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Optimized domain de
omposition methods for the spheri
alLapla
ianS. Loisel ∗ J. C�té † M. J. Gander∗ L. Laayouni ‡ A. Qaddouri†September 21, 2009Abstra
tThe S
hwarz iteration de
omposes a boundary value problem over a large domain Ω into smallersubproblems by iteratively solving Diri
hlet problems on a 
over Ω1, ...,Ωp of Ω. In this paper, wedis
uss alternate transmission 
onditions that lead to faster 
onvergen
e for the Lapla
ian on the sphere
Ω. We look at Robin 
onditions, se
ond order tangential 
onditions and a dis
retized version of anoptimal but nonlo
al operator.1 Introdu
tionAt the heart of numeri
al weather predi
tion algorithms lie a Lapla
e and positive de�nite Helmholtz prob-lems on the sphere [35℄. Re
ently, there has been interest in using �nite elements [5℄ and domain de
omposi-tion methods [4, 26℄. The S
hwarz iteration [23, 24, 25℄ and its optimized variants have been very su

essfuland the subje
t of mu
h re
ent resear
h. We now outline the history of Optimized S
hwarz Methods (OSM)and refer to [14℄ for further details, as well as a 
omplete derivation for Helmholtz and Lapla
e problems inthe plane.The optimized S
hwarz method was introdu
ed in [2, 31, 32℄ under various names. Sin
e the OSM hasone or more free parameters, whi
h need to be 
hosen 
arefully to guarantee the best 
onvergen
e rate, therefollowed an e�ort to �nd the best possible parameter 
hoi
es [13, 21, 20℄. Despite these positive developments,a proof of 
onvergen
e for a general situation has proven elusive [22, 27℄. One way of obtaining 
onvergen
eis to de�ne a relaxation of the method [7℄.The usual method for optimizing the free parameters is to take a Fourier transform of the partial di�er-ential equation, obtaining an expli
it re
urren
e relation for the iteration. This works only in spe
ial 
ases(e.g., the domain is a re
tangle and the di�erential operator is the Lapla
ian with homogeneous Diri
hlet
onditions). In addition to the Lapla
e and Helmholtz problems [19℄, the method 
an be used for variousother 
anoni
al problems (
f. [9, 18, 17, 29, 28℄ for 
onve
tion-di�usion problems, [16℄ for the wave equation,[8℄ for �uid dynami
s, [33℄ for the shallow water equation). The 
urrent paper is a 
ontinuation of thisresear
h.Our paper provides an OSM for the spheri
al Lapla
ian, a di�erential operator whi
h had previously notbeen analyzed, using Fourier analysis. However, we brie�y mention that there has been mu
h re
ent resear
hon various other aspe
ts of the OSM. For instan
e, domains with 
orners 
an give rise to singularities, andthis is analyzed in [3℄. In a similar vein, di�erential operators with dis
ontinuous 
oe�
ients often lead toill-
onditioned problems, and an OSM for this situation is provided in [12℄. A 
ompletely di�erent issue isto phrase the OSM in an algebrai
 way. In a typi
al appli
ation, one has a 
ode to 
ompute the sti�nessmatrix A, but one would ideally prefer not to have to rewrite the entire 
ode in order to implement an OSM.In that vein, [34℄ provides a framework for expressing the OSM in the language of matri
es.
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There are many reasons to use domain de
omposition methods, but we outline one appli
ation. Domainde
omposition methods are often naturally parallel, and hen
e 
an be used on large 
lusters and super
om-puters. The algorithm that runs on ea
h pro
essor is a small, lo
al version of the global problem, so provensequential 
odes 
an be adapted and be
ome lo
al solvers whi
h will then run in parallel on su
h 
lusters.In su
h a s
enario, an important question is that of s
aling.In the simplest s
aling s
enario, one �xes the number p of subdomains, and one pi
ks subdomains
Ω1, . . . ,Ωp in su
h a way that the overlap between adja
ent subdomains is exa
tly one element thi
k. In thissituation, it is well known [36℄ that the (1-level) S
hwarz method has a 
onvergen
e fa
tor of �CS = 1−O(ℎ).In other words, at ea
h step of the iterative method, the error is multiplied by the 
oe�
ient �CS < 1. Be
ausethis 
oe�
ient depends on ℎ, and tends to 1 when ℎ tends to zero, we see that more and more iterationswill be needed to rea
h a given toleran
e as we make ℎ smaller. It is preferable to �nd an algorithm whose
onvergen
e fa
tor either does not approa
h 1, or at least approa
hes 1 not too qui
kly when ℎ tends to zero.In this 
ontext, the main advantage of the Optimized S
hwarz methods is that they have mu
h better
onvergen
e fa
tors than the 
lassi
al S
hwarz method. For example, the one-sided overlapping OO0 methodhas a 
onvergen
e fa
tor of �OO0 = 1−O(ℎ1/3), and the overlapping OO2 method has a 
onvergen
e fa
torof �OO2 = 1−O(ℎ1/5).In addition to overlapping methods, Lions [25℄ proposed to use Robin transmission 
onditions along theinterfa
e to obtain nonoverlapping domain de
omposition methods. There is no nonoverlapping 
lassi
alS
hwarz method with whi
h to 
ompare, but the OO0 and OO2 methods 
an be used in the nonoverlapping
ontext. The 
onvergen
e fa
tors are 1 − O(ℎ1/2) and 1 − O(ℎ1/4), for the nonoverlapping OO0 and OO2methods, respe
tively.Although our analysis is limited to latitudinal subdomains, we will see in Se
tion 5 that we obtain verygood performan
e, even when subdomains have more varied shapes.We note that, if the number of subdomains p in
reases as ℎ tends to zero, it is ne
essary to design a 2-levelalgorithm to maintain good performan
e. In a 2-level algorithm, detailed informations from neighbors are
ombined with less pre
ise information stored on a low-resolution �
oarse grid�. The design and analysis ofan Optimized S
hwarz Method with a 
oarse grid 
orre
tion is a 
hallenging problem whi
h will be analyzedin an up
oming paper [10℄.1.1 Our 
ontributionsIn this paper, we introdu
e improved transmission operators for the Lapla
e problem on the unit sphere Ωin ℝ

3. We modify the S
hwarz iteration by repla
ing the Diri
hlet 
onditions on the interfa
es by Robinor se
ond order tangential 
onditions. This allows us to signi�
antly improve the 
onvergen
e fa
tor of theiteration. To analyze the 
onvergen
e rate and optimize the 
oe�
ients, we use the Fourier transform on thesphere. In addition to the usual Robin and se
ond order tangential 
onditions, we also dis
uss the use of anonlo
al operator along the interfa
es. This nonlo
al operator is related to the square root of the Lapla
ianof the interfa
es and was �rst introdu
ed for numeri
al 
al
ulations in [4, 26℄. While the 
ontinuous analysisshows that these operators result in an iteration that 
onverges in two steps, in pra
ti
e we do not see thisexa
t behavior. However, the resulting iteration seems to 
onverge at a very fast rate that is independent ofthe mesh size ℎ or the thi
kness of the overlap L.We highlight four 
ontributions of this paper. First, we have an innovative use of the envelope theoremto establish an equios
illation property. Se
ond, we highlight our 
ontinuous and dis
rete analyses and their
omparison. Third, our analysis takes pla
e on the sphere, whi
h is ideal for weather and 
limate simulation.Fourth, we provide a �nite element method whi
h is appropriate for spheri
al dis
retizations. Sin
e thespheri
al Lapla
ian is singular, the 
hoi
e of the �nite element spa
e is important and a poor 
hoi
e leads todivergent iterations and poorly 
onditioned systems. We show that with the proper 
hoi
e of basis fun
tions,the 
onvergen
e fa
tor of the optimized S
hwarz methods are una�e
ted.This paper is organized as follows. In Se
tion 2, we introdu
e our model problem and state our mainresults. In Se
tion 3, we review the Lapla
e operator on the sphere and re
all the S
hwarz iteration andits 
onvergen
e estimates, previously published in [4℄; we also give a new semidis
rete estimate whi
h issubstantially similar to the 
ontinuous one. In se
tion 4, we perform the Fourier analysis of the new OptimizedS
hwarz Methods. In se
tion 5, we present numeri
al results that agree with the theoreti
al predi
tions.
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Figure 1: Latitudinal domain de
omposition. Left: two subdomains; right: multiple subdomains.2 OSM on the sphereConsider the following iteration. Let b < a. Begin with random �
andidate solutions� u0 and v0. De�ne
uk+1 and vk+1 iteratively by:

⎧

⎨

⎩

Δuk+1 = f in Ω1 = {(', �)∣0 ≤ ' < a},
uk+1(a, �) = vk(a, �) � ∈ [0, 2�),

Δvk+1 = f in Ω2 = {(', �)∣b < ' ≤ �},
vk+1(b, �) = uk(b, �) � ∈ [0, 2�);

(1)(see �gure 1.) This is the S
hwarz iteration for two latitudinal subdomains. The idea of the OptimizedS
hwarz Methods is to repla
e the Diri
hlet 
onditions on the interfa
e by Robin or other transmission
onditions. The modi�ed iteration is:
⎧

⎨

⎩

Δuk+1 = f in Ω1

(( + ∂
∂' )uk+1)(a, �) = (( + ∂

∂' )vk)(a, �) � ∈ [0, 2�),

Δvk+1 = f in Ω2

((� + ∂
∂')vk+1)(b, �) = ((� + ∂

∂' )uk)(b, �) � ∈ [0, 2�);

(2)where  and � are either real 
oe�
ients or tra
e operators, and Ω1, Ω2 are as previously de�ned. If  and � are di�erential tra
e operators of order k, we say that the optimized S
hwarz method is Optimized ofOrder k, or OOk [15℄. Choi
es in
lude:1. ( w)(�) = cw(�) where c is a real 
oe�
ient. This results in a Robin or OO0 transmission 
ondition.2. ( w)(�) = cw(�)+dw′′(�), where c and d are real 
oe�
ients. This results in a se
ond order tangential,or OO2 transmission 
ondition.3. A nonlo
al 
hoi
e of  leading to an iteration that 
onverges in two steps.We will show in Se
tion 3 that the 
onvergen
e fa
tor depends on the thi
kness of the overlap L, givenby
L := −2 log

1 + cos a

sin a

sin b

1 + cos b
≥ 0.Our main result for Robin (or OO0) transmission 
onditions is as follows.Theorem 2.1 (Optimized Robin or OO0 
oe�
ients). Consider the iteration (2) with ( w)(�) = cw(�) and

(�w)(�) = dw(�). Set x = −d sin b, y = c sin a. Let ℎ = 1/N be the grid size.
∙ The one-sided 
ondition is x = y. With this 
ondition, and further assuming that L < 4/3 and L > ℎ�for some � < 3/2, there is a unique optimized 
hoi
e of x leading to the best possible 
onvergen
efa
tor. Using x = y = x̂1 = L− 1

3 , the 
onvergen
e fa
tor every other step is � = 1− 4L
1
3 +O(L

2
3 ).

