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GRADIENT FLOW APPROACH TO GEOMETRIC CONVERGENCE

ANALYSIS OF PRECONDITIONED EIGENSOLVERS ∗

ANDREW V. KNYAZEV† AND KLAUS NEYMEYR‡

Abstract. Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their con-
vergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver—
the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems,
where we use the gradient of the Rayleigh quotient as an optimization direction. A sharp convergence
rate bound for this method has been obtained in 2001–2003. It still remains the only known such
bound for any of the methods in this class. While the bound is short and simple, its proof is not.
We extend the bound to Hermitian matrices in the complex space and present a new self-contained
and significantly shorter proof using novel geometric ideas.
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1. Introduction. We consider a generalized eigenvalue problem (eigenproblem)
for a linear pencil B−µA with symmetric (Hermitian in the complex case) matrices A
and B with positive definite A. The eigenvalues µi are enumerated in decreasing order
µ1 ≥ . . . ≥ µmin and the xi denote the corresponding eigenvectors. The largest value
of the Rayleigh quotient µ(x) = (x,Bx)/(x,Ax), where (·, ·) denotes the standard
scalar product, is the largest eigenvalue µ1. It can be approximated iteratively by
maximizing the Rayleigh quotient in the direction of its gradient, which is proportional
to (B − µ(x)A)x. Preconditioning is used to accelerate the convergence; see, e.g.,
[2, 4, 5, 6, 8] and the references therein. Here we consider the simplest preconditioned
eigenvalue solver (eigensolver)—the gradient iterative method with an explicit formula
for the step size, cf. [2], one step of which is described by

(1.1) x′ = x+
1

µ(x)− µmin
T (Bx− µ(x)Ax), µ(x) =

(x,Bx)

(x,Ax)
.

The symmetric (Hermitian in the complex case) positive definite matrix T in (1.1) is
called the preconditioner. Since A and T are both positive definite, we assume that

(1.2) (1 − γ)(z, T−1z) ≤ (z, Az) ≤ (1 + γ)(z, T−1z), ∀z, for a given γ ∈ [0, 1).

The following result is proved in [8, 9, 10] for symmetric matrices in the real space.
Theorem 1.1. If µi+1 < µ(x) ≤ µi then µ(x′) ≥ µ(x) and

(1.3)
µi − µ(x′)

µ(x′)− µi+1
≤ σ2 µi − µ(x)

µ(x)− µi+1
, σ = 1− (1− γ)

µi − µi+1

µi − µmin
.

The convergence factor σ cannot be improved with the chosen terms and assumptions.
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Compared to other known non-asymptotic convergence rate bounds for similar
preconditioned eigensolvers, e.g., [1, 2, 4, 5], the advantages of (1.3) are in its sharp-
ness and elegance. Method (1.1) is the easiest preconditioned eigensolver, but (1.3)
still remains the only known sharp bound in these terms for any of preconditioned
eigensolvers. While bound (1.3) is short and simple, its proof in [8] is quite the op-
posite. It covers only the real case and is not self-contained—in addition it requires
most of the material from [9, 10]. Here we extend the bound to Hermitian matrices
and give a new much shorter and self-contained proof of Theorem 1.1, which is a great
qualitative improvement compared to that of [8, 9, 10]. The new proof is not yet as
elementary as we would like it to be; however, it is easy enough to hope that a similar
approach might be applicable in future work on preconditioned eigensolvers.

Our new proof is based on novel techniques combined with some old ideas of
[3, 9, 10]. We demonstrate that, for a given initial eigenvector approximation x,
the next iterative approximation x′ described by (1.1) belongs to a cone if we apply
any preconditioner satisfying (1.2). We analyze a corresponding continuation gradi-
ent method involving the gradient flow of the Rayleigh quotient and show that the
smallest gradient norm (evidently leading to the slowest convergence) of the contin-
uation method is reached when the initial vector belongs to a subspace spanned by
two specific eigenvectors, namely xi and xi+1. This is done by showing that Temple’s
inequality, which provides a lower bound for the norm of the gradient ∇µ(x), is sharp
only in span{xi, xi+1}. Next, we extend by integration the result for the continuation
gradient method to our actual fixed step gradient method to conclude that the point
on the cone, which corresponds to the poorest convergence and thus gives the guaran-
teed convergence rate bound, belongs to the same two-dimensional invariant subspace
span{xi, xi+1}. This reduces the convergence analysis to a two-dimensional case for
shifted inverse iterations, where the sharp convergence rate bound is established.

2. The proof of Theorem 1.1. We start with several simplifications:

Theorem 2.1. We can assume that γ > 0, A = I, B > 0 is diagonal, eigenvalues
are simple, µ(x) < µi, and µ(x′) < µi in Theorem 1.1 without loss of generality.

