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A MODIFIED TV-STOKES MODEL FOR IMAGE PROCESSING

WILLIAM G. LITVINOV ∗, TALAL RAHMAN † , AND XUE-CHENG TAI ‡

Abstract. We introduce and investigate the modified TV-Stokes model for two classical image
processing tasks, i.e., image restoration and image inpainting. The modified TV-Stokes model is a
two-step model based on a total variation (TV) minimization in each step and the use of geometric
information of the image. In the first step, a smoothed and divergence free tangential field of the given
image is recovered, and in the second step, the image is reconstructed from the corresponding normals.
The existence and the uniqueness of the solution to the minimization problems are established
for both steps of the model. Numerical examples and comparisons are presented to illustrate the
effectiveness of the model.

Key words. Total Variation, image restoration, image inpainting

image restoration AMS subject classifications. 65F10, 65N30, 65N55

1. Introduction. Variational models based on two minimizing steps or a two-
step approach have recently been adapted to image processing, cf. [28, 33, 35, 9, 22].
Until now there has not been any theoretical analysis of such models, in many cases
they do not generate well-posed problems. In this paper, we reformulate the ideas
mentioned in the earlier papers, and propose a new variant of the two-step model
which leads to a correct problem that has a unique solution.

We consider the problem of inpainting an image in areas where information may
be missing, or denoising an image which may contain some additive noise. In either
cases, we are given an image y : Ω → R which is the gray intensity of the image, and Ω
is a bounded domain in R2 with a Lipschitz continuous boundary, e.g. a rectangular
domain for an image.

In case of denoising, we have

y = h+ η,

where h is the true image and η is the noise. In case of inpainting, the area of missing
information, also known as the inpainting region, is denoted by ΩI . Consequently,

y|Ω\ΩI
= h|Ω\ΩI

. (1.1)

One of the earliest models for image denoising, based on variational calculus, is the
classical second order model due to Rudin, Osher and Fatemi [32]:

min
h∈BV (Ω)

{
EROF (h) =

∫

Ω

|Dh| dx+
µ

2

∫

Ω

(y − h)2 dx
}
, (1.2)

referred to as the ROF model. Here one looks for a minimizer u in the space BV (Ω) of
functions from L1(Ω) with bounded total variation TV (h) =

∫
Ω
|Dh|dx <∞ defined
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as
∫

Ω

|Dh| dx = sup
p

∫

Ω

h div p dx, (1.3)

p = (p1, p2) ∈ C1
0 (Ω;R2), |pi(x)| ≤ 1, x ∈ Ω, i = 1, 2.

The model has a unique solution inBV , cf. [14], and it is well known for preserving
edges in an image. However, since the model favors step functions the resulting image
gets a staircase effect in the smooth regions. Generally, total variation is a very simple
descriptor of image.

Many more advanced models were developed, which take into account the values
of the observed image. These are models founded on l1 norms, on wavelet, nonlocal
models, and others. Profound review of such image denoising models is contained in
[8], see also [11], [12].

In order to take into account not only the values of the observed image, but also
the values of the derivatives of it, and to suppress the staircase effect, a number of
fourth order models have been developed, cf. [16, 27, 37]. These models are based on
minimization of the total variation of the derivatives of the restored image and the
total variation of the image itself. In addition, here the function of the observed image
and its derivatives are approximated in the norm of the space L2(Ω). Existence and
uniqueness result for the fourth order model due to Lundervold-Lysaker-Tai (LLT) [27]
can be found in [26]. However, problems with high order derivatives are inconvenient
for numerical solution, see e.g. [13]. In addition, it has also been observed that images
produced by some fourth order problems, cf. [27], may still look patchy in smooth
regions.

Instead of having to deal with a fourth order model, the two-step models have
started to appear as an efficient tool for image denoising, cf. [9, 28, 33, 35]. The basic
approach in a two-step model is, to reduce the fourth order problem to two second
order problems.

Among the early two-step models is the one due to Burchard, Tasdizen, Whitaker
and Osher, cf. [9], for processing deformable surfaces via level set method.

This idea was further extended to image processing in [28] by Lysaker, Osher
and Tai (LOT). Here in the first step, one seeks a function of directions of gradients
n0 = (n0

1, n
0
2) that is the solution of the following problem:

E1(n0) = min
|n|≤1

E1(n), (1.4)

E1(n) =
∫

Ω

|Dn| dx+
δ

2

∫

Ω

(
n− ∇y

|∇y|
)2

dx. (1.5)

In the second step, the image function h0 is reconstructed as the solution of the
following minimization problem:

E2(h0) = min
h
E2(h), (1.6)

E2(h) =
∫

Ω

(|Dh| − n0 ·Dh) dx+
µ

2

∫

Ω

(y − h)2 dx. (1.7)

Numerical calculations show that this model preserves the edges comparatively
much better than the ROF and the fourth order models.