∙ If x ∕= y is allowed, the optimized 
hoi
e (c, d) is two-sided. Assume that L > ℎ�, � < 5/4. There isa unique (c, d) leading to the best 
onvergen
e fa
tor. Using x = 8−
1
5L− 1

5 and y = 8
2
5

2 L
− 3

5 leads to a
onvergen
e fa
tor of � = 1− 2 ⋅ 2 3
5L

1
5 +O(L

2
5 ) every other step.3



The 
onvergen
e fa
tor � < 1 multiplies the L2 error of the tra
e on ea
h subdomain every other step. Wesee that using �asymmetri
� Robin 
onditions leads to an improvement on the number of iterations requiredfor a given toleran
e, from O(L− 1
3 ) to O(L− 1

5 ). The one-sided estimate however is easier to use with psubdomains, and so we would be interested in a
hieving a O(L− 1
5 ) algorithm using only one-sided estimates.This is possible if we use se
ond order tangential transmission 
onditions.Theorem 2.2 (One-sided se
ond order tangential, or OO2, optimized 
oe�
ients). Consider the iteration(2) with ( w)(�) = cw(�) + dw′′(�), (�w)(�) = c̃w(�) + d̃w′′(�). Let s = c sina = −c̃ sin b and t = d sin a =

−d̃ sin b, whi
h is the �one-sided� assumption. Assume that L < ℎ�, � < 5/4. There is a unique 
hoi
e of
s, t leading to the best possible 
onvergen
e fa
tor. Using s = 1

22
3
5L− 1

5 and t = 1
22

1
5L

3
5 leads to a 
onvergen
efa
tor of � = 1− 4 ⋅ 2 2

5L
1
5 +O(L

2
5 ) every other step.The 
onverge rate estimates hold even if L is smaller than ℎ� (e.g., when the grid is highly anisotropi
,with � = 3/2 or 5/4, as above), but then the 
oe�
ients given may no longer be optimized. An extreme 
aseis when L = 0, a nonoverlapping 
ase, and we analyze this 
ase in Se
tion 3.1. The �main� 
ase is L = O(ℎ)and is handled by the Theorems 2.1 and 2.2.Our numeri
al examples are based on two di�erent 
odes. Many 
odes in meteorology use the dis
reteFourier transform in the longitude variable � to obtain a semispe
tral solver. This solver makes the imple-mentation of our three types of transmission 
onditions equally easy, for latitudinal interfa
es. However, su
hsolvers do not easily handle arbitrarily shaped subdomains, and the grids have singularities at the poles.Our se
ond 
ode is a �nite element solver on the sphere Ω. The variational formulation of the spheri
alLapla
ian leads to integrals on the sphere Ω, and so we must 
hoose pie
ewise C1 basis fun
tions for some�nite element spa
e on the sphere Ω. We use a standard proje
tion te
hnique to generate spheri
al elementsfrom pie
ewise linear elements on a polyhedral approximation of the sphere Ω.3 The Lapla
e operator on the sphere ΩWe take the Lapla
e operator in ℝ
3, given by

Δu = uxx + uyy + uzz,rephrase it in spheri
al 
oordinates and set ∂u
∂r = 0 to obtain

Δu =
1

sin2 '

∂2u

∂�2
+

1

sin'

∂

∂'

(

sin'
∂u

∂'

)

,where ' ∈ [0, �] is the 
olatitude and � ∈ [−�, �] the longitude.3.1 The solution of the Lapla
e problemWe take a Fourier transform in � but not in '; this lets us analyze domain de
ompositions with latitudinalboundaries. The Lapla
ian be
omes
Δ̂û(',m) =

−m2

sin2 '
û(',m) +

1

sin'

∂

∂'

(

sin'
∂û(',m)

∂'

)

, ' ∈ [0, �], m ∈ ℤ. (3)For boundary 
onditions, the periodi
ity in � is taken 
are of by the Fourier de
omposition. The poles imposethat u(0, �) and u(�, �) do not vary in �. For m ∕= 0 this is equivalent to
û(0,m) = û(�,m) = 0, m ∈ ℤ, m ∕= 0. (4)For m = 0, the relation u'(0, �) = −u'(0, � + �) leads to ∫ 2�

0
u'(0, �) d� = −

∫ 2�

0
u'(0, �) d�, i.e.,

û'(0, 0) = û'(�, 0) = 0. (5)If u is a solution of Δu = f then so is u + c (c ∈ ℝ), hen
e the ODE for m = 0 is determined up to anadditive 
onstant. 4



With m ∕= 0 �xed, the two independent solutions of Δu = 0 are
g±(',m) =

(
sin(')

cos(') + 1

)±∣m∣
= e±∣m∣ log sin(')

cos(')+1 , m ∈ ℤ ∖ {0}.For m = 0 the two independent solutions give
û(', 0) = C1 + C2 log

1− cos'

sin'
.If we insist, for instan
e, that u ∈ H1(Ω), we eliminate the logarithmi
 term and we obtain that û(', 0) is a
onstant in '.All the eigenvalues of Δ are of the form of −n(n+ 1) for n = 0, 1, ...; in parti
ular, they are non-positive(and Δ is negative semi-de�nite).3.2 The S
hwarz iteration for Δ with two latitudinal subdomainsConsider the S
hwarz iteration (1). We are interested in studying the error terms u0 − u and v0 − u where

Δu = f . Observe that uk − u and vk − u are 
lassi
al S
hwarz iterates as per equation (1), but with f = 0.For this reason, it su�
es to analyze the 
lassi
al S
hwarz iteration with f = 0, whi
h we assume for theremainder of our analysis.Using the Fourier transform in �, we 
an write ûk+2(b,m) expli
itly in terms of ûk(b,m). This allows usto obtain a 
onvergen
e fa
tor estimate, whi
h we re
all from [4℄.Lemma 3.1. The S
hwarz iteration on the sphere Ω partitioned along two latitudes b < a 
onverges (ex
eptfor the 
onstant term). The 
onvergen
e fa
tor ∣ûk+2(b,m)/ûk(b,m)∣ is
C(m) =

(
sin(b)

cos(b) + 1

)2∣m∣(
sin(a)

cos(a) + 1

)−2∣m∣
< 1. (6)This 
onvergen
e fa
tor depends on the frequen
y m of uk on the latitude b.An analysis that is 
loser to the numeri
al algorithm would be to repla
e the 
ontinuous Fourier transformin � by a dis
rete one.Lemma 3.2 (Semidis
rete analysis.). The Lapla
ian dis
retized in � with n sample points:

Δnu =
n2

4�2 sin2 '

(

u

(

',
j + 1

2�n

)

− 2u(', j) + u

(

',
j − 1

2�n

))

+ cot'u' + u'' (7)leads to a S
hwarz iteration whose 
onvergen
e fa
tor is
(

sin(b)

cos(b) + 1

)2∣m̃∣(
sin(a)

cos(a) + 1

)−2∣m̃∣
< 1every two iterations, where

m̃2 =
n2

4�2
(1− cos(2�k/n))for the kth frequen
y.Proof. We do a dis
rete Fourier transform in � and the equation to solve be
omes

Lnû(', k) =
n2

4�2 sin2 '
(cos(2�k/n)− 1)û(', k) + cot'û'(', k) + û''(', k) = 0. (8)By writing m as noted in the statement of the Lemma, we have redu
ed this problem to the previous oneand we 
an reuse Lemma 3.1.The two 
ontra
tion 
onstants are very similar. For small values of m (ignoring m = 0 be
ause thatmode need not 
onverge at all), the speed of 
onvergen
e is very poor. The overall 
onvergen
e fa
tor asmeasured in the L2 norm along the interfa
es is given by

sup
m≥1

C(m) = C(1)

= 1−O(a− b),and so the 
onvergen
e fa
tor of the S
hwarz iteration deteriorates rapidly as a− b be
omes small.5



4 Optimized S
hwarz iteration for Δ with latitudinal boundariesIn this se
tion, we prove Theorems 2.1 and 2.2. This requires many te
hni
al results and so we pro
eed witha sequen
e of simple lemmas.To analyze the 
onvergen
e fa
tor, as we did in Se
tion 3, we assume, without loss of generality, that
f = 0. Be
ause the Lapla
ian of a 
onstant is zero, we will see that the error terms 
onverge to 
onstantfun
tions, whi
h is to say, the lo
al solutions 
onverge up to an additive 
onstant.One key te
hnique is to use the fa
t that, although u0 and v0 may be arbitrary in some Sobolev spa
es,
u1 and v1 are harmoni
 in Ω1 and Ω2, respe
tively. This key observation allows us to �nd iterations that
onverge fast starting from the se
ond step. This observation has an impa
t on the numeri
al simulations.Often, the �rst iterations u1 and v1 are not mu
h better than the initial guesses u0 and v0, and they aresometimes even worse.Lemma 4.1 (Nonlo
al operator). If, for ea
h m,  ̂(m) = ∣m∣/ sina and �̂(m) = −∣m∣/ sin b, Δu1 = 0 in
Ω1and Δv1 = 0 in Ω2, then u2 = 0 and v2 = 0.Proof. Let u1(', �) = û1(a, 0)+

