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Abstract. For the efficient mathematical modelling of free-surface hydrodynamic problems, it
is required the solution of special linear systems whose coefficient matrix is a piecewise constant
function of the solution itself. In so doing one may fulfill relevant physical constraints. In particular,
the existence, the uniqueness, and two constructive iterative methods to solve a piecewise linear

system of the form

max[l,min(u,x)] + Tx = b,

are analysed. The methods are shown to have a finite termination property, i.e., they converge to an
exact solution in a finite number of steps and, actually, they converge very quickly, as confirmed by
a few numerical tests, which are derived from the mathematical modelling of flows in porous media.

Key words. piecewise linear systems, free-surface hydrodynamics, wetting and drying, flows in
porous media, confined-unconfined aquifers.

AMS subject classifications. 90C33, 90C53, 90C06, 76M20, 76S05.

1. Introduction. The problem which is here analysed is that of finding a solu-
tion to

max[l, min(u,x)] + Tx = b, (1.1)

where the max and min functions are applied componentwise, l, u,b ∈ Rn are known
vectors, l = (li) ≤ u = (ui), and T is a symmetric and (at least) positive semidefinite
matrix of dimension n satisfying either one of the following properties
T1 : T is a Stieltjes matrix, i.e., a symmetric M -matrix (then non-singular, see, e.g.,

[10]); or
T2 : null(T ) ≡ span(v) with v > 0, and T +D satisfies T1 for all diagonal matrices

D � O (i.e., D ≥ O and D 6= O).
By denoting with I the identity matrix, if x is a solution of the linear system

(I + T )x = b, and l ≤ x ≤ u, then x is the unique solution of (1.1) and can be
efficiently determined by a preconditioned conjugate gradient method.

If x is a solution of the problem max(l,x) + Tx = b, and x ≤ u, then x is a
solution of (1.1). Similarly, if x is a solution of the problem min(u,x) + Tx = b,
and x ≥ l, then x is a solution of (1.1). In both these cases x can be conveniently
determined with a simple Newton-type method as described in Reference [3].

In general, System (1.1) can be written, equivalently, as

P (x)(x − l) − Q(x)(x − u) + Tx = b− l, (1.2)

where P (x) e Q(x) are diagonal matrices whose diagonal entries are step functions
given by

p(xi) =

{

1 if xi ≥ li,

0 otherwise,
q(xi) =

{

1 if xi > ui,

0 otherwise.
(1.3)
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Because of the characterization (1.3) of System (1.2), this will be said to be a
piecewise linear system (see also [3]).

The following easy properties are here stated, for later reference.
Lemma 1. With reference to (1.2)-(1.3), ∀x ∈ Rn one has
• I ≥ P (x) ≥ Q(x) ≥ O;
• for any diagonal matrix R with binary diagonal entries (0 or 1),

[P (x) − R](x− l) ≥ 0, [Q(x) − R](x− u) ≥ 0.

Problems in the form (1.1) arise in the numerical solution of free-surface hydro-
dynamic problems, so that their efficient solution is of interest in applications (see,
e.g. [7, 8, 12, 13]; see also [5]).

By suitably increasing its dimensionality, problem (1.1) could be written as a
nonsmooth system of equations [14]. In particular, it can be reformulated as a box
constrained semismooth problem, whose numerical solution is an active field of inves-
tigation (see, e.g., [2, 11] and the references contained therein). Alternatively, if the
dimension of the problem is left unchanged, System (1.2) could be solved by means
of some kind of Picard iteration. Nevertheless, for all such methods, convergence to
the solution, in general, occurs only in the limit of an infinite number of iterations.

Moreover, a straightforward application of the Newton method could even lead to
undefined and non-converging iterations. Consider, for example, problem (1.2) with

l =

(

0
0

)

, u =

(

1
1

)

, b =

(

−3
4

)

, T =

(

1 −1
−1 1

)

, (1.4)

and the following Newton-type iteration for its solution

P 0 = I, Q0 = O,
[

P k−1 − Qk−1 + T
]

xk = b− (I − P k−1)l − Qk−1u, k = 1, 2, . . . , (1.5)

where, hereafter, P k = P (xk) and Qk = Q(xk) for all k ≥ 1. It turns out that such
an iteration becomes undefined after just one iteration. In fact,

x1 =
1

3

(

−2
5

)

=⇒ P 1 = Q1 =

(

0
1

)

.