However, the functional E2(h) has no sense in the space BV (Ω), if n0 does not
possess some smoothness.
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Another two-step model has been used in [35] for inpainting, and later in [33]
for denoising. Here the first minimization step of the LOT model is replaced by the
following minimization problem:

min
{
E3(u) =

∫

Ω

|Du| dx+
δ

2

∫

Ω

(
u−∇⊥y)2

dx

}
, divu = 0. (1.8)

Here ∇⊥y = (− ∂y
∂x2

, ∂y
∂x1

) is the function of tangential vectors that are orthogonal to
the vectors of normals to the image surface ∇y = ( ∂y

∂x1
, ∂y

∂x2
). The constraint divu = 0

follows from the fact that div∇⊥y = 0.
Once the solution of the problem (1.8) is known, the corresponding function of

normal vectors is defined and the problem (1.6) is solved in the second step.
The resulting model, known as the TV-Stokes model preserves edges in an image

and at the same time produce smooth surfaces. However, as indicated above, the
functional E2 from (1.7) has no sense in the space BV (Ω) if n0 is not smooth.

Below, we replace the functional E2 by a new one and consider a two-step model
in which the problem (1.8) is solved in the first step and a minimization problem for
a new functional is solved in the second step. We call the new two-step model as the
modified TV-Stokes model. This model is introduced in Section 2 and in Section 3,
we study it and its regularization. Results on the existence and the uniqueness of the
solution for the first and the second steps for the original and the regularized models
are proved. It is also argued that solutions of the regularized problems converge to the
solutions of the initial problems for the first and the second steps as the parameter of
regularization tends to zero. In Sections 4 and 5, the algorithm and numerical results
are presented

2. The modified TV-Stokes model. The image h can be considered as a
surface. The normal and the tangential vectors to the surface are given by n =
∇h(x) = (hx1 , hx2) and u = ∇⊥h = (−hx2 , hx1). The vector fields then satisfy
the following conditions: divu = 0 and ∇ × n = 0, the first one being called the
incompressibility condition in fluid mechanics.

Let the noisy image y be given. We suppose that y ∈ H1(Ω).
The noisy image is obtained by approximation of a discrete grid of samples. The

Shannon interpolation of the discrete grid is usually used, see [8], [34]. Then the
function y is analytic. The function y can also be obtained by the piecewise affine
approximation. Then y ∈ H1(Ω). Hence, the assumption that y belongs to H1(Ω).is
not restrictive.

We compute the tangential field v = ∇⊥y. The algorithm is then defined in two
steps. In the first step, we solve the following minimization problem:

min

{∫

Ω

(|Du1|+ |Du2|) dx +
δ

2

∫

Ω

2∑

i=1

(ui − vi)2dx

}
,

u ∈ BV (Ω;R2), divu = 0. (2.1)

Here δ is a positive parameter which is used to get a balance between the smoothing of
the tangent field and the fidelity to the noisy tangent field. The constraint divu = 0 is
understood in the sense of distribution. This constraint inserts the coupling between
u1 and u2.

Let u0 = (u0
1, u

0
2) be the solution to the problem (2.1), i.e., u0 is the smoothed

tangent field. The corresponding normal field is n0 = (u0
2,−u0

1).
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In the second step, we reconstruct our image by fitting it to the normal field and
the values of y of the noisy image. Here we solve the following minimization problem:

min
h∈BV (Ω)

{∫

Ω

∣∣Dh− n0
∣∣ dx+

µ

2

∫

Ω

(y − h)2 dx
}
, (2.2)

where µ is a positive parameter. The parameter µ is defined by the noise level σ that
is given as σ2 =

∫
Ω
η2 dx. This value is estimated by using statistical methods. A

large value of µ would result in under-smoothing, and a small value in over-smoothing.

3. Investigation of the model.

3.1. Tangent field smoothing. We define a functional J as follows:

J(u) =
∫

Ω

(|Du1|+ |Du2|) dx+
δ

2

∫

B

2∑

i=1

(ui − vi)2dx. (3.1)

Here v is a given function,

v = (v1, v2) ∈ L2(B;R2), (3.2)

and B ⊂ Ω is a subdomain with Lipschitz continuous boundary. We consider B = Ω in
the case of denoising and B = Ω\ΩI in the case of inpainting. The terms

∫
Ω
|Dui| dx,

i = 1, 2, are defined by (1.3).
We will prove the following result:
Theorem 3.1. Let Ω be a bounded domain in R2 with a Lipschitz continuous

boundary S. Let also B be a subdomain of Ω with a Lipschitz continuous boundary
Λ, in particular, it can be B = Ω. Then the expression

‖ u ‖BV (Ω;R2)=
∫

Ω

(|Du1|+ |Du2|) dx+
(∫

B

|u|2 dx
) 1

2

, (3.3)

where |u|2 = u2
1 + u2

2, defines a norm in BV (Ω;R2) that is equivalent to the following
main norm of BV (Ω;R2):

‖ u ‖1=
∫

Ω

(|Du1|+ |Du2|+ |u1|+ |u2|) dx. (3.4)

The proof of this theorem is given in Section 3.3.
Let us consider the problem: Find u0 such that

u0 ∈ U, J(u0) = inf
u∈U

J(u), (3.5)

where

U = {u| u = (u1, u2) ∈ BV (Ω;R2), div u = 0}. (3.6)

For a function u ∈ BV (Ω;R2), the condition div u = 0 can be rewritten as follows:
∫

Ω

(
u1

∂ξ

∂x1
+ u2

∂ξ

∂x2

)
dx = 0, ξ ∈ C1

0 (Ω).
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By using the embedding theorem in BV (cf. [1], p.152), it is easy to check that
U is a closed subspace in BV (Ω;R2), i.e. U is a Banach space with the norm (3.3) or
(3.4).

