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Abstract. The paper is concerned with the construction and convergence analysis of a discontinuous Galerkin finite
element method for the Cahn–Hilliard equation with convection. Using discontinuous piecewise polynomials of degree p ≥ 1
and backward Euler discretization in time, we show that the order-parameter c is approximated in the broken L∞(H1)
norm with optimal order, O(hp + τ); the associated chemical potential w = Φ′(c)−γ2∆c is shown to be approximated with
optimal order, O(hp + τ), in the broken L2(H1) norm. Here Φ(c) = 1

4
(1− c2)2 is a quartic free-energy function and γ > 0

is an interface parameter. Numerical results are presented with polynomials of degree p = 1, 2, 3.
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1. Introduction. This paper is devoted to the discontinuous Galerkin finite element approximation
of an initial-boundary-value problem for the Cahn–Hilliard equation with a convection term, stated as
follows:

(R) Find real-valued functions c and w defined on Ω× [0, T ], where T > 0, such that

∂tc−
1
Pe

∆w +∇ · (uc) = 0 in ΩT := Ω× (0, T ], (1.1a)

w = Φ′(c)− γ2∆c in ΩT , (1.1b)
c(·, 0) = c0(·) in Ω, (1.1c)

∂nc = ∂nw = 0 on ∂ΩT := ∂Ω× (0, T ]. (1.1d)

Here Ω is a bounded convex polygonal domain in R2, with boundary ∂Ω that has an outward-pointing
unit normal n. The order-parameter c is such that c(x, t) ≈ 1 (respectively c(x, t) ≈ −1) if, and only if, at
time t ∈ [0, T ] fluid 1 (respectively fluid 2) is present at the point x ∈ Ω. Finally, u ∈ H(div,Ω)∩ [C(Ω)]2

is a given function such that ∇ · u = 0 in Ω and u · n = 0 on ∂Ω. Here H(div,Ω) := {v ∈ [L2(Ω)]2 :
∇ · v ∈ L2(Ω)}.

The interface parameter γ > 0 is a given constant that is assumed to be small, typically in the range
10−3 − 10−2. We take the free-energy Φ(·) in (1.1b) to be

Φ(c) :=
1
4
(1− c2)2. (1.2)

Finally, Pe is the Péclet number which, for ease of presentation, we will assume to be 1 in the analysis.
By ∂tη we mean ∂η

∂t and ∂nη := ∇η · n.
The Cahn–Hilliard equation [17, 18] was originally introduced as a phenomenological model of phase

separation in a binary alloy. More recently it has been used to study phase transitions and interface
dynamics, related free-boundary problems, multiphase fluids and polymer solutions; see [11, 40, 45]
and the references therein. For the derivation and analysis of the equation we refer to [28] and the
references therein. Results for continuous finite element approximations of the Cahn–Hilliard equation
include optimal order error estimates for a semidiscrete splitting method obtained by Elliott, French and
Milner in [30], optimal order error estimates for a fully-discrete splitting method in one space dimension
with weaker regularity assumptions by Du and Nicolaides in [27] and convergence of a fully-discrete
splitting method with a nonsmooth logarithmic free-energy proved by Copetti and Elliott in [25]. More
recently results for continuous finite element approximations of Cahn–Hilliard systems, which model
phase separation of multi-component alloys, have also been established; see for example [9, 7, 8] and
the references therein. In [36] near-optimal error estimates are shown for a fully discrete mixed finite
element approximation of the Cahn–Hilliard equation, with emphasis on the dependence on the interface
parameter γ.
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Explicit numerical discretizations of the Cahn–Hilliard equation require severe time-step restrictions
of the form τ ∼ h4 (where τ is the time-step and h is the spatial mesh-size), and therefore implicit
methods should be used. Additionally, in order to fully capture the interface dynamics, high spatial
resolution is required: typically at least 8–10 elements are needed across the interfacial region (see [31]
where it is shown that if there are an insufficient number of elements across the interfacial region spurious
numerical solutions can be introduced).

In the neighbourhood of the interface, the leading-order term in the asymptotic expansion of c for
0 < γ � 1 is (see, for example, [29])

tanh
(

1
γ
√

2
d

)
,

where d is the signed distance to the centre of the interface. Thus if we consider the interfacial region to
be located where the order-parameter c varies between −0.99 and 0.99 a simple calculation yields that
the width of the interface is ≈ 7.5γ.

Introducing a flow into the Cahn–Hilliard system leads to models of the Cahn–Hilliard–Navier–
Stokes type (cf. [5, 10, 12, 38, 41, 42]), which include a convection term in the Cahn–Hilliard equation.
The Péclet number in such problems is usually taken to be large, leading to a convection-dominated
problem. If no numerical smoothing (such as streamline-diffusion or least-squares stabilization) is present
in the discretization of the equation, computational modelling with continuous finite elements may lead
to poor approximations. In contrast with this behaviour, due to their built-in numerical dissipation,
no such added numerical diffusion is needed with a discontinuous Galerkin finite element method; see
[23, 24]. Discontinuous Galerkin methods have a number of other attractive features: as has been noted
by the authors of [35] “the trial and test spaces are very easy to construct; they can naturally handle
inhomogeneous boundary conditions and curved boundaries; they also allow the use of highly nonuniform
and unstructured meshes, and have built-in parallelism which permits coarse-grain parallelization. In
addition, the fact that the mass matrices are block diagonal is an attractive feature in the context of
time-dependent problems, especially if explicit time discretizations are used.” One could add to this list
the relative ease of designing hp-adaptive discontinuous Galerkin discretizations, even on meshes with
hanging nodes; and the fact that methods of this kind are locally conservative, which is a particularly
relevant feature in the realm of numerical approximation of nonlinear hyperbolic conservation laws.

Pioneering research on discontinuous Galerkin methods was pursued in [53, 44, 2, 26, 57, 52, 39]. We
refer to the survey papers [22, 21] for a detailed historical overview. For more recent developments, see,
for example, [54, 37, 3, 15] and references therein. The papers of Babuška and Zlámal [4] and Baker [6] are
the earliest contributions to the theory of discontinuous Galerkin finite element methods for fourth-order
elliptic problems; for more recent results, including historical notes, see [47, 34, 49, 50, 48]. The application
of discontinuous Galerkin methods to the Cahn–Hilliard equation is discussed in [20, 56, 58, 35]. In
particular, in the article of Feng and Karakashian [35] a fully-discrete discontinuous Galerkin method
is analyzed for the Cahn–Hilliard equation written as a fourth-order PDE, and an optimal-order error
bound is derived for the order-parameter c in the broken L2(H2) norm with discontinuous piecewise
polynomials of degree p ≥ 2. Error bounds in the L∞(L2) and broken L2(H1) norms have also been
established by the authors of [35]; these are fully optimal when p ≥ 3, while in the case of p = 2 the latter
estimates are suboptimal by one complete order with respect to the spatial discretization parameter h
(cf. (4.10)–(4.12) in Theorem 4.1 on p.1107 of [35]).

The objective of the present paper is to derive optimal-order error bounds, with the inclusion of
convection, for the order-parameter c and the chemical potential w in the L∞(H1) and L2(H1) norm,
respectively, with discontinuous piecewise polynomials of degree ≥ 1. We will also present numerical
results for discontinuous piecewise polynomial approximations of degree 1, 2 and 3. The main difference
between the work of Feng and Karakashian [35] and our own results here is that we discretize the Cahn–
Hilliard equation as a system of two coupled second-order elliptic equations while in [35] the Cahn–Hilliard
equation was approximated as a single fourth-order PDE. This choice crucially influences the magnitudes
of the various penalty parameters in the respective discontinuous Galerkin discretizations: in particular,
the penalty parameters in the method proposed herein are bounded by O(1/h) as h → 0, whereas in
[35] (cf. in particular equation (3.4) in [35]) the largest of the two penalty parameters is O(1/h3) as the
mesh-size h → 0.
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The paper is organized in the following manner. In Section 2 we introduce the basic notation and
some fundamental properties of the discontinuous Galerkin method. In Section 3 we obtain bounds on
various norms of the sequence of discontinuous Galerkin approximations to c and w, independent of the
spatial and temporal discretization parameters, as well as optimal-order error estimates for the sequence
of approximations. In [51] the authors consider the model (R) and show that the problem possesses
two dominant length scales, associated with bubbles and filaments. In particular it is shown that the
convective term in the model can, for some parameter regimes, arrest the coarsening dynamics of the
Cahn–Hilliard equation in a way that leads to the formation of bubbles, and that, for sufficiently strong
velocity fields u, these bubbles are replaced by filament structures. In Section 4 we shall present numerical
simulations that display these features; we also present other computational results, including numerical
simulation of spinodal decomposition. We close with some concluding remarks.

