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Optimized domain deomposition methods for the spherialLaplaianS. Loisel ∗ J. C�té † M. J. Gander∗ L. Laayouni ‡ A. Qaddouri†September 21, 2009AbstratThe Shwarz iteration deomposes a boundary value problem over a large domain Ω into smallersubproblems by iteratively solving Dirihlet problems on a over Ω1, ...,Ωp of Ω. In this paper, wedisuss alternate transmission onditions that lead to faster onvergene for the Laplaian on the sphere
Ω. We look at Robin onditions, seond order tangential onditions and a disretized version of anoptimal but nonloal operator.1 IntrodutionAt the heart of numerial weather predition algorithms lie a Laplae and positive de�nite Helmholtz prob-lems on the sphere [35℄. Reently, there has been interest in using �nite elements [5℄ and domain deomposi-tion methods [4, 26℄. The Shwarz iteration [23, 24, 25℄ and its optimized variants have been very suessfuland the subjet of muh reent researh. We now outline the history of Optimized Shwarz Methods (OSM)and refer to [14℄ for further details, as well as a omplete derivation for Helmholtz and Laplae problems inthe plane.The optimized Shwarz method was introdued in [2, 31, 32℄ under various names. Sine the OSM hasone or more free parameters, whih need to be hosen arefully to guarantee the best onvergene rate, therefollowed an e�ort to �nd the best possible parameter hoies [13, 21, 20℄. Despite these positive developments,a proof of onvergene for a general situation has proven elusive [22, 27℄. One way of obtaining onvergeneis to de�ne a relaxation of the method [7℄.The usual method for optimizing the free parameters is to take a Fourier transform of the partial di�er-ential equation, obtaining an expliit reurrene relation for the iteration. This works only in speial ases(e.g., the domain is a retangle and the di�erential operator is the Laplaian with homogeneous Dirihletonditions). In addition to the Laplae and Helmholtz problems [19℄, the method an be used for variousother anonial problems (f. [9, 18, 17, 29, 28℄ for onvetion-di�usion problems, [16℄ for the wave equation,[8℄ for �uid dynamis, [33℄ for the shallow water equation). The urrent paper is a ontinuation of thisresearh.Our paper provides an OSM for the spherial Laplaian, a di�erential operator whih had previously notbeen analyzed, using Fourier analysis. However, we brie�y mention that there has been muh reent researhon various other aspets of the OSM. For instane, domains with orners an give rise to singularities, andthis is analyzed in [3℄. In a similar vein, di�erential operators with disontinuous oe�ients often lead toill-onditioned problems, and an OSM for this situation is provided in [12℄. A ompletely di�erent issue isto phrase the OSM in an algebrai way. In a typial appliation, one has a ode to ompute the sti�nessmatrix A, but one would ideally prefer not to have to rewrite the entire ode in order to implement an OSM.In that vein, [34℄ provides a framework for expressing the OSM in the language of matries.
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There are many reasons to use domain deomposition methods, but we outline one appliation. Domaindeomposition methods are often naturally parallel, and hene an be used on large lusters and superom-puters. The algorithm that runs on eah proessor is a small, loal version of the global problem, so provensequential odes an be adapted and beome loal solvers whih will then run in parallel on suh lusters.In suh a senario, an important question is that of saling.In the simplest saling senario, one �xes the number p of subdomains, and one piks subdomains
Ω1, . . . ,Ωp in suh a way that the overlap between adjaent subdomains is exatly one element thik. In thissituation, it is well known [36℄ that the (1-level) Shwarz method has a onvergene fator of �CS = 1−O(ℎ).In other words, at eah step of the iterative method, the error is multiplied by the oe�ient �CS < 1. Beausethis oe�ient depends on ℎ, and tends to 1 when ℎ tends to zero, we see that more and more iterationswill be needed to reah a given tolerane as we make ℎ smaller. It is preferable to �nd an algorithm whoseonvergene fator either does not approah 1, or at least approahes 1 not too quikly when ℎ tends to zero.In this ontext, the main advantage of the Optimized Shwarz methods is that they have muh betteronvergene fators than the lassial Shwarz method. For example, the one-sided overlapping OO0 methodhas a onvergene fator of �OO0 = 1−O(ℎ1/3), and the overlapping OO2 method has a onvergene fatorof �OO2 = 1−O(ℎ1/5).In addition to overlapping methods, Lions [25℄ proposed to use Robin transmission onditions along theinterfae to obtain nonoverlapping domain deomposition methods. There is no nonoverlapping lassialShwarz method with whih to ompare, but the OO0 and OO2 methods an be used in the nonoverlappingontext. The onvergene fators are 1 − O(ℎ1/2) and 1 − O(ℎ1/4), for the nonoverlapping OO0 and OO2methods, respetively.Although our analysis is limited to latitudinal subdomains, we will see in Setion 5 that we obtain verygood performane, even when subdomains have more varied shapes.We note that, if the number of subdomains p inreases as ℎ tends to zero, it is neessary to design a 2-levelalgorithm to maintain good performane. In a 2-level algorithm, detailed informations from neighbors areombined with less preise information stored on a low-resolution �oarse grid�. The design and analysis ofan Optimized Shwarz Method with a oarse grid orretion is a hallenging problem whih will be analyzedin an upoming paper [10℄.1.1 Our ontributionsIn this paper, we introdue improved transmission operators for the Laplae problem on the unit sphere Ωin ℝ

3. We modify the Shwarz iteration by replaing the Dirihlet onditions on the interfaes by Robinor seond order tangential onditions. This allows us to signi�antly improve the onvergene fator of theiteration. To analyze the onvergene rate and optimize the oe�ients, we use the Fourier transform on thesphere. In addition to the usual Robin and seond order tangential onditions, we also disuss the use of anonloal operator along the interfaes. This nonloal operator is related to the square root of the Laplaianof the interfaes and was �rst introdued for numerial alulations in [4, 26℄. While the ontinuous analysisshows that these operators result in an iteration that onverges in two steps, in pratie we do not see thisexat behavior. However, the resulting iteration seems to onverge at a very fast rate that is independent ofthe mesh size ℎ or the thikness of the overlap L.We highlight four ontributions of this paper. First, we have an innovative use of the envelope theoremto establish an equiosillation property. Seond, we highlight our ontinuous and disrete analyses and theiromparison. Third, our analysis takes plae on the sphere, whih is ideal for weather and limate simulation.Fourth, we provide a �nite element method whih is appropriate for spherial disretizations. Sine thespherial Laplaian is singular, the hoie of the �nite element spae is important and a poor hoie leads todivergent iterations and poorly onditioned systems. We show that with the proper hoie of basis funtions,the onvergene fator of the optimized Shwarz methods are una�eted.This paper is organized as follows. In Setion 2, we introdue our model problem and state our mainresults. In Setion 3, we review the Laplae operator on the sphere and reall the Shwarz iteration andits onvergene estimates, previously published in [4℄; we also give a new semidisrete estimate whih issubstantially similar to the ontinuous one. In setion 4, we perform the Fourier analysis of the new OptimizedShwarz Methods. In setion 5, we present numerial results that agree with the theoretial preditions.
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Figure 1: Latitudinal domain deomposition. Left: two subdomains; right: multiple subdomains.2 OSM on the sphereConsider the following iteration. Let b < a. Begin with random �andidate solutions� u0 and v0. De�ne
uk+1 and vk+1 iteratively by:

⎧

⎨

⎩

Δuk+1 = f in Ω1 = {(', �)∣0 ≤ ' < a},
uk+1(a, �) = vk(a, �) � ∈ [0, 2�),

Δvk+1 = f in Ω2 = {(', �)∣b < ' ≤ �},
vk+1(b, �) = uk(b, �) � ∈ [0, 2�);

(1)(see �gure 1.) This is the Shwarz iteration for two latitudinal subdomains. The idea of the OptimizedShwarz Methods is to replae the Dirihlet onditions on the interfae by Robin or other transmissiononditions. The modi�ed iteration is:
⎧

⎨

⎩

Δuk+1 = f in Ω1

(( + ∂
∂' )uk+1)(a, �) = (( + ∂

∂' )vk)(a, �) � ∈ [0, 2�),

Δvk+1 = f in Ω2

((� + ∂
∂')vk+1)(b, �) = ((� + ∂

∂' )uk)(b, �) � ∈ [0, 2�);

(2)where  and � are either real oe�ients or trae operators, and Ω1, Ω2 are as previously de�ned. If  and � are di�erential trae operators of order k, we say that the optimized Shwarz method is Optimized ofOrder k, or OOk [15℄. Choies inlude:1. ( w)(�) = cw(�) where c is a real oe�ient. This results in a Robin or OO0 transmission ondition.2. ( w)(�) = cw(�)+dw′′(�), where c and d are real oe�ients. This results in a seond order tangential,or OO2 transmission ondition.3. A nonloal hoie of  leading to an iteration that onverges in two steps.We will show in Setion 3 that the onvergene fator depends on the thikness of the overlap L, givenby
L := −2 log

1 + cos a

sin a

sin b

1 + cos b
≥ 0.Our main result for Robin (or OO0) transmission onditions is as follows.Theorem 2.1 (Optimized Robin or OO0 oe�ients). Consider the iteration (2) with ( w)(�) = cw(�) and

(�w)(�) = dw(�). Set x = −d sin b, y = c sin a. Let ℎ = 1/N be the grid size.
∙ The one-sided ondition is x = y. With this ondition, and further assuming that L < 4/3 and L > ℎ�for some � < 3/2, there is a unique optimized hoie of x leading to the best possible onvergenefator. Using x = y = x̂1 = L− 1

3 , the onvergene fator every other step is � = 1− 4L
1
3 +O(L

2
3 ).