Consequently, iteration (1.5) is no longer defined and x1 is clearly not a solution. On
the other hand, if we consider the following modified Newton method,

xk = xk−1 − (I + T )−1
[

P k−1(xk−1 − l) − Qk−1(xk−1 − u)

+Txk−1 − b + l
]

, k = 1, 2, . . . ,

global convergence can be readily shown. However, starting from x0 = 0, this problem
requires 34 iterations to obtain an approximate solution within 15 digits accuracy.

In order to overcome these potential drawbacks, two simple nested (inner-outer)
iterative algorithms will be defined. Often, inner-outer iterations require more compu-
tation than one-level iterations. Nevertheless, the two nested iterations here proposed
are able to guarantee convergence to the exact solution in a finite number of iterations.
For the above example, a total of 2 iterations are sufficient.

The existence of a solution for problem (1.2) is studied in Section 2. In Section 3
the conditions for its uniqueness are analysed. Section 4 describes some numerical
examples derived from the mathematical modelling of flows in porous media. Finally,
some concluding remarks are contained in Section 5.
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Algorithm 1

Set Q0 = O
Do k = 1, n

Set P k,0 = I
Do ν = 1, n

Solve P k,ν−1(xk,ν − l) − Qk−1(xk,ν − u) + Txk,ν = b− l

If (P k,ν − P k,ν−1)(xk,ν − l) = 0

Set xk = xk,ν and Exit
End If

End Do
If (Qk − Qk−1)(xk − u) = 0

Set x = xk and Exit
End If

End Do

2. Existence of a solution. The existence of a solution for System (1.2) will be
established constructively in this section by means of two nested iterative methods.

First, by setting Q0 = O, a sequence of iterates {xk} is determined from

P k(xk − l) − Qk−1(xk − u) + Txk = b − l, k = 1, 2, . . . . (2.1)

A straightforward stopping criterion for this iteration is provided by the following
result.

Lemma 2. An exact solution of (1.2) is obtained from (2.1) when, for some
k ≥ 1, one has

(Qk − Qk−1)(xk − u) = 0. (2.2)

For all k = 1, 2, . . . , a vector xk solving (2.1) can be obtained by inner iterations,
by setting P k,0 = I and

P k,ν−1(xk,ν − l) − Qk−1(xk,ν − u) + Txk,ν = b − l, ν = 1, 2, . . . , (2.3)

where P k,ν = P (xk,ν ) for all k, ν ≥ 1. A straightforward stopping criterion for the
inner iterations (2.3) is provided by the following lemma.

Lemma 3. An exact solution of (2.1) is obtained from (2.3) when, for some
ν ≥ 1, one has

(P k,ν − P k,ν−1)(xk,ν − l) = 0. (2.4)

This nested iterative scheme can be summarized into Algorithm 1. As one may
observe, a finite upper bound for both the inner and the outer iterations has been
specified: in the sequel it will be shown that these bounds are high enough to guarantee
convergence to an exact solution. The following two results prove that Algorithm 1
is well defined.

Theorem 1. If T satisfies T2 and

vT l ≤ vT b ≤ vT u, (2.5)
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then for all k and ν, until convergence, P k,ν−1−Qk−1+T is Stieltjes and, consequently,
Algorithm 1 is well defined.
Proof One proceeds by double induction. For k = 1 one has P 1,0 = I and Q0 = O.

Thus, P 1,0 − Q0 + T is Stieltjes and the first inner iterate is well defined. Then, for
ν ≥ 1 one assumes that P 1,ν−1 − Q0 + T is Stieltjes, so that x1,ν can be uniquely
determined from (2.3) and P 1,ν ≥ O. Now, since Q0 = O, if P 1,ν 6= O one has that
P 1,ν −Q0 + T is Stieltjes and, consequently, the subsequent (ν + 1)-st inner iterate is
well defined. Alternatively, if P 1,ν = O, Equation (2.3) can be written as

−(P 1,ν − P 1,ν−1)(x1,ν − l) + Tx1,ν = b − l.

Thus, from Lemma 1 and (2.5) one obtains

0 ≥ −vT (P 1,ν − P 1,ν−1)(x1,ν − l) = vT (b − l) ≥ 0,

so that, (P 1,ν − P 1,ν−1)(x1,ν − l) = 0, which is the exit condition for the inner loop.
Hence, when k = 1, the inner iterates (2.3) are well defined for all ν until convergence.