2. Notation and auxiliary results. Suppose that q ∈ [1,∞]. For a bounded open set ω ⊂ R2,
let Lq(ω) denote the space of q-integrable functions (with the usual modification for q = ∞) with norm
denoted by ‖ · ‖0,q,ω, where, for simplicity of notation, in the case of q = 2 we shall write ‖ · ‖ := ‖ · ‖0,2,Ω.
Furthermore, for m ∈ N≥0, let Wm,q(ω) and Hm(ω) be the usual Sobolev spaces with norms ‖ · ‖m,q,ω

and ‖ · ‖m,ω := ‖ · ‖m,2,ω, respectively. Let (H1(ω))′ denote the dual space of H1(ω) with respect to
the pivot space L2(ω), and let | · |m,ω denote the usual Sobolev seminorm on Hm(ω). When ω = Ω, we
shall omit the index Ω from the subscript for norms and seminorms. Finally, we let (·, ·)ω and 〈·, ·〉ω,
respectively, denote the L2(ω) inner product and the duality pairing between (H1(ω))′ and H1(ω) with
respect to the pivot space L2(ω) where, for simplicity of notation, we shall write (·, ·) := (·, ·)Ω and
〈·, ·〉 := 〈·, ·〉Ω. Throughout the paper C will denote a generic positive constant, independent of the
discretization parameters, whose value may change from line to line; C1 will denote a generic positive
constant, independent of the discretization parameters, whose value may change from line to line, and
which can be taken to be arbitrarily small.

We consider the following function spaces:

V := {v ∈ H1(Ω) : (v, 1) = 0},

F := {v ∈ (H1(Ω))′ : 〈v, 1〉 = 0},

H2
N(Ω) := {v ∈ H2(Ω) : ∂nv = 0 on ∂Ω}.

Here, 1 denotes the function that is identically equal to 1 on Ω. It is also convenient to introduce the
linear operator G : F → V, referred to as Green’s operator, by

(∇(Gz),∇η) = 〈z, η〉 ∀η ∈ H1(Ω).

The existence of a unique element Gz ∈ V for any z ∈ F follows by the Lax–Milgram theorem on V, on
noting that H1(Ω) = V ⊕ span{1} and 〈z, 1〉 = 0 for all z ∈ F .

2.1. Weak formulation of the problem. We begin by stating the weak formulation of our initial-
boundary-value problem.

(P) Given u ∈ H(div; Ω) ∩ [C(Ω)]2, with ∇ · u = 0 in Ω and u · n = 0 on ∂Ω, find {c(·, t), w(·, t)} in
V ×H1(Ω), t ∈ [0, T ], such that

(∂tc, η) + (∇w,∇η) = b(u; c, η) ∀η ∈ H1(Ω), (2.1a)

(w, η) = (Φ′(c), η) + γ2(∇c,∇η) ∀η ∈ H1(Ω), (2.1b)

c(·, 0) = c0(·) ∈ H2
N(Ω) ∩V, (2.1c)

where

b(u; c, η) :=
∫

Ω

cu · ∇η dx.
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2.2. Discontinuous Galerkin finite element approximation. Let {Th}h>0 be a shape-regular
family of partitions of Ω into disjoint open triangles/quadrilaterals κ, such that Ω = ∪κ∈Th

κ; here
h := maxκ∈Th

hκ is the spatial discretization parameter and hκ := diam(κ). Our stability and convergence
analysis in Sections 3.1 and 3.2 require the use of inverse inequalities. We shall therefore assume in what
follows that the family of discretisations {Th}h>0 is quasiuniform.

Suppose that p ≥ 1. Associated with Th and p is the finite element space

S(Ω, Th) := {v ∈ L2(Ω) : v|κ is a polynomial of degree ≤ p on each κ ∈ Th}.

We also define the broken Sobolev spaces

Hs(Ω, Th) := {v ∈ L2(Ω) : v|κ ∈ Hsκ(κ) ∀κ ∈ Th}

and

V(Ω, Th) := {v ∈ H1(Ω, Th) : (v, 1) = 0},

where s = {sκ}κ∈Th
is a set of positive integers. These spaces are equipped with the norms

‖u‖s,Th
:=

(∑
κ∈Th

‖u‖2sκ,κ

) 1
2

and ‖ · ‖1,Th
, respectively. It will be assumed throughout the paper that sκ = s for all κ ∈ Th, where s is

a positive integer; we shall then write Hs(Ω, Th) instead of Hs(Ω, Th).
In analogy with V, we define the finite element space

Vh := {v ∈ S(Ω, Th) : (v, 1) = 0}.

For v ∈ H1(Ω, Th), we define the piecewise gradient ∇hv of v by (∇hv)|κ := ∇(v|κ), κ ∈ Th, where
∇ is the weak gradient of v on κ. Next, for any interior (open) edge e shared by the (open) elements κ+

and κ−, we define the edge-jump and edge-average of v ∈ H1(Ω, Th) by

[[v]]e := (v+|e)n+ + (v−|e)n− and {{v}}e :=
1
2
(v+|e + v−|e),

where, for i = +,−, vi = v|
κi and ni is the unit normal vector on e pointing outward of κi. By interior

edge we mean that e ⊂ Ω (i.e. e has empty intersection with ∂Ω). Similarly, for a vector-valued function
v ∈ [H1(Ω, Th)]2, with an analogous definition of vi to vi above, and an interior (open) edge e shared by
the (open) elements κ+ and κ−, we define

[[v]]e := (v+|e) · n+ + (v−|e) · n− and {{v}}e :=
1
2
(v+|e + v−|e).

In what follows, for ease of writing we shall suppress the subscript e in our notations [[v]]e, {{v}}e, [[v]]e
and {{v}}e and will simply write [[v]], {{v}}, [[v]] and {{v}}; the particular choice of the edge e will be clear
from the context.

Finally, we define

BTh
(v, w) :=

∑
κ∈Th

(∇v,∇w)κ −
∑

e∈ETh

[([[v]], {{∇w}})e + ([[w]], {{∇v}})e − (σ[[v]], [[w]])e]

and

bTh
(u; v, w) :=

∑
κ∈Th

∫
κ

vu · ∇w dx−
∑

e∈ETh

∫
e

{{uv}} · [[w]] ds−
∑

e∈ETh

ce

∫
e

[[v]] · [[w]] ds.

Here ETh
is the set of all interior edges of all elements κ ∈ Th, σ|e := σe = α

he
, where α is a sufficiently

large positive constant, ce ≥ θ0|u ·n|, with θ0 a positive constant, independent of e and he, he is the edge
length, and (u, v)κ :=

∫
κ

uv dx, with a similar definition of (u, v)e.
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Let us define ||| · ||| by

|||w|||2 := ‖∇hw‖2 +
∑

e∈ETh

(
2σe ‖[[w]]‖2e +

1
σe
‖{{∇hw}}‖2e

)
.

We observe that ||| · ||| is a seminorm on S(Ω, Th) and a norm on Vh. Whenever BTh
(w,w) ≥ 0 (see

Remark 2.1, Item 3, for a sufficient condition), we also define the broken energy (semi)norm ||| · |||B by

|||w|||2B := BTh
(w,w).

It follows from Items 2 and 3 of Remark 2.1 below that |||·|||B is equivalent to |||·|||, uniformly in h, on
Vh as a norm and on S(Ω, Th) as a seminorm.

Remark 2.1. The bilinear form BTh
(·, ·) and the (semi)norm ||| · ||| have the following properties:

1. Consistency: let v ∈ H2
N(Ω) ∩V; then,

BTh
(v, w) = (−∆v, w) ∀w ∈ S(Ω, Th).

The identity follows from equation (2.1) in [2]; see also line 2 on p.746 in [2].
2. Continuity: There exists a positive constant C, independent of the dicretization parameter h, such

that

|BTh
(v, w)| ≤ C|||v||| |||w||| ∀v, w ∈ H2(Ω, Th). (2.2)

This follows directly from the definition of BTh
(·, ·) by applying the Cauchy–Schwarz inequality.

3. Coercivity: There exists a positive constant α0 > 0, and for each α ≥ α0 there exists a constant
C0 = C0(α), independent of the discretization parameter h, such that

C0|||w|||2 ≤ BTh
(w,w) ∀w ∈ S(Ω, Th). (2.3)

Henceforth, we shall assume that α = α0 in the definition of the penalty parameter σ featuring
in the definition of BTh

(·, ·). For a proof of (2.3) see the argument leading to inequality (3.1)
in the paper of Arnold [2], with the minor alteration that Arnold assumes a Dirichlet boundary
condition on ∂Ω, whereas we have a homogeneous Neumann boundary condition here; therefore
contributions from boundary edges to the norm ||| · ||| in [2] can be omitted.
An explicit expression for the penalty parameter α0 in the interior-penalty discontinuous Galerkin
finite element approximation of a second-order elliptic problem was proposed by Shabhazi [55] for
meshes consisting of simplicial elements. The explicit dependence of the coercivity constant C0 on
the polynomial degree and the angles of the triangular/quadrilateral mesh elements was derived
by Epshteyn and Rivière [33]; Mozolevski and Bösing [46] derived explicit expressions for penalty
parameters in symmetric interior-penalty discontinuous Galerkin approximations of fourth-order
elliptic problems on meshes consisting of parallelepipeds.

4. Broken Friedrichs’ inequality: Let r ∈ [2,∞); there exists a positive constant C = C(r), independ-
ent of the discretization parameter h, such that

‖w‖0,r ≤ C

‖∇hw‖2 +
∑

e∈ETh

2σe ‖[[w]]‖2e

 1
2

∀w ∈ V(Ω, Th). (2.4)

Trivially, ‖w‖0,r ≤ C|||w||| for all w ∈ H2(Ω, Th)∩V(Ω, Th); in particular, both inequalities hold
for all w. For a proof, see [13, 43]; see also [16].