∙ If x ∕= y is allowed, the optimized hoie (c, d) is two-sided. Assume that L > ℎ�, � < 5/4. There isa unique (c, d) leading to the best onvergene fator. Using x = 8−
1
5L− 1

5 and y = 8
2
5

2 L
− 3

5 leads to aonvergene fator of � = 1− 2 ⋅ 2 3
5L

1
5 +O(L

2
5 ) every other step.3



The onvergene fator � < 1 multiplies the L2 error of the trae on eah subdomain every other step. Wesee that using �asymmetri� Robin onditions leads to an improvement on the number of iterations requiredfor a given tolerane, from O(L− 1
3 ) to O(L− 1

5 ). The one-sided estimate however is easier to use with psubdomains, and so we would be interested in ahieving a O(L− 1
5 ) algorithm using only one-sided estimates.This is possible if we use seond order tangential transmission onditions.Theorem 2.2 (One-sided seond order tangential, or OO2, optimized oe�ients). Consider the iteration(2) with ( w)(�) = cw(�) + dw′′(�), (�w)(�) = c̃w(�) + d̃w′′(�). Let s = c sina = −c̃ sin b and t = d sin a =

−d̃ sin b, whih is the �one-sided� assumption. Assume that L < ℎ�, � < 5/4. There is a unique hoie of
s, t leading to the best possible onvergene fator. Using s = 1

22
3
5L− 1

5 and t = 1
22

1
5L

3
5 leads to a onvergenefator of � = 1− 4 ⋅ 2 2

5L
1
5 +O(L

2
5 ) every other step.The onverge rate estimates hold even if L is smaller than ℎ� (e.g., when the grid is highly anisotropi,with � = 3/2 or 5/4, as above), but then the oe�ients given may no longer be optimized. An extreme aseis when L = 0, a nonoverlapping ase, and we analyze this ase in Setion 3.1. The �main� ase is L = O(ℎ)and is handled by the Theorems 2.1 and 2.2.Our numerial examples are based on two di�erent odes. Many odes in meteorology use the disreteFourier transform in the longitude variable � to obtain a semispetral solver. This solver makes the imple-mentation of our three types of transmission onditions equally easy, for latitudinal interfaes. However, suhsolvers do not easily handle arbitrarily shaped subdomains, and the grids have singularities at the poles.Our seond ode is a �nite element solver on the sphere Ω. The variational formulation of the spherialLaplaian leads to integrals on the sphere Ω, and so we must hoose pieewise C1 basis funtions for some�nite element spae on the sphere Ω. We use a standard projetion tehnique to generate spherial elementsfrom pieewise linear elements on a polyhedral approximation of the sphere Ω.3 The Laplae operator on the sphere ΩWe take the Laplae operator in ℝ
3, given by

Δu = uxx + uyy + uzz,rephrase it in spherial oordinates and set ∂u
∂r = 0 to obtain

Δu =
1

sin2 '

∂2u

∂�2
+

1

sin'

∂

∂'

(

sin'
∂u

∂'

)

,where ' ∈ [0, �] is the olatitude and � ∈ [−�, �] the longitude.3.1 The solution of the Laplae problemWe take a Fourier transform in � but not in '; this lets us analyze domain deompositions with latitudinalboundaries. The Laplaian beomes
Δ̂û(',m) =

−m2

sin2 '
û(',m) +

1

sin'

∂

∂'

(

sin'
∂û(',m)

∂'

)

, ' ∈ [0, �], m ∈ ℤ. (3)For boundary onditions, the periodiity in � is taken are of by the Fourier deomposition. The poles imposethat u(0, �) and u(�, �) do not vary in �. For m ∕= 0 this is equivalent to
û(0,m) = û(�,m) = 0, m ∈ ℤ, m ∕= 0. (4)For m = 0, the relation u'(0, �) = −u'(0, � + �) leads to ∫ 2�

0
u'(0, �) d� = −

∫ 2�

0
u'(0, �) d�, i.e.,

û'(0, 0) = û'(�, 0) = 0. (5)If u is a solution of Δu = f then so is u + c (c ∈ ℝ), hene the ODE for m = 0 is determined up to anadditive onstant. 4



With m ∕= 0 �xed, the two independent solutions of Δu = 0 are
g±(',m) =

(
sin(')

cos(') + 1

)±∣m∣
= e±∣m∣ log sin(')

cos(')+1 , m ∈ ℤ ∖ {0}.For m = 0 the two independent solutions give
û(', 0) = C1 + C2 log

1− cos'

sin'
.If we insist, for instane, that u ∈ H1(Ω), we eliminate the logarithmi term and we obtain that û(', 0) is aonstant in '.All the eigenvalues of Δ are of the form of −n(n+ 1) for n = 0, 1, ...; in partiular, they are non-positive(and Δ is negative semi-de�nite).3.2 The Shwarz iteration for Δ with two latitudinal subdomainsConsider the Shwarz iteration (1). We are interested in studying the error terms u0 − u and v0 − u where

Δu = f . Observe that uk − u and vk − u are lassial Shwarz iterates as per equation (1), but with f = 0.For this reason, it su�es to analyze the lassial Shwarz iteration with f = 0, whih we assume for theremainder of our analysis.Using the Fourier transform in �, we an write ûk+2(b,m) expliitly in terms of ûk(b,m). This allows usto obtain a onvergene fator estimate, whih we reall from [4℄.Lemma 3.1. The Shwarz iteration on the sphere Ω partitioned along two latitudes b < a onverges (exeptfor the onstant term). The onvergene fator ∣ûk+2(b,m)/ûk(b,m)∣ is
C(m) =

(
sin(b)

cos(b) + 1

)2∣m∣(
sin(a)

cos(a) + 1

)−2∣m∣
< 1. (6)This onvergene fator depends on the frequeny m of uk on the latitude b.An analysis that is loser to the numerial algorithm would be to replae the ontinuous Fourier transformin � by a disrete one.Lemma 3.2 (Semidisrete analysis.). The Laplaian disretized in � with n sample points:

Δnu =
n2

4�2 sin2 '

(

u

(

',
j + 1

2�n

)

− 2u(', j) + u

(

',
j − 1

2�n

))

+ cot'u' + u'' (7)leads to a Shwarz iteration whose onvergene fator is
(

sin(b)

cos(b) + 1

)2∣m̃∣(
sin(a)

cos(a) + 1

)−2∣m̃∣
< 1every two iterations, where

m̃2 =
n2

4�2
(1− cos(2�k/n))for the kth frequeny.Proof. We do a disrete Fourier transform in � and the equation to solve beomes

Lnû(', k) =
n2

4�2 sin2 '
(cos(2�k/n)− 1)û(', k) + cot'û'(', k) + û''(', k) = 0. (8)By writing m as noted in the statement of the Lemma, we have redued this problem to the previous oneand we an reuse Lemma 3.1.The two ontration onstants are very similar. For small values of m (ignoring m = 0 beause thatmode need not onverge at all), the speed of onvergene is very poor. The overall onvergene fator asmeasured in the L2 norm along the interfaes is given by

sup
m≥1

C(m) = C(1)

= 1−O(a− b),and so the onvergene fator of the Shwarz iteration deteriorates rapidly as a− b beomes small.5



4 Optimized Shwarz iteration for Δ with latitudinal boundariesIn this setion, we prove Theorems 2.1 and 2.2. This requires many tehnial results and so we proeed witha sequene of simple lemmas.To analyze the onvergene fator, as we did in Setion 3, we assume, without loss of generality, that
f = 0. Beause the Laplaian of a onstant is zero, we will see that the error terms onverge to onstantfuntions, whih is to say, the loal solutions onverge up to an additive onstant.One key tehnique is to use the fat that, although u0 and v0 may be arbitrary in some Sobolev spaes,
u1 and v1 are harmoni in Ω1 and Ω2, respetively. This key observation allows us to �nd iterations thatonverge fast starting from the seond step. This observation has an impat on the numerial simulations.Often, the �rst iterations u1 and v1 are not muh better than the initial guesses u0 and v0, and they aresometimes even worse.Lemma 4.1 (Nonloal operator). If, for eah m,  ̂(m) = ∣m∣/ sina and �̂(m) = −∣m∣/ sin b, Δu1 = 0 in
Ω1and Δv1 = 0 in Ω2, then u2 = 0 and v2 = 0.Proof. Let u1(', �) = û1(a, 0)+

∑

k ∕=0 û1(a, k)g+(', k)e
ik� and v1(', �) = v̂1(a, 0)+

∑

k ∕=0 v̂1(a, k)g−(', k)e
ik� ,then the boundary value problem for the north hemisphere yields for eah m ∕= 0:

û2(a,m)

(

 ̂(m) +
∣m∣
sin a

)

= v̂1(a,m)