Theorem 3.2. Suppose that Ω is a bounded domain in R2 with a Lipschitz
continuous boundary S, and let also (3.2) holds. Then there exists a unique solution
of the problem (3.5).

Proof. Let {uj} be a minimizing sequence, i. e.

{uj} ⊂ U, limJ(uj) = inf
u∈U

J(u). (3.7)

It follows from (3.1) and (3.3) that the sequence {uj} is bounded in BV (Ω;R2).
Therefore, a subsequence {uk} can be extracted such that

uk ⇀ u0 in BV (Ω;R2), (3.8)

and

uk → u0 in Lp(Ω;R2) for p < 2, uk ⇀ u0 in L2(Ω;R2), (3.9)

where ⇀ denotes the weak convergence (see [1], Theorem 3.23, p. 132, [3], p. 40, 41).
It follows from (3.9) that div u0 = 0 and, hence, u0 ∈ U . (3.8) and (3.9) imply

lim inf
k→∞

J(uk) ≥ J(u0).

Therefore, u0 is a solution of the problem (3.5).
The functional u →‖ u‖2 is strictly convex. Therefore, the functionals ψ and

J are strictly convex, and there exists a unique function u0 such that (3.5) holds.
Because of this, (3.8) and (3.9) are valid not only for the subsequence {uk}, but for
the sequence {uj} as well. ¦

We introduce the following regularization Jα of the functional J :

Jα(u) =
∫

Ω

(√
α2 + |Du1|2 +

√
α2 + |Du2|2

)
dx+

δ

2

∫

B

2∑

i=1

(ui − vi)2 dx. (3.10)

Here α is a small positive number, and the first term is defined by the following
relation (see [2]):

∫

Ω

√
α2 + |Dui|2 dx = sup

p

{∫

Ω

(−ui div p+
√
α2(1− p2) ) dx

}
, (3.11)

p = (p1, p2) ∈ C1
0 (Ω;R2), |pk(x)| ≤ 1, x ∈ Ω, k = 1, 2

}
.

We consider the problem: Find uα such that

uα ∈ U, Jα(uα) = inf
u∈U

Jα(u). (3.12)

The computational advantage of the functional Jα over the functional J is that it is
differentiable when ∇ui vanish in Ω. The set of infinitely differentiable in Ω functions
is dense in BV (Ω). Taking into account that the operator of regularization, which
is defined by a mollifier, is permutable with the operator of differentiation, see e.g.
[19], Section 14, one can ensure, that the set of infinitely differentiable in Ω vector
functions v satisfying the condition divu = 0 is dense in U .
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The functional Jα is infinitely differentiable in U∩C∞(Ω;R2). Because of this one
can use effective numerical methods for approximate solution of the problem (3.12).

Theorem 3.3. Suppose that Ω is a bounded domain in R2 with a Lipschitz
continuous boundary S, and let (3.2) hold. Then for an arbitrary α > 0, there exists a
unique solution uα to problem (3.12). If uα ∈W 1

1 (Ω;R2), then the following condition
is satisfied:

(J ′α(uα), h) =
∫

Ω

(α2 + |∇uα
i |2)−

1
2
∂uα

i

∂xj

∂hi

∂xj
dx+ δ

∫

B

(uα
i − vi)hi dx = 0, (3.13)

where h ∈W 1
1 (Ω;R2), div h = 0.

Indeed, the functional Jα is growing and strictly convex. Therefore, there exists
a unique solution of the problem (3.12). If uα ∈W 1

1 (Ω;R2), then (3.13) holds.
We mention that in (3.13) and below the Einstein convention on summation over

repeated index is applied.
Theorem 3.4. Let Ω be a bounded domain in R2 with a Lipschitz continuous

boundary S, and let also (3.2) hold. Then

uα → u0 in Lp(Ω;R2) at p < 2, uα ⇀ u0 in BV (Ω;R2) as α→ 0, (3.14)

where uα and u0 are the solutions of the problems (3.12) and (3.5), respectively.
Proof. It follows from (3.11) that

∫

Ω

√
α2 + |Dui|2 dx ≤

∫

Ω

√
|Dui|2 dx+ α|Ω|,

where |Ω| = ∫
Ω
dx. Therefore,

|J(u)− Jα(u)| ≤ α|Ω|. (3.15)

Obviously

Jα(u) →∞ as ‖ u ‖BV (Ω;R2)→∞, α ∈ [0, α0]. (3.16)

Taking (3.12), (3.15), and (3.16) into account, we obtain,

‖ uα ‖BV (Ω;R2)≤ C (3.17)

for all α ∈ (0, α0]. Thus, we can extract a subsequence, which is still denoted {uα},
such that

uα ⇀ z in BV (Ω;R2) as α→ 0. (3.18)

It follows from here that

z ∈ U. (3.19)

Relations (3.18) and (3.15) yield

J(z) ≤ lim inf J(uα) = lim inf Jα(uα). (3.20)

(3.12) and (3.15) imply

lim inf Jα(uα) = inf
u∈U

J(u) as α→ 0. (3.21)

From (3.19)–(3.21) it follows that the function u0 = z is the solution of the problem
(3.5). Since the problem (3.5) has unique solution, the relation (3.14) is true for an
arbitrary sequence {uα} such that α→ 0. ¦
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3.2. Image reconstruction. Let u0 = (u0
1, u