Furthermore, for any u ∈ H(div,Ω) ∩ [C(Ω)]2, with ∇ · u = 0 in Ω and u · n = 0 on ∂Ω, the bilinear
form bTh

(u; ·, ·) satisfies the following identities and bounds.
5. Consistency: Suppose that (v, w) ∈ H1(Ω)×H1(Ω); then,

bTh
(u; v, w) = b(u; v, w).

For a proof, see [37, 15], or Section 3 in [14].
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6. Continuity: For α0 as in Item 3 above there exists a positive constant C such that, for any C1 > 0,

bTh
(u; v, w) ≤ C ‖u‖0,∞

 ∑
e∈ETh

(
C1

2σe
‖{{v}}‖2e +

C1

2σe
c2
e ‖[[v]]‖2e +

1
C1

σe ‖[[w]]‖2e

)

+
∑

κ∈Th

(
C1

2
‖v‖2κ +

1
2C1

‖∇w‖2κ

)]
∀(v, w) ∈ H1(Ω, Th)×H1(Ω, Th), (2.5)

and thereby,

bTh
(u; v, w) ≤ C ‖u‖0,∞

(
C1 ‖v‖2 +

1
C1
|||w|||2

)
∀(v, w) ∈ S(Ω, Th)× S(Ω, Th). (2.6)

These inequalities follow directly from the definition of bTh
(u; ·, ·) by applying the Cauchy–Schwarz

inequality. Furthermore, it follows from (2.6) by (2.4) (with r = 2) and the equivalence of ||| · |||
and ||| · |||B that, for α0 as in Item 3 above, there exists a positive constant C such that, for any
C1 > 0,

bTh
(u; v, w) ≤ C ‖u‖0,∞

(
C1|||v|||2 +

1
C1
|||w|||2B

)
∀(v, w) ∈ Vh × S(Ω, Th). (2.7)

Integrating the first term of bTh
(u; v, w) by parts and combining the element-edge integrals with

the second term we obtain

bTh
(u; v, w) = −

∑
κ∈Th

∫
κ

wu · ∇v dx +
∑

e∈ETh

∫
e

{{uw}} · [[v]] ds−
∑

e∈ETh

ce

∫
e

[[v]] · [[w]] ds.

Hence, similarly to (2.6), we deduce that for α0 as in Item 3 above, there exists a positive constant
C such that, for any C1 > 0, we have

bTh
(u; v, w) ≤ C ‖u‖0,∞

(
C1 ‖w‖2 +

1
C1
|||v|||2

)
∀(v, w) ∈ S(Ω, Th)× S(Ω, Th). (2.8)

We note that when a solution (c(·, t), w(·, t)), t ∈ [0, T ], to problem (P) belongs to H2(Ω) × H2(Ω),
t ∈ (0, T ] — which we shall henceforth assume to be the case — then {c(·, t), w(·, t)} ∈ (H2(Ω)∩V)×H2(Ω),
t ∈ (0, T ], and

(∂tc, η) + BTh
(w, η) = bTh

(u; c, η) ∀η ∈ H2(Ω, Th), (2.9a)
(w, η) = (Φ′(c), η) + γ2BTh

(c, η) ∀η ∈ H2(Ω, Th), (2.9b)
c(·, 0) = c0(·) ∈ H2

N(Ω) ∩V. (2.9c)

Let us define the discrete Laplacian ∆h as follows: given w ∈ S(Ω, Th), find ∆hw ∈ Vh such that

(−∆hw, v) = BTh
(w, v) ∀v ∈ Vh. (2.10)

The existence and uniqueness of ∆hw in Vh follows by the Riesz representation theorem: we equip Vh

with the L2(Ω) inner product to obtain a Hilbert space, and we then note that, for w ∈ S(Ω, Th) fixed,
v ∈ Vh 7→ BTh

(w, v) ∈ R is a bounded linear functional over this Hilbert space by (2.2) and the property
of norm-equivalence in finite-dimensional vector spaces. Since S(Ω, Th) = Vh⊕ span{1}, and the equality
in (2.10) holds trivially for v = 1 as BTh

(w, 1) = 0 for all w ∈ S(Ω, Th), the test space Vh in (2.10) can
be replaced by S(Ω, Th) to deduce that

(−∆hw, v) = BTh
(w, v) ∀v ∈ S(Ω, Th). (2.11)

Let us also consider the discrete Green’s function Gh : F ∩ L2(Ω) → Vh, defined by

BTh
(Ghz, v) = (z, v) ∀v ∈ S(Ω, Th). (2.12)
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We note that since, for z ∈ F ∩L2(Ω) we have (z, 1) = 0 and BTh
(Ghz, 1) = 0, the equality in (2.12) holds

trivially for any constant function v. Thus, equivalently, we can define, for z ∈ F ∩ L2(Ω), the function
Ghz ∈ Vh by

BTh
(Ghz, v) = (z, v) ∀v ∈ Vh. (2.13)

Since |||·||| is a norm on Vh and the bilinear form BTh
(·, ·) is coercive on Vh × Vh with respect to |||·|||,

the existence of a unique Ghz, for any z ∈ F ∩ L2(Ω), follows from the Lax–Milgram theorem and the
fact that Vh is a finite-dimensional vector space. Furthermore, by (2.11),

BTh
(w,w) = (−∆hw,w) ≤ ‖∆hw‖ ‖w‖ ∀w ∈ S(Ω, Th). (2.14)

Now, from (2.13) and (2.2) we have that, for any w ∈ Vh ⊂ F ∩ L2(Ω),

‖w‖2 = BTh
(Ghw,w) ≤ |||Ghw||| |||w||| ∀w ∈ Vh,

which yields

‖w‖ ≤ |||Ghw||| 12 |||w||| 12 ∀w ∈ Vh. (2.15)

Substituting (2.15) into (2.14), and noting that Vh ⊂ S(Ω, Th), we obtain

BTh
(w,w) ≤ ‖∆hw‖ |||Ghw||| 12 |||w||| 12 ∀w ∈ Vh. (2.16)

Using (2.3) in (2.16), we then deduce that

C0|||w|||2 ≤ ‖∆hw‖ |||Ghw||| 12 |||w||| 12 ∀w ∈ Vh,

and hence

|||w||| ≤ C
− 2

3
0 |||Ghw||| 13 ‖∆hw‖ 2

3 ∀w ∈ Vh. (2.17)

Now, (2.16) and (2.17) imply that

BTh
(w,w) ≤ C

− 1
3

0 |||Ghw||| 23 ‖∆hw‖ 4
3 ∀w ∈ Vh.

Let us note that for any z ∈ S(Ω, Th) we have ∆hz ∈ Vh ⊂ F ∩ L2(Ω), and therefore, by (2.12) and
(2.11),

BTh
(Gh∆hz, v) = (∆hz, v) = −BTh

(z, v) ∀(z, v) ∈ S(Ω, Th)× S(Ω, Th).

This implies that

BTh
(Gh∆hz + z, v) = 0 ∀(z, v) ∈ S(Ω, Th)× S(Ω, Th).

On selecting v = Gh∆hz+z and using (2.3) we deduce that Gh∆hz+z = c, where c is a constant function
on Ω. Since, by the definition of Gh, (Gh∆hz, 1) = 0, it follows that (z, 1) = (c, 1) = cmeas(Ω), and
therefore

c =
1

meas(Ω)

∫
Ω

z dx =: −
∫
Ω

z dx.

Thus, we deduce that

z −−
∫

Ω

z dx = −Gh∆hz ∀z ∈ S(Ω, Th). (2.18)

We introduce the (broken elliptic) projection operator Ph : H2(Ω, Th) → S(Ω, Th) defined, for v ∈
H2(Ω, Th), by

BTh
(Phv, χ) = BTh

(v, χ) ∀χ ∈ S(Ω, Th) and (Phv, 1) = (v, 1). (2.19)
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We note that Ph : H2(Ω, Th) ∩V → Vh and that this operator satisfies the bounds

‖Phv − v‖ ≤ h |||Phv − v||| and |||Phv − v||| ≤ Chs ‖v‖s+1 ∀v ∈ Hs+1(Ω), 1 ≤ s ≤ p. (2.20)

Finally we note that the orthogonal projector Πh : L2(Ω) → S(Ω, Th) defined by

(v −Πhv, χ) = 0 ∀χ ∈ S(Ω, Th)

satisfies the error bound

‖Πhv − v‖ ≤ Chs ‖v‖s ∀v ∈ Hs(Ω), 0 ≤ s ≤ p + 1. (2.21)

Observe in particular that if (v, 1) = 0 then (Phv, 1) = 0; thus, if v ∈ V(Ω, Th) then Phv ∈ Vh.
The following broken version of Agmon’s inequality will be required in our arguments below.
Lemma 2.2.