(

 ̂(m)− ∣m∣
sin a

)

= 0, (9)and so û2(a,m) = 0. Likewise, we �nd that v̂2(b,m) = 0 for eah m ∕= 0. For m = 0, we have that
û2(a,m) = v̂1(a,m): the iteration does not a�et the onstant mode m = 0. Sine the solution of theLaplae problem is only de�ned up to a onstant, the iteration has onverged.The seond tangential derivative D2

� along latitude ' has Fourier transform −m2. The optimal operatorsare therefore the symmetri and positive de�nite square root of −D2
� , multiplied by 1/ sina or 1/ sin baording to the latitude. This normalization onstant is related to the length of the latitude at ' = a and

' = b, respetively, sine a latitude ' is a irle of radius r = sin'.Next, we state the onvergene fator of the optimized Shwarz iteration, if  and � are not these nonloaloperators.Lemma 4.2. If Δu1 = 0 in Ω1 then
û3(b,m) = û1(b,m)

�̂(m) sin b+ ∣m∣
�̂(m) sin b− ∣m∣

 ̂(m) sin a− ∣m∣
 ̂(m) sin a+ ∣m∣

g−(m, a)

g−(m, b)

g+(m, b)

g+(m, a)
.The proof is a simple omputation using equation (9). We now look for good onvolution kernels � and

 so that the the onvergene fator
�( , �,m, a, b) =

�1
︷ ︸︸ ︷

�̂(m) sin b+ ∣m∣

�̂(m) sin b− ∣m∣

�2
︷ ︸︸ ︷

 ̂(m) sina− ∣m∣

 ̂(m) sina+ ∣m∣

�3
︷ ︸︸ ︷

g−(m, a)

g−(m, b)

�4
︷ ︸︸ ︷

g+(m, b)

g+(m, a)
, (10)with m ∈ ℤ ∖ {0}, is as small as possible. For a given hoie of  ̂ and �̂, the onvergene fator as measuredin the L2 norm along the interfae ' = b will be given by supm∈ℤ∖{0} ∣�( , �,m, a, b)∣.The onvergene fator estimate (10) also leads to the following result:Corollary 4.3. The iteration (2) is onvergent (modulo the onstant mode) if  and −� are onvolutionoperators that are positive de�nite, regardless of overlap.Proof. Let  ̂(m) > 0 and �̂(m) < 0, and let �1, �2, �3, �4 be as in (10). Sine sin a > 0 and sin b > 0, we seethat ∣�1∣ < 1 and ∣�2∣ < 1. Furthermore,

�3�4 =

(
sin(b)

cos(b) + 1

)2∣m∣(
sin(a)

cos(a) + 1

)−2∣m∣
=

⎛

⎜
⎜
⎜
⎝

≤1
︷ ︸︸ ︷
(
sin(b)

sin(a)

)

≤1
︷ ︸︸ ︷
(
cos(a) + 1

cos(b) + 1

)

⎞

⎟
⎟
⎟
⎠

2∣m∣

≤ 1,where we have used that b < a. Hene, ∣�( , �,m, a, b)∣ < 1 for every m ∕= 0.6



By omparison, in [27℄, it was shown that if � and  are Robin transmission onditions for a domaindeomposition with �relatively uniform overlap�, then the iteration onverges so long as � and  are bothpositive de�nite.Our analysis will proeed by onsidering the ontration onstant (10) for the various hoies of trans-mission onditions � and  . We onsider �rst the use of Robin transmission onditions and prove Theorem2.1. Seond, we prove Theorem 2.2 for seond order tangential transmission onditions.4.1 Robin or OO0 transmission onditionsLet  u = cu and �u = du, then
�OO0( , �,m, a, b) =

d sin b+ ∣m∣
d sin b− ∣m∣

c sin a− ∣m∣
c sin a+ ∣m∣

g−(m, a)

g−(m, b)

g+(m, b)

g+(m, a)

= �(c, d,m, a, b).For a, b �xed, we now need to ompute the hoies of c, d minimizing
'(c, d) = sup

m
�OO0(c, d,m, a, b)

2,where we have introdued a square to simplify some alulations; the atual ontration onstant will begiven by√'(c, d). To simplify our notation, it is onvenient to do a hange of variables. We set x = −d sin b,
y = c sin a and

L = −2 log

(
1 + cos a

sin a

sin b

1 + cos b

)

≥ 0,and rewriting the g± terms as exponentials, the optimization problem beomesMinimize '(x, y) where
'(x, y) = sup

m∈{1,2,...}
F (x, y,m)

F (x, y,m) =

∣
∣
∣
∣

x−m

x+m

y −m

y +m
e−Lm

∣
∣
∣
∣

2 (11)
= FL(x, y,m).The onvergene fator every other step for partiular parameter hoies x and y is √'(x, y). The ase

L = 0 only ours when a = b, in whih ase '(x, y) = 1 for all x, y ≥ 1 and then we will need to take intoaount ertain disretization parameters to obtain a onvergene fator estimate. This ase will be treatedseparately.We now use two di�erent analyses to ompute optimized Robin parameters c and d. First, we make thesimplifying assumption that x = y, allowing us to optimize instead the objetive funtion
max
m

∣(x−m)/(x+m)e−
L
2 m∣2.This situation is interesting beause this an lead to an algorithm where all subdomains �do the samething�. This is the method whih most obviously generalizes to many subdomains. Seond, we onsider theexpression F (x, y,m) with both parameters simultaneously. This is also interesting, beause in this situation,the iteration does �something di�erent� on eah subdomain. We will see that, although this approah isdi�ult to generalize to many subdomains, it leads to substantially improved onvergene fators.4.2 OO0 one-sided analysis, L > 0.We an write FL(x, y,m) = FL(x,m)FL(y,m) (f. (11)), where we de�ne

FL(x,m) = F (x,m) =

∣
∣
∣
∣

x−m

x+m
e−

L
2 m

∣
∣
∣
∣

2

.7



We �rst look at the problem of omputing the optimal parameter x0 minimizing
'L(x) = sup

m∈{1,2,...}
FL(x,m),sine it is simpler. The solution x0 minimizing 'L(x) leads to the hoies x = y = x0, whih minimizes

'L(x, y) subjet to the symmetry onstraint x = y. The onvergene fator for a partiular parameter hoie
x is √'(x, x) = 'L(x).We now deal with the various spetra over whih we an optimize. Our ontinuous problem has afrequeny variablem ∈ ℤ, but sine them = 0 frequeny need not onverge, and sine FL(x,−m) = FL(x,m),we have already simpli�ed our problem by onsidering the frequeniesm ∈ {1, 2, . . .}. Beause of our eventualdisretization, we will want to onsider the frequeny domain {1, 2, ..., N}, where N is the highest frequenythat an be resolved on the interfae, given our grid. However, beause of the di�ulties in optimizing overdisrete sets, we also onsider the possibility of allowing m to vary in the intervals [1,∞) as well as [1, N ].For tehnial reasons, it is also onvenient to inlude m = ∞ in our alulations.Let 2 < N <∞ and de�ne

'
(c)
L (x) = sup

m∈[1,∞]

FL(x,m), (I(c) = [1,∞]),

'
(d)
L (x) = sup

m∈{1,2,...}
FL(x,m), (I(d) = {1, 2, ...,∞}),

'
(cb)
L (x) = sup

m∈[1,N ]

FL(x,m), (I(cb) = [1, N ]),

'
(db)
L (x) = sup

m∈{1,2,...,N}
FL(x,m), (I(db) = {1, 2, ..., N}).Aording to our de�nitions, for all x, '(d)

L (x) = 'L(x). The other funtions are similar but maximize overa di�erent set of frequenies.One of the main tools for solving min-max problems is the envelope theorem, whih we state here foronveniene.Theorem 4.4 (The Envelope Theorem). Let U be open in ℝ
n and ' : U → R,  ∈ ℝ

n, ∣∣∣∣ = 1. For
x ∈ U , de�ne the one-sided diretional derivative D'(x) by

D'(x) = lim
�↓0+

'(x+ �)− '(x)

�
,if the (one-sided) limit exists. Let V be a ompat metri spae. Let

F : U × V → ℝ

(x, y) 7→ F (x, y)be ontinuous and assume that the partial gradient Fx(x, y) exists for all x, y ∈ U×V and varies ontinuouslyin (x, y). De�ne
'(x) = max

y∈V
F (x, y),

Y (x) = {y ∈ V ∣F (x, y) = '(x)} ∕= ∅.Then,1. For all x ∈ U and  ∈ ℝ
n, ∣∣∣∣ = 1, Du(x) exists and is given by the formula

D'(x) = max
y∈Y (x)

n∑

i=1

iFxi
(x, y). (12)2. Let x̃ ∈ U . If Y (x̃) = {y(x̃)} is a single point then

D'(x̃) =

n∑

i=1

iFxi
(x̃, y) (13)8



and ' is (fully) di�erentiable at x̃. If furthermore Y (x) = {y(x)} is a singleton for all x ∈ O ⊂ U anopen set, then ' is ontinuously di�erentiable in O.This immediately leads to an equiosillation property.Lemma 4.5. For j ∈ {c, d, cb, db}, there is a minimizer xj of '(j)(x), and ∣M (j)(xj)∣ ≥ 2, where M (j)(x) =
{m ∈ I(j)∣'(j)(x) = FL(x,m)}.Proof. Wemust plae ourselves in the hypotheses of the envelope theorem. Eah set [1,∞], {1, 2, ...,∞}, [1, N ], {1, 2, ..., N}is a ompat metri spae (for I(c) and I(d) one may use the metri d(x, y) = ∣x−1−y−1∣). Sine the funtion
'(j) is a ontinuous funtion on the ompat metri spae I(j), it must have a minimum. The optimalparameter xj is in [0,∞) so we take U = (− 1