0
2) ∈ U be the solution of the

problem (3.5), where U is defined by (3.6). We consider the second step reconstruction
of the image function h. Since divu0 = 0, there exists a function g such that

u0
1 =

∂g

∂x2
and u0

2 = − ∂g

∂x1
, (3.22)

(see [18] Chapter 1, Theorem 3.1).
Here we assume that Ω is a simply-connected domain. In the case that Ω is a

multi-connected domain, the following additional condition should be satisfied
∫

Si

u0
νds = 0, i = 1, ..., k, (3.23)

where u0
ν is the normal component of the vector u0 and Si are connected components

of the boundary S of Ω. Since u0
1 and u0

2 belong to L2(Ω) (embedding of BV (Ω)
in L2(Ω) is continuous for n = 2), the function g is an element of H1(Ω), and it is
defined with an accuracy of a constant addend.

It follows from (3.22) that

∇g =
(
∂g

∂x1
,
∂g

∂x2

)
= (−u0

2, u
0
1). (3.24)

We consider that ∇g is an approximation of ∇h. If the functions g and h are Lipschitz
continuous, then the functions u0 = (u0

1, u
0
2) and u = ( ∂h

∂x2
,− ∂h

∂x1
) are tangential

vectors to the level curves of the functions g and h, respectively.
The following relations hold:

(∇g, u0) = 0, (∇h, u) = 0. (3.25)

We introduce the functional

Ψ(w) =
∫

Ω

|Dw −∇g| dx+
µ

2

∫

B

(w − y)2 dx. (3.26)

Here w ∈ BV (Ω), ∇g = (−u0
2, u

0
1), y ∈ L2(B) is a given image function, and µ is a

given positive constant.
In line with the definition of the norm in BV (Ω), the first term in (3.26) is defined

by
∫

Ω

|Dw −∇g| dx = sup
p

∫

Ω

(w − g) div p dx, (3.27)

p = (p1, p2) ∈ C1
0 (Ω)2, |pi(x)| ≤ 1, x ∈ Ω, i = 1, 2.

We consider the following problem: Find h such that

h ∈ BV (Ω), Ψ(h) = inf Ψ(w), w ∈ BV (Ω). (3.28)

The solution of the problem (3.28) is regarded to be the reconstructed image.
We have considered the second step the reconstruction of the image function by

the use of the function u0 which is the solution of the problem (3.5). In similar fashion,
the image function is reconstructed by the function uα which is the solution of the



8 W. G. LITVINOV, T. RAHMAN AND X.-C. TAI

problem (3.12). In this case, the function u0 in the above formulas is replaced by the
function uα.

Theorem 3.5. Suppose that Ω is a bounded domain in R2 with a Lipschitz
continuous boundary S, and let y ∈ L2(B). Then there exists a unique solution of the
problem (3.28).

Proof. For w ∈ BV (Ω), we have,

Ψ(w) ≥
∫

Ω

|Dw| dx−
∫

Ω

|∇g| dx+
µ

2

∫

B

w2 dx− µ

∫

B

wy dx+
µ

2

∫

B

y2 dx

≥
∫

Ω

|Dw| dx−
∫

Ω

|∇g| dx+
µ

2
(1− α)

∫

B

w2 dx+
µ

2
(1− 1

α
)
∫

B

y2 dx, (3.29)

where α ∈ (0, 1). Therefore

Ψ(w) →∞ as ‖ w ‖BV (Ω)→∞. (3.30)

Let {hn} be a minimizing sequence, that is

{hn} ⊂ BV (Ω), limΨ(hn) = inf Ψ(w), w ∈ BV (Ω). (3.31)

By (3.30), the sequence {hn} is bounded in BV (Ω). Because of this, there exists a
subsequence {hk} of the sequence {hn}, such that

hk ⇀ h0 in BV (Ω), (3.32)
hk ⇀ h0 in L2(Ω). (3.33)

It follows from (3.32) and (3.33) that

lim inf Ψ(hk) ≥ Ψ(h0),

and by virtue of (3.31), the function h = h0 is the solution of the problem (3.28).
For an arbitrary t ∈ [0, 1], we have

∫

Ω

|tDw1 + (1− t)Dw2 −∇g| dx

≤ t

∫

Ω

|Dw1 −∇g| dx+ (1− t)
∫

Ω

|Dw2 −∇g| dx, w1, w2 ∈ BV (Ω).

Therefore, the first term in the right hand side of (3.26) is a convex functional in
BV (Ω). The second term is a strictly convex functional. Hence, there exists only one
solution of the problem (3.28), and the theorem is proved.

We introduce the following regularization Ψα of Ψ:

Ψα(w) =
∫

Ω

(α2 + |Dw −∇g|2) 1
2 dx+

µ

2

∫

B

(w − y)2 dx, (3.34)

where α > 0.
Let us consider the following problem: Find hα such that

hα ∈ BV (Ω), Ψα(hα) = inf Ψα(w), w ∈ BV (Ω). (3.35)
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Theorem 3.6. Suppose that the conditions of Theorem 3.5 are satisfied. Then
for an arbitrary α > 0 there exists a unique solution of the problem (3.35). If hα ∈
W 1

1 (Ω), then the following condition is satisfied

(Ψ′α(hα), w) =
∫

Ω

(α2 + |∇hα −∇g|2)− 1
2

(
∂hα

∂xi
− ∂g

∂xi

)
∂w

∂xi
dx

+ µ

∫

B

(hα − y)w dx = 0, w ∈W 1
1 (Ω). (3.36)

Moreover,

hα ⇀ h in BV (Ω), hα ⇀ h in L2(Ω), (3.37)
hα → h in Lp(Ω), p < 2, as α→ 0,

where h is the solution of the problem (3.28)
Theorem 3.6 is proved by analogy with the proofs of theorems 3.3 and 3.4.