‖z‖0,∞ ≤ C‖z‖ 1
2 ‖∆hz‖ 1

2 ∀z ∈ Vh. (2.22)

Proof. Let as assume for the moment that z ∈ S(Ω, Th). On writing ξ = −∆hz and noting that
ξ ∈ Vh(⊂ L2(Ω)) and, by elliptic regularity, Gξ ∈ H2(Ω), the identity (2.18) implies, by the triangle
inequality, Agmon’s inequality (cf. Theorem 3 in the paper of Adams and Fournier [1]), and an inverse
inequality on S(Ω, Th) (recall that quasiuniformity of the family of partitions {Th}h>0 has been assumed),
that

‖z − −
∫
Ω
z dx‖0,∞ = ‖Gh∆hz‖0,∞

≤ ‖Gξ‖0,∞ + ‖(I − πh)Gξ‖0,∞ + ‖(πhG − Gh)ξ‖0,∞ (2.23)

≤ C‖Gξ‖ 1
2 ‖Gξ‖

1
2
2 + Ch‖Gξ‖2 + Ch−1‖(πhG − Gh)ξ‖,

where πh : C(Ω) → S(Ω, Th) is the nodal interpolation operator. However,

‖Gξ‖ ≤ ‖Ghξ‖+ ‖(G − Gh)ξ‖
= ‖z − −

∫
Ω

z dx‖+ ‖(G − Gh)ξ‖

≤ (1 + |Ω|− 1
2 )‖z‖+ Ch2‖Gξ‖2. (2.24)

The bound appearing in the last term of inequality (2.24) comes from the error analysis of the symmetric
version of the discontinuous Galerkin finite element method in the L2(Ω)-norm; see [54].

On substituting (2.24) into (2.23) and using the approximation properties of the interpolant πh, a
standard error bound for the symmetric interior penalty discontinuous Galerkin method to estimate the
closeness of Gh to G, the elliptic regularity estimate ‖Gξ‖2 ≤ C‖ξ‖, and recalling the definition of ξ, we
deduce that

‖z − −
∫
Ω

z dx‖0,∞ ≤ C‖z‖ 1
2 ‖Gξ‖

1
2
2 + Ch ‖Gξ‖2 + Ch−1‖(πhG − Gh)ξ‖

≤ C‖z‖ 1
2 ‖Gξ‖

1
2
2 + Ch ‖Gξ‖2 + Ch−1‖(πh − I)Gξ‖+ Ch−1‖(G − Gh)ξ‖

≤ C‖z‖ 1
2 ‖Gξ‖

1
2
2 + Ch ‖Gξ‖2

≤ C‖z‖ 1
2 ‖ξ‖ 1

2 + Ch‖ξ‖
= C‖z‖ 1

2 ‖∆hz‖ 1
2 + Ch‖∆hz‖

= C‖z‖ 1
2 ‖∆hz‖ 1

2 + C
(
h2‖∆hz‖

) 1
2 ‖∆hz‖ 1

2 ∀z ∈ S(Ω, Th). (2.25)

Noting (2.10) and (2.2), and using inverse inequalities, we have that

‖∆hz‖2 = BTh
(z,−∆hz) ≤ C|||z||| |||∆hz||| ≤ Ch−1|||z||| ‖∆hz‖ ≤ Ch−2|||z|||2 ≤ Ch−4‖z‖2.

Therefore,

h2‖∆hz‖ ≤ C‖z‖ ∀z ∈ S(Ω, Th). (2.26)
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Substituting (2.26) into (2.25) we obtain

‖z − −
∫
Ω

z dx‖0,∞ ≤ C‖z‖ 1
2 ‖∆hz‖ 1

2 ∀z ∈ S(Ω, Th).

In particular,

‖z‖0,∞ ≤ C‖z‖ 1
2 ‖∆hz‖ 1

2 ∀z ∈ Vh. (2.27)

That completes the proof.
We shall also require the following broken Gagliardo–Nirenberg inequality.
Lemma 2.3. Let ‖·‖0,3 denote the L3(Ω) norm on Ω. There exists a positive constant C, independent

of h, such that

‖∇hz‖0,3 ≤ C ‖z‖
1
3 ‖∆hz‖

2
3 ∀z ∈ Vh. (2.28)

Proof. With the same definitions of z, πh, Gh and G as in the proof of (2.27), and proceeding in a very
similar manner, on noting that, by (2.18), ∇hz = −∇hGh∆hz for all z ∈ S(Ω, Th), letting, as before,
ξ = ∆hz, and using the Gagliardo–Nirenberg inequality stated in Theorem 3 in the paper of Adams and
Fournier [1], we have that

‖∇hz‖0,3 = ‖∇hGhξ‖0,3

≤ ‖∇Gξ‖0,3 + ‖∇h(I − πh)Gξ‖0,3 + ‖∇h(πhG − Gh)ξ‖0,3

≤ C‖Gξ‖ 1
3 ‖Gξ‖

2
3
2 + Ch

2
3 ‖Gξ‖2 + Ch−

4
3 ‖(πhG − Gh)ξ‖

≤ C‖Gξ‖ 1
3 ‖Gξ‖

2
3
2 + Ch

2
3 ‖Gξ‖2 + Ch−

4
3 ‖(πh − I)Gξ‖+ Ch−

4
3 ‖(G − Gh)ξ‖

≤ C‖Gξ‖ 1
3 ‖Gξ‖

2
3
2 + Ch

2
3 ‖Gξ‖2

≤ C‖Ghξ‖ 1
3 ‖Gξ‖

2
3
2 + Ch

2
3 ‖Gξ‖2

≤ C‖z −−
∫

Ω

z dx‖ 1
3 ‖ξ‖ 2

3 + Ch
2
3 ‖ξ‖

= C‖z −−
∫

Ω

z dx‖ 1
3 ‖∆hz‖ 2

3 + Ch
2
3 ‖∆hz‖

= C‖z −−
∫

Ω

z dx‖ 1
3 ‖∆hz‖ 2

3 + C
(
h2‖∆hz‖

) 1
3 ‖∆hz‖ 2

3

≤ C‖z −−
∫

Ω

z dx‖ 1
3 ‖∆hz‖ 2

3 + C‖z‖ 1
3 ‖∆hz‖ 2

3 ∀z ∈ S(Ω, Th). (2.29)

The stated result follows by noting that −
∫
Ω

z dx = 0 for z ∈ Vh.

3. Finite element discretization. In this section we study a finite element approximation (Ph,τ )
of (P). Here Th is chosen as in Section 2.2, and in addition we let 0 = t0 < t1 < · · · < tN = T be a
partition of [0, T ] with τ := tn − tn−1, n = 1 → N .

We now define our discontinuous Galerkin finite element approximation of (P) as follows:
(Ph,τ ) Given u ∈ H(div; Ω) ∩ [C(Ω)]2, with ∇ · u = 0 in Ω and u · n = 0 on ∂Ω, for n = 1 → N find

{cn
h, wn

h} ∈ Vh × S(Ω, Th) such that

(δτ cn
h, χ) + BTh

(wn
h , χ) = bTh

(u; cn
h, χ) ∀χ ∈ S(Ω, Th), (3.1a)

(wn
h , χ) = γ2 BTh

(cn
h, χ) + (Φ′(cn

h), χ) ∀χ ∈ S(Ω, Th), (3.1b)

c0
h := Πhc0 ∈ Vh, (3.1c)

where

δτ cn
h :=

cn
h − cn−1

h

τ
, n = 1 → N.
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Remark 3.1. It follows from (2.9c), (3.1c) and the definition of |||·||| that there exists a positive
constant C, independent of h and τ , such that

(Φ(c0
h), 1) + |||c0

h||| ≤ C. (3.2)

We also note that the choice of the L2 projection operator Πh in (3.1c) is not mandatory: Πh can be
replaced by any projector that is stable in the broken H1 norm.

3.1. Uniform bounds on the sequence of numerical solutions. We begin by establishing the
following bounds, independent of h and τ , on the sequence of numerical solutions.

Lemma 3.1. For any h > 0 and τ ≤ C?γ
2, where C? is a sufficiently small but fixed positive constant,

there exists a unique solution {cn
h, wn

h} ∈ Vh × S(Ω, Th) to the n-th step of (Ph,τ ), n ∈ {1, 2, . . . , N}; in
addition, there exists a positive constant C = C(C?, γ, α0, θ0, T ), independent of h and τ , such that

max
n=1→N

[
γ2|||cn

h|||2 + ‖cn
h‖0,∞ + (Φ(cn

h), 1) + ‖wn
h‖

2
]

+
N∑

n=1

τ |||wn
h |||2 + γ2

N∑
n=1

τ ‖δτ cn
h‖

2 ≤ C, (3.3)

max
n=1→N

‖∆hcn
h‖ ≤ C, (3.4)

and

N∑
n=1

τ‖cn
h‖40,∞ ≤ C. (3.5)

Proof. The existence of a unique solution {cn
h, wn

h} ∈ Vh × S(Ω, Th) to (3.1a,b) follows similarly as in
[32]; for the sake of brevity the details are omitted. Taking χ = wn

h in (3.1a) and χ = cn
h− cn−1

h in (3.1b),
noting (2.7) and the following inequality, arising from an application of Taylor’s remainder theorem on
observing that Φ′′(s) ≥ −1 for all s ∈ IR,

Φ′(r)(r − s) ≥ Φ(r)− Φ(s)− 1
2
(r − s)2 ∀s, r ∈ R,

we obtain

γ2BTh

(
cn
h, cn

h − cn−1
h

)
+ τ BTh

(wn
h , wn

h) = τbTh
(u; cn

h, wn
h)− (Φ′(cn

h), cn
h − cn−1

h )

≤ Cτ |||cn
h|||2 +

τ

4
|||wn

h |||2B − (Φ(cn
h), 1) + (Φ(cn−1

h ), 1) +
1
2
‖cn

h − cn−1
h ‖2.