2 ,∞), and the hypotheses of the envelope theorem are satis�ed.Assume that M (j)(xj) = {m̃} is a singleton (there is no equiosillation). Then, by the envelope theorem,the two-sided derivative Dx'
(j)(xj) exists and sine '(j)(xj) is minimal, the derivative must be zero. Usingformula (13), we obtain

0 = Fx(xj , m̃) = −4m̃
m̃− xj

(m̃+ xj)3
e−2Lm̃.Sine xj , m̃ > 0, it must be that m̃ = xj . Hene, '(j)(xj) = F (xj , m̃) = 0. But we know that '(j)(xj) ≥

F (x, x+ 1) > 0.Now we haraterize the unique minimizer for the ase j = c.Lemma 4.6. There is a unique xc minimizing '(c)
L (x) and it is the unique root  (xc) = 0 of

 (x) =  (x, L) =

(
m(x) − x

m(x) + x

)2

e−Lm(x) −
(
1− x

1 + x

)2

e−L,where m(x) =
√

4x
L + x2.Proof. Beause any minimizer xc is in [1,∞), the only loal maxima of FL(x,m) as m runs in [1,∞] areat m = 1 and m = m(x) =

√
4x
L + x2 and so M (c)(xc) ⊆ {1,m(xc)}. By Lemma 4.5, we know that

#M (c)(xc) ≥ 2 so
M (c)(xc) =

{

1,

√

4xc
L

+ x2c

}

.Hene,  (xc) = 0. This shows the equiosillation  (x) = 0.We now show the uniqueness of the solution of the equiosillation problem. To that end, let
g(x) = F (x,m(x)),

g′(x) = Fx(x,m(x)) + Fm(x,m(x))m′(x)

= Fx(x,m(x))

= −4m(x)
m(x)− x

(m(x) + x)3
e−Lm(x) < 0,and

ℎ(x) = F (x, 1),

ℎ′(x) = −4
1− x

(1 + x)3
e−L > 0.Hene,  ′ = g′ − ℎ′ < 0 and  may not have multiple zeros.This result gives some more information for the ase j = d (that is, I(d) = {1, 2, ...,∞}). We must assumethat L is not too big, but our fous is the ase where there is little overlap so this is not a problem. The speialpoint m(x) ontinues to play an important role. Notie that m′(x) > 1 and that m(1) =

√
4 + L/

√
L > 1 sothat, for all x > 1, m(x) > m(1) + (x− 1) > x. 9



Lemma 4.7. Let L < 4/3 and let xc minimize '(c)
L (x) and xd minimize '(d)

L (x). Then 1 ∈ M (d)(xd) ⊆
{1, ⌈m(xd)⌉ , ⌊m(xd)⌋} and xc − 1 ≤ xd ≤ xc.Proof. Beausem = m(xd) is the only loal maximum of FL(x,m), we know thatM (d)(xd) ⊆ {1, ⌈m(xd)⌉ , ⌊m(xd)⌋},and we also know from Lemma 4.5 that #M (d)(x̂) ≥ 2. Assume that M (d)(x̂) = {⌈m(x̂)⌉ , ⌊m(x̂)⌋}. Thehypothesis on L ombined with the fat that xd ≥ 1 guarantees that m(xd) > xd + 1 so xd < ⌊m(xd)⌋. Wean now use the one-sided derivative of the Envelope Theorem, obtaining that

D(1)'
(d)(xd) = max

m∈{⌈m(xd)⌉,⌊m(xd)⌋}
Fx(xd,m)

= max
m∈{⌈m(xd)⌉,⌊m(xd)⌋}

−m m− xd
(m+ xd)3

e−Lm < 0.Therefore, 1 ∈M (d)(x̂).Clearly, we must have '(d)(xd) ≤ '(c)(xc). If xd > xc then '(d)(xd) ≥ F (xd, 1) = '(c)(xd) > '(c)(xc),hene we must have that xd ≤ xc. If xd < xc − 1, then in view of the estimate m′(x) > 1, we have that
m(xd) < m(xc) − 1. Let m0 = ⌊m(xc)⌋ and �nd the unique x0 ∈ (1,m0) suh that m(x0) = m0. We havethat xd ∈ (1, x0) ⊂ (1,m0). For x ∈ (1,m0), we have that Fx(x,m0) < 0. Hene, '(d)(xd) ≥ F (xd,m0) >
F (x0,m0) = '(c)(x0) > '(c)(xc).As a result of Lemma 4.7, we see that using the disrete frequeny spetrum {1, 2, ...,∞} or using theontinuous frequeny spetrum [1,∞] results in approximately the same Robin parameter.We would like to give a formula for the optimized Robin parameter, but the equiosillation propertyannot be solved expliitly. However, we an solve it approximately for small L. This further allows us toonsider the spetrum [1, N ]. If xcb minimizes '(cb)(x) then M (cb)(xcb) ⊆ {1, N,m(xcb)}. When L is not toosmall ompared to N−1, we now show that M (cb)(xcb) = {1,m(xcb)}. This implies that, for those values of
L and N , the optimized parameter for the frequeny spetrum [1, N ] is the same as the one for the frequenyspetrum [1,∞].Lemma 4.8. The optimized hoie xc for '(c)(xc) is asymptoti to L− 1

3 :
lim

L→0+
xcL

1
3 = 1.If we hoose x̂c = L− 1

3 as our optimized parameter, the onvergene fator every other step is
F (x̂c, 1) = 1− 4L

1
3 +O(L

2
3 ). (14)Let � > −3/2. If L = L(N) > N� then for all N su�iently large, m(xc) < N , and for suh values of Nand L, we have that xc = xcb.Proof. We try to solve F (x,m(x)) − F (x, 1) = 0 by writing x as a power of L. Let x = CL� , then we get

0 =  =

(√
CL�−1 + C2L2� − CL�

√
CL�−1 + C2L2� + CL�

)2

e−L
√

4CL�−1+C2L2� −
(
1− CL�

1 + CL�

)2

e−L, (15)whih is de�ned for L > 0 and C > 0. We want to take a series expansion for  , and we �nd that for
� = −1/3,

 =

(
4

C
− 4

√
C

)

L
1
3 +O(L

2
3 ).We see that G(x) = F (x,m(x)) − F (x, 1) < 0 for su�iently small L if we hoose x = CL− 1

3 with C > 1,and G(x) > 0 for all su�iently small L if C < 1. Hene, xcL 1
3 → 1 as L→ 0+.To show that xc = xcb, it su�es to show that

m(xc) < N, (16)for su�iently small L. We substitute x = L− 1
3 and then L = N� into m(x) obtaining

m(x) =

√

4N− 4
3� +N− 2

3�.Hene if � > −3/2, m(x)/N → 0 as N → ∞ and so m(x) < N for large N . Conversely, if � < −3/2,
m(x)/N → ∞ and m(x) > N for large N . 10



The ase {1, 2, ..., N} follows immediately.Corollary 4.9. Let � > − 3
2 . Let L = L(N) > O(N�), L < 4

3 and let xcb minimize '(cb)(x). If xdbminimizes '(db)(x) then for all N su�iently large, 1 ∈M(xdb) ⊂ {1, ⌊m(xc)⌋ , ⌈m(xc)⌉}.Proof. Say that xd minimizes '(d)(x). By lemma 4.7, we have that M (d)(xd) ⊆ {1, ⌈m(xc)⌉ , ⌊m(xc)⌋},where xc minimizes '(c)(x). Lemma 4.8 gives ⌈m(xc)⌉ < N for large N , hene M (d)(xd) ⊂ {1, ..., N}. If
xdb > xd then F (xdb, 1) > F (xd, 1) and xdb is not a minimizer. If xdb < xd and if 1 ∕= md ∈ M (d)(xd)then '(db)(xdb) ≥ F (xdb,md) ≥ F (xd,md) = '(d)(xd) and xdb is not a minimum. Hene xd = xdb for allsu�iently large N .Note that the asymptoti onvergene fator (14) is approximately independent of the spetrum we use,and so we may use the optimized parameter x̂c = L− 1

3 in all situations.This ompletes the proof of the �rst part of Theorem 2.1.4.3 Two-parameter OO0 analysis, L > 0.Returning to formula (11), we now ompute the optimal parameters x and y without assuming that x = y.Calulations in this setting are more ompliated than in the one-parameter ase, so we treat only the asesof the spetrum [1,∞] and [1, N ]. We an get a rudimentary equiosillation property out of the envelopetheorem.Lemma 4.10. Let L > 0 and
F (x, y,m) =

(
x−m

x+m

y −m

y +m
e−Lm

)2

,

'(x, y) = sup
m∈[1,∞]