∑

k ∕=0 û1(a, k)g+(', k)e
ik� and v1(', �) = v̂1(a, 0)+

∑

k ∕=0 v̂1(a, k)g−(', k)e
ik� ,then the boundary value problem for the north hemisphere yields for ea
h m ∕= 0:

û2(a,m)

(

 ̂(m) +
∣m∣
sin a

)

= v̂1(a,m)

(

 ̂(m)− ∣m∣
sin a

)

= 0, (9)and so û2(a,m) = 0. Likewise, we �nd that v̂2(b,m) = 0 for ea
h m ∕= 0. For m = 0, we have that
û2(a,m) = v̂1(a,m): the iteration does not a�e
t the 
onstant mode m = 0. Sin
e the solution of theLapla
e problem is only de�ned up to a 
onstant, the iteration has 
onverged.The se
ond tangential derivative D2

� along latitude ' has Fourier transform −m2. The optimal operatorsare therefore the symmetri
 and positive de�nite square root of −D2
� , multiplied by 1/ sina or 1/ sin ba

ording to the latitude. This normalization 
onstant is related to the length of the latitude at ' = a and

' = b, respe
tively, sin
e a latitude ' is a 
ir
le of radius r = sin'.Next, we state the 
onvergen
e fa
tor of the optimized S
hwarz iteration, if  and � are not these nonlo
aloperators.Lemma 4.2. If Δu1 = 0 in Ω1 then
û3(b,m) = û1(b,m)

�̂(m) sin b+ ∣m∣
�̂(m) sin b− ∣m∣

 ̂(m) sin a− ∣m∣
 ̂(m) sin a+ ∣m∣

g−(m, a)

g−(m, b)

g+(m, b)

g+(m, a)
.The proof is a simple 
omputation using equation (9). We now look for good 
onvolution kernels � and

 so that the the 
onvergen
e fa
tor
�( , �,m, a, b) =

�1
︷ ︸︸ ︷

�̂(m) sin b+ ∣m∣

�̂(m) sin b− ∣m∣

�2
︷ ︸︸ ︷

 ̂(m) sina− ∣m∣

 ̂(m) sina+ ∣m∣

�3
︷ ︸︸ ︷

g−(m, a)

g−(m, b)

�4
︷ ︸︸ ︷

g+(m, b)

g+(m, a)
, (10)with m ∈ ℤ ∖ {0}, is as small as possible. For a given 
hoi
e of  ̂ and �̂, the 
onvergen
e fa
tor as measuredin the L2 norm along the interfa
e ' = b will be given by supm∈ℤ∖{0} ∣�( , �,m, a, b)∣.The 
onvergen
e fa
tor estimate (10) also leads to the following result:Corollary 4.3. The iteration (2) is 
onvergent (modulo the 
onstant mode) if  and −� are 
onvolutionoperators that are positive de�nite, regardless of overlap.Proof. Let  ̂(m) > 0 and �̂(m) < 0, and let �1, �2, �3, �4 be as in (10). Sin
e sin a > 0 and sin b > 0, we seethat ∣�1∣ < 1 and ∣�2∣ < 1. Furthermore,

�3�4 =

(
sin(b)

cos(b) + 1

)2∣m∣(
sin(a)

cos(a) + 1

)−2∣m∣
=

⎛

⎜
⎜
⎜
⎝

≤1
︷ ︸︸ ︷
(
sin(b)

sin(a)

)

≤1
︷ ︸︸ ︷
(
cos(a) + 1

cos(b) + 1

)

⎞

⎟
⎟
⎟
⎠

2∣m∣

≤ 1,where we have used that b < a. Hen
e, ∣�( , �,m, a, b)∣ < 1 for every m ∕= 0.6



By 
omparison, in [27℄, it was shown that if � and  are Robin transmission 
onditions for a domainde
omposition with �relatively uniform overlap�, then the iteration 
onverges so long as � and  are bothpositive de�nite.Our analysis will pro
eed by 
onsidering the 
ontra
tion 
onstant (10) for the various 
hoi
es of trans-mission 
onditions � and  . We 
onsider �rst the use of Robin transmission 
onditions and prove Theorem2.1. Se
ond, we prove Theorem 2.2 for se
ond order tangential transmission 
onditions.4.1 Robin or OO0 transmission 
onditionsLet  u = cu and �u = du, then
�OO0( , �,m, a, b) =

d sin b+ ∣m∣
d sin b− ∣m∣

c sin a− ∣m∣
c sin a+ ∣m∣

g−(m, a)

g−(m, b)

g+(m, b)

g+(m, a)

= �(c, d,m, a, b).For a, b �xed, we now need to 
ompute the 
hoi
es of c, d minimizing
'(c, d) = sup

m
�OO0(c, d,m, a, b)

2,where we have introdu
ed a square to simplify some 
al
ulations; the a
tual 
ontra
tion 
onstant will begiven by√'(c, d). To simplify our notation, it is 
onvenient to do a 
hange of variables. We set x = −d sin b,
y = c sin a and

L = −2 log

(
1 + cos a

sin a

sin b

1 + cos b

)

≥ 0,and rewriting the g± terms as exponentials, the optimization problem be
omesMinimize '(x, y) where
'(x, y) = sup

m∈{1,2,...}
F (x, y,m)

F (x, y,m) =

∣
∣
∣
∣

x−m

x+m

y −m

y +m
e−Lm

∣
∣
∣
∣

2 (11)
= FL(x, y,m).The 
onvergen
e fa
tor every other step for parti
ular parameter 
hoi
es x and y is √'(x, y). The 
ase

L = 0 only o

urs when a = b, in whi
h 
ase '(x, y) = 1 for all x, y ≥ 1 and then we will need to take intoa

ount 
ertain dis
retization parameters to obtain a 
onvergen
e fa
tor estimate. This 
ase will be treatedseparately.We now use two di�erent analyses to 
ompute optimized Robin parameters c and d. First, we make thesimplifying assumption that x = y, allowing us to optimize instead the obje
tive fun
tion
max
m

∣(x−m)/(x+m)e−
L
2 m∣2.This situation is interesting be
ause this 
an lead to an algorithm where all subdomains �do the samething�. This is the method whi
h most obviously generalizes to many subdomains. Se
ond, we 
onsider theexpression F (x, y,m) with both parameters simultaneously. This is also interesting, be
ause in this situation,the iteration does �something di�erent� on ea
h subdomain. We will see that, although this approa
h isdi�
ult to generalize to many subdomains, it leads to substantially improved 
onvergen
e fa
tors.4.2 OO0 one-sided analysis, L > 0.We 
an write FL(x, y,m) = FL(x,m)FL(y,m) (
f. (11)), where we de�ne

FL(x,m) = F (x,m) =

∣
∣
∣
∣

x−m

x+m
e−

L
2 m

∣
∣
∣
∣

2

.7



We �rst look at the problem of 
omputing the optimal parameter x0 minimizing
'L(x) = sup

m∈{1,2,...}
FL(x,m),sin
e it is simpler. The solution x0 minimizing 'L(x) leads to the 
hoi
es x = y = x0, whi
h minimizes

'L(x, y) subje
t to the symmetry 
onstraint x = y. The 
onvergen
e fa
tor for a parti
ular parameter 
hoi
e
x is √'(x, x) = 'L(x).We now deal with the various spe
tra over whi
h we 
an optimize. Our 
ontinuous problem has afrequen
y variablem ∈ ℤ, but sin
e them = 0 frequen
y need not 
onverge, and sin
e FL(x,−m) = FL(x,m),we have already simpli�ed our problem by 
onsidering the frequen
iesm ∈ {1, 2, . . .}. Be
ause of our eventualdis
retization, we will want to 
onsider the frequen
y domain {1, 2, ..., N}, where N is the highest frequen
ythat 
an be resolved on the interfa
e, given our grid. However, be
ause of the di�
ulties in optimizing overdis
rete sets, we also 
onsider the possibility of allowing m to vary in the intervals [1,∞) as well as [1, N ].For te
hni
al reasons, it is also 
onvenient to in
lude m = ∞ in our 
al
ulations.Let 2 < N <∞ and de�ne

'
(c)
L (x) = sup

m∈[1,∞]

FL(x,m), (I(c) = [1,∞]),

'
(d)
L (x) = sup

m∈{1,2,...}
FL(x,m), (I(d) = {1, 2, ...,∞}),

'
(cb)
L (x) = sup

m∈[1,N ]

FL(x,m), (I(cb) = [1, N ]),

'
(db)
L (x) = sup

m∈{1,2,...,N}
FL(x,m), (I(db) = {1, 2, ..., N}).A

ording to our de�nitions, for all x, '(d)

L (x) = 'L(x). The other fun
tions are similar but maximize overa di�erent set of frequen
ies.One of the main tools for solving min-max problems is the envelope theorem, whi
h we state here for
onvenien
e.Theorem 4.4 (The Envelope Theorem). Let U be open in ℝ
n and ' : U → R, 
 ∈ ℝ

n, ∣∣
∣∣ = 1. For
x ∈ U , de�ne the one-sided dire
tional derivative D
'(x) by

D
'(x) = lim
�↓0+

'(x+ �
)− '(x)

�
,if the (one-sided) limit exists. Let V be a 
ompa
t metri
 spa
e. Let

F : U × V → ℝ

(x, y) 7→ F (x, y)be 
ontinuous and assume that the partial gradient Fx(x, y) exists for all x, y ∈ U×V and varies 
ontinuouslyin (x, y). De�ne
'(x) = max

y∈V
F (x, y),

Y (x) = {y ∈ V ∣F (x, y) = '(x)} ∕= ∅.Then,1. For all x ∈ U and 
 ∈ ℝ
n, ∣∣
∣∣ = 1, D
u(x) exists and is given by the formula