Next, for k > 1, one assumes that the k-th external cycle has been successfully
completed so that xk is a solution of (2.1) and Qk ≤ I . Now, Equation (2.1) can also
be written as

(P k − Qk)(xk − l) + (Qk − Qk−1)(xk − u) + Txk = b − l − Qk(u − l), (2.6)

which, from Lemma 1, implies

vT [b− l − Qk(u − l)] ≥ 0. (2.7)

Moreover, if Qk = I , one has P k = I and (2.6) reduces to

(Qk − Qk−1)(xk − u) + Txk = b − u.

Thus, from Lemma 1, one has

0 ≤ vT (Qk − Qk−1)(xk − u) = vT (b − u) ≤ 0,

so that, (Qk − Qk−1)(xk − u) = 0, which is the exit condition for the outer loop.
Alternatively, if Qk 6= I one has P k+1,0 = I 	 Qk. Hence P k+1,0 −Qk +T is Stieltjes,
and the first one of the (k + 1)-st inner iterates is well defined. Then, for ν ≥ 1,
assuming that P k+1,ν−1 − Qk + T is Stieltjes, the ν-th inner iterate is well defined
and xk+1,ν is uniquely determined from

P k+1,ν−1(xk+1,ν − l) − Qk(xk+1,ν − u) + Txk+1,ν = b − l, (2.8)

and satisfies

xk+1,ν ≥ xk. (2.9)

In fact, by equating the left-hand sides of (2.1) and (2.8), one has

(P k+1,ν−1 − Qk + T )xk+1,ν = (P k+1,ν−1 − Qk + T )xk + ξk,ν ,

where, from Lemma 1,

ξk,ν = (P k − P k+1,ν−1)(xk − l) + (Qk − Qk−1)(xk − u) ≥ 0.
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Hence, because (P k+1,ν−1 − Qk + T )−1 > O, inequality (2.9) follows and implies
P k+1,ν ≥ P k ≥ Qk. In order to complete the proof, note that if P k+1,ν � Qk, then
P k+1,ν −Qk + T is Stieltjes. Consequently, the corresponding (ν + 1)-st inner iterate
is well defined. Alternatively, if P k+1,ν = Qk, Equation (2.8) becomes

−(P k+1,ν − P k+1,ν−1)(xk+1,ν − l) + Txk+1,ν = b − l − Qk(u − l).

Consequently, from Lemma 1 and (2.7), one has

0 ≥ −vT (P k+1,ν − P k+1,ν−1)(xk+1,ν − l) = vT [b − l − Qk(u − l)] ≥ 0,

so that, (P k+1,ν − P k+1,ν−1)(xk+1,ν − l) = 0, which is the exit condition for the
inner loop. Hence, when k > 1, the inner iterates are well defined for all ν until
convergence.

Corollary 1. If T satisfies T1, then for all k and ν, until convergence, P k,ν−1−
Qk−1 + T is Stieltjes and, consequently, Algorithm 1 is well defined.
Proof For k = 1 one has P 1,ν ≥ O = Q0, so that the corresponding inner iterations
are well defined for all ν, since T satisfies T1.

Next, for k > 1, by using similar arguments as those used in the proof of The-
orem 1, one obtains that (2.9) holds true and, consequently, P k+1,ν−1 ≥ P k ≥ Qk.
Hence P k+1,ν−1 − Qk + T is Stieltjes for all k and for all ν.

The next result provides the finite convergence property of Algorithm 1.
Theorem 2. Let T satisfy either T1 or T2. If T satisfies T2, assume also that

(2.5) holds true. Then Algorithm 1 converges to an exact solution of problem (1.2) in
at most n(n + 1)/2 (inner) steps.
Proof Recall first that Q0 = O and xk+1,ν ≥ xk for all k, ν ≥ 1 (see (2.9)). Thus

P k+1,ν ≥ Qk. Moreover, within each external cycle, the inner iterates {xk,ν} are
strictly decreasing (equality is excluded, because of the stopping criterion described
in Lemma 3). Consider, in fact, two subsequent inner iterates, namely (2.3) and

P k,ν(xk,ν+1 − l) − Qk−1(xk,ν+1 − u) + Txk,ν+1 = b − l. (2.10)

