upon encountering contention. Using a variation of
our proof technique, they prove a logarithmic lower bound on the contention-free
complexity of solo-fast implementations. Our hope is that the basic techniques we
have presented will find their way into further results in the field.

Acknowledgements. A preliminary version of this paper appeared in FOCS
2005 [11]. This research was supported by grants from the Natural Sciences and

INHERENT SEQUENTIALITY OF CONCURRENT OBJECTS 17

Engineering Research Council of Canada, the Israeli Academy of Science, Microsoft
Research, and Sun Microsystems.

REFERENCES

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit, Atomic snapshots of shared memory, J. ACM, 40 (1993), pp. 873–890.

[2] J. Anderson and Y. Kim, An improved lower bound for the time complexity of mutual exclu-
sion, in ACM Symposium on Principles of Distributed Computing, 2001, pp. 90–99.

[3] James H. Anderson, Multi-writer composite registers, Distributed Computing, 7 (1994),
pp. 175–195.

[4] J. Aspnes, M. Herlihy, and N. Shavit, Counting networks, Journal of the ACM, 41 (1994),
pp. 1020–1048.

[5] Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr Kuznetsov, The complexity
of obstruction-free implementations, J. ACM, 56 (2009).

[6] Hagit Attiya and Ophir Rachman, Atomic snapshots in O(n logn) operations, SIAM Journal
on Computing, 27 (1998), pp. 319–340.

[7] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Marco Zagha, Accounting for
memory bank contention and delay in high-bandwidth multiprocessors, IEEE Trans. Par-
allel Distrib. Syst., 8 (1997), pp. 943–958.

[8] J. Burns and N. Lynch, Bounds on shared memory for mutual exclusion, Information and
Computation, 107 (1993), pp. 171–184.

[9] R. Cypher, The communication requirements of mutual exclusion, in ACM Proceedings of the
Seventh Annual Symposium on Parallel Algorithms and Architectures, 1995, pp. 147–156.

[10] Cynthia Dwork, Maurice Herlihy, and Orli Waarts, Contention in shared memory algo-
rithms, Journal of the ACM (JACM), 44 (1997), pp. 779–805.

[11] Faith Ellen Fich, Danny Hendler, and Nir Shavit, Linear lower bounds on real-world im-
plementations of concurrent objects, in Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science, 2005, pp. 165–173.

[12] Faith Ellen Fich, Maurice Herlihy, and Nir Shavit, On the space complexity of randomized
synchronization, Journal of the ACM, 45 (1998), pp. 843–862.

[13] Faith Ellen Fich and Eric Ruppert, Hundreds of impossibility results for distributed com-
puting, Distributed Computing, 16 (2003), pp. 121–163.

[14] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran, The queue-read queue-write
asynchronous pram model, Theor. Comput. Sci., 196 (1998), pp. 3–29.

[15] , The queue-read queue-write pram model: Accounting for contention in parallel algo-
rithms, SIAM J. Comput., 28 (1998), pp. 733–769.

[16] Danny Hendler and Nir Shavit, Operation-valency and the cost of coordination, in PODC
’03: Proceedings of the twenty-second annual symposium on Principles of distributed com-
puting, New York, NY, USA, 2003, ACM Press, pp. 84–91.

[17] M.P. Herlihy, Wait-free synchronization, ACM Transactions On Programming Languages
and Systems, 13 (1991), pp. 123–149.

[18] M. Herlihy, V. Luchangco, and M. Moir, Obstruction-free synchronization: Double-ended
queues as an example, in Proceedings of the 23rd International Conference on Distributed
Computing Systems, IEEE, 2003, pp. 522–529.

[19] Maurice Herlihy and Nir Shavit, The art of multiprocessor programming, Morgan Kauf-
mann, 2008.

[20] M. Herlihy, N. Shavit, and O. Waarts, Linearizable counting networks, Distributed Com-
puting, 9 (1996), pp. 193–203.

[21] M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Transactions On Programming Languages and Systems, 12 (1990), pp. 463–
492.

[22] P. Jayanti, K. Tan, and S. Toueg, Time and space lower bounds for non-blocking implemen-
tations, Siam J. Comput., 30 (2000), pp. 438–456.

[23] D. Lea, Hash table util.concurrent.concurrenthashmap, revision 1.3, in JSR-166, the pro-
posed Java Concurrency Package. http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-
src/main/java/util/concurrent/.

[24] Nancy A. Lynch and Mark R. Tuttle, Hierarchical correctness proofs for distributed algo-
rithms, in PODC, 1987, pp. 137–151.

[25] M. Merritt and G. Taubenfeld, Knowledge in shared memory systems (preliminary ver-
sion), in PODC, 1991, pp. 189–200.

18 F. ELLEN, D. HENDLER, AND N. SHAVIT

[26] N. Shavit and D. Touitou, Elimination trees and the construction of pools and stacks, Theory
of Computing Systems, (1997), pp. 645–670.

[27] N. Shavit and A. Zemach, Diffracting trees, ACM Transactions on Computer Systems, 14
(1996), pp. 385–428.