D
'(x) = max
y∈Y (x)

n∑

i=1


iFxi
(x, y). (12)2. Let x̃ ∈ U . If Y (x̃) = {y(x̃)} is a single point then

D
'(x̃) =

n∑

i=1


iFxi
(x̃, y) (13)8



and ' is (fully) di�erentiable at x̃. If furthermore Y (x) = {y(x)} is a singleton for all x ∈ O ⊂ U anopen set, then ' is 
ontinuously di�erentiable in O.This immediately leads to an equios
illation property.Lemma 4.5. For j ∈ {c, d, cb, db}, there is a minimizer xj of '(j)(x), and ∣M (j)(xj)∣ ≥ 2, where M (j)(x) =
{m ∈ I(j)∣'(j)(x) = FL(x,m)}.Proof. Wemust pla
e ourselves in the hypotheses of the envelope theorem. Ea
h set [1,∞], {1, 2, ...,∞}, [1, N ], {1, 2, ..., N}is a 
ompa
t metri
 spa
e (for I(c) and I(d) one may use the metri
 d(x, y) = ∣x−1−y−1∣). Sin
e the fun
tion
'(j) is a 
ontinuous fun
tion on the 
ompa
t metri
 spa
e I(j), it must have a minimum. The optimalparameter xj is in [0,∞) so we take U = (− 1

2 ,∞), and the hypotheses of the envelope theorem are satis�ed.Assume that M (j)(xj) = {m̃} is a singleton (there is no equios
illation). Then, by the envelope theorem,the two-sided derivative Dx'
(j)(xj) exists and sin
e '(j)(xj) is minimal, the derivative must be zero. Usingformula (13), we obtain

0 = Fx(xj , m̃) = −4m̃
m̃− xj

(m̃+ xj)3
e−2Lm̃.Sin
e xj , m̃ > 0, it must be that m̃ = xj . Hen
e, '(j)(xj) = F (xj , m̃) = 0. But we know that '(j)(xj) ≥

F (x, x+ 1) > 0.Now we 
hara
terize the unique minimizer for the 
ase j = c.Lemma 4.6. There is a unique xc minimizing '(c)
L (x) and it is the unique root  (xc) = 0 of

 (x) =  (x, L) =

(
m(x) − x

m(x) + x

)2

e−Lm(x) −
(
1− x

1 + x

)2

e−L,where m(x) =
√

4x
L + x2.Proof. Be
ause any minimizer xc is in [1,∞), the only lo
al maxima of FL(x,m) as m runs in [1,∞] areat m = 1 and m = m(x) =

√
4x
L + x2 and so M (c)(xc) ⊆ {1,m(xc)}. By Lemma 4.5, we know that

#M (c)(xc) ≥ 2 so
M (c)(xc) =

{

1,

√

4xc
L

+ x2c

}

.Hen
e,  (xc) = 0. This shows the equios
illation  (x) = 0.We now show the uniqueness of the solution of the equios
illation problem. To that end, let
g(x) = F (x,m(x)),

g′(x) = Fx(x,m(x)) + Fm(x,m(x))m′(x)

= Fx(x,m(x))

= −4m(x)
m(x)− x

(m(x) + x)3
e−Lm(x) < 0,and

ℎ(x) = F (x, 1),

ℎ′(x) = −4
1− x

(1 + x)3
e−L > 0.Hen
e,  ′ = g′ − ℎ′ < 0 and  may not have multiple zeros.This result gives some more information for the 
ase j = d (that is, I(d) = {1, 2, ...,∞}). We must assumethat L is not too big, but our fo
us is the 
ase where there is little overlap so this is not a problem. The spe
ialpoint m(x) 
ontinues to play an important role. Noti
e that m′(x) > 1 and that m(1) =

√
4 + L/

√
L > 1 sothat, for all x > 1, m(x) > m(1) + (x− 1) > x. 9



Lemma 4.7. Let L < 4/3 and let xc minimize '(c)
L (x) and xd minimize '(d)

L (x). Then 1 ∈ M (d)(xd) ⊆
{1, ⌈m(xd)⌉ , ⌊m(xd)⌋} and xc − 1 ≤ xd ≤ xc.Proof. Be
ausem = m(xd) is the only lo
al maximum of FL(x,m), we know thatM (d)(xd) ⊆ {1, ⌈m(xd)⌉ , ⌊m(xd)⌋},and we also know from Lemma 4.5 that #M (d)(x̂) ≥ 2. Assume that M (d)(x̂) = {⌈m(x̂)⌉ , ⌊m(x̂)⌋}. Thehypothesis on L 
ombined with the fa
t that xd ≥ 1 guarantees that m(xd) > xd + 1 so xd < ⌊m(xd)⌋. We
an now use the one-sided derivative of the Envelope Theorem, obtaining that

D(1)'
(d)(xd) = max

m∈{⌈m(xd)⌉,⌊m(xd)⌋}
Fx(xd,m)

= max
m∈{⌈m(xd)⌉,⌊m(xd)⌋}

−m m− xd
(m+ xd)3

e−Lm < 0.Therefore, 1 ∈M (d)(x̂).Clearly, we must have '(d)(xd) ≤ '(c)(xc). If xd > xc then '(d)(xd) ≥ F (xd, 1) = '(c)(xd) > '(c)(xc),hen
e we must have that xd ≤ xc. If xd < xc − 1, then in view of the estimate m′(x) > 1, we have that
m(xd) < m(xc) − 1. Let m0 = ⌊m(xc)⌋ and �nd the unique x0 ∈ (1,m0) su
h that m(x0) = m0. We havethat xd ∈ (1, x0) ⊂ (1,m0). For x ∈ (1,m0), we have that Fx(x,m0) < 0. Hen
e, '(d)(xd) ≥ F (xd,m0) >
F (x0,m0) = '(c)(x0) > '(c)(xc).As a result of Lemma 4.7, we see that using the dis
rete frequen
y spe
trum {1, 2, ...,∞} or using the
ontinuous frequen
y spe
trum [1,∞] results in approximately the same Robin parameter.We would like to give a formula for the optimized Robin parameter, but the equios
illation property
annot be solved expli
itly. However, we 
an solve it approximately for small L. This further allows us to
onsider the spe
trum [1, N ]. If xcb minimizes '(cb)(x) then M (cb)(xcb) ⊆ {1, N,m(xcb)}. When L is not toosmall 
ompared to N−1, we now show that M (cb)(xcb) = {1,m(xcb)}. This implies that, for those values of
L and N , the optimized parameter for the frequen
y spe
trum [1, N ] is the same as the one for the frequen
yspe
trum [1,∞].Lemma 4.8. The optimized 
hoi
e xc for '(c)(xc) is asymptoti
 to L− 1

3 :
lim

L→0+
xcL

1
3 = 1.If we 
hoose x̂c = L− 1

3 as our optimized parameter, the 
onvergen
e fa
tor every other step is
F (x̂c, 1) = 1− 4L

1
3 +O(L

2
3 ). (14)Let � > −3/2. If L = L(N) > N� then for all N su�
iently large, m(xc) < N , and for su
h values of Nand L, we have that xc = xcb.Proof. We try to solve F (x,m(x)) − F (x, 1) = 0 by writing x as a power of L. Let x = CL� , then we get

0 =  =

(√
CL�−1 + C2L2� − CL�

√
CL�−1 + C2L2� + CL�

)2

e−L
√

4CL�−1+C2L2� −
(
1− CL�

1 + CL�

)2

e−L, (15)whi
h is de�ned for L > 0 and C > 0. We want to take a series expansion for  , and we �nd that for
� = −1/3,

 =

(
4

C
− 4

√
C

)

L
1
3 +O(L

2
3 ).We see that G(x) = F (x,m(x)) − F (x, 1) < 0 for su�
iently small L if we 
hoose x = CL− 1

3 with C > 1,and G(x) > 0 for all su�
iently small L if C < 1. Hen
e, xcL 1
3 → 1 as L→ 0+.To show that xc = xcb, it su�
es to show that

m(xc) < N, (16)for su�
iently small L. We substitute x = L− 1
3 and then L = N� into m(x) obtaining

m(x) =

√

4N− 4
3� +N− 2

3�.Hen
e if � > −3/2, m(x)/N → 0 as N → ∞ and so m(x) < N for large N . Conversely, if � < −3/2,
m(x)/N → ∞ and m(x) > N for large N . 10



The 
ase {1, 2, ..., N} follows immediately.Corollary 4.9. Let � > − 3
2 . Let L = L(N) > O(N�), L < 4

3 and let xcb minimize '(cb)(x). If xdbminimizes '(db)(x) then for all N su�
iently large, 1 ∈M(xdb) ⊂ {1, ⌊m(xc)⌋ , ⌈m(xc)⌉}.Proof. Say that xd minimizes '(d)(x). By lemma 4.7, we have that M (d)(xd) ⊆ {1, ⌈m(xc)⌉ , ⌊m(xc)⌋},where xc minimizes '(c)(x). Lemma 4.8 gives ⌈m(xc)⌉ < N for large N , hen
e M (d)(xd) ⊂ {1, ..., N}. If
xdb > xd then F (xdb, 1) > F (xd, 1) and xdb is not a minimizer. If xdb < xd and if 1 ∕= md ∈ M (d)(xd)then '(db)(xdb) ≥ F (xdb,md) ≥ F (xd,md) = '(d)(xd) and xdb is not a minimum. Hen
e xd = xdb for allsu�
iently large N .Note that the asymptoti
 
onvergen
e fa
tor (14) is approximately independent of the spe
trum we use,and so we may use the optimized parameter x̂c = L− 1

3 in all situations.This 
ompletes the proof of the �rst part of Theorem 2.1.4.3 Two-parameter OO0 analysis, L > 0.Returning to formula (11), we now 
ompute the optimal parameters x and y without assuming that x = y.Cal
ulations in this setting are more 
ompli
ated than in the one-parameter 
ase, so we treat only the 
asesof the spe
trum [1,∞] and [1, N ]. We 
an get a rudimentary equios
illation property out of the envelopetheorem.Lemma 4.10. Let L > 0 and
F (x, y,m) =

(
x−m

x+m

y −m

y +m
e−Lm

)2

,

'(x, y) = sup
m∈[1,∞]