By equating the left-hand sides of (2.3) and (2.10), one obtains

(P k,ν − Qk−1 + T )xk,ν+1 = (P k,ν − Qk−1 + T )xk,ν + ζk,ν ,

where ζk,ν = −(P k,ν − P k,ν−1)(xk,ν − l) ≤ 0. Thus, since P k,ν − Qk−1 + T is
Stieltjes, one has (P k,ν −Qk−1 + T )−1 > O and, hence, {xk,ν} is strictly decreasing.
Consequently, {P k,ν} is decreasing as well and, because P 0,ν = I and P k,ν ≥ Qk, by
denoting {qk

i } the diagonal entries of Qk, and setting

mk =

n
∑

i=1

qk
i ≥ k, (2.11)

each inner cycle will converge in at most n − mk steps.
Next, inequality (2.9) implies that the external iterates {xk} generated by (2.1)

are not decreasing, i.e.,
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xk+1 ≥ xk, k ≥ 1. (2.12)

Consequently, the sequence {Qk} is not decreasing with Q0 = O, and Qk ≤ I for all
k. Then, because of (2.11) and of the stopping creterion provided by Lemma 2. It
follows that the outer cycle will converge in K ≤ n cycles. Therefore, in conclusion,
the total number of inner iterations is bounded by

K
∑

k=1

(n − mk) ≤
n
∑

k=1

(n − k) =
n(n + 1)

2
.

Remark 1. In practice, the determination of xk,ν from (2.3) can be accomplished
quite efficiently by using a preconditioned conjugate gradient method (see, e.g., [9,
15]). This is particularly the case in applications where T is a sparse and very large
matrix (see Section 4). To this purpose, in light of the convergence property proved in
Theorem 2, xk,ν−1 (if ν > 1) or xk−1 (if ν = 1) is conveniently used as a starting point
for the conjugate gradient method (the effectiveness of this choice has been confirmed
by a huge number of numerical tests).

Remark 2. Even though Theorem 2 provides a finite convergence property for
the inner-outer iteration (2.1)-(2.3), the resulting upper bound is rather large when
the dimension n of the problem is large. In practice, however, convergence is obtained
in just a few iterations, as confirmed by several numerical tests.

Corollary 2. If T satisfies T2, then (2.5) is a necessary and sufficient condition
for problem (1.2) to have a solution.
Proof It has been already proved that (2.5) is a sufficient condition for problem (1.2)
to have a solution. In order to prove that this condition is also necessary, from (1.2)
one has

vT (b − l) = vT [P (x)(x − l) + Q(x)(u − x)].

Moreover, from (1.3) and Lemma 1,

0 ≤ P (x)(x − l) + Q(x)(u − x) ≤ u − l.

The two inequalities in (2.5) then follow.

2.1. A dual algorithm. For the sake of completeness, a corresponding dual
Algorithm 2, with respect to Algorithm 1, is also described, where Qk,ν = Q(xk,ν),
for all k, ν ≥ 1. Such an algorithm enjoys the same properties of Algorithm 1, which
can be proved by means of similar arguments.

Observe that, when the solution x ≤ u, then Q0 = Q1 = Q(x) = O because
of (2.12) and, consequently, Algorithm 1 requires only one outer iteration [3]. For
the same reason, each outer iteration in Algorithm 2 requires only one inner iteration.
Symmetrically, when the solution x ≥ l, then P 0 = P 1 = P (x) = I and, consequently,
Algorithm 2 converges in one outer iteration. For the same reason, each outer iteration
in Algorithm 1 requires only one inner iteration.
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Algorithm 2

Set P 0 = I
Do k = 1, n

Set Qk,0 = O
Do ν = 1, n

Solve P k−1(xk,ν − l) − Qk,ν−1(xk,ν − u) + Txk,ν = b− l

If (Qk,ν − Qk,ν−1)(xk,ν − u) = 0

Set xk = xk,ν and Exit
End If

End Do
If (P k − P k−1)(xk − l) = 0

Set x = xk and Exit
End If

End Do

3. Uniqueness of the solution. In this section the conditions for the unique-
ness of the solution of problem (1.2) are studied. To begin with, the simpler case in
which T satisfies T1 is analysed.