F (x, y,m),

M(x, y) = {m ∈ [1,∞]∣F (x, y,m) = '(j)(x, y)}.Then '(x, y) has a minimum (x0, y0). In addition, #M (j)(x0, y0) ≥ 2 and min(x0, y0) ≥ 1.Proof. Note that '(1, 1) < 1. Sine '(x, y) ≥ F (x, y, 1) and sine F (x, y, 1) tends to 1 as (x, y) tends to
∞, there is an M < ∞ suh that, if (x, y) /∈ [1,M ]× [1,M ], then '(x, y) > '(1, 1). Hene, ' must have aminimum in [1,M ]× [1,M ].We now plae ourselves under the hypotheses of the Envelope Theorem. We have that (x0, y0) ∈
(12 ,∞)2 = U and the hoie V = [1,∞] does the trik.If M (j)(x0, y0) = {m} is a singleton, then '(x, y) is di�erentiable at x0, y0 and

0 = ∇'(x0, y0)

=

(
∂F

∂x
(x0, y0,m),

∂F

∂y
(x, y,m)

)

.It su�es to look at the partial in x,
0 = −4m

m− x

(m+ x)3

(
m− y

m+ y

)2

e−2Lm,to onlude that either m = x or m = y. In either ase, '(x, y) = F (x, y,m) = 0, whih is absurd.In the one-sided ase, this result was su�ient beause the only remaining possibility was to have twopoints equiosillating. However, in the two-sided ase, we an equiosillate two or three points, but lemma4.10 only says that there are at least two points equiosillating. Using the fat that '(x, y) has one-sidedderivatives everywhere, and that for any diretion  this one-sided derivativeD'(x, y) must be non-negativeat (x, y) we an obtain equiosillation of three points. First we must desribe the shape of F (x, y,m) as afuntion of m. 11



Lemma 4.11. Let 1 ≤ x ≤ y (without loss of generality). The two loal maxima m1(x, y) ≤ m2(x, y) of
F (x, y,m) inside m > 1 are given by

m2
1(x, y) =

2x+ 2y + Lx2 + Ly2 −
√

px,y(L)

2L
,

m2
2(x, y) =

2x+ 2y + Lx2 + Ly2 +
√
px,y(L)

2L
,

px,y(L) = (x2 − y2)2L2 + 4(x3 − xy2 − x2y + y3)L

+4(x+ y)2 > 0.Furthermore, if x < y then m1(x, y) ∈ (x, y) and m2 ∈ (y,∞). If x = y, then m1(x, x) = x and m2(x, x) ∈
(x,∞).The ritial points m1 and m2 also depend on L. When that dependene must be made expliit, we write
m1(x, y, L) and m2(x, y, L).Proof. We set the derivative ∂F/∂m to zero, obtaining

0 =
∂F

∂m
(x, y,m)

= 2
x−m

(x+m)3
y −m

(y +m)3
qx,y(m)e−2Lm,

qx,y(m) = −Lm4 + (2x+ 2y + Lx2 + Ly2)m2

−(2y2x− 2x2y − Lx2y2).The hoies m = x and m = y lead to F (x, y,m) = 0 so they are minima, so we restrit our attentionto qx,y(m) = 0. By substituting m2 = n we obtain a quadrati polynomial in n whose roots are m2
1(x, y)and m2

2(x, y); we need to show that 1 ≤ m1 ≤ m2. First to show that they are real, we show thatthe disriminant px,y(L) is non-negative. It su�es to show that, as a quadrati polynomial over L, itsoe�ients are non-negative. The oe�ient of L2 and the onstant oe�ient are squares and hene non-negative. We rewrite x = �y with � ∈ (0, 1] and substitute into the oe�ient of L in px,y(L) to obtain theexpression y3(4�3 − 4�2 − 4�+ 4) > 0 sine y > 0. Hene px,y(L) > 0 and m1 < m2.Assume that x < y are �xed. Sine F (x, y, x) = 0 and F (x, y, y) = 0 but F (x, y,m) > 0 for any
m ∈ (x, y), there is a loal maximum in m in the interval (x, y). Moreover, sine F (x, y, y) = 0 and
limm→∞ F (x, y,m) = 0, there must be another loal maximum in the interval (y,∞). However, we havealready shown that the only andidates for loal maxima are m1 and m2, and sine m1 ≤ m2 it must bethat m1 ∈ (x, y) and m2 ∈ (y,∞).Lemma 4.12. Let (x0, y0) minimize '(x, y). Then M(x, y) = {1,m1(x, y),m2(x, y)} with x ∕= y.Proof. The derivative of ' in the diretion  = (�, �) is given by

D'(x, y) = max
m∈M(x,y)

�
∂F

∂x
(x, y) + �

∂F

∂y
(x, y)

= max
m∈M(x,y)

(�, �) ⋅G(m),where
G(m) = 4me−2Lm x−m

(x+m)2
y −m

(y +m)2

(
y −m

x+m
,
x−m

y +m

)

.In the ase x = y, m1 is atually a minimum soM(x, x) = {1,m2(x, x)} and in partiular x > 1. The vetors
(
x− 1

x+ 1
,
x− 1

x+ 1

) and (
x−m2

x+m2
,
x−m2

x+m2

)

12



are parallel and of opposite diretions, so it is not possible to hoose a  whih will make the derivative neg-ative. However, in the diretion (1,−1) the derivative is zero; we will now look at seond order information.We set gm(�) = F (x+ �, x− �,m), then
g′m(0) = 0,

g′′m(0) = −16xme−2Lm (m2 − x2)2

(x +m)8
< 0,for all m ≥ 1, m ∕= x so for a su�iently small �, '(x+ �, x− �) < '(x, x), so it is not possible that x0 = y0.Now we show that G(m) and G(n) are linearly independent for any m,n /∈ {x, y}, so long as x ∕= y. Ifnot,

0 = det

(
y−m
x+m

x−m
y+m

y−n
x+n

x−n
y+n

)

=
y −m

x+m

x− n

y + n
− x−m

y +m

y − n

x+ n

0 = (y2 −m2)(x2 − n2)− (x2 −m2)(y2 − n2)

y2 − n2

y2 −m2
=

x2 − n2

x2 −m2

ℎ(y2) = ℎ(x2),where ℎ(z) = (z − n2)/(z −m2). However, as a funtion of [1,∞), ℎ is injetive so x2 = y2, but sine bothare positive, we get that x = y, whih we have assumed not to be the ase. Hene G(n) and G(m) arelinearly independent. In partiular, there is a  suh that  ⋅G(n) < 0 and  ⋅G(m) < 0.So ifM(x0, y0) = {n,m} (i.e., the set where the maximum is attained ontains exatly two points {n,m},whih are either {1,m1}, {1,m2} or {m1,m2}) then we have onstruted a diretion  in whih the one-sidedderivative D'
(2)(x0, y0) is negative, ontraditing that '(1)(x0, y0) is minimal. ThereforeM = {1,m1,m2},as required.We have shown that a minimum (x0, y0) gives three equiosillation points; we have to show that there isa unique hoie of (x0, y0) giving three equiosillation points.Lemma 4.13. The system

F (x, y, 1) = F (x, y,m1(x, y))

F (x, y, 1) = F (x, y,m2(x, y))has exatly two solutions (x0, y0) and (y0, x0) in (1,∞)2 with x0 ∕= y0. This (x0, y0) is the unique (up topermutation (y0, x0)) minimizer of '(x, y). Moreover, x and y both inrease monotonially as L dereasesto 0.
� > −5/4.Proof. Without loss of generality, x < y. If we �x x and vary y then

(F (x, y,mi))y = Fy(x, y,mi) + Fm(x, y,mi)mi,y

= Fy(c, d,mi)

= −4mi
mi − y

(mi + y)3
(mi − x)2

(mi + x)2
e−2Lmi

=
4mi

y2 −m2
i

F (x, y,mi),for i = 0, 1, 2 with m0 = 1. Likewise,
(F (x, y,mi))x = −4mi

mi − x

(mi + x)3
(mi − y)2

(mi + y)2
e−2Lmi < 0.13



Hene, F (x, y,m1) inreases monotonially with y and dereases monotonially with x. Sine F (x, y, 1)inreases monotonially with x and y, there must be a unique x = x(y) = x(y, L) ∈ (1, y) suh that
F (x, y, 1) = F (x, y,m1(x, y)). Now �x y1 and x1 = x(y1), then

(F (x1, y,m1(x1, y)))
′

(F (x1, y, 1))′

∣
∣
∣
∣
y=y1

=

4m1

y2
1−m2

1
F (x1, y1,m1)

4
y2
1−1

F (x1, y1, 1)

=
m1(y

2
1 − 1)

y21 −m2
1

>
y21 −m1

y21 −m2
1

>
y21 −m2

1

y21 −m2
1

= 1Hene, F (x1, y,m1(x1, y)) grows faster than F (x1, y, 1) near y = y1 and so if y2 − y1 > 0 is small, then itmust be that x(y2) > x(y1) and x(y) is a stritly inreasing funtion (in fat, x′(y) > 0).Hene, (F (x(y), y,m2(x(y), y))
′ ≤ 0 and (F (x(y), y, 1))′ > 0 and so there is a unique y = y(L) giving