F (x, y,m),

M(x, y) = {m ∈ [1,∞]∣F (x, y,m) = '(j)(x, y)}.Then '(x, y) has a minimum (x0, y0). In addition, #M (j)(x0, y0) ≥ 2 and min(x0, y0) ≥ 1.Proof. Note that '(1, 1) < 1. Sin
e '(x, y) ≥ F (x, y, 1) and sin
e F (x, y, 1) tends to 1 as (x, y) tends to
∞, there is an M < ∞ su
h that, if (x, y) /∈ [1,M ]× [1,M ], then '(x, y) > '(1, 1). Hen
e, ' must have aminimum in [1,M ]× [1,M ].We now pla
e ourselves under the hypotheses of the Envelope Theorem. We have that (x0, y0) ∈
(12 ,∞)2 = U and the 
hoi
e V = [1,∞] does the tri
k.If M (j)(x0, y0) = {m} is a singleton, then '(x, y) is di�erentiable at x0, y0 and

0 = ∇'(x0, y0)

=

(
∂F

∂x
(x0, y0,m),

∂F

∂y
(x, y,m)

)

.It su�
es to look at the partial in x,
0 = −4m

m− x

(m+ x)3

(
m− y

m+ y

)2

e−2Lm,to 
on
lude that either m = x or m = y. In either 
ase, '(x, y) = F (x, y,m) = 0, whi
h is absurd.In the one-sided 
ase, this result was su�
ient be
ause the only remaining possibility was to have twopoints equios
illating. However, in the two-sided 
ase, we 
an equios
illate two or three points, but lemma4.10 only says that there are at least two points equios
illating. Using the fa
t that '(x, y) has one-sidedderivatives everywhere, and that for any dire
tion 
 this one-sided derivativeD
'(x, y) must be non-negativeat (x, y) we 
an obtain equios
illation of three points. First we must des
ribe the shape of F (x, y,m) as afun
tion of m. 11



Lemma 4.11. Let 1 ≤ x ≤ y (without loss of generality). The two lo
al maxima m1(x, y) ≤ m2(x, y) of
F (x, y,m) inside m > 1 are given by

m2
1(x, y) =

2x+ 2y + Lx2 + Ly2 −
√

px,y(L)

2L
,

m2
2(x, y) =

2x+ 2y + Lx2 + Ly2 +
√
px,y(L)

2L
,

px,y(L) = (x2 − y2)2L2 + 4(x3 − xy2 − x2y + y3)L

+4(x+ y)2 > 0.Furthermore, if x < y then m1(x, y) ∈ (x, y) and m2 ∈ (y,∞). If x = y, then m1(x, x) = x and m2(x, x) ∈
(x,∞).The 
riti
al points m1 and m2 also depend on L. When that dependen
e must be made expli
it, we write
m1(x, y, L) and m2(x, y, L).Proof. We set the derivative ∂F/∂m to zero, obtaining

0 =
∂F

∂m
(x, y,m)

= 2
x−m

(x+m)3
y −m

(y +m)3
qx,y(m)e−2Lm,

qx,y(m) = −Lm4 + (2x+ 2y + Lx2 + Ly2)m2

−(2y2x− 2x2y − Lx2y2).The 
hoi
es m = x and m = y lead to F (x, y,m) = 0 so they are minima, so we restri
t our attentionto qx,y(m) = 0. By substituting m2 = n we obtain a quadrati
 polynomial in n whose roots are m2
1(x, y)and m2

2(x, y); we need to show that 1 ≤ m1 ≤ m2. First to show that they are real, we show thatthe dis
riminant px,y(L) is non-negative. It su�
es to show that, as a quadrati
 polynomial over L, its
oe�
ients are non-negative. The 
oe�
ient of L2 and the 
onstant 
oe�
ient are squares and hen
e non-negative. We rewrite x = �y with � ∈ (0, 1] and substitute into the 
oe�
ient of L in px,y(L) to obtain theexpression y3(4�3 − 4�2 − 4�+ 4) > 0 sin
e y > 0. Hen
e px,y(L) > 0 and m1 < m2.Assume that x < y are �xed. Sin
e F (x, y, x) = 0 and F (x, y, y) = 0 but F (x, y,m) > 0 for any
m ∈ (x, y), there is a lo
al maximum in m in the interval (x, y). Moreover, sin
e F (x, y, y) = 0 and
limm→∞ F (x, y,m) = 0, there must be another lo
al maximum in the interval (y,∞). However, we havealready shown that the only 
andidates for lo
al maxima are m1 and m2, and sin
e m1 ≤ m2 it must bethat m1 ∈ (x, y) and m2 ∈ (y,∞).Lemma 4.12. Let (x0, y0) minimize '(x, y). Then M(x, y) = {1,m1(x, y),m2(x, y)} with x ∕= y.Proof. The derivative of ' in the dire
tion 
 = (�, �) is given by

D
'(x, y) = max
m∈M(x,y)

�
∂F

∂x
(x, y) + �

∂F

∂y
(x, y)

= max
m∈M(x,y)

(�, �) ⋅G(m),where
G(m) = 4me−2Lm x−m

(x+m)2
y −m

(y +m)2

(
y −m

x+m
,
x−m

y +m

)

.In the 
ase x = y, m1 is a
tually a minimum soM(x, x) = {1,m2(x, x)} and in parti
ular x > 1. The ve
tors
(
x− 1

x+ 1
,
x− 1

x+ 1

) and (
x−m2

x+m2
,
x−m2

x+m2

)

12



are parallel and of opposite dire
tions, so it is not possible to 
hoose a 
 whi
h will make the derivative neg-ative. However, in the dire
tion (1,−1) the derivative is zero; we will now look at se
ond order information.We set gm(�) = F (x+ �, x− �,m), then
g′m(0) = 0,

g′′m(0) = −16xme−2Lm (m2 − x2)2

(x +m)8
< 0,for all m ≥ 1, m ∕= x so for a su�
iently small �, '(x+ �, x− �) < '(x, x), so it is not possible that x0 = y0.Now we show that G(m) and G(n) are linearly independent for any m,n /∈ {x, y}, so long as x ∕= y. Ifnot,

0 = det

(
y−m
x+m

x−m
y+m

y−n
x+n

x−n
y+n

)

=
y −m

x+m

x− n

y + n
− x−m

y +m

y − n

x+ n

0 = (y2 −m2)(x2 − n2)− (x2 −m2)(y2 − n2)

y2 − n2

y2 −m2
=

x2 − n2

x2 −m2

ℎ(y2) = ℎ(x2),where ℎ(z) = (z − n2)/(z −m2). However, as a fun
tion of [1,∞), ℎ is inje
tive so x2 = y2, but sin
e bothare positive, we get that x = y, whi
h we have assumed not to be the 
ase. Hen
e G(n) and G(m) arelinearly independent. In parti
ular, there is a 
 su
h that 
 ⋅G(n) < 0 and 
 ⋅G(m) < 0.So ifM(x0, y0) = {n,m} (i.e., the set where the maximum is attained 
ontains exa
tly two points {n,m},whi
h are either {1,m1}, {1,m2} or {m1,m2}) then we have 
onstru
ted a dire
tion 
 in whi
h the one-sidedderivative D
'
(2)(x0, y0) is negative, 
ontradi
ting that '(1)(x0, y0) is minimal. ThereforeM = {1,m1,m2},as required.We have shown that a minimum (x0, y0) gives three equios
illation points; we have to show that there isa unique 
hoi
e of (x0, y0) giving three equios
illation points.Lemma 4.13. The system

F (x, y, 1) = F (x, y,m1(x, y))

F (x, y, 1) = F (x, y,m2(x, y))has exa
tly two solutions (x0, y0) and (y0, x0) in (1,∞)2 with x0 ∕= y0. This (x0, y0) is the unique (up topermutation (y0, x0)) minimizer of '(x, y). Moreover, x and y both in
rease monotoni
ally as L de
reasesto 0.
� > −5/4.Proof. Without loss of generality, x < y. If we �x x and vary y then

(F (x, y,mi))y = Fy(x, y,mi) + Fm(x, y,mi)mi,y

= Fy(c, d,mi)

= −4mi
mi − y

(mi + y)3
(mi − x)2

(mi + x)2
e−2Lmi

=
4mi

y2 −m2
i

F (x, y,mi),for i = 0, 1, 2 with m0 = 1. Likewise,
(F (x, y,mi))x = −4mi

mi − x

(mi + x)3
(mi − y)2

(mi + y)2
e−2Lmi < 0.13



Hen
e, F (x, y,m1) in
reases monotoni
ally with y and de
reases monotoni
ally with x. Sin
e F (x, y, 1)in
reases monotoni
ally with x and y, there must be a unique x = x(y) = x(y, L) ∈ (1, y) su
h that
F (x, y, 1) = F (x, y,m1(x, y)). Now �x y1 and x1 = x(y1), then

(F (x1, y,m1(x1, y)))
′

(F (x1, y, 1))′

∣
∣
∣
∣
y=y1

=

4m1

y2
1−m2

1
F (x1, y1,m1)

4
y2
1−1

F (x1, y1, 1)

=
m1(y

2
1 − 1)

y21 −m2
1

>
y21 −m1

y21 −m2
1

>
y21 −m2

1

y21 −m2
1

= 1Hen
e, F (x1, y,m1(x1, y)) grows faster than F (x1, y, 1) near y = y1 and so if y2 − y1 > 0 is small, then itmust be that x(y2) > x(y1) and x(y) is a stri
tly in
reasing fun
tion (in fa
t, x′(y) > 0).Hen
e, (F (x(y), y,m2(x(y), y))
′ ≤ 0 and (F (x(y), y, 1))′ > 0 and so there is a unique y = y(L) giving

F (x(y), y,m2(x(y), d)) = F (x(y), y, 1).Now let  = FL(x, y,m1) − FL(x, y, 1) and � = FL(x, y,m2) − FL(x, y,m1) and let us denote A,B thederivatives
A =

[
 x  y

�x �y

] and
B =

[
 L

�L

]

,so that (x′0(L), y′0(L)) = −A−1B. Dire
t 
al
ulations give that A−1 = �J where � > 0 and
J =

[
m2

y2−m2
2
− 1

y2−1
1

y2−1 − m1

y2−m2
1

1
x2−1 − m2

x2−m2
2

m1

x2−m2
1
− 1

x2−1

]