Theorem 3. If T satisfies T1, then the solution of problem (1.2) exists and is
unique.
Proof The existence of a solution x of (1.2) has been already proved costructively
by means of Algorithm 1. To prove its uniqueness, let y be another solution of the
same problem. Consequently,

P (x)(x − l) − Q(x)(x − u) + Tx = P (y)(y − l) − Q(y)(y − u) + Ty. (3.1)

Moreover, one has

[P (y)(y − l)−Q(y)(y −u)]− [P (x)(x− l)−Q(x)(x−u)] = (P̄ − Q̄)(y− x), (3.2)

where P̄ e Q̄ are diagonal matrices, whose diagonal entries, {p̄i} and {q̄i}, are respec-
tively given by

p̄i =























0 if xi, yi < li,

1 if xi, yi ≥ li,
xi−li
xi−yi

if xi ≥ li > yi,
yi−li
yi−xi

if yi ≥ li > xi,

q̄i =



















0 if xi, yi ≤ ui,

1 if xi, yi > ui,
xi−ui

xi−yi

if xi > ui ≥ yi,
yi−ui

yi−xi

if yi > ui ≥ xi,

(3.3)

so that

P̄ ≥ Q̄ ≥ O. (3.4)

From (3.1) and (3.2), one has

(P̄ − Q̄ + T )(y − x) = 0. (3.5)

Since T satisfies T1, matrix (P̄ −Q̄+T ) is Stieltjes, then nonsingular, and uniqueness
(y = x) follows.
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In order to discuss the remaining case, the following definition is given.
Definition 1. Let x = (xi) be a solution of (1.2). This is said to be an interior

solution if

∃ i ∈ {1, . . . , n} : li < xi < ui. (3.6)

Theorem 4. If T satisfies T2 and (2.5) holds true, then problem (1.2) has at
least one solution. Moreover,

1. if such a solution is an interior solution, then this is the only solution of the
problem;

2. if more than one solution exist, then the difference of any two solutions belongs
to the null space of matrix T .

Proof The existence of a solution x of (1.2) has been already proved costructively
by means of Algorithm 1 (see also Corollary 2). Its uniqueness is now proved when it
is an interior solution. Let y be another solution of the same problem. Consequently,
(3.1)–(3.5) hold true. Since T satisfies T2, it suffices to show that P̄ 6= Q̄. From (3.6)
we know that there exists i ∈ {1, . . . , n} such that li < xi < ui. For such index i, one
has

p̄i − q̄i =















xi−li
xi−yi

> 0, if yi < li,

1, if li ≤ yi ≤ ui,

ui−xi

yi−xi

> 0, if yi > ui,

so that P̄ 6= Q̄. Therefore, matrix P̄ − Q̄ + T is Stieltjes and uniqueness (y = x)
follows from (3.5).

On the other hand, when x is not unique one has P̄ = Q̄, so that (3.5) reduces
to T (y − x) = 0. That is, y − x ∈ null(T ).

Corollary 3. If T satisfies T2 and (2.5) holds true, then a non interior solution
of problem (1.2) is generally not unique.
Proof Let ωu and ωl be the two sets of indices defined by

ωu = {i : xi ≥ ui}, ωl = {i : xi ≤ li}.

If v = (vi), set

α =

{

−mini∈ωu
{(xi − ui)/vi} if ωu 6= ∅,

−∞ otherwise,

β =

{

mini∈ωl
{(li − xi)/vi} if ωl 6= ∅,

∞ otherwise.

Clearly, α ≤ 0 ≤ β. Moreover, one verifies that

x(θ) ≡ x + θv, θ ∈ [α, β], (3.7)

is a solution of the problem.
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Fig. 4.1. Confined-unconfined aquifer.

The following example elucidates the previous arguments.
Example 1. Let problem (1.2) be defined by (1.4). Consequently, T satisfies T2,

with v = u, and (2.5) holds true. One verifies that x = (−1, 2)T is a (non interior)
solution of (1.2). Moreover, according to Corollary 3, (3.7) is also a solution, with
α = −1 and β = 1. Therefore, in such a case we have infinite (non interior) solutions
to the problem. However, if we modify the right-hand side by setting b = (−1, 2)T we
have that (2.5) holds true. Moreover, one verifies that a solution to the problem (1.2)
is given by x = (0, 1)T , which is a non interior solution. Nevertheless, according to
Corollary 3, such a solution turns out to be unique, because in this case one obtains
α = β = 0.