Proof. First, we observe that method (1.1) and bound (1.3) are evidently both
invariant with respect to a real shift s if we replace the matrix B with B + sA, so
without loss of generality we need only consider the case µmin = 0 which makes B ≥ 0.
Second, by changing the basis from coordinate vectors to the eigenvectors of A−1B
we can make B diagonal and A = I. Third, having µ(x′) ≥ µ(x) if µ(x) = µi or
µ(x′) ≥ µi, or both, bound (1.3) becomes trivial. The assumption γ > 0 is a bit
more delicate. The vector x′ depends continuously on the preconditioner T , so we
can assume that γ > 0 and extend the final bound to the case γ = 0 by continuity.

Finally, we again use continuity to explain why we can assume that all eigenvalues
(in fact, we only need µi and µi+1) are simple and make µmin > 0 and thus B > 0
without changing anything. Let us list all B-dependent terms, in addition to all
participating eigenvalues, in method (2.1): µ(x) and x′; and in bound (1.3): µ(x) and
µ(x′). All these terms depend on B continuously if B is slightly perturbed into Bǫ

with some ǫ → 0, so we increase arbitrarily small the diagonal entries of the matrix
B to make all eigenvalues of Bǫ simple and µmin > 0. If we prove bound (1.3) for
the matrix Bǫ with simple positive eigenvalues, and show that the bound is sharp as
0 < µmin → 0 with ǫ → 0, we take the limit ǫ → 0 and by continuity extend the result
to the limit matrix B ≥ 0 with µmin = 0 and possibly multiple eigenvalues.
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It is convenient to rewrite (1.1)–(1.3) equivalently by Theorem 2.1 as follows1

µ(x)x′ = Bx− (I − T )(Bx− µ(x)x), µ(x) =
(x,Bx)

(x, x)
,(2.1)

‖I − T ‖ ≤ γ, 0 < γ < 1;(2.2)

and if µi+1 < µ(x) < µi and µ(x′) < µi then µ(x′) ≥ µ(x) and

(2.3)
µi − µ(x′)

µ(x′)− µi+1
≤ σ2 µi − µ(x)

µ(x)− µi+1
, σ = 1− (1−γ)

µi − µi+1

µi
= γ+(1−γ)

µi+1

µi
.

Now we establish the validity and sharpness of bound (2.3) assuming (2.1) and (2.2).
Theorem 2.2. Let us define2 φγ(x) = arcsin (γ‖Bx− µ(x)x‖/‖Bx‖) , then

φγ(x) < π/2 and ∠{x′, Bx} ≤ φγ(x). Let w 6= 0 be defined as the vector constrained
by ∠{w,Bx} ≤ φγ(x) and with the smallest value µ(w). Then µ(x′) ≥ µ(w) > µ(x).

Proof. Orthogonality (x,Bx − µ(x)x) = 0 by the Pythagorean theorem implies
‖Bx‖2 = ‖µ(x)x‖2 + ‖Bx − µ(x)x‖2, so ‖Bx − µ(x)x‖ < ‖Bx‖, since µ(x) > 0 as
B > 0, and sin∠{x,Bx} = sinφ1(x) = ‖Bx− µ(x)x‖/‖Bx‖ < 1, where Bx 6= 0 as
B > 0. A ball with the radius γ‖Bx−µ(x)x‖ ≥ ‖I−T ‖‖Bx−µ(x)x‖ by (2.2) centered
at Bx contains µ(x)x′ by (2.1), so sin∠{x′, Bx} ≤ γ‖Bx− µ(x)x‖/‖Bx‖ < γ < 1.

The statement µ(x′) ≥ µ(w) follows directly from the definition of w. Now,

0 <
(x,Bx)

‖x‖‖Bx‖
= cosφ1(x) < cos∠{w,Bx} =

|(w,Bx)|

‖w‖‖Bx‖
≤

(w,Bw)1/2(x,Bx)1/2

‖w‖‖Bx‖

as B > 0, so
√

µ(x) <
√

µ(w) and µ(x) < µ(w).
We denote by Cφγ(x)(Bx) := {y : ∠{y,Bx} ≤ φγ(x)} the circular cone around

Bx with the opening angle φγ(x). Theorem 2.2 replaces x′ with the minimizer w of
the Rayleigh quotient on the cone Cφγ(x)(Bx) in the rest of the paper, except at the
end of the proof of Theorem 2.7, where we show that bounding below the value µ(w)
instead of µ(x′) still gives the sharp estimate.

Later on, in the proof of Theorem 2.4, we use an argument that holds easily only
in the real space, so we need the following last simplification.

Theorem 2.3. Without loss of generality we can consider only the real case.
Proof. The key observation is that for our positive diagonal matrix B the Rayleigh

quotient depends evidently only on the absolute values of the vector components,
i.e., µ(x) = µ(|x|), where the absolute value operation is applied component-wise.
Moreover, ‖Bx−µ(x)x‖ = ‖B|x|−µ(|x|)|x|‖ and ‖Bx‖ = ‖B|x|‖, so φγ(x) = φγ(|x|).
The cone Cφγ(x)(Bx) lives in the complex space, but we also need its substitute in

the real space. Let us introduce the notation CR
φγ(|x|)

(B|x|) for the real circular cone

with the opening angle φγ(|x|) centered at the real vector B|x|. Next we show that in
the real space we have the inclusion

∣

∣Cφγ(x)(Bx)
∣

∣ ⊆ CR
φγ(|x|)

(B|x|).