F (x(y), y,m2(x(y), d)) = F (x(y), y, 1).Now let  = FL(x, y,m1) − FL(x, y, 1) and � = FL(x, y,m2) − FL(x, y,m1) and let us denote A,B thederivatives
A =

[
 x  y

�x �y

] and
B =

[
 L

�L

]

,so that (x′0(L), y′0(L)) = −A−1B. Diret alulations give that A−1 = �J where � > 0 and
J =

[
m2

y2−m2
2
− 1

y2−1
1

y2−1 − m1

y2−m2
1

1
x2−1 − m2

x2−m2
2

m1

x2−m2
1
− 1

x2−1

]

=

[
− −
+ −

]

,

B = 2F (x, y, 1)

[
1−m1

1−m2

]

=

[
−
−

]

.Hene, x′0(L) < 0. For y′0(L) we obtain
y′0(L) = −2�F (x0, y0, 1)

(m2 − 1)(m1 − 1)(m1 −m2)(m2m1 +m1x
2
0 +m2x

2
0 + x20)

(x20 −m2
2)(x

2
0 − 1)(m2

1 − x20)
< 0.As in Lemma 4.8, we an give asymptoti approximations of the optimized oe�ients, as well as anasymptoti onvergene fator.Lemma 4.14. The asymptotially optimized oe�ients as L→ 0+ are

x0(L) =
1

8
8

4
5L− 1

5 , (17)
y0(L) =

1

2
8

2
5L− 3

5 . (18)The asymptoti onvergene fator every other step is
√

F (x0, y0, 1) = 1− 2(8L)
1
5 +O(L

2
5 ).Furthermore, if L > O(N�), with � > − 5

4 , then M(x0, y0) ⊂ [1, N ], and the optimized oe�ients are thesame for the frequeny domains [1,∞) and [1, N ].If the overlap L is O(N�) with � < − 5
4 , then it may be possible to �nd better oe�ients than the onesgiven (our analysis in Setion 4.5 is suh a ase). However, the onvergene fator estimate holds even inthat ase. 14



Proof. The motivation omes from writing x, y, L in terms of a new variable z. We let x = 1/z, y = b/zjand L = azk, whih we then substitute into  = F (x, y,m1(x, y)) − F (x, y, 1) and � = F (x, y,m2(x, y)) −
F (x, y, 1). When j = 3 and k = 5, we �nd that we an approximate  and � linearly, to obtain

 =

(

4− 8√
b

)

z + o(z),

� =
(

4− 4
√
2ab
)

y + o(y).We set the oe�ient of of z in  to zero to obtain that b = 4. Substituting into � and setting the oe�ientof z to zero, we obtain that a = 1/8. Finally, we express x0 and y0 in terms of L, obtaining equations (17),(18).Substituting (17), (18) then L = N� in m2 and proeeding as with equation (16), we see that
m2

N
→ 0when � > −5/4 and diverges when � < −5/4.Although we do not perform a semidisrete analysis in the two parameter ase that is as detailed as theone we performed in the single parameter ase, the fat that M(x0, y0) ⊂ [1, N ] is still important beausethe disretization will ertainly limit the highest frequeny that an be observed. If M(x0, y0) lies outside of

[1, N ], it would be possible to improve the onvergene fator over the frequenies [1, N ] by hoosing di�erentparameters (x0, y0). The onstraint that L > O(N− 5
4 ) allows some anisotropy of the mesh while keepingthe optimized oe�ients lose to those of the ontinuous system. For extremely small values of L relativeto 1/N (i.e., � < −5/4), it may be possible to improve upon the optimized oe�ients given in this paper.This ompletes the proof of the seond part of Theorem 2.1.4.4 OO2 one-sided analysis, L > 0.For the seond order operators, the optimization problem is

G(s, t,m) = GL(s, t,m) =

(
s+ tm2 −m

s+ tm2 +m

)2

e−Lm,

'(s, t) = max
m∈[1,∞]

G(s, t,m). (19)The onvergene fator every other step, for a given hoie of s, t, is '(s, t).Lemma 4.15. For any given L > 0, there is a unique (s0, t0) minimizing '(s, t). Furthermore, if L =
L(N) > O(N�), � > −5/4 then for all su�iently large N , (s0, t0) also minimizes G(s0, t0,m) over mranging in [1, N ]. The optimized parameters are the unique solution of

G(s, t, 1) = G(s, t,m1(x, y))

G(s, t, 1) = G(s, t,m2(x, y)),where x = 1−
√
1−4st
2t and y = 1+

√
1−4st
2t . We use the asymptoti formulae

s0 =
1

2
2

3
5L− 1

5 , (20)
t0 =

1

2
2

1
5L

3
5 ; (21)leading to the asymptoti onvergene fator every other step of

G(s0, t0, 1) = 1− 2 ⋅ 2 2
5L

1
5 +O(L

2
5 ). (22)
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Proof. We may rewrite
G =

x−m

x+m

y −m

y +m
e−Lm.Sine the values x, y an be used to parametrize the problem (and s, t may be reovered from x, y), we mayinvoke lemma 4.13 to onlude that x, y are real and unique (up to permutation) and so s, t are real andunique.Next, we replae (17) and (18) into x = 1−

√
1−4st
2t and y = 1+

√
1−4st
2t . A series expansion leads toequations (20) and (21). We substitute these parameters into G(s0, t0, 1) and expand into a series to obtainthe asymptoti onvergene fator (22).This ompletes the proof of Theorem 2.2.4.5 The L = 0 ase.For the zeroth order, one-sided ase, the envelope theorem still asserts that there has to be equiosillation.Sine limm→∞ F (x,m) = 1, we must onentrate on the [1, N ] ase. By inspetion, the maxima are at 1 and

N and the value of the optimal parameter x̃ is given by solving F (x, 1) = F (x,N), whih has the uniquesolution
x̃ =

√
N.Substituting into F (x, 1) we obtain

'(x̃) =
(
√
N − 1)2

(
√
N + 1)2

≈ 1− 4N− 1
2as N → ∞. By omparison, the onvergene fator estimate of Theorem 2.1 with an overlap L ≈ 1/N(approximately one grid length of overlap) gives a onvergene fator of approximately 1 − 4N− 1

3 . Hene,to obtain a solution with a given tolerane, the zero overlap algorithm must iterate O(N 1
2 ) times, while thealgorithm with one grid length of overlap must iterate O(N 1

3 ) times.For the two-sided zeroth order ase, the Envelope Theorem gives an equiosillation of two points. Theonly interior maximum in m > 0 is
m(x, y) =

√
xy.The only possibility to obtain three equiosillation points is if

F (x, y, 1) = F (x, y,m(x, y)) = F (x, y,N), (23)and the proof of Lemma 4.13 shows that if there are only two equiosillation points, then there is a diretionof the (x, y) plane suh that these two equiosillating points are simultaneously dereasing. Therefore theunique minimizer is the unique solution (up to permutation) of equation (23) in the domain [1, N ]× [1, N ],given by
x =

√
2

N
3
4

√
N + 1+

√
N − 1

, (24)
y =

√
2

2
N

1
4 (
√
N + 1 +N

1
2 − 1), (25)

'(x, y) = 1− 4
√
2N− 1

4 +O(N− 1
2 ).We see again that the algorithm with zero overlap onverges within a given tolerane in O(N 1

4 ) steps, whilethe algorithm with one grid length of overlap onverges in O(N 1
5 ) steps.A similar argument applies to the one-sided estimate for the seond order tangential transmission ondi-tions. We summarize this hoie of parameters. 16



Lemma 4.16. (Optimized transmission onditions, zero overlap.) Let a = b, and onsider only the frequenyspetrum [1, N ] (there are 2N +1 grid points on the interfae). The one-sided optimized Robin parameter is
c = seca

√
N , yielding a onvergene fator every other step of

(
√
N − 1)2

(
√
N + 1)2

= 1− 4N− 1
2 +O(N−1).The two-sided optimized Robin parameters are

c = x seca,

d = y sec a;where x and y are given by (24) and (25). The onvergene fator is 1−2
√
2N− 1

4 +O(N− 1
2 ). The one-sidedoptimized seond order tangential parameters are

c = s seca,

d = t seca;where x = 1−
√
1−4st
2t and y = 1+

√
1−4st
2t and x, y are given by (24) and (25).In pratie, the seond order tangential operator ∂2/∂�2 will be approximated disretely, so we haveattempted to replae it by the �nite di�erene approximation

Λu =
∂2

∂�2
u ≈ uk+1 + uk−1 − 2uk

ℎ2
= Λℎu.The Fourier transform of Λ is Λ̂(m) = −m2 , whih leads to our analysis but the Fourier transform of Λℎ is

Λ̂ℎ(m) = 2 cosmℎ−2
ℎ2 . So F is replaed by

Fℎ(c, d,m) =
(c+ 2d cosmℎ−1

ℎ2 −m)2

(c+ 2d cosmℎ−1
ℎ2 +m)2

e−2Lm.The periodiity of the osine funtion means that m 7→ Fℎ(c, d,m) has in�nitely many loal maxima
m1,ℎ(c, d),m2,ℎ(c, d), . . . We simplify the problem by onsidering only the nonoverlapping ase (with L = 0).Beause ℎ is small, when m is small, we have that cosmℎ ≈ 1 − (mℎ)2/2, whih is to say, Fℎ(c, d, 1) ≈
F (c, d, 1). If we equiosillate F (c, d, 1) = Fℎ(c, d,m1,ℎ) = Fℎ(c, d,m2,ℎ), we see thatmj,ℎ > N for j = 3, 4, . . .and we obtain the following result.Proposition 4.17. (Seond order tangential transmission operator, semidisrete, nonoverlapping.) Thesemidisrete analysis leads to slightly di�erent parameters c′ and d′ given by