4. Modelling confined-unconfined flows in porous media. Consider the
mathematical modelling of a two-dimensional flow in a homogeneous and isotropic
aquifer. When a free-surface exists, the governing differential equations is given by
the Boussinesq equation [1]

εηt = [κ(h + η)ηx]x + [κ(h + η)ηy ]y + ϕ, (4.1)

where (see Figure 4.1) x and y are coordinates in an horizontal reference frame; t is
the time; ε and κ are the porosity and the hydraulic conductivity, respectively (which
are assumed to be constant); h(x, y) is the prescribed aquifer’s bottom and η(x, y, t)
is the (unknown) free-surface location; ϕ(x, y, t) represents the prescribed source or
sink and the time dependent domain is

Ω(t) = {(x, y) : h(x, y) + η(x, y, t) > 0} , t > 0.

Moreover, if the aquifer is confined from above by a ceil set at distance u(x, y) from the
vertical reference level, one has that (4.1) actually holds true only in the sub-domain

Ωf (t) = {(x, y) ∈ Ω(t) : −h(x, y) < η(x, y, t) < u(x, y)} , t > 0, (4.2)
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whereas, in

Ωc(t) = Ω(t)\Ωf (t), t > 0, (4.3)

the governing equation is

0 = [κ(h + η)ηx]x + [κ(h + η)ηy ]y + ϕ. (4.4)

In such a case, the unknown η(x, y, t) represents the piezometric head [1]. The two
sub-domains (4.2) and (4.3) are obviously separated by the (unknown) line defined
by

Γfc(t) = {(x, y) : η = u} .

The correct numerical solution of the mixed problem (4.1)–(4.4) is of interest in
applications [6] and is non-trivial, because of the involvement of two moving bound-
aries [12]. For this purpose, consider a suitably large square containing Ω(t), t > 0,
which is covered by a Cartesian grid having size ∆x and ∆y, (xi, yj) = (i∆x, j∆y).
Moreover, for a given time step ∆t, let t` = `∆t, ` ≥ 0, denote the `-th time level.
It is assumed the knowledge of ε, κ, hij = h(xi, yj), and uij = u(xi, yj), which are
independent from time, and

ϕ`
ij = ϕ(xi, yj , t`), ` ≥ 0, η0

ij = η(xi, yj , 0).

Finally, the total water depth is defined by

H`
ij = max

{

0, min{hij + uij , hij + η`
ij}
}

, (4.5)

which yields H`
ij = 0 in the dry area, H`

ij = hij + η`
ij in Ωf (t), and H`

ij = hij + uij in
Ωc(t). Then, a finite difference discretization which is consistent with both Equations
(4.1) and (4.4) is taken to be (see also [3, 4])

ε

(

max[−hij , min(uij , η
`+1
ij )] − max[−hij , min(uij , η

`
ij)]

∆t

)

−κ





H`
i+ 1

2
,j
(η`+1

i+1,j − η`+1
ij ) − H`

i− 1

2
,j
(η`+1

ij − η`+1
i−1,j)

∆x2

+
H`

i,j+ 1

2

(η`+1
i,j+1 − η`+1

ij ) − H`
i,j− 1

2

(η`+1
ij − η`+1

i,j−1)

∆y2



 = ϕ`
ij . (4.6)

Between grid points, the aquifer thicknesses H `
i±1/2,j and H`

i,j±1/2
are defined as

averages from the nearest grid values.
It is to be noted that for those grid points (i, j) where ϕ`

ij = 0, H`
i±1/2,j = 0, and

H`
i,j±1/2

= 0, Equation (4.6) trivially implies (see (4.5)) H `+1
i,j = H`

i,j = 0 (dry area).

In this case (4.6) does not contribute to the system that is being formulated.
The remaining set of equations (corresponding to those grid points where at

least one of H`
i±1/2,j and H`

i,j±1/2
is strictly positive) can be assembled into a single

piecewise linear system. Upon multiplication by ∆t/ε and by setting lij = −hij ,
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Fig. 4.2. Bounded recharging aquifer.

this system (which has to be solved at every time step) can be recognized of being
in the form (1.1). The resulting matrix T is irreducible, sparse, symmetric, positive
semidefinite, and of time dependent size n` × n`, with n` being the number of grid
points (i, j) where at least one of H`

i±1/2,j and H`
i,j±1/2

is strictly positive. This matrix
satisfies either T1, when the free-surface elevation is specified in at least one point
of the boundary, or T2, when only the flow is specified at the boundary. According
to Remark 1, a preconditioned conjugate gradient method is used for solving the
resulting linear systems.