Setting χ = cn
h − cn−1

h in (3.1a) gives, using (2.2), (2.7) and the equivalence of |||·||| and |||·|||B as norms
on Vh and seminorms on S(Ω, Th),

‖cn
h − cn−1

h ‖2 = τbTh
(u; cn

h, cn
h − cn−1

h )− τBTh

(
wn

h , cn
h − cn−1

h

)
≤ τ

2
|||wn

h |||2B + Cτ |||cn
h − cn−1

h |||2 + Cτ |||cn
h|||2,

and hence we deduce that

γ2BTh

(
cn
h, cn

h − cn−1
h

)
+ τ BTh

(wn
h , wn

h) + (Φ(cn
h), 1)

≤ Cτ |||cn
h|||2 +

τ

2
|||wn

h |||2B + Cτ |||cn
h − cn−1

h |||2 + (Φ(cn−1
h ), 1).

Noting that

BTh

(
cn
h, cn

h − cn−1
h

)
=

1
2
(
|||cn

h|||2B − |||cn−1
h |||2B + |||cn

h − cn−1
h |||2B

)
,
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and the equivalence of |||·||| and |||·|||B as norms on Vh, using (3.2) and a discrete Grönwall inequality
we deduce that

max
n=1→N

[
γ2|||cn

h|||2 + (Φ(cn
h), 1)

]
+

N∑
n=1

τ |||wn
h |||2 ≤ C. (3.6)

Thus we have proved the first, third and fifth bound in (3.3). Next we prove (3.5). Taking χ = ∆hcn
h in

(3.1b) and using (2.10) we have

γ2‖∆hcn
h‖2 = −γ2BTh

(cn
h,∆hcn

h)
= −(wn

h ,∆hcn
h) + (Φ′(cn

h),∆hcn
h). (3.7)

Using (2.10), the symmetry of BTh
(·, ·), the definition of |||·|||B , the definition of Φ, the equivalence of

|||·||| and |||·|||B as norms on Vh and seminorms on S(Ω, Th) and (2.4) (with r = 6, 4 and 2) we obtain
from (3.7) that

γ2‖∆hcn
h‖2 ≤ BTh

(wn
h , cn

h) + C‖Φ′(cn
h)‖2 +

γ2

2
‖∆hcn

h‖2

≤ 1
2
|||wn

h |||2B +
1
2
|||cn

h|||2B + C(‖cn
h‖60,6 + ‖cn

h‖40,4 + ‖cn
h‖2) +

γ2

2
‖∆hcn

h‖2

≤ C|||wn
h |||2 + C|||cn

h|||2 + C|||cn
h|||6 +

γ2

2
‖∆hcn

h‖2. (3.8)

Summing (3.8) from n = 1 → N and using (2.22), (2.4) (with r = 2) and (3.6) we obtain (3.5).
Next we prove the remaining bounds in (3.3). To this end, we subtract (3.1b) with n replaced by

n− 1 from (3.1b) to obtain

(wn
h − wn−1

h , χ) = τγ2BTh
(δτ cn

h, χ) + (Φ′(cn
h)− Φ′(cn−1

h ), χ). (3.9)

Setting χ = τγ2δτ cn
h in (3.1a) and χ = wn

h in (3.9), combining the resulting equations and noting the
symmetry of BTh

(·, ·), (2.8) and (1.2) gives

τγ2‖δτ cn
h‖2 + (wn

h − wn−1
h , wn

h) = τ
(
[(cn

h)2 + (cn
h + cn−1

h )cn−1
h − 1]δτ cn

h, wn
h

)
+ τγ2bTh

(u; cn
h, δτ cn

h)

≤ τγ2

2
‖δτ cn

h‖2 + τC̃h,τ‖wn
h‖2 + Cτ |||cn

h|||2 (3.10)

where C̃n
h,τ := C(1 + ‖cn

h‖40,∞ + ‖cn−1
h ‖40,∞). Note that, by (3.5), τ

∑N
n=1 C̃n

h,τ is bounded by a constant
independent of h and τ . Combining (3.6) with (3.10) and using a discrete Grönwall inequality gives the
fourth and sixth bound of (3.3).

Using (3.7) and the previously obtained bounds we deduce (3.4) as follows:

γ2

2
‖∆hcn

h‖2 ≤ C ‖wn
h‖

2 + C ‖Φ′(cn
h)‖2

≤ C ‖wn
h‖

2 + C(‖cn
h‖60,6 + ‖cn

h‖40,4 + ‖cn
h‖2)

≤ C. (3.11)

Applying (3.6), (2.4) (with r = 2), (3.11) and (2.22) gives the final bound

max
n=1→N

‖cn
h‖0,∞ ≤ C.

3.2. Error estimate. Before we prove the main result of this section we introduce some notation.
We define the continuous-in-time functions

ch,τ (·, t) :=
(t− tn−1)

τ
cn
h(·) +

(tn − t)
τ

cn−1
h (·), t ∈ (tn−1, tn], n = 1 → N,
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and

wh,τ (·, t) :=
(t− tn−1)

τ
wn

h(·) +
(tn − t)

τ
wn−1

h (·), t ∈ (tn−1, tn], n = 1 → N.

We also define the piecewise-constant-in-time functions

ĉh,τ (·, t) := cn
h and ŵh,τ (·, t) := wn

h , t ∈ (tn−1, tn], n = 1 → N.

When there is no danger of ambiguity, for ease of writing we shall omit (·, t) from our notation. Using
the above notation problem (Ph,τ ) can be restated as follows.

Given u ∈ H(div; Ω)∩ [C(Ω)]2, div u = 0 in Ω and u ·n = 0 on ∂Ω, find {ch,τ , wh,τ} ∈ H1(0, T ; Vh)×
L2(0, T ; S(Ω, Th)) such that

(δτ ĉh,τ , χ) + BTh
(ŵh,τ , χ) = bTh

(u; ĉh,τ , χ) ∀χ ∈ S(Ω, Th), (3.12a)
(ŵh,τ , χ) = γ2BTh

(ĉh,τ , χ) + (Φ′(ĉh,τ ), χ) ∀χ ∈ S(Ω, Th). (3.12b)

Next we define

Ŝc(·, t) := δτPhc(·, t)− ∂tPhc(·, t), t ∈ (tn−1, tn],

and we note that for c ∈ W2,∞((0, T ); H2(Ω) ∩ V) using (2.4) with r = 2, the equivalence of the norms
||| · ||| and ||| · |||B on Vh, and the stability of Ph in the norm ||| · |||B , we have

‖Ŝc(·, t)‖ ≤ Cτ (3.13)

for a.e. t ∈ [0, T ]; here and below C will denote a positive constant, independent of h, τ and t, whose
actual value may vary from line to line. Finally, for t ∈ (tn−1, tn], n = 1 → N , we define

Ec(·, t) = c(·, t)− ĉh,τ (·, t), Ec
h(·, t) := Phc(·, t)− ĉh,τ (·, t), Ec

A(·, t) := c(·, t)− Phc(·, t),

and ĉh,τ (·, 0) = c0
h = Phc0 = Phc(·, 0) (whereby Ec

h(·, 0) = 0), with analogous error functions for w and
∂tc.

For 1 ≤ s ≤ p, assuming that c ∈ L∞((0, T ); Hs+1(Ω) ∩V), w ∈ L∞((0, T ); Hs+1(Ω)), (2.20) yields

‖Ec
A(·, t)‖+ h|||Ec

A(·, t)||| ≤ Chs+1, ‖Ew
A(·, t)‖+ h|||Ew

A(·, t)||| ≤ Chs+1 (3.14)

for a.e. t ∈ [0, T ]. Using the definition of |||·|||B , (2.4) with r = 2, (2.13), the equivalence of this norm
with |||·||| on Vh and (2.21), for c ∈ W1,∞((0, T ); Hs+1(Ω) ∩V), 1 ≤ s ≤ p, we obtain

|||Gh(δτEc
A)(·, t)||| ≤ C ‖δτEc

A(·, t)‖ ≤ Chs+1 for a.e. t ∈ [0, T ]. (3.15)

Recalling the definition of Ec and noting (2.4) with r = 2 and (3.14) gives

‖Ec(·, t)‖ ≤ ‖Ec
h(·, t)‖+ ‖Ec

A(·, t)‖ ≤ C|||Ec
h(·, t)|||+ Chs+1 (3.16)

for a.e. t ∈ [0, T ] and all s with 1 ≤ s ≤ p.
Using the above notation and (2.19) we deduce from (2.9a,b) that:

(δτPhc, χ) + BTh
(Phw,χ) = bTh

(u; c, χ) + (Ŝc, χ)− (∂tE
c
A, χ) ∀χ ∈ S(Ω, Th), (3.17a)

(Phw,χ) = γ2BTh
(Phc, χ) + (Φ′(c), χ)− (Ew

A , χ) ∀χ ∈ S(Ω, Th). (3.17b)

We shall also need the following lemma for our subsequent bounds.
Lemma 3.2. For c ∈ L∞((0, T ); H2(Ω)),

|||Φ′(c(·, t))− Φ′(ĉh,τ (·, t))||| ≤ C|||Ec(·, t)||| for a.e. t ∈ [0, T ]. (3.18)
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Proof. For ease of writing we shall suppress the dependence of c, ĉh,τ and Ec on t. Let us define

Qc := c2 + c ĉh,τ + ĉ2
h,τ .