� =
N�4 + 8N3�2 −N2(8�2 + �4) +N�4

4�4 − 64�2N2 + 256N4
,

c̃ =
N(8n− �2)

2�
1
4 (8N2 − �2)

,

d̃ =
2�

3
4 (8N2 − �2)

N(8N − �2)
.The onvergene fator is almost idential to the analysis of Lemma 4.16.5 Numerial simulationsFor our numerial simulations, we have two implementations. One is a semispetral disretization, whih isone of the most widely used disretizations in meteorology. The seond is a �nite element disretization.As has already been mentioned, the various iterations onverge modulo the onstant mode. This makeserror estimation more ompliated. In the semispetral ode, we ompute the error by taking the trae ofthe funtion along the interfae, subtrating the mean, and omputing the L2 norm of the result. In the�nite element ode, we use instead the seminorm ∫

Ω1
∇u ⋅ ∇u, whih is not equivalent to using the L2 normof the trae, but whih may be more natural in a �nite element ode. In view of Gelfand's spetral radiusformula, the asymptoti onvergene fator should be the same regardless of whih vetor norm is used tomeasure the errors. 17



5.1 The semispetral odeThe semispetral disretization uses a latlong grid, i.e., a uniform grid in (', �). The Fourier oe�ients
û(�, k) are omputed using the Fast Fourier Transform, and the system (3) is disretized in ' using aentered �nite di�erene. The boundary onditions for eah ODE are given by (4) and (5), for solvingover the entire sphere Ω. For solving on a subdomain whose boundaries are latitudes, one or both ofthese boundary onditions are replaed by the Dirihlet, Robin (OO0) or seond order tangential (OO2)transmission operators. In all ases, we use initial solutions that are random, while the right hand side f iszero. We remark that a random right hand side f an be redued to this situation.5.1.1 Implementing the transmission onditions in the semispetral odeIn the semispetral ode, subdomains must be latitudinal, exatly as in our analysis and as per Figure 1. Aboundary ondition of the Robin type (e.g.,  u = cu) leads to a boundary ondition of the form

(c+
∂

∂�
)ûk+1(a,m) = (c+

∂

∂�
)v̂k.Similarly, an OO2 ondition of the form  u = cu+ du�� leads to the transmission ondition

((c+ dm2) +
∂

∂�
)ûk+1(a,m) = ((c+ dm2) +

∂

∂�
)v̂k.The optimal, nonloal operator given by  ̂(m) = ∣m∣/ sina is implemented using the transmission ondition

(∣m∣/ sin a+ ∂

∂�
)ûk+1(a,m) = (∣m∣/ sina+ ∂

∂�
)v̂k.We make similar onsiderations for v̂k+1 and ûk.Our semispetral solver is implemented using Fast Fourier Transforms, whih gives very good perfor-mane. In this ase, implementing any of the transmission onditions is equally easy, so it is natural to usethe optimal transmission onditions based on the nonloal operator.5.1.2 ResultsNumerial results for the semispetral odes are summarized in Figure 2. We hose the various toleranesso that all the onvergene urves are visible, distint, and show learly how the onvergene behaviorhanges over the �rst few iterations. The semispetral solver is limited to domain deompositions where thesubdomains have latitudinal boundaries, as per Figure 1. Our �nite element ode, in the next setion, anuse domain deompositions with arbitrary subdomains. In all of our grids, we use 2N + 1 grid points in the

� variable, and N + 2 grid points in the ' variable. All of these grids use N = 50, and the � grid is givenby � = 0, 2�/102, . . . , 202�/102 and the grid in ' is given by ' = 0, �/51, . . . , �. When speifying theright-hand-side f , it is neessary to ensure that f(0, �) and f(�, �) are onstant funtions of �.In Figure 2 (a), we have omputed iterates of the Shwarz iterations until the L2 error on olatitude
a = b = �/2 (the equator) is less than 10−6 and plotted the error at eah even iteration to math withthe analysis in the text. The error is measured modulo the onstant mode. Sine there is no overlap, thelassial Shwarz iteration does not onverge and we have not plotted it. The transmission operators areRobin (OO0), seond order tangential with oe�ients (c, d) (OO2), and the slightly improved semidisreteoe�ients oe�ients (c′, d′) (OO2') and a disretized optimal and nonloal operator. The OO0 iterationonverges in 88 iterations, while the OO2 and OO2' iterations onverge in 16 iterations, and the nonloaloperator leads to onvergene in 12 iterations. This grid has N = 50, or 101 grid points in � and 52 gridpoints in '.In Figure 2 (b), we have plotted the onvergene of the various Shwarz algorithms with six latitudinalsubdomains and without overlap.In () and (d), we have similar graphs in the ase of overlap. In (), we have two subdomains, and anoverlap between these two subdomains whih measures Δ' = 2�/(N +1) = 2�/31. The Dirihlet (lassial)Shwarz method onverges to tolerane 10−6 in 140 iterations, the OO0 method onverges in 36 iterations,the OO2 method onverges in 14 iterations, and the nonloal operator onverges in 4 iterations.In (d), we have six subdomains and an overlap between eah pair of adjaent subdomains of Δ' = �/31.18
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(d)Figure 2: Numerial results, semispetral ode. (a): onvergene with two latitudinal subdomains and zerooverlap. (b): onvergene with six latitudinal subdomains and zero overlap. (): onvergene with twolatitudinal subdomains and two grid lengths of overlap. (d): onvergene with six latitudinal subdomains,the overlaps are eah the length of one grid interval.N Dirihlet OO0 OO2 Optimal8 20 8 4 216 40 14 6 232 84 26 10 264 172 42 14 2128 360 58 18 2256 768 104 22 2Table 1: Iteration ounts as we vary L = �/(N + 2).5.1.3 Saling in ℎ the semispetral ode, 2 subdomains, minimal overlap L = ℎIn this set of experiments, we have omputed the iteration ount, as well as an approximation of the onver-gene fator, as we vary N and with L = �/(N + 2). The iteration ounts are given in Table 1. The gridparameter ℎ varies nonuniformly aross the sphere, but near the equator, we have that ℎ ≈ L = �/(N + 1).We also approximate the onvergene fator as follows. At eah iteration k, we ompute the norm of the error
ek, as we did in the previous setion. We then approximate the onvergene fator using � ≈ (en−em)1/∣n−m∣.We iterate until the error en is less than 10−6, and we let m = ⌊n/2⌋. The onvergene fators are plottedin Figure 3. The onvergene fator for the lassial Shwarz method, marked Dirihlet, is a good �t for the
1 − O(ℎ) onvergene rate, in the sense that it seems to approah 1 almost linearly. We an also see theonvergene fator 1 − O(ℎ1/3) for the OO0 method, although a smaller value of ℎ would illustrate morelearly the power 1/3 in the onvergene fator.The OO2 method is extremely fast, with a very small onvergene fator. Our theory predits a onver-gene fator of 1 − O(ℎ1/5). Therefore, in order to have a onvergene fator whih is larger than 0.9, wewould require ℎ ≈ 10−5, whih is to say, N ≈ 105. Suh a grid would ontain approximately 1010 points.Aside from possible numerial di�ulties with the double preision representation, suh a large grid is notpossible on the laptop omputer used to produe these experiments. On the one hand, this means that itis di�ult to numerially probe the asymptoti behavior of the OO2 method. On the other hand, this alsomeans that the OO2 method should be good enough for most urrent appliations.The Optimal method has a very small onvergene fator, of the order 10−4, and it does not appear to19
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Figure 3: Convergene fator as we vary ℎ = L = �/(N + 2), semispetral ode, two subdomains.vary with N .5.2 Saling in ℎ the semispetral ode, 2 subdomains, thik overlap L = ℎIn this setion, we perform an experiment similar to the one of Setion 5.1.3, but we now keep a onstantgeometri overlap size of pi/10 radians (i.e, a− b = �/10). As an be observed in Figure 4, the onvergenefator does not appear to vary with ℎ.5.3 Saling in ℎ the semispetral ode, 2 subdomains, nonoverlappingWe perform an experiment similar to the one of Setion 5.1.3, but with zero overlap. The onvergene fatordoes not appear to vary with ℎ.5.4 Finite element solverFor our �nite element solver, we rephrase the Laplae problem in the variational formFind u ∈ H1(Ω) suh that ∫
Ω