=

[
− −
+ −

]

,

B = 2F (x, y, 1)

[
1−m1

1−m2

]

=

[
−
−

]

.Hen
e, x′0(L) < 0. For y′0(L) we obtain
y′0(L) = −2�F (x0, y0, 1)

(m2 − 1)(m1 − 1)(m1 −m2)(m2m1 +m1x
2
0 +m2x

2
0 + x20)

(x20 −m2
2)(x

2
0 − 1)(m2

1 − x20)
< 0.As in Lemma 4.8, we 
an give asymptoti
 approximations of the optimized 
oe�
ients, as well as anasymptoti
 
onvergen
e fa
tor.Lemma 4.14. The asymptoti
ally optimized 
oe�
ients as L→ 0+ are

x0(L) =
1

8
8

4
5L− 1

5 , (17)
y0(L) =

1

2
8

2
5L− 3

5 . (18)The asymptoti
 
onvergen
e fa
tor every other step is
√

F (x0, y0, 1) = 1− 2(8L)
1
5 +O(L

2
5 ).Furthermore, if L > O(N�), with � > − 5

4 , then M(x0, y0) ⊂ [1, N ], and the optimized 
oe�
ients are thesame for the frequen
y domains [1,∞) and [1, N ].If the overlap L is O(N�) with � < − 5
4 , then it may be possible to �nd better 
oe�
ients than the onesgiven (our analysis in Se
tion 4.5 is su
h a 
ase). However, the 
onvergen
e fa
tor estimate holds even inthat 
ase. 14



Proof. The motivation 
omes from writing x, y, L in terms of a new variable z. We let x = 1/z, y = b/zjand L = azk, whi
h we then substitute into  = F (x, y,m1(x, y)) − F (x, y, 1) and � = F (x, y,m2(x, y)) −
F (x, y, 1). When j = 3 and k = 5, we �nd that we 
an approximate  and � linearly, to obtain

 =

(

4− 8√
b

)

z + o(z),

� =
(

4− 4
√
2ab
)

y + o(y).We set the 
oe�
ient of of z in  to zero to obtain that b = 4. Substituting into � and setting the 
oe�
ientof z to zero, we obtain that a = 1/8. Finally, we express x0 and y0 in terms of L, obtaining equations (17),(18).Substituting (17), (18) then L = N� in m2 and pro
eeding as with equation (16), we see that
m2

N
→ 0when � > −5/4 and diverges when � < −5/4.Although we do not perform a semidis
rete analysis in the two parameter 
ase that is as detailed as theone we performed in the single parameter 
ase, the fa
t that M(x0, y0) ⊂ [1, N ] is still important be
ausethe dis
retization will 
ertainly limit the highest frequen
y that 
an be observed. If M(x0, y0) lies outside of

[1, N ], it would be possible to improve the 
onvergen
e fa
tor over the frequen
ies [1, N ] by 
hoosing di�erentparameters (x0, y0). The 
onstraint that L > O(N− 5
4 ) allows some anisotropy of the mesh while keepingthe optimized 
oe�
ients 
lose to those of the 
ontinuous system. For extremely small values of L relativeto 1/N (i.e., � < −5/4), it may be possible to improve upon the optimized 
oe�
ients given in this paper.This 
ompletes the proof of the se
ond part of Theorem 2.1.4.4 OO2 one-sided analysis, L > 0.For the se
ond order operators, the optimization problem is

G(s, t,m) = GL(s, t,m) =

(
s+ tm2 −m

s+ tm2 +m

)2

e−Lm,

'(s, t) = max
m∈[1,∞]

G(s, t,m). (19)The 
onvergen
e fa
tor every other step, for a given 
hoi
e of s, t, is '(s, t).Lemma 4.15. For any given L > 0, there is a unique (s0, t0) minimizing '(s, t). Furthermore, if L =
L(N) > O(N�), � > −5/4 then for all su�
iently large N , (s0, t0) also minimizes G(s0, t0,m) over mranging in [1, N ]. The optimized parameters are the unique solution of

G(s, t, 1) = G(s, t,m1(x, y))

G(s, t, 1) = G(s, t,m2(x, y)),where x = 1−
√
1−4st
2t and y = 1+

√
1−4st
2t . We use the asymptoti
 formulae

s0 =
1

2
2

3
5L− 1

5 , (20)
t0 =

1

2
2

1
5L

3
5 ; (21)leading to the asymptoti
 
onvergen
e fa
tor every other step of

G(s0, t0, 1) = 1− 2 ⋅ 2 2
5L

1
5 +O(L

2
5 ). (22)

15



Proof. We may rewrite
G =

x−m

x+m

y −m

y +m
e−Lm.Sin
e the values x, y 
an be used to parametrize the problem (and s, t may be re
overed from x, y), we mayinvoke lemma 4.13 to 
on
lude that x, y are real and unique (up to permutation) and so s, t are real andunique.Next, we repla
e (17) and (18) into x = 1−

√
1−4st
2t and y = 1+

√
1−4st
2t . A series expansion leads toequations (20) and (21). We substitute these parameters into G(s0, t0, 1) and expand into a series to obtainthe asymptoti
 
onvergen
e fa
tor (22).This 
ompletes the proof of Theorem 2.2.4.5 The L = 0 
ase.For the zeroth order, one-sided 
ase, the envelope theorem still asserts that there has to be equios
illation.Sin
e limm→∞ F (x,m) = 1, we must 
on
entrate on the [1, N ] 
ase. By inspe
tion, the maxima are at 1 and

N and the value of the optimal parameter x̃ is given by solving F (x, 1) = F (x,N), whi
h has the uniquesolution
x̃ =

√
N.Substituting into F (x, 1) we obtain

'(x̃) =
(
√
N − 1)2

(
√
N + 1)2

≈ 1− 4N− 1
2as N → ∞. By 
omparison, the 
onvergen
e fa
tor estimate of Theorem 2.1 with an overlap L ≈ 1/N(approximately one grid length of overlap) gives a 
onvergen
e fa
tor of approximately 1 − 4N− 1

3 . Hen
e,to obtain a solution with a given toleran
e, the zero overlap algorithm must iterate O(N 1
2 ) times, while thealgorithm with one grid length of overlap must iterate O(N 1

3 ) times.For the two-sided zeroth order 
ase, the Envelope Theorem gives an equios
illation of two points. Theonly interior maximum in m > 0 is
m(x, y) =

√
xy.The only possibility to obtain three equios
illation points is if

F (x, y, 1) = F (x, y,m(x, y)) = F (x, y,N), (23)and the proof of Lemma 4.13 shows that if there are only two equios
illation points, then there is a dire
tionof the (x, y) plane su
h that these two equios
illating points are simultaneously de
reasing. Therefore theunique minimizer is the unique solution (up to permutation) of equation (23) in the domain [1, N ]× [1, N ],given by
x =

√
2

N
3
4

√
N + 1+

√
N − 1

, (24)
y =

√
2

2
N

1
4 (
√
N + 1 +N

1
2 − 1), (25)

'(x, y) = 1− 4
√
2N− 1

4 +O(N− 1
2 ).We see again that the algorithm with zero overlap 
onverges within a given toleran
e in O(N 1

4 ) steps, whilethe algorithm with one grid length of overlap 
onverges in O(N 1
5 ) steps.A similar argument applies to the one-sided estimate for the se
ond order tangential transmission 
ondi-tions. We summarize this 
hoi
e of parameters. 16



Lemma 4.16. (Optimized transmission 
onditions, zero overlap.) Let a = b, and 
onsider only the frequen
yspe
trum [1, N ] (there are 2N +1 grid points on the interfa
e). The one-sided optimized Robin parameter is
c = seca

√
N , yielding a 
onvergen
e fa
tor every other step of

(
√
N − 1)2

(
√
N + 1)2

= 1− 4N− 1
2 +O(N−1).The two-sided optimized Robin parameters are

c = x seca,

d = y sec a;where x and y are given by (24) and (25). The 
onvergen
e fa
tor is 1−2
√
2N− 1

4 +O(N− 1
2 ). The one-sidedoptimized se
ond order tangential parameters are

c = s seca,

d = t seca;where x = 1−
√
1−4st
2t and y = 1+

√
1−4st
2t and x, y are given by (24) and (25).In pra
ti
e, the se
ond order tangential operator ∂2/∂�2 will be approximated dis
retely, so we haveattempted to repla
e it by the �nite di�eren
e approximation

Λu =
∂2

∂�2
u ≈ uk+1 + uk−1 − 2uk

ℎ2
= Λℎu.The Fourier transform of Λ is Λ̂(m) = −m2 , whi
h leads to our analysis but the Fourier transform of Λℎ is

Λ̂ℎ(m) = 2 cosmℎ−2
ℎ2 . So F is repla
ed by

Fℎ(c, d,m) =
(c+ 2d cosmℎ−1

ℎ2 −m)2

(c+ 2d cosmℎ−1
ℎ2 +m)2

e−2Lm.The periodi
ity of the 
osine fun
tion means that m 7→ Fℎ(c, d,m) has in�nitely many lo
al maxima
m1,ℎ(c, d),m2,ℎ(c, d), . . . We simplify the problem by 
onsidering only the nonoverlapping 
ase (with L = 0).Be
ause ℎ is small, when m is small, we have that cosmℎ ≈ 1 − (mℎ)2/2, whi
h is to say, Fℎ(c, d, 1) ≈
F (c, d, 1). If we equios
illate F (c, d, 1) = Fℎ(c, d,m1,ℎ) = Fℎ(c, d,m2,ℎ), we see thatmj,ℎ > N for j = 3, 4, . . .and we obtain the following result.Proposition 4.17. (Se
ond order tangential transmission operator, semidis
rete, nonoverlapping.) Thesemidis
rete analysis leads to slightly di�erent parameters c′ and d′ given by

� =
N�4 + 8N3�2 −N2(8�2 + �4) +N�4

4�4 − 64�2N2 + 256N4
,

c̃ =
N(8n− �2)

2�
1
4 (8N2 − �2)

,

d̃ =
2�

3
4 (8N2 − �2)