Clearly,

|||Φ′(c)− Φ′(ĉh,τ )||| ≤ |||EcQc|||+ |||Ec|||. (3.19)

We must now bound the first term in (3.19). Using the definition of |||·||| we have

|||EcQc|||2 = ‖∇h(EcQc)‖2 +
∑

e∈ETh

(
2σe ‖[[EcQc]]‖2e +

1
σe
‖{{EcQc}}‖2e

)
:= T1 + T2 + T3. (3.20)

We begin by bounding the term T1. For any element κ ∈ Th we have

‖∇ (EcQc)‖κ ≤ ‖Qc∇Ec‖κ + ‖Ec∇Qc‖κ

≤ ‖Qc‖0,∞ ‖∇Ec‖κ + ‖Ec∇Qc‖κ

≤ 3
2

(
‖c‖20,∞ + ‖ĉh,τ‖20,∞

)
‖∇Ec‖κ

+ ‖Ec (2c∇c + c∇ĉh,τ + ĉh,τ∇c + 2ĉh,τ∇ĉh,τ )‖κ

≤ 3
2

(
‖c‖20,∞ + ‖ĉh,τ‖20,∞

)
‖∇Ec‖κ

+2 ‖Ec‖0,6,κ

(
‖c‖0,∞ + ‖ĉh,τ‖0,∞

)(
‖∇c‖0,3,κ + ‖∇ĉh,τ‖0,3,κ

)
.

After squaring, summing over κ ∈ Th, using inequality (2.4) with r = 6, taking square roots, applying
Hölder’s inequality for finite sums and the interpolation inequality (2.28) with z = ĉh,τ , we obtain

‖∇h(EcQc)‖ ≤ C(c, ‖ĉh,τ‖0,∞ , ‖∆hĉh,τ‖) |||Ec|||
≤ C|||Ec|||.

The last bound follows from the second inequality in (3.3) and from (3.4). Hence our bound on term T1.
Next we bound the term T2. For any e ∈ ETh

we have

σe ‖[[EcQc]]‖2e = σe

∥∥[[Ec]](Qc)+ + [[Qc]](Ec)−
∥∥2

e

≤ 2σe

∫
e

(
|[[Ec]]|2

(
(Qc)+

)2 + |[[Qc]]|2
(
(Ec)−

)2) ds. (3.21)

Since c is continuous, we have

[[Qc]] = c[[ĉh,τ ]] + [[ĉ2
h,τ ]].

Squaring yields

|[[Qc]]|2 ≤ 2
(
c2 |[[ĉh,τ ]]|2 +

∣∣[[ĉ2
h,τ ]]

∣∣2)
= 2

(
c2 |[[ĉh,τ ]]|2 + {{ĉh,τ}}2 |[[ĉh,τ ]]|2

)
= 2

(
c2 + {{ĉh,τ}}2

)
|[[Ec]]|2 . (3.22)

Combining (3.21) and (3.22) we obtain

σe ‖[[EcQc]]‖2e ≤ 2σe

∫
e

(
|[[Ec]]|2

(
(Qc)+

)2 + 2
(
c2 + {{ĉh,τ}}2

)
|[[Ec]]|2

(
(Ec)−

)2) ds

≤ C
(
‖c‖40,∞ + ‖ĉh,τ‖40,∞

)
σe

∫
e

|[[Ec]]|2 ds

≤ Cσe

∫
e

|[[Ec]]|2 ,
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where the last line follows by the second inequality in (3.3). Summing over element edges e ∈ ETh
yields

the desired bound on term T2.
Finally, we bound the term T3. For any e ∈ ETh

and any κ ∈ Th such that e ⊂ ∂κ, we have

1
σe
‖{{EcQc}}‖2e =

1
4σe

∥∥(Ec)+(Qc)+ + (Qc)−(Ec)−
∥∥2

e

=
1

4σe

∫
e

[(
(Ec)+ + (Ec)−

)
(Qc)+ −

(
(Qc)+ − (Qc)−

)
(Ec)−

]2 ds

≤ 2
σe

∫
e

{{Ec}}2
(
(Qc)+

)2 ds +
1

2σe

∫
e

|[[Qc]]|2
(
(Ec)−

)2 ds

≤ C
(
‖c‖40,∞ + ‖ĉh,τ‖40,∞

)( 1
σe

∫
e

{{Ec}}2 ds +
1
σe

∫
e

(
(Ec)−

)2 ds

)
≤ C

(
‖c‖40,∞ + ‖ĉh,τ‖40,∞

)( 1
σe

∫
e

{{Ec}}2 ds +
∫

κ

|∇Ec|2dx

)
.

We sum over all element edges e ∈ ETh
to obtain our bound on T3. We then substitute our bounds

on T1, T2 and T3 into (3.20), insert the resulting bound on |||EcQc||| into (3.19), and we note that
c(·, t) ∈ H2(Ω) ∩V ⊂ L∞(Ω) ∩W1,3(Ω) to complete the proof.

We require two further preparatory lemmas, which are stated and proved below.
Lemma 3.3. Suppose that 1 ≤ s ≤ p, and assume that c0 ∈ Hs+1(Ω)∩H2

N(Ω)∩V, c ∈ L∞((0, T ); Hs+1(Ω)∩
V) ∩W2,∞((0, T ); L2(Ω)) and w ∈ L∞(0, T ; Hs+1(Ω)). Then, for almost every t ∈ [0, T ], we have

|(Φ′(c(·, t))− Φ′(ĉh,τ (·, t)), δτEc
h(·, t))| ≤ C(h2s+2 + τ2 + |||Ec(·, t)|||2 + |||Ec

h(·, t)|||2) +
1
8
|||Ew

h (·, t)|||2B .

(3.23)
Proof. Noting (2.13), (2.2), (2.20) and using standard inverse estimates it follows that

|(Φ′(c)− Φ′(ĉh,τ ), δτEc
h)| ≤ ‖Ph [Φ′(c)− Φ′(ĉh,τ )]− (Φ′(c)− Φ′(ĉh,τ ))‖ ‖δτEc

h‖
+ C|||Ph [Φ′(c)− Φ′(ĉh,τ )]||| |||Gh(δτEc

h)|||
≤ Ch|||Φ′(c)− Φ′(ĉh,τ )||| ‖δτEc

h‖
+ C|||Ph [Φ′(c)− Φ′(ĉh,τ )]||| |||Gh(δτEc

h)|||
≤ C|||Φ′(c)− Φ′(ĉh,τ )|||2 + C1|||Gh(δτEc

h)|||2. (3.24)

We shall use (3.18) to bound the first term on the right-hand side of (3.24). In order to handle the second
term on the right-hand side of (3.24), we now bound |||Gh(δτEc

h)|||. To this end, subtracting (3.12a) from
(3.17a) and noting (2.13), (2.2), (2.6) and (2.4) with r = 2, we have, for any χ ∈ Vh and a.e. t ∈ [0, T ],

BTh
(Gh(δτEc

h), χ) = (δτEc
h, χ) = −BTh

(Ew
h , χ) + bTh

(u;Ec, χ) + (Ŝc, χ)− (δτEc
A, χ) (3.25)

≤ C|||Ew
h ||| |||χ|||+ |bTh

(u;Ec
h, χ)|+ |bTh

(u;Ec
A, χ)|+ ‖Ŝc‖ ‖χ‖+ C|||Gh(δτEc

A)||| |||χ|||
≤ C|||Ew

h ||| |||χ|||+ C‖Ec
h‖ |||χ|||+ |bTh

(u;Ec
A, χ)|+ C‖Ŝc‖ |||χ|||+ C|||Gh(δτEc

A)||| |||χ|||. (3.26)

Now, by (2.5), the multiplicative trace inequality stated in (3.22) in [37], and (2.20), we have that

|bTh
(u;Ec

A, χ)| ≤ Chs+1|||χ||| ∀χ ∈ S(Ω, Th). (3.27)

On substituting (3.27), (3.13) and (3.15) into (3.26) and recalling the equivalence of the seminorms ||| · |||
and ||| · |||B on S(Ω, Th), we have that

BTh
(Gh(δτEc

h), χ) ≤ C
(
hs+1 + τ + |||Ew

h |||B + ‖Ec
h‖
)
|||χ|||, (3.28)

where 1 ≤ s ≤ p. On taking χ = Gh(δτEc
h) (∈ Vh) in (3.28), applying (2.3) to the left-hand side of (3.28)

and (2.4) with r = 2 to the last term in the brackets on the right-hand side of (3.28), it follows that

|||Gh(δτEc
h)(·, t)|||2 ≤ C2(h2s+2 + τ2 + |||Ew

h (·, t)|||2B + |||Ec
h(·, t)|||2) for a.e. t ∈ [0, T ], (3.29)

where 1 ≤ s ≤ p. Choosing C1 such that 8C1C2 < 1 and using (3.24), (3.18) and (3.29) we obtain the
desired result.
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Lemma 3.4. Suppose that 1 ≤ s ≤ p, and assume that c0 ∈ Hs+1(Ω)∩H2
N(Ω)∩V, c ∈ L∞((0, T ); Hs+1(Ω)∩

V) ∩W2,∞((0, T ); L2(Ω)) and w ∈ L2(0, T ; Hs+1(Ω)). Then, for almost every t ∈ [0, T ], we have that

γ2BTh
(Ec

h(·, t), δτEc
h(·, t)) + BTh

(Ew
h (·, t), Ew

h (·, t)) ≤ C(h2s + τ2) + C|||Ec
h(·, t)|||2 +

1
2
|||Ew

h (·, t)|||2B .