3.3. Proof of Theorem 3.1. Since the embedding of BV (Ω) into L2(Ω) is
continuous for Ω ⊂ R2, we have

‖ u ‖BV (Ω)2 ≤ c1‖ u ‖1, u ∈ BV (Ω;R2).

Let us establish the inverse inequality

‖ u ‖1 ≤ ‖ u ‖BV (Ω;R2), u ∈ BV (Ω;R2). (3.38)

Suppose that (3.38) is false. Then there exists a sequence {uj} ⊂ BV (Ω;R2) such
that

‖ uj ‖1 = 1, j ∈ N, (3.39)∫

Ω

|Duj
i |dx→ 0 as j →∞, i = 1, 2, (3.40)

∫

B

|uj |2dx→ 0 as j →∞. (3.41)

Therefore, a subsequence {uk} can be extracted that satisfies the conditions

uk ⇀ u0 in BV (Ω;R2), (3.42)

uk → u0 in Lp(Ω;R2) for p < 2, (3.43)

uk ⇀ u0 in L2(Ω;R2). (3.44)

Let

V = {p| p = (p1, p2) ∈ C1
0 (Ω;R2), pl(x) ≤ 1, x ∈ Ω, l = 1, 2}, (3.45)

and

{pim}∞m=1 ⊂ V,

∫

Ω

|Du0
i |dx = lim

m→∞

∫

Ω

u0
i div pimdx, i = 1, 2. (3.46)

It is evident that
∫

Ω

|Duk
i |dx = sup

p∈V

∫

Ω

(u0
i + (uk

i − u0
i )) div p dx. (3.47)
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We take p = pim in the right-hand side of (3.47). Bearing in mind (3.46), we obtain
∫

Ω

|Duk
i |dx ≥

∫

Ω

|Du0
i |dx+

∫

Ω

(uk
i − u0

i ) div pim dx− εim, (3.48)

εim > 0, lim
m→∞

εim = 0, i = 1, 2.

Considering that m is fixed and granting (3.40), (3.43), we pass to the limit in
(3.48) as k →∞. This gives

0 ≥
∫

Ω

|Du0
i |dx− εim,

that is
∫

Ω

|Du0
i |dx = 0, i = 1, 2. (3.49)

Let K be an arbitrary compact set in Ω and
◦
K be the interior of K (the interior of

an arbitrary compact G is denoted by
◦
G). For sufficiently small b > 0, we can define

in
◦
K a function (u0

i )b as follows:

(u0
i )b(x) =

∫

R2
ωb(|x− x′|)u0

i (x
′) dx′, x ∈

◦
K, i = 1, 2, (3.50)

where

ωb ∈ C∞ (R+), suppωb ∈ [0, b], ω(z) ≥ 0, z ∈ R+,∫

R2
ωb(|x|) dx = 1. (3.51)

The function (u0
i )b is the regularization of u0

i . Relations (3.50) and (3.51) yield

∂(u0
i )b

∂xk
(x) =

∫

R2

∂ωb

∂xk
(|x− x′|)u0

i (x
′) dx′

= −
∫

R2

∂ωb

∂x′k
(|x− x′|)u0

i (x
′) dx′ =

(
∂u0

i

∂xk

)

b

(x), x ∈
◦
K, k = 1, 2. (3.52)

Here
(

∂u0
i

∂xk

)
b

is the regularization of the distribution derivative ∂u0
i

∂xk
.

It follows from (3.49) that the partial distribution derivatives of u0
i are equal to

zero. Because of this, (3.52) yields ∂(u0
i )b

∂xk
(x) = 0 at x ∈

◦
K and, therefore,

(u0
i )b(x) = aib, x ∈

◦
K, i = 1, 2, (3.53)

where a1b, a2b are constants.

Since (u0
i )b → u0

i in L2(
◦
K), we obtain

u0
i (x) = ai, x ∈

◦
K, i = 1, 2, (3.54)

ai being constants.



MODIFIED TV STOKES 11

Let K1 be a compact neighborhood of K such that K1 ⊂ Ω. Similarly to the

above, we conclude that u0
i is defined by (3.54) in

◦
K1 and, hence, in K1. There

exists a sequence of compact sets {Kj} such that Kj ⊂ Ω, Kj ⊂ Kj+1 for all j and
Ω =

⋃∞
i=1Kj . Since u0

i is equal to ai in every Kj , it equals ai in Ω.
It follows from (3.41) and (3.44) that

∫

B

|u0|2 dx = 0. (3.55)

(3.54) and (3.55) yield

u0 = (u0
1, u

0
2) = 0. (3.56)

Taking (3.40), (3.42), and (3.56) into account, we get

lim ‖ uk − u0 ‖1= 0. (3.57)

Relations (3.56) and (3.57) are in contradiction with (3.39). Therefore (3.38) is valid,
and the theorem is proved.