∇u ⋅ ∇v =

∫

Ω

fv, for all v ∈ H1(Ω).A simple way to understand the gradients appearing in the variational formulation is as follows. Let u be afuntion de�ned on the sphere Ω ⊂ ℝ
3. We an extend u to all of ℝ3 by putting

u(x) = u(x/∥x∥). (26)Then we an use the usual de�nition of the gradient, ∇u = (ux, uy, uz). Aording to the disussion inSetion 3, we must now hoose a suitable �nite element basis of funtions that are onstant on half-rays, i.e.,suh that u(x) = u(�x) for every � > 0 and every x ∈ ℝ
3.To de�ne a �nite element disretization, we must �rst build a mesh Ωℎ for the sphere. Beause weare integrating on the sphere, we build our mesh from spherial triangles {�1, ..., �n} = Ωℎ, triangles on the20
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Figure 4: Convergene fator as we vary ℎ, semispetral ode, two subdomains, with a− b = �/10 onstantaross all values of ℎ (�thik overlap�).
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Figure 5: Convergene fator as we vary ℎ, semispetral ode, two subdomains, nonoverlapping.21



sphere whose edges are great irles. Beause our elements are urvilinear, it is not obvious how to de�ne thebasis funtions. We an approximate the sphere Ω by a polyhedron Tℎ = {K1, ...,Kn}, simply by replaingall spherial triangles in our mesh Ωℎ with Eulidian triangles with the same verties. On Tℎ, we ould use
Vℎ(Ωℎ), the spae of pieewise linear funtions as a �nite element spae on Ωℎ, but this does not immediatelygive rise to a �nite element spae on Ω and our mesh of urvilinear triangles.We an prolong the basis funtions on our polyhedral approximation Ωℎ of Ω, to basis funtions onall of ℝ3. If ' is a pieewise linear funtion on Tℎ, we prolong it to all of ℝ3 by saying that, for everytriangle K = {x1,x2,x3} ∈ Tℎ, and for every x ∈ K, and for every � > 0, '(�x) = �'(x); in other words,
'(x, y, z) = ax+ by + cz on the �one� ℝ+K. The set Vℎ(ℝ3) obtained in this way has two problems. First,these funtions are not radially onstant (whih we require). Seond, Vℎ(ℝ3) does not ontain any onstantfuntions (exept for ' = 0), even though Vℎ(Ωℎ) does ontain the onstant funtions. Hene, one werestrit to the sphere Ω, the spae Vℎ(ℝ3)∣Ω also does not ontain the onstants. The onstants are veryimportant beause they are preisely the kernel of the spherial Laplaian.1We hoose a �nite element spae Vℎ on Ω whih ontains the onstants, and whose funtions are all radiallyonstant. One may then hek that the Shwarz algorithms at on the onstants and on the orthogonalomplement of the onstants in independent ways, and so our analysis holds and the algorithms onverge.Let K ∈ Tℎ be a triangle and (p, q, r) be its outward pointing normal. One way to obtain suh a spae isto take our linear funtion '(x, y, z) = ax + by + cz on K and to de�ne '̃(x, y, z) = '(s ⋅ (x, y, z)) where
s = (p,q,r)⋅x1

px+qy+rz ∈ ℝ, and hene s ⋅ (x, y, z) is ontained in the Eulidian triangle K. Our resulting basisfuntions are pieewise rational linear, and
'̃(x, y, z) = C

ax+ by + cz

px+ qy + rz
for all (x, y, z) ∈ (0,∞) ⋅K;for some real onstant C. One ould build higher order �nite element basis funtions by using linearombinations of rational funtions p/q where p and q are homogeneous polynomials of the same degree.Although our derivation is not the same, the resulting �nite elements oinide with the ones analyzed in[1℄. Other possible �nite elements inlude ontinuous elements based on spherial oordinates [30℄, anddisontinuous elements [6℄, [11℄. These alternate �nite element spaes have not been analyzed in this paper.Our �nite elements are pieewise rational linear. Beause quotients of homogeneous linear polynomialsare onstant along half-rays through the origin, equation (26) is automatially satis�ed.On eah subdomain, we solve a Robin or seond order tangential boundary value problem. We denote by

D� the diretional derivative in the diretion of the unit outward pointing normal � of a given subdomain Ωi(note that � tangent to Ω). Similarly, we denote by D� the diretional derivative in the diretion tangentialto the boundary of Ωi. The diretion of the tangent is hosen one and for all and does not matter, sine weare interested in the seond tangential derivative D2
� . The relationship between these �geometri� derivativesand the derivatives D� and D' for latitudinal subdomains are given by D' = ±D� and D� = rD� , where

r = sin' is the radius of the latitude '. On eah subdomain Ωi, at iteration k, we are solving the partialdi�erential equation −Δu
(i)
k = f with boundary ondition �u(i)k − �D2

�u
(i)
k +D�u

(i)
k = �vk − �D2

�vk +D�vk.In this problem, f and vk are the data, and u(i)k is the unknown. The variational formulation of this problemis Find u = u
(i)
k ∈ H1(Ωi) suh that, for all w ∈ H1(Ωi),

∫

Ωi

∇u ⋅ ∇w + �

∫

∂Ωi

uw + �

∫

∂Ωi

(D�u)(D�w)

=

∫

Ω

fw −
∫

Ω∖Ωi

∇vk ⋅ ∇w + �

∫

∂Ωi

vkw + �

∫

∂Ωi

(D�vk)(D�w).The �reonstituted iterate� vk is given by vk = !1u
(1)
k−1 + ...+!pu

(p)
k−1, where u(i)k−1, i = 1, ..., p is the solutionon subdomain Ωi (and there are p subdomains). The funtions !1, ..., !p form a partition of unity.For the Robin ondition (i.e., � = 0), we use the one-sided optimized parameter � = e−

1
3 r−1. Here, e is anestimate of the thikness of the overlap (we measure the Eulidian distane between the two interfaes) and

r = sin' is the radius of the latitudinal boundary (if the boundary is latitudinal), and when the boundary1It is tempting to generate basis funtions by setting '̃(x) = '(x/∣x∣), f. (26). However, this �nite element spae does notontain the onstant funtions either. 22
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(d)Figure 6: (a): An iosahedral grid with 20 subdomains. (b): Convergene of lassial and optimized Shwarzmethods for the grid of (a). (): Convergene of lassial and optimized Shwarz methods, for two nearlyhemispherial overlapping subdomains, (d): The auray of the optimized Shwarz oe�ient hosen in ().is not latitudinal, we use the heuristi r := ∣∂Ωi∣/(2�). The length ∣∂Ωi∣ of the boundary of Ωi an beomputed from the bilinear form of ∫∂Ωi
uw, whih is available beause we are solving a Robin problem, bysubstituting u = 1 and w = 1.For the seond order tangential boundary ondition, we use the one-sided optimized parameters � =

1/2 ⋅ 23/5e−1/5/r and � = 1/2 ⋅ 21/5e3/5r2.We did not implement the optimal (nonloal) transmission operator for the �nite element grid. Oneould in priniple ompute this operator, e.g., using a Shur omplement, or by omputing the matrix squareroot of a disretization of the seond tangential derivative on the interfae. We were not able to produean algorithm of this type whih had any performane advantage over an LU deomposition of the wholesystem. One ould also use a regular grid and fast Fourier transforms; this was disussed in Setion 5.1.1 onthe semispetral implementation. When there are multiple subdomains that meet at orners, suh as Figure6 (a), suh optimal or nilpotent transmission operators are not even known.Although the analysis is based on our spherial triangle grid Ωℎ, for visualisation purposes, we use thepolyhedral approximation Tℎ. The triangulation Tℎ is obtain by using an iosahedron and subdividing thetriangles (whih is known as the iosahedral grid.)In Figure 6 (a), we show an iosahedral grid with 2562 verties. The �nite element disretization of theLaplaian for that mesh is a 2562× 2562 sparse matrix. We use this mesh, whih does not orrespond to ouranalysis, to show that our optimized transmission onditions work well even when the subdomains do nothave latitudinal interfaes. In (b), we plot the onvergene histories of the various Shwarz algorithms, forthe mesh with 20 subdomains depited in (a). To ompute the error, we use the bilinear form of the Laplaianas a seminorm, i.e., the error on the kth step is ∫Ω ∇(vk − u) ⋅ ∇(vk − u), where u is the onverged solution.This seminorm is equivalent to the H1(Ω) norm, modulo onstant funtions. In (b), we see that the lassialShwarz algorithm (dotted) onverges but nearly stagnates, while the optimized Shwarz algorithms, givenby the solid (Robin or OO0) and dashed (seond order or OO2) lines onverge very quikly. The lassialShwarz iteration onverges to a tolerane of 10−6 in 65 iterations, while the OO0 iteration onverges tothe same tolerane in 19 iterations and the OO2 iteration onverges in 12 iterations. In (), we have asimilar graph but with two nearly hemispherial subdomains, and an overlap of exatly two elements. This�hemihedral grid� is obtained as follows. First, we subdivide the iosahedron four times (the same numberof subdivisions as in (a)). Seond, we selet triangles from this mesh to form two exatly hemispherial,disjoint subdomains. Finally, we add one row of elements to eah hemispherial subdomain. The lassialShwarz iteration onverges to an error less than 10−10 in 75 iterations. By omparison, the OO0 iteration23



onverges to the same tolerane in 12 iterations, and the OO2 onverges to the same tolerane in 7 iterations.In (d), we have measured the onvergene fator (or ontration oe�ient �) of (), by omputing the ratioof the errors at iterations 6 and 10, and taking the fourth root, for various values of the Robin parameter
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