N(8N − �2)
.The 
onvergen
e fa
tor is almost identi
al to the analysis of Lemma 4.16.5 Numeri
al simulationsFor our numeri
al simulations, we have two implementations. One is a semispe
tral dis
retization, whi
h isone of the most widely used dis
retizations in meteorology. The se
ond is a �nite element dis
retization.As has already been mentioned, the various iterations 
onverge modulo the 
onstant mode. This makeserror estimation more 
ompli
ated. In the semispe
tral 
ode, we 
ompute the error by taking the tra
e ofthe fun
tion along the interfa
e, subtra
ting the mean, and 
omputing the L2 norm of the result. In the�nite element 
ode, we use instead the seminorm ∫

Ω1
∇u ⋅ ∇u, whi
h is not equivalent to using the L2 normof the tra
e, but whi
h may be more natural in a �nite element 
ode. In view of Gelfand's spe
tral radiusformula, the asymptoti
 
onvergen
e fa
tor should be the same regardless of whi
h ve
tor norm is used tomeasure the errors. 17



5.1 The semispe
tral 
odeThe semispe
tral dis
retization uses a latlong grid, i.e., a uniform grid in (', �). The Fourier 
oe�
ients
û(�, k) are 
omputed using the Fast Fourier Transform, and the system (3) is dis
retized in ' using a
entered �nite di�eren
e. The boundary 
onditions for ea
h ODE are given by (4) and (5), for solvingover the entire sphere Ω. For solving on a subdomain whose boundaries are latitudes, one or both ofthese boundary 
onditions are repla
ed by the Diri
hlet, Robin (OO0) or se
ond order tangential (OO2)transmission operators. In all 
ases, we use initial solutions that are random, while the right hand side f iszero. We remark that a random right hand side f 
an be redu
ed to this situation.5.1.1 Implementing the transmission 
onditions in the semispe
tral 
odeIn the semispe
tral 
ode, subdomains must be latitudinal, exa
tly as in our analysis and as per Figure 1. Aboundary 
ondition of the Robin type (e.g.,  u = cu) leads to a boundary 
ondition of the form

(c+
∂

∂�
)ûk+1(a,m) = (c+

∂

∂�
)v̂k.Similarly, an OO2 
ondition of the form  u = cu+ du�� leads to the transmission 
ondition

((c+ dm2) +
∂

∂�
)ûk+1(a,m) = ((c+ dm2) +

∂

∂�
)v̂k.The optimal, nonlo
al operator given by  ̂(m) = ∣m∣/ sina is implemented using the transmission 
ondition

(∣m∣/ sin a+ ∂

∂�
)ûk+1(a,m) = (∣m∣/ sina+ ∂

∂�
)v̂k.We make similar 
onsiderations for v̂k+1 and ûk.Our semispe
tral solver is implemented using Fast Fourier Transforms, whi
h gives very good perfor-man
e. In this 
ase, implementing any of the transmission 
onditions is equally easy, so it is natural to usethe optimal transmission 
onditions based on the nonlo
al operator.5.1.2 ResultsNumeri
al results for the semispe
tral 
odes are summarized in Figure 2. We 
hose the various toleran
esso that all the 
onvergen
e 
urves are visible, distin
t, and show 
learly how the 
onvergen
e behavior
hanges over the �rst few iterations. The semispe
tral solver is limited to domain de
ompositions where thesubdomains have latitudinal boundaries, as per Figure 1. Our �nite element 
ode, in the next se
tion, 
anuse domain de
ompositions with arbitrary subdomains. In all of our grids, we use 2N + 1 grid points in the

� variable, and N + 2 grid points in the ' variable. All of these grids use N = 50, and the � grid is givenby � = 0, 2�/102, . . . , 202�/102 and the grid in ' is given by ' = 0, �/51, . . . , �. When spe
ifying theright-hand-side f , it is ne
essary to ensure that f(0, �) and f(�, �) are 
onstant fun
tions of �.In Figure 2 (a), we have 
omputed iterates of the S
hwarz iterations until the L2 error on 
olatitude
a = b = �/2 (the equator) is less than 10−6 and plotted the error at ea
h even iteration to mat
h withthe analysis in the text. The error is measured modulo the 
onstant mode. Sin
e there is no overlap, the
lassi
al S
hwarz iteration does not 
onverge and we have not plotted it. The transmission operators areRobin (OO0), se
ond order tangential with 
oe�
ients (c, d) (OO2), and the slightly improved semidis
rete
oe�
ients 
oe�
ients (c′, d′) (OO2') and a dis
retized optimal and nonlo
al operator. The OO0 iteration
onverges in 88 iterations, while the OO2 and OO2' iterations 
onverge in 16 iterations, and the nonlo
aloperator leads to 
onvergen
e in 12 iterations. This grid has N = 50, or 101 grid points in � and 52 gridpoints in '.In Figure 2 (b), we have plotted the 
onvergen
e of the various S
hwarz algorithms with six latitudinalsubdomains and without overlap.In (
) and (d), we have similar graphs in the 
ase of overlap. In (
), we have two subdomains, and anoverlap between these two subdomains whi
h measures Δ' = 2�/(N +1) = 2�/31. The Diri
hlet (
lassi
al)S
hwarz method 
onverges to toleran
e 10−6 in 140 iterations, the OO0 method 
onverges in 36 iterations,the OO2 method 
onverges in 14 iterations, and the nonlo
al operator 
onverges in 4 iterations.In (d), we have six subdomains and an overlap between ea
h pair of adja
ent subdomains of Δ' = �/31.18
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(d)Figure 2: Numeri
al results, semispe
tral 
ode. (a): 
onvergen
e with two latitudinal subdomains and zerooverlap. (b): 
onvergen
e with six latitudinal subdomains and zero overlap. (
): 
onvergen
e with twolatitudinal subdomains and two grid lengths of overlap. (d): 
onvergen
e with six latitudinal subdomains,the overlaps are ea
h the length of one grid interval.N Diri
hlet OO0 OO2 Optimal8 20 8 4 216 40 14 6 232 84 26 10 264 172 42 14 2128 360 58 18 2256 768 104 22 2Table 1: Iteration 
ounts as we vary L = �/(N + 2).5.1.3 S
aling in ℎ the semispe
tral 
ode, 2 subdomains, minimal overlap L = ℎIn this set of experiments, we have 
omputed the iteration 
ount, as well as an approximation of the 
onver-gen
e fa
tor, as we vary N and with L = �/(N + 2). The iteration 
ounts are given in Table 1. The gridparameter ℎ varies nonuniformly a
ross the sphere, but near the equator, we have that ℎ ≈ L = �/(N + 1).We also approximate the 
onvergen
e fa
tor as follows. At ea
h iteration k, we 
ompute the norm of the error
ek, as we did in the previous se
tion. We then approximate the 
onvergen
e fa
tor using � ≈ (en−em)1/∣n−m∣.We iterate until the error en is less than 10−6, and we let m = ⌊n/2⌋. The 
onvergen
e fa
tors are plottedin Figure 3. The 
onvergen
e fa
tor for the 
lassi
al S
hwarz method, marked Diri
hlet, is a good �t for the
1 − O(ℎ) 
onvergen
e rate, in the sense that it seems to approa
h 1 almost linearly. We 
an also see the
onvergen
e fa
tor 1 − O(ℎ1/3) for the OO0 method, although a smaller value of ℎ would illustrate more
learly the power 1/3 in the 
onvergen
e fa
tor.The OO2 method is extremely fast, with a very small 
onvergen
e fa
tor. Our theory predi
ts a 
onver-gen
e fa
tor of 1 − O(ℎ1/5). Therefore, in order to have a 
onvergen
e fa
tor whi
h is larger than 0.9, wewould require ℎ ≈ 10−5, whi
h is to say, N ≈ 105. Su
h a grid would 
ontain approximately 1010 points.Aside from possible numeri
al di�
ulties with the double pre
ision representation, su
h a large grid is notpossible on the laptop 
omputer used to produ
e these experiments. On the one hand, this means that itis di�
ult to numeri
ally probe the asymptoti
 behavior of the OO2 method. On the other hand, this alsomeans that the OO2 method should be good enough for most 
urrent appli
ations.The Optimal method has a very small 
onvergen
e fa
tor, of the order 10−4, and it does not appear to19
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Figure 3: Convergen
e fa
tor as we vary ℎ = L = �/(N + 2), semispe
tral 
ode, two subdomains.vary with N .5.2 S
aling in ℎ the semispe
tral 
ode, 2 subdomains, thi
k overlap L = ℎIn this se
tion, we perform an experiment similar to the one of Se
tion 5.1.3, but we now keep a 
onstantgeometri
 overlap size of pi/10 radians (i.e, a− b = �/10). As 
an be observed in Figure 4, the 
onvergen
efa
tor does not appear to vary with ℎ.5.3 S
aling in ℎ the semispe
tral 
ode, 2 subdomains, nonoverlappingWe perform an experiment similar to the one of Se
tion 5.1.3, but with zero overlap. The 
onvergen
e fa
tordoes not appear to vary with ℎ.5.4 Finite element solverFor our �nite element solver, we rephrase the Lapla
e problem in the variational formFind u ∈ H1(Ω) su
h that ∫
Ω