4. Algorithm. For the first step, we consider the problem (3.12) with the regu-
larized functional Jα. It is assumed that the solution of the problem (3.12) belongs to
the space H2(Ω;R2). Apparently it will be so in the case that Ω is a regular domain
and the extension of v in Ω is a smooth function. Then there exists a unique function
λα ∈ H1(Ω) such that the pair uα, λα is the unique solution of the following problem
(see [4], [25], Section 6.1.3):

−∇ ·
(

∇uα
1√

α2 + |∇uα
1 |2

)
+ δ(uα

1 − v1) +
∂λα

∂x1
= 0 in Ω, (4.1)

−∇ ·
(

∇uα
2√

α2 + |∇uα
2 |2

)
+ δ(uα

2 − v2) +
∂λα

∂x2
= 0 in Ω, (4.2)

divuα = 0 in Ω, (4.3)

∇uα
1√

α2 + |∇uα
1 |2

· ν − λαν1 = 0 and
∇uα

2√
α2 + |∇uα

2 |2
· ν − λαν2 = 0 on ∂Ω, (4.4)

where ν = (ν1, ν2) is the unit outward normal to ∂Ω the boundary of Ω.
For the solution of the problem (4.1)-(4.4) we used the method of approximation of

a solution of a stationary problem by a solution of an evolutionary problem introducing
an artificial time variable t. In this case one seeks functions ue = (ue

1, u
e
2), λ

e, which
satisfy the following conditions:

∂ue
1

∂t
−∇ ·

(
∇ue

1√
α2 + |∇ue

1|2

)
+ δ(ue

1 − v1) +
∂λe

∂x1
= 0 in Q = Ω× (0, T ), (4.5)

∂ue
2

∂t
−∇ ·

(
∇ue

2√
α2 + |∇ue

2|2

)
+ δ(ue

2 − v1) +
∂λe

∂x2
= 0 in Q, (4.6)

ε
∂λe

∂t
+ divue = 0 (4.7)

ue(0) = u0, λe(0) = λ0, (4.8)
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where T is a large positive constant, u0, λ0 are given, and ε > 0 . In addition, the
function ue satisfies the boundary conditions (4.4) on Γ = ∂Ω × (0, T ), in which the
index α is replaced by e.

It can be shown that the solution of a discretized evolutionary problem at an
instant t converges to the solution of the discretized stationary problem as ε tends to
zero and t tends to infinity; this convergence takes place for an arbitrary initial data
for ue and λe.

Once the function uα = (uα
1 , u

α
2 ) is defined, it is used to reconstruct the image

h. In this case we solve the problem (3.35) with the functional Ψα defined by (3.34),
where ∇g = (−uα

2 (T ), uα
1 (T )), and uα

1 (T ), uα
2 (T ) are the values of uα

1 , u
α
2 at t = T .

We assume that the function hα that solves the problem (3.35) is sufficiently smooth.
Then hα is the solution of the following problem:

−∇ ·
(

∇hα −∇g√
α2 + |∇hα −∇g|2

)
+ µ(hα − y) = 0 in Ω, (4.9)

(
∇hα −∇g√

α2 + |∇hα −∇g|2

)
· ν = 0 on ∂Ω. (4.10)

By analogy with the above, introducing an artificial time variable t, we get the follow-
ing time dependent problem, where one seeks a function he that satisfies the equation

∂he

∂t
−∇ ·

(
∇he −∇g√

α2 + |∇he −∇g|2

)
+ µ(he − y) = 0 in Q, (4.11)

the Neumann boundary condition (4.10) on ∂Ω, where hα is replaced by he, and the
initial condition he(0) = h0.

It can be shown that the solution of a discretized time dependent problem at an
instant t converges to the solution of the discretized stationary problem as t tends to
infinity.

The calculations have been performed for the case that Ω is a rectangular domain.
The above nonstationary problems for ue and he were solved by finite difference
method using explicit schemes, both in time and space. For the spatial discretization,
a staggered grid has been chosen, with each vertex of the grid at points at which the
noisy intensity y is given.

Below we omit the superscript e in the notations of the unknown functions. We use
the standard forward/backward difference operators D±x1

and D±x2
, and the centered

difference operators Cx1 and Cx2 in the x1 and x2 directions respectively.
We first determine the tangential vector v as (v1, v2)T = (−D−x2

y,D−x1
y)T . Start-

ing with the initial values u0
1 = v1, u

0
2 = v2 and λ0 = 0, the values of u1, u2 and λ at

step n+ 1 are calculated as follows:

un+1
1 − un

1

∆t
= D−x1

(
D+

x1
un

1

Tn
1

)
+D−x2

(
D+

x2
un

1

Tn
2

)
− δ (un

1 − v1) +D−x1
λn, (4.12)

un+1
2 − un

2

∆t
= D−x1

(
D+

x1
un

2

Tn
2

)
+D−x2

(
D+

x2
un

2

Tn
1

)
− δ (un

2 − v2) +D−x2
λn, (4.13)

λn+1 − λn

∆t
=

1
ε

(
D+

x1
un

1 +D+
x2
un

2

)
, (4.14)
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where

Tn
1 =

√
(Ax2(Cx1u

n
1 ))2 +

(
D+

x2u
n
1

)2
+ α2, (4.15)

Tn
2 =

√(
D+

x2u
n
2

)2
+ (Ax2(Cx1u

n
2 ))2 + α2, (4.16)

andAx1 , Ax2 are average operators, (Ax1w)(x1, x2) = (w(x1, x2) + w(x1 + ∆x1, x2)) /2
and (Ax2w)(x1, x2) = (w(x1, x2) + w(x1, x2 + ∆x2)) /2.