(3.30)

Proof. Subtracting (3.12b) from (3.17b) and choosing χ = δτEc
h in the resulting equation we obtain

(Ew
h , δτEc

h) = γ2BTh
(Ec

h, δτEc
h) + (Φ′(c)− Φ′(ĉh,τ ), δτEc

h)− (Ew
A , δτEc

h). (3.31)

Next, setting χ = Ew
h in (3.25), combining the resulting equation with (3.31) we have, for a.e. t ∈ [0, T ]

and any real number β, that

γ2BTh
(Ec

h, δτEc
h) + BTh

(Ew
h , Ew

h ) = bTh
(u;Ec, Ew

h ) + (Ŝc − δτEc
A, Ew

h )

− (Φ′(c)− Φ′(ĉh,τ ), δτEc
h) + (Ew

A , δτEc
h)

= bTh
(u;Ec

h, Ew
h ) + bTh

(u;Ec
A, Ew

h ) + (Ŝc − δτEc
A, Ew

h − β)

− (Φ′(c)− Φ′(ĉh,τ ), δτEc
h) + (Ew

A , δτEc
h),

since (Ŝc, 1) = 0 and (δτEc
A, 1) = 0. Noting (2.6), (3.27), (3.15), (3.14) and the broken Poincaré–Friedrichs

inequality (1.4) in the paper of Brenner [13], which implies that

inf
β∈R

‖Ew
h − β‖ ≤ C|||Ew

h |||,

we deduce, for 1 ≤ s ≤ p and a.e. t ∈ [0, T ], that

γ2BTh
(Ec

h, δτEc
h) + BTh

(Ew
h , Ew

h ) ≤ C‖Ec
h‖ |||Ew

h |||+ Chs+1|||Ew
h |||+ (‖Ŝc‖+ Chs+1) inf

β∈R
‖Ew

h − β‖

+|(Φ′(c)− Φ′(ĉh,τ ), δτEc
h)|+ Chs+1 ‖δτEc

h‖

≤ C‖Ŝc‖2 + C1|||Gh(δτEc
h)|||2 + C|||Ec

h|||2

+
1
4
|||Ew

h |||2B + |(Φ′(c)− Φ′(ĉh,τ ), δτEc
h)|+ Ch2s. (3.32)

In the transition to the first line of the second inequality in (3.32) we used the inverse inequality h‖δτEc
h‖ ≤

C|||Gh(δτEc
h)|||.

Noting (3.13), (3.29), (3.23), the triangle inequality |||Ec||| ≤ |||Ec
h||| + |||Ec

A||| in conjunction with
(3.14), and choosing C1 as in the proof of Lemma 3.3, the inequality (3.32) yields the required bound.

We now state and prove the main result of the paper. We shall write ‖ · ‖H1(Ω,Th) := ||| · |||.
Theorem 3.5. Suppose that p ≥ 1 and 1 ≤ s ≤ p. Assume further that c0 ∈ Hs+1(Ω) ∩ H2

N(Ω) ∩ V,
c ∈ L∞((0, T ); Hs+1(Ω) ∩ V) ∩ W1,∞(0, T ; H2(Ω)) ∩ W2,∞((0, T ); L2(Ω)) and w ∈ L∞(0, T ; Hs+1(Ω)) ∩
W1,∞(0, T ; H2(Ω)). Then,

‖c0 − c0
h‖H1(Ω,Th) ≤ Chs

and

‖c− ch,τ‖L∞(0,T ;H1(Ω,Th)) + ‖w − wh,τ‖L2(0,T ;H1(Ω,Th)) ≤ C(hs + τ).

Proof. The bound on the error between c0 and c0
h := Πhc0 is a simple consequence of (2.21).

Setting t = tn in (3.30) and applying a discrete Grönwall inequality, we deduce that for all τ ∈ (0, τ0),
where τ0 = τ0(γ) is a sufficiently small (depending on γ) but fixed real number and 1 ≤ s ≤ p,

|||Ec
h(·, tn)|||2B + τ

n∑
m=1

|||Ew
h (·, tm)|||2B ≤ C(|||Ec

h(·, 0)|||2B + h2s + τ2) ≤ C(h2s + τ2), n = 1 → N.
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For t ∈ (tn−1, tn], n = 1 → N , we have that

|||Ec
h(·, t)|||B = |||Phc(·, t)− cn

h|||B ≤ |||Ph(c(·, t)− c(·, tn))|||B + |||Phc(·, tn)− cn
h|||B

≤ |||c(·, t)− c(·, tn)|||B + |||Phc(·, tn)− cn
h|||B

≤ τ · ess.supt∈[0,T ]|||∂tc(·, t)|||B + |||Ec
h(·, tn)|||B

≤ Cτ + |||Ec
h(·, tn)|||B .

Therefore,

|||Ec
h(·, t)|||2B ≤ C(h2s + τ2), for a.e. t ∈ [0, T ], 1 ≤ s ≤ p.

Similarly, ∫ T

0

|||Ew
h (·, t)|||2B dt =

N∑
m=1

∫ tm

tm−1

|||Ew
h (·, t)|||2B dt ≤ C(h2s + τ2), 1 ≤ s ≤ p.

Thus we deduce, on noting the definitions of Ec
h and Ew

h , that

ess.supt∈[0,T ]|||Phc(·, t)− ĉhτ (·, t)|||2B +
∫ T

0

|||Phw(·, t)− ŵhτ (·, t)|||2B dt ≤ C(h2s + τ2), 1 ≤ s ≤ p.

By recalling the equivalence of ||| · |||B and ||| · ||| as norms on Vh and seminorms on S(Ω, Th), the desired
bounds follow on applying the triangle inequality and the approximation results (3.14).

4. Numerical results. For the numerical solution of the nonlinear system (3.1a), (3.1b) we use a
Newton iteration: Given c0

h, at each time-step, n, we perform an inner iteration for k = 1 → K to obtain
{cn,k, wn,k} satisfying (

cn,k
h − cn−1

h

τ
, χ

)
+

1
Pe

BTh

(
wn,k

h , χ
)

= bTh
(u; cn,k

h , χ) ∀χ ∈ S(Ω, Th), (4.1)

(wn,k
h , χ) = γ2 BTh

(
cn,k
h , χ

)
+
(

3cn,k
h

(
cn,k
h

)2

− 2
(
cn,k−1
h

)3

− cn,k−1
h , χ

)
∀χ ∈ S(Ω, Th), (4.2)

and we define cn
h := cn,K

h . Throughout Sections 4.2–4.4, Ω = (0, 1)2.
Remark 4.1. In practice K = 2 or 3 inner iterations were seen to provide a sufficiently accurate

approximation.

4.1. Model problem with known solution. In our first numerical experiment we consider the
Cahn–Hilliard equation with known solution

c = t cos
(πx

3

)
cos
(πy

3

)
,

and apply an appropriate non zero term to the right-hand side of (1.1a). Clearly this problem will
not produce interfacial layers, but it will provide insight into the discontinuous Galerkin approximation
developed in this paper.