∇u ⋅ ∇v =

∫

Ω

fv, for all v ∈ H1(Ω).A simple way to understand the gradients appearing in the variational formulation is as follows. Let u be afun
tion de�ned on the sphere Ω ⊂ ℝ
3. We 
an extend u to all of ℝ3 by putting

u(x) = u(x/∥x∥). (26)Then we 
an use the usual de�nition of the gradient, ∇u = (ux, uy, uz). A

ording to the dis
ussion inSe
tion 3, we must now 
hoose a suitable �nite element basis of fun
tions that are 
onstant on half-rays, i.e.,su
h that u(x) = u(�x) for every � > 0 and every x ∈ ℝ
3.To de�ne a �nite element dis
retization, we must �rst build a mesh Ωℎ for the sphere. Be
ause weare integrating on the sphere, we build our mesh from spheri
al triangles {�1, ..., �n} = Ωℎ, triangles on the20
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sphere whose edges are great 
ir
les. Be
ause our elements are 
urvilinear, it is not obvious how to de�ne thebasis fun
tions. We 
an approximate the sphere Ω by a polyhedron Tℎ = {K1, ...,Kn}, simply by repla
ingall spheri
al triangles in our mesh Ωℎ with Eu
lidian triangles with the same verti
es. On Tℎ, we 
ould use
Vℎ(Ωℎ), the spa
e of pie
ewise linear fun
tions as a �nite element spa
e on Ωℎ, but this does not immediatelygive rise to a �nite element spa
e on Ω and our mesh of 
urvilinear triangles.We 
an prolong the basis fun
tions on our polyhedral approximation Ωℎ of Ω, to basis fun
tions onall of ℝ3. If ' is a pie
ewise linear fun
tion on Tℎ, we prolong it to all of ℝ3 by saying that, for everytriangle K = {x1,x2,x3} ∈ Tℎ, and for every x ∈ K, and for every � > 0, '(�x) = �'(x); in other words,
'(x, y, z) = ax+ by + cz on the �
one� ℝ+K. The set Vℎ(ℝ3) obtained in this way has two problems. First,these fun
tions are not radially 
onstant (whi
h we require). Se
ond, Vℎ(ℝ3) does not 
ontain any 
onstantfun
tions (ex
ept for ' = 0), even though Vℎ(Ωℎ) does 
ontain the 
onstant fun
tions. Hen
e, on
e werestri
t to the sphere Ω, the spa
e Vℎ(ℝ3)∣Ω also does not 
ontain the 
onstants. The 
onstants are veryimportant be
ause they are pre
isely the kernel of the spheri
al Lapla
ian.1We 
hoose a �nite element spa
e Vℎ on Ω whi
h 
ontains the 
onstants, and whose fun
tions are all radially
onstant. One may then 
he
k that the S
hwarz algorithms a
t on the 
onstants and on the orthogonal
omplement of the 
onstants in independent ways, and so our analysis holds and the algorithms 
onverge.Let K ∈ Tℎ be a triangle and (p, q, r) be its outward pointing normal. One way to obtain su
h a spa
e isto take our linear fun
tion '(x, y, z) = ax + by + cz on K and to de�ne '̃(x, y, z) = '(s ⋅ (x, y, z)) where
s = (p,q,r)⋅x1

px+qy+rz ∈ ℝ, and hen
e s ⋅ (x, y, z) is 
ontained in the Eu
lidian triangle K. Our resulting basisfun
tions are pie
ewise rational linear, and
'̃(x, y, z) = C

ax+ by + cz

px+ qy + rz
for all (x, y, z) ∈ (0,∞) ⋅K;for some real 
onstant C. One 
ould build higher order �nite element basis fun
tions by using linear
ombinations of rational fun
tions p/q where p and q are homogeneous polynomials of the same degree.Although our derivation is not the same, the resulting �nite elements 
oin
ide with the ones analyzed in[1℄. Other possible �nite elements in
lude 
ontinuous elements based on spheri
al 
oordinates [30℄, anddis
ontinuous elements [6℄, [11℄. These alternate �nite element spa
es have not been analyzed in this paper.Our �nite elements are pie
ewise rational linear. Be
ause quotients of homogeneous linear polynomialsare 
onstant along half-rays through the origin, equation (26) is automati
ally satis�ed.On ea
h subdomain, we solve a Robin or se
ond order tangential boundary value problem. We denote by

D� the dire
tional derivative in the dire
tion of the unit outward pointing normal � of a given subdomain Ωi(note that � tangent to Ω). Similarly, we denote by D� the dire
tional derivative in the dire
tion tangentialto the boundary of Ωi. The dire
tion of the tangent is 
hosen on
e and for all and does not matter, sin
e weare interested in the se
ond tangential derivative D2
� . The relationship between these �geometri
� derivativesand the derivatives D� and D' for latitudinal subdomains are given by D' = ±D� and D� = rD� , where

r = sin' is the radius of the latitude '. On ea
h subdomain Ωi, at iteration k, we are solving the partialdi�erential equation −Δu
(i)
k = f with boundary 
ondition �u(i)k − �D2

�u
(i)
k +D�u

(i)
k = �vk − �D2

�vk +D�vk.In this problem, f and vk are the data, and u(i)k is the unknown. The variational formulation of this problemis Find u = u
(i)
k ∈ H1(Ωi) su
h that, for all w ∈ H1(Ωi),

∫

Ωi

∇u ⋅ ∇w + �

∫

∂Ωi

uw + �

∫

∂Ωi

(D�u)(D�w)

=

∫

Ω

fw −
∫

Ω∖Ωi

∇vk ⋅ ∇w + �

∫

∂Ωi

vkw + �

∫

∂Ωi

(D�vk)(D�w).The �re
onstituted iterate� vk is given by vk = !1u
(1)
k−1 + ...+!pu

(p)
k−1, where u(i)k−1, i = 1, ..., p is the solutionon subdomain Ωi (and there are p subdomains). The fun
tions !1, ..., !p form a partition of unity.For the Robin 
ondition (i.e., � = 0), we use the one-sided optimized parameter � = e−

1
3 r−1. Here, e is anestimate of the thi
kness of the overlap (we measure the Eu
lidian distan
e between the two interfa
es) and

r = sin' is the radius of the latitudinal boundary (if the boundary is latitudinal), and when the boundary1It is tempting to generate basis fun
tions by setting '̃(x) = '(x/∣x∣), 
f. (26). However, this �nite element spa
e does not
ontain the 
onstant fun
tions either. 22
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(d)Figure 6: (a): An i
osahedral grid with 20 subdomains. (b): Convergen
e of 
lassi
al and optimized S
hwarzmethods for the grid of (a). (
): Convergen
e of 
lassi
al and optimized S
hwarz methods, for two nearlyhemispheri
al overlapping subdomains, (d): The a

ura
y of the optimized S
hwarz 
oe�
ient 
hosen in (
).is not latitudinal, we use the heuristi
 r := ∣∂Ωi∣/(2�). The length ∣∂Ωi∣ of the boundary of Ωi 
an be
omputed from the bilinear form of ∫∂Ωi
uw, whi
h is available be
ause we are solving a Robin problem, bysubstituting u = 1 and w = 1.For the se
ond order tangential boundary 
ondition, we use the one-sided optimized parameters � =

1/2 ⋅ 23/5e−1/5/r and � = 1/2 ⋅ 21/5e3/5r2.We did not implement the optimal (nonlo
al) transmission operator for the �nite element grid. One
ould in prin
iple 
ompute this operator, e.g., using a S
hur 
omplement, or by 
omputing the matrix squareroot of a dis
retization of the se
ond tangential derivative on the interfa
e. We were not able to produ
ean algorithm of this type whi
h had any performan
e advantage over an LU de
omposition of the wholesystem. One 
ould also use a regular grid and fast Fourier transforms; this was dis
ussed in Se
tion 5.1.1 onthe semispe
tral implementation. When there are multiple subdomains that meet at 
orners, su
h as Figure6 (a), su
h optimal or nilpotent transmission operators are not even known.Although the analysis is based on our spheri
al triangle grid Ωℎ, for visualisation purposes, we use thepolyhedral approximation Tℎ. The triangulation Tℎ is obtain by using an i
osahedron and subdividing thetriangles (whi
h is known as the i
osahedral grid.)In Figure 6 (a), we show an i
osahedral grid with 2562 verti
es. The �nite element dis
retization of theLapla
ian for that mesh is a 2562× 2562 sparse matrix. We use this mesh, whi
h does not 
orrespond to ouranalysis, to show that our optimized transmission 
onditions work well even when the subdomains do nothave latitudinal interfa
es. In (b), we plot the 
onvergen
e histories of the various S
hwarz algorithms, forthe mesh with 20 subdomains depi
ted in (a). To 
ompute the error, we use the bilinear form of the Lapla
ianas a seminorm, i.e., the error on the kth step is ∫Ω ∇(vk − u) ⋅ ∇(vk − u), where u is the 
onverged solution.This seminorm is equivalent to the H1(Ω) norm, modulo 
onstant fun
tions. In (b), we see that the 
lassi
alS
hwarz algorithm (dotted) 
onverges but nearly stagnates, while the optimized S
hwarz algorithms, givenby the solid (Robin or OO0) and dashed (se
ond order or OO2) lines 
onverge very qui
kly. The 
lassi
alS
hwarz iteration 
onverges to a toleran
e of 10−6 in 65 iterations, while the OO0 iteration 
onverges tothe same toleran
e in 19 iterations and the OO2 iteration 
onverges in 12 iterations. In (
), we have asimilar graph but with two nearly hemispheri
al subdomains, and an overlap of exa
tly two elements. This�hemihedral grid� is obtained as follows. First, we subdivide the i
osahedron four times (the same numberof subdivisions as in (a)). Se
ond, we sele
t triangles from this mesh to form two exa
tly hemispheri
al,disjoint subdomains. Finally, we add one row of elements to ea
h hemispheri
al subdomain. The 
lassi
alS
hwarz iteration 
onverges to an error less than 10−10 in 75 iterations. By 
omparison, the OO0 iteration23




onverges to the same toleran
e in 12 iterations, and the OO2 
onverges to the same toleran
e in 7 iterations.In (d), we have measured the 
onvergen
e fa
tor (or 
ontra
tion 
oe�
ient �) of (
), by 
omputing the ratioof the errors at iterations 6 and 10, and taking the fourth root, for various values of the Robin parameter
�. The verti
al dotted line is our optimized Robin 
oe�
ient, and we see that it lines up very well with thenumeri
ally observed optimal 
oe�
ient.6 Con
lusionsWe have given optimal and optimized transmission operators for the Lapla
e problem on the sphere andhave shown that they perform mu
h better than the 
lassi
al iteration with a Diri
hlet 
ondition. We have
omputed 
onvergen
e fa
tors for the one-sided and two-sided Robin 
ondition and two 
hoi
es of se
ond-order tangential operators, and 
ompared them against the dis
retized optimal nonlo
al operator. A similaranalysis for the positive de�nite Helmholtz problem will be detailed in a later paper.A
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