The function ∇g at the discrete formulation is defined as ∇g = (−un0
2 , un0

1 ),
where n0 is a large positive integer, and the image reconstruction step (4.11) takes
the following form:

hn+1 − hn

∆t
= D−x1

(
D+

x1
hn + un0

2

Tn
3

)
+D−x2

(
D+

x2
hn − un0

1

Tn
4

)
− µ (hn − y) , (4.17)

where T3 and T4 are defined as

T3 =
√(

D+
x1h

n + un0
2

)2
+ (Ax1(Cx2h

n)− un0
1 )2 + α2,

T4 =
√(

D+
x2h

n − un0
1

)2
+ (Ax2(Cx1h

n) + un0
2 )2 + α2.

Although the applied numerical methods provide the convergence of approximate
solutions to the exact ones, they are of course not the best. It seems likely that
the methods of augmented Lagrangian with a saddle-point approach, that is used for
solution of the minimization problem with pointwise restriction divu = 0 in [4] is more
effective for the problem (3.12), and the dual algorithm of [10] is more effective for
problem (3.25).

5. Numerical Examples. We have used the modified TV-Stokes model for
denoising a number of images; some of those results are presented in this section. We
consider the case that y = h+ η, where h is the true image and η is a random noise
with the noise level σ = ‖η‖L2(Ω) = ‖h− y‖L2(Ω). The signal to noise ratio (SNR) is
measured as the number in decibels,

SNR = 20 · log10

(∫
Ω
(h− h)2 dx∫

Ω
(η − η)2 dx

)
, (5.1)

where

h =
1
|Ω|

∫

Ω

h dx and η =
1
|Ω|

∫

Ω

η dx (5.2)

are the averages of h and η, respectively, |Ω| = ∫
Ω
dx.

Experiments show that the modified TV-Stokes model, as well as the original
TV-Stokes model [33], give smooth images that are visually very pleasant, especially
in smooth areas of an image. At places where the texture changes very rapidly, the
modified TV-Stokes model seems to smear out the image and thereby loose some of
the fine scale details. However, this is the most common drawback of many image
processing models based on variational methods.

Below we present results of calculations for images with gray level values in the
range between 0 (black) and 1 (white). In all our experiments, we expose our image
to random noise with zero mean. The value of α2 was 10−10 in the first step in (3.10),
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and 10−12 in the second step in (3.34). In the first step, the iteration stops when
the corresponding energy value converges at least up to one decimal point, and the
discrete L2-norm of the divergence falls below 0.5 × 10−1. In the second step, the
iteration stops when the corresponding energy value and the computed noise level
converge up to their second decimal points.

The quality of the resulting image depends on the choice of the parameters δ and
µ. Smaller δ results in higher smoothing of the tangential field, and, consequently,
the image. Conversely, a larger δ results in less smoothing. After δ has been fixed,
we use µ for the fine tuning.

Calculations were performed for several models and results of calculations for
the modified TV-Stokes model are compared with results for other models. Results
of calculations are illustrated in figures 5.1-5.6. In each figure we show an original
image and the noisy and the denoised images corresponding to different models. The
difference images, included in figures 5.1-5.5, demonstrate the difference between the
noisy image and the corresponding denoised image for the modified TV-Stokes model.
The SNR values of the noisy and the denoised images are also given in these figures.

In our first example we apply the modified TV-Stokes model to the Ali image with
smooth surfaces, cf. Figure 5.1. A random noise with noise-level ≈ 25.94 has been
added to the image. As we can see from the figure, the modified TV-Stokes model
performs quite well in preserving edges as well as in reproducing smooth surfaces.
The time steps used for the smoothing and reconstruction steps were 0.5× 10−4 and
0.5 × 10−3, respectively. Both parameters δ and µ were 12. For the ROF model we
set µ = 12 and the time step was 0.5×10−3. The contour plots clearly reveal that the
modified TV-Stokes model, as compared to the ROF model, generates images with
smoother surfaces and with smooth and uniformly separated level lines, especially
visible around the nose, the eye balls, and the lips.

Same tests were performed in our second example, see Fig 5.2, where we consider
denoising of the Barbara image with noise level ≈ 11.09. In this case δ = 30 and
µ = 40, and the corresponding time-steps were 0.1×10−4 and 0.1×10−3 respectively.
For the ROF model µ = 30 and the time step was 0.1 × 10−3. The original image
contains both texture parts and smooth parts, and they are quite well preserved in
the denoised image. Contour plots show that the modified TV-Stokes model gives
smooth surfaces and uniformly separated smooth level lines. The ROF model fails
to reproduce the smooth surfaces, it approximates the surface with a function that is
close to a step function.

Three more images, where the modified TV-Stokes have been applied, are pre-
sented in Figures 5.3-5.5. These images have significant features like thin fiber tex-
tures or weak signals. In all cases the modified TV-Stokes model performs well in
representing these features in the resulting images.