4.1. Bounded recharging aquifer. A first numerical test is presented, which
is aimed to verify the accuracy of the discrete method (4.6). For this purpose, consider
the simple case of a one dimensional confined-unconfined aquifer reported in Reference
[12]. A canal (see Figure 4.2), confines with a bounded recharging aquifer whose ceil
height is u. The aquifer is initially dry. Let η0 be the (known) constant height of
water in the canal. The following parameters are specified,

κ = 10−3π m/s, ε = 10−1π, u = 5 m, η0 = 5.5 m,

for which the analytical solution has been reported in [12, p. 154], Fig. 4.
A numerical simulation has been carried out by using a spatial stepsize ∆x =

2.4 · 10−2 m, and a time step ∆t = 0.5 s. Because of the prescribed level η0 of water
in the canal, matrix T in the resulting piecewise linear system (1.2) is tridiagonal and
satisfies T1. The simulation has been carried out for T = 900 s. In almost all time
steps, Algorithm 1 requires only 1 outer iteration, each requiring 1 inner iteration.
The computed results shown in Figures 4.3 and 4.4 are in perfect agreement with the
analytical solution reported in [12, p. 154], thus confirming the effectiveness of scheme
(4.6). In particular, in Figure 4.3 the free-surface profiles are plotted in solid line,
whereas the piezometric head profiles are plotted in dotted line, at different times.
Figure 4.4 shows the amount of recharging water Q(t).
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4.2. Free-surface dynamics in the proximity of a well. As a second test
problem, consider the case in which the aquifer’s bottom and ceil have been assumed
to be symmetrical, with respect to the reference vertical level, both described by a
paraboloid of revolution given by

u(x, y) ≡ h(x, y) = h0

(

1 −
x2 + y2

L2

)

, (4.7)

where h0 and L are given positive constants. It is also assumed that at the initial
time t0 = 0 all the porous space is filled with water, so that η(x, y, 0) = u(x, y) and,
consequently, Ω(0) = {(x, y) : x2 + y2 < L2} ≡ Ωc(0). The resulting matrix T , which
satisfies T2, is sparse, symmetric positive semidefinite, and of size n`, which, at the
initial time t0, is n` ∼ N2 π

4
.

A numerical simulation has been carried out for 14 days, by using ∆x = ∆y =
2L/(N + 1) and a relatively large time step size ∆t = 1 day. For the present simula-
tions the chosen parameters are ε = 0.4, κ = 1 m/s, h0 = 10 m and L = 103 m. The
flow is then driven by an idealized pointwise sink, representing a well located at the
origin, that pumps water out of the aquifer at a constant rate q = 10 m3/s. Thus, by
setting ϕ`

ij = 0, except ϕ`
00 = − q

∆x∆y , the new water volume at time t`+1 is given by

V `+1 = ε∆x∆y
∑

ij

H`+1
ij = V ` − q∆t. (4.8)

Figure 4.5 shows, in solid line, the resulting free-surface elevation (and, where ap-
propriate, the piezometric head in dotted line) η`

i0 at the cross section y = 0, for
` = 0, 1, . . . , 14.

For specified grid resolution corresponding to N = 50, 100, and 200, Table 4.1
shows, for each time step, the number of outer (kout) and total inner (νtot) iterations
required, along with the size n` of the resulting system and, finally, the computed
water volume at each time step. As one expects from Figure 4.5, n` is constant
for the first 8 time levels and then decreases in the subsequent ones. Moreover, the
number of both inner and outer iterations turns out to be remarkably small and
practically insensitive to grid resolution.

Table 4.1 also shows that, for all ` = 1, 2, . . . , 14, the water volumes are strictly
positive and linearly decreasing at a constant rate. In fact, the volume difference
between two subsequent time levels (see Equation (4.8)) is correctly given by V `+1 −
V ` = −q∆t = −864, 000 m3. Thus, any attempt to extend the simulation beyond
day 14 would produce a physically unrealistic negative water volume V 15 < 0. It can
be shown that this implies that the right-hand side in Equation (4.6) violates the first
inequality in (2.5). Consequently, when ` = 15 Corollary 2 applies indicating that
problem (4.6) does not have a solution. This is an interesting example demonstrating
that the proposed algorithm does not permit artificial over-drainage.

It is also worth noting that in the first 7 time levels, ηij is everywhere no less
than lij . Consistently with that observed in Section 2.1, convergence is achieved in
only one inner iteration per outer iteration. On the other hand, starting from time
level 9, ηij is everywhere no larger than uij and only one outer iteration is required
for convergence.