The domain Ω is taken to be Ω3 := (−3, 3)× (−3, 3) and T = 0.1. The convective velocity is

u(x, y) := f(r)(y,−x)T, (x, y) ∈ Ω3,

where

f(r) := 1
2 (1 + tanh (β (1− r))) , r2 := x2 + y2,

with β = 10. Clearly ∇ · u = 0, and u · n = 0 to machine precision on ∂Ω3. We will investigate rates of
convergence for the values γ = 1

10 , 1
20 , 1

40 and Pe = 50, 100, 200.
We consider three uniform refinements for both linear and quadratic elements. Finally, we choose

τ = γ2

10 .
Table 4.1 documents the results of our experiments: We have observed first-order, respectively second-

order, convergence of ch,τ to c in the L∞((0, T ); H1(Ω)∩V) seminorm, with p = 1 and p = 2, for all three
values of γ considered.
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Pe = 50 Pe = 100 Pe = 200

p = 1 (10−2) p = 2 (10−3) p = 1 (10−2) p = 2 (10−3) p = 1 (10−2) p = 2 (10−3)

Level 1 3.30 4.80 3.30 4.80 3.31 4.80

γ = 1
10

Level 2 1.58 1.20 1.59 1.20 1.60 1.20

Level 3 0.78 0.31 0.78 0.30 0.78 0.30

Level 1 3.32 4.90 3.32 4.90 3.31 4.90

γ = 1
20

Level 2 1.60 1.20 1.61 1.20 1.61 1.20

Level 3 0.78 0.32 0.79 0.31 0.79 0.31

Level 1 3.30 4.90 3.32 4.90 3.32 4.90

γ = 1
40

Level 2 1.61 1.30 1.61 1.30 1.61 1.30

Level 3 0.80 0.35 0.80 0.32 0.81 0.32

Table 4.1

The error
“R T

0 ‖∇
`
c− ch,τ

´
‖2 dt

” 1
2

for c = t cos(πx
3

) cos(πy
3

) on Ω3.

4.2. The evolution of an ellipse without convection: linear elements. In our second example
we apply the discontinuous Galerkin method using linear elements on a 32 by 32 uniform quadrilateral
mesh. We shall consider the Cahn–Hilliard equation without convection (i.e. u = 0) and choose γ =
1/100. The initial datum c0 is a piecewise constant function whose jump-set is an ellipse:

c0(x, y) :=

{
0.95 if 9(x− 0.5)2 + (y − 0.5)2 < 1/9,

−0.95 otherwise.

Fig. 4.1. The evolution of an ellipse without convection

As expected the initial datum c0 with the ellipse-shaped jump-set evolves to a steady state exhibiting a
circular interface; see Figure 4.1. Thereafter no motion will occur as the interface has constant curvature.
Furthermore, as is expected from a Cahn–Hilliard system, mass is conserved.

Remark 4.2. This rather coarse mesh does not have the desired 8–10 elements in the interface; see
[31]; in fact, the number of elements in the interface is, on average, 2–3. For this model problem and
subsequent problems this did not seem to cause any difficulties when using discontinuous elements.

4.3. The evolution of a cross without convection: quadratic elements. In this example we
use the same parameters as in Section 4.1. The initial datum c0 is a piecewise constant function whose
jump-set has the shape of a cross; see Figure 4.2. We use a 32 by 32 uniform quadrilateral mesh and
quadratic elements.

As was the case in the previous example, the initial datum c0 with a cross-shaped jump-set is seen
to evolve to a steady state exhibiting a circular interface; see Figure 4.2.

4.4. Spinodal decomposition: quadratic elements. Spinodal decomposition is the separation
of a mixture of two, or more, components to bulk regions of each. Such a phenomenon occurs when a
high-temperature mixture of two, or more, alloys is rapidly cooled. To model this separation the initial
datum c0 is chosen to be a small uniformly distributed random perturbation about zero; see Figure

17



Fig. 4.2. The evolution of a cross

4.3. We consider this phenomenon with γ = 1/100 using quadratic elements on a 32 by 32 uniform
quadrilateral mesh.

Fig. 4.3. Early stages of spinodal decomposition

Fig. 4.4. Later stages of spinodal decomposition

The separation of the two components into bulk regions can quite clearly be seen in Figure 4.3. This
initial separation happens over a very small time-scale relative to the motion thereafter. In Figure 4.4
the bulk regions begin to move more slowly and separation will continue until the interface(s) develop a
constant curvature.

4.5. Convection-dominated problems: quadratic elements. In all of the following examples
we will take Pe = 200,

u(x, y) := f(r)(2y − 1, 1− 2x)T, (x, y) ∈ Ω := (0, 1)2,
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where

f(r) := 1
2

(
1 + tanh

(
β ( 1

2 − ε− r)
))

, r2 := (x− 1
2 )2 + (y − 1

2 )2,

with β = 200, ε = 0.1. Clearly ∇ · u = 0, and u · n = 0 to machine precision on ∂Ω.

4.5.1. Evolution of a cross. In this example we start from the same cross-shaped initial datum as
that in Section 4.2. We use a quadratic discontinuous Galerkin method on a 32 by 32 uniform quadrilateral
mesh and apply the above velocity field, taking γ = 1/100.

Fig. 4.5. Evolution of a cross with circular convection at t = 0.02, 0.04, 0.3, 1.0

We quite clearly see the effects of both convection and interfacial motion on the resulting evolution;
see Figure 4.5. The convection term is rotating the two components anti-clockwise while the interface is
reducing to a circle. Note that in the final frame of Figure 4.5 both bulk regions are still rotating under
the velocity field.

4.5.2. Evolution of spinodal decomposition under convection: cubic elements. In this final
example we show the effects of a velocity field on spinodal decomposition. We use a cubic discontinuous
Galerkin approximation and take γ = 1/200. Note that to model the resulting thinner interface we apply
a cubic polynomial approximation on a 64 by 64 uniform quadrilateral mesh. The initial datum c0 within
the circular domain is a small uniformly distributed random perturbation about zero; see the initial figure
in Figure 4.6.

Fig. 4.6. Formation of bulk regions: spinodal decomposition under circular convection: γ = 1/200, Pe = 200,
t = 0, 0.05, 0.1, 0.15

As in spinodal decomposition in the absence of a velocity field we see that initially the two components
are driven into bulk regions; see Figure 4.6. As before this initial motion occurs over a relatively short
time-scale.

Due to the convection term, these bulk regions form concentric circles exhibiting a filament type
structure as seen in [51]; see Figure 4.7. This convection-dominated motion occurs on a relatively short
time-scale. Note that, when the order-parameter is in the form of a set of concentric circular regions
∇ · (uc) = 0, leading to the standard Cahn–Hilliard system that will drive any interface to one with
constant curvature.
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Fig. 4.7. Convection of bulk regions into circular regions: spinodal decomposition under circular convection: γ =
1/200, Pe = 200, t = 0.3, 0.35, 0.4, 10

Fig. 4.8. Spinodal decomposition under circular convection: γ = 1/200, Pe = 200, t = 80, 140, 200, 300

Finally, motion of the phases continues due to the fact that we have considered a constant mobility
function of B(c) = 1 in our model; see Figure 4.8. This motion, due to the diffusion coefficient, occurs over
a very large time-scale. In general, such a function restricts diffusion away from interfaces by degenerating
to zero when c = ±1 and is introduced into (1.1a) as follows:

∂tc−
1
Pe
∇ · (B(c)∇w) +∇ · (uc) = 0;

see [19]. Hence, this model will allow diffusion away from the interface, ultimately leading to only two
bulk regions.

5. Conclusions. We introduced a discontinuous Galerkin finite element method for the numerical
approximation of the Cahn–Hilliard equation with a convection term. The model can be used to describe
the competing processes of stirring and separation in a two-phase flow. Unlike a standard continuous
finite element method, the discontinuous Galerkin method does not require any additional numerical
stabilization in the presence of a convection term in the equation. We derived bounds, uniform in the
discretization parameters, on the sequence of numerical solutions delivered by the method. We established
an optimal-order bound in the broken L∞(H1) norm on the error between the order-parameter c and its
discontinuous Galerkin approximation; in addition, an optimal-order error bound was derived for the
discontinuous Galerkin finite element approximation of the chemical potential w in the broken L2(H1)
norm. The analytical results were illustrated by numerical simulations that compare solutions of the
Cahn–Hilliard equation with and without a convection term.
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[29] C. M. Elliott and D. A. French. Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl.
Math., 39:97–128, 1987.

[30] C. M. Elliott, D. A. French, and F. A. Milner. A second order splitting method for the Cahn–Hilliard equation.
Numer. Math., 54:575–590, 1989.

[31] C. M. Elliott and A. M. Stuart. The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer.
Anal., 30(6):1622–1663, 1993.

[32] C. M. Elliott and A. M. Stuart. The viscous Cahn–Hilliard equation. II: Analysis. J. Differ. Equations, 128:387–414,
1996.

[33] Y. Epshteyn and B. Rivière. Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J.
Comput. Appl. Math., 206(2):843–872, 2007.

[34] X. Feng and O. A. Karakashian. Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin
approximation of the biharmonic equation. J. Sci. Comput., 22/23:289–314, 2005.

[35] X. Feng and O. A. Karakashian. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard
equation of phase transition. Math. Comp., 76(259):1093–1117, 2007.

21



[36] X. Feng and A. Prohl. Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw
problem. Interfaces and Free Boundaries, 7:1–28, 2005.
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[39] C. Johnson, U. Nävert, and J. Pitkäranta. Triangular mesh methods for neutron transport equation. Comput. Methods
Appl. Mech. Engrg., 45:285–312, 1986.

[40] J. Kim. Modelling and Simulation of Multi-Component, Multi-Phase Fluid Flows. PhD thesis, University of Minnesota,
2002.

[41] J. Kim. A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl. Math. Comp., 19160(2):589–606,
2005.

[42] J. Kim, K. Kang, and J. Lowengrub. Conservative multigrid methods for Cahn–Hilliard fluids. J. Comp. Phys.,
193(2):357–379, 2004.
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