The image of Baboon, see Fig. 5.3, has thin fiber textures. and random noise
15.03. For this image δ = 17, µ = 15, and the corresponding time steps were 0.1 ×
10−4 and 0.1 × 10−2 respectively. Due to the fibrous structure, this image poses a
difficult challenge to most models. For a moderate noise the modified TV-Stokes
model performs quite well, especially in capturing the structure.

In Figure 5.4, we display our results for the satellite image with noise-level≈ 22.68.
In this case δ = 10, µ = 17, and the corresponding time-steps were 0.2 × 10−4 and
0.1×10−3, respectively. In Figure 5.5, we display our results for the Cameraman image
with noise-level ≈ 14.52. In this case δ = 16, µ = 18, and the corresponding time-
steps were 0.1× 10−4 and 0.5× 10−3, respectively. Both images have thin structures
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(a) Noisy image, SNR≈28.03
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(b) TV-Stokes Difference image

50 100 150 200 250

50

100

150

200

250

300

(c) Original image

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(d) Contour, original image
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(e) TV-Stokes denoised, SNR≈43.8
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(f) Contour, TV-Stokes image
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(g) ROF denoised, SNR≈42.3
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(h) Contour, ROF image

Fig. 5.1. The Ali image (317×283), denoised using the modified TV-Stokes and the ROF
algorithm. Zoomed-in contour plots are shown.
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(a) Noisy image, SNR≈32.3
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(e) TV-Stokes denoised, SNR≈40.7
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(g) ROF denoised, SNR≈37.2
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(h) Contour, ROF image

Fig. 5.2. The Barbara image (256×256), denoised using the modified TV-Stokes and the ROF
algorithm. Zoomed-in contour plots are shown.
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(b) Noisy image, SNR≈15.03
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(c) TV-Stokes denoised, SNR≈22.2

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(d) TV-Stokes difference image

Fig. 5.3. The Baboon image (512×512), denoised using the modified TV-Stokes algorithm.
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(d) TV-Stokes difference image

Fig. 5.4. The Satellite image (250×250), denoised using the modified TV-Stokes algorithm.
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and weak signals. Again, for moderate noise the modified TV-Stokes captures the
thin structures and the weak signals quite well.
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(d) TV-Stokes difference image

Fig. 5.5. The Cameraman image (256×256), denoised using the modified TV-Stokes algorithm.

Finally, we compare the modified TV-Stokes model with a few other models on
the Lena image, cf. Figure 5.6. This includes the second order ROF model, the
fourth order LLT model [27], and the two-step LOT model [28]. A comparison of
calculations for these models can be found in the paper [28]. We have used the same
noisy image as it was in that paper. The images 5.6(a)- 5.6(e) are taken directly from
the paper [28]. The image 5.6(f) is the denoised image for the modified TV-Stokes
model. The ROF model demonstrates the staircase effect. It is known that the LOT
model preserves edges quite well, but it is seen from the figure, it cannot get rid of the
staircase effect. The other models, namely, the fourth order model and the modified
TV-Stokes model result in smoother surfaces in the smooth regions of the image. The
fourth order model, however, has produced patches of black cloud. The modified
TV-Stokes model has produced an image which is visually more pleasant than all the
other models shown here.

Now we present some examples of application of the modified TV-Stokes model
to image inpainting. In these examples, we consider the domain B as a domain
surrounding the inpainting region. By using the above algorithms, we have solved the
problem (3.12) in the first step and the problem (3.35) in the second step.

In our first experiment, cf. Figure 5.7, we consider an old photo which had
been damaged. The damaged area has been masked with white color, cf. Figure
5.7(a), representing our inpainting region ΩI . The modified TV-Stokes model has
been applied to this image, and the repaired image is shown in Figure 5.7(b).

In our next experiment, we consider two images, whose surface plots in three
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(a) Original image (b) Noisy image

(c) Denoised, ROF model (d) Denoised, fourth order model

(e) Denoised, LOT model (f) Denoised, modified TV-Stokes

Fig. 5.6. Comparisons of different models on the Lena image (100×100). Images (a)-(e) are
taken from [28].

(a) Damaged photo (b) Repaired photo

Fig. 5.7. Repairing a damaged photo (405×483) through image inpainting.
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(a) 2D pyramid image with
inpainting region

(b) 2D cone image with in-
painting region

(c) Surface plot of pyramid image (d) Surface plot of cone image

(e) Pyramid image inpainted (f) Cone image inpainted

(g) Intensity along a diagonal of
inpainted pyramid

(h) Intensity along a diagonal of
inpainted cone

Fig. 5.8. Inpainting of a pyramid and a cone image (100×100).
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dimensions are a pyramid (left figures in Fig. 5.8) and a cone (right figures in Fig
5.8). The projections of both images on the plane have rectangular and circular band
inpainting regions (see the first row in the Fig. 5.8 and confer it with the second one).
The inpainted images are shown in the third row. The difficult parts for inpainting
in these images are the ones that are along the diagonals. The corresponding plots of
intensity along the diagonals are shown in the last row of the Fig. 5.8.

One can see from these figures that the modified TV-Stokes model effects a good
inpainting in the case of the cone and a quite good inpainting in the case of the
pyramid. It follows from the all the above figures that the modified TV-Stokes model
produces comparatively good results in image denoising and quite good results in
image inpainting.
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