4.3. Evolution to steady state. As a third and final test problem, another
aquifer is considered, with the same functions h(x, y) and u(x, y) as defined in (4.7),
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Table 4.1

Numerical results for the second test problem.

N = 50 N = 100 N = 200

` kout νtot n` V` kout νtot n` V` kout νtot n` V`

0 - - - 12564992 - - - 12566221 - - - 12566346

1 5 5 2085 11700992 5 5 8109 11702221 5 5 31965 11702346

2 3 3 2085 10836992 4 4 8109 10838221 4 4 31965 10838346

3 3 3 2085 9972992 3 3 8109 9974221 3 3 31965 9974346

4 3 3 2085 9108992 3 3 8109 9110221 3 3 31965 9110346

5 2 2 2085 8244992 3 3 8109 8246221 3 3 31965 8246346

6 3 3 2085 7380992 3 3 8109 7382221 3 3 31965 7382346

7 3 3 2085 6516992 3 3 8109 6518221 3 3 31965 6518346

8 2 5 2085 5652992 2 5 8109 5654221 2 6 31965 5654346

9 1 2 2025 4788992 1 3 7793 4790221 1 3 30597 4790346

10 1 3 1877 3924992 1 3 7177 3926221 1 3 28177 3926346

11 1 3 1693 3060992 1 3 6533 3062221 1 3 25621 3062346

12 1 3 1509 2196992 1 3 5797 2198221 1 3 22689 2198346

13 1 3 1297 1332992 1 3 4929 1334221 1 3 19349 1334346

14 1 4 1033 468992 1 4 3909 470221 1 4 15249 470346

Table 4.2

Numerical results for the third test problem.

N = 50, V = 6282496 N = 100, V = 6283110 N = 200, V = 6283173

` kout νtot n` kout νtot n` kout νtot n`

10 2 3 1889 2 4 7277 2 4 28577

20 2 3 1926 2 3 7444 2 3 29247

30 2 3 1957 3 4 7582 2 3 29802

40 2 3 1989 2 3 7693 2 3 30228

50 2 3 2006 2 3 7774 2 3 30564

60 1 2 2022 2 3 7828 2 3 30823

70 2 2 2036 2 3 7889 2 3 31026

80 1 1 2049 2 3 7923 2 3 31205

90 2 2 2057 2 3 7972 2 3 31340

100 1 1 2063 1 2 7994 2 3 31459

110 2 2 2065 2 3 8010 2 3 31545

120 1 1 2069 1 2 8029 2 3 31614

130 1 1 2073 2 3 8041 2 3 31670

140 1 1 2079 1 1 8067 2 2 31738

150 1 1 2083 1 1 8075 2 3 31768

and the initial water level and piezometric head η(x, y, 0) being flat, at a slope, as
indicated in Figure 4.6.

A numerical simulation has been carried out for 15 hours, by using a time step
size ∆t = 0.1hour. The chosen parameters are the same as in the previous test
problem, and with ϕ`

ij ≡ 0.
For specified N = 50, 100, and 200, Table 4.2 shows, at selected time steps, the

number of outer (kout) and total inner (νtot) iterations required for convergence, along
with the size n` of the resulting system. As expected, during the whole simulation
the water volume is exactly conserved. Moreover, as shown in Figure 4.6, as time
advances, the phreatic surface approaches its steady state configuration. Also in this
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case, the number of both inner and outer iterations is remarkably small and almost
insensitive to grid resolution, thus confirming the usefulness of the proposed algorithm
for real world applications.

5. Conclusions. Two simple algorithms based on a nested iterative procedure,
aimed to solve certain piecewise linear systems that arise from the numerical modelling
of free-surface hydrodynamics, have been described and analysed.

It is shown that, under rather general assumptions, the iterates are well defined
and converge to the exact solution in a finite number of steps. Existence of the solution
has been established under the same assumptions for which convergence is assured.
Moreover, convergence to a solution is guaranteed also in the case where there is no
uniqueness. In such a case, it has been shown how to retrieve all solutions of the
problem.

Simple, and yet non-trivial, numerical tests have confirmed the efficiency, the
robustness, and the usefulness of the proposed algorithms for real world applications
to flows in confined, unconfined and mixed confined-unconfined aquifers.
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Fig. 4.5. Computed free surfaces at the cross section y = 0.
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