For any complex nonzero vectors x and y, we have |(y,Bx)| ≤ (|y|, B|x|) by
the triangle inequality, thus ∠{|y|, B|x|} ≤ ∠{y,Bx}. If y ∈ Cφγ (x)(Bx) then

∠{|y|, B|x|} ≤ ∠{y,Bx} ≤ φγ(x) = φγ(|x|), i.e., indeed, |y| ∈ CR
φγ(|x|)

(B|x|), which

means that
∣

∣Cφγ(x)(Bx)
∣

∣ ⊆ CR
φγ(|x|)

(B|x|) as required.

1Here and below ‖ · ‖ denotes the Euclidean vector norm, i.e., ‖x‖2 = (x, x) = xHx for a real or
complex column-vector x, as well as the corresponding induced matrix norm.

2We define angles in [0, π/2] between vectors by cos∠{x, y} = |(x, y)|/(‖x‖‖y‖).
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Fig. 2.1. The cone Cφγ(x)(Bx).

Therefore, changing the given vector x to take its absolute value |x| and replac-
ing the complex cone Cφγ(x)(Bx) with the real cone CR

φγ (|x|)
(B|x|) lead to the re-

lations miny∈Cφγ (x)(Bx) µ(y) = min|y|∈|Cφγ (x)(Bx)| µ(|y|) ≥ min|y|∈CR
φγ(|x|)

(B|x|) µ(|y|),

but does not affect the starting Rayleigh quotient µ(x) = µ(|x|). This proves the the-
orem with the exception of the issue of whether the sharpness in the real case implies
the sharpness in the complex case; see the end of the proof of Theorem 2.7.

Theorem 2.4. We have w ∈ ∂Cφγ(x)(Bx) and ∃α = αγ(x) > −µi such that
(B + αI)w = Bx. The inclusion x ∈ span{xi, xi+1} implies w ∈ span{xi, xi+1}.

Proof. Assuming that w is strictly inside the cone Cφγ(x)(Bx) implies that w is a
point of a local minimum of the Rayleigh quotient. The Rayleigh quotient has only
one local (and global) minimum, µmin, but the possibility µ(w) = µmin is eliminated
by Theorem 2.2, so we obtain a contradiction, thus w ∈ ∂Cφγ(x)(Bx).

The necessary condition for a local minimum of a smooth real-valued function on
a smooth surface in a real vector space is that the gradient of the function is orthog-
onal to the surface at the point of the minimum and directed inwards. In our case,
Cφγ(x)(Bx) is a circular cone with the axis Bx and the gradient ∇µ(w) is positively
proportional to Bw − µ(w)w; see Figure 2.1. We first scale the vector w such that
(Bx−w,w) = 0 so that the vector Bx−w is an inward normal vector for ∂Cφγ(x)(Bx)
at the point w. This inward normal vector must be positively proportional to the gra-
dient, β(Bx − w) = Bw − µ(w)w with β > 0, which gives (B + αI)w = βBx, where
α = β − µ(w) > −µ(w) > −µi. Here β 6= 0 as otherwise w would be an eigenvec-
tor, but µ(x) < µ(w) < µ(x′) by Theorem 2.2, where by assumptions µi+1 < µ(x),
while µ(x′) < µi by Theorem 2.1, which gives a contradiction. As the scaling of the
minimizer is irrelevant, we denote w/β here by w with a slight local notation abuse.

Finally, since (B + αI)w = Bx, inclusion x ∈ span{xi, xi+1} gives either the
required inclusion w ∈ span{xi, xi+1} or w ∈ span{xi, xi+1, xj} with α = −µj for
some j 6= i and j 6= i + 1. We now show that the latter leads to a contradiction.
We have just proved that α > −µi, thus j > i + 1. Let x = cixi + ci+1xi+1,
where we notice that ci 6= 0 and ci+1 6= 0 since x is not an eigenvector. Then we
obtain w = aicixi + ai+1ci+1xi+1 + cjxj where (B − µj)w = Bx, therefore ak =
µk/(µk − µj), k = i, i + 1. Since all eigenvalues are simple, µi+1 6= µj . We observe
that 0 < ai < ai+1, i.e., in the mapping of x to w the coefficient in front of xi changes
by a smaller absolute value compared to the change in the coefficient in front of xi+1.
Thus, µ(x) > µ(aicixi+ai+1ci+1xi+1) ≥ µ(w) using the monotonicity of the Rayleigh
quotient in the absolute values of the coefficients of the eigenvector expansion of its
argument, which contradicts µ(w) > µ(x) proved in Theorem 2.2.
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Fig. 2.2. The Rayleigh quotient gradient flow integration on the unit ball.

Theorem 2.4 characterizes the minimizer w of the Rayleigh quotient on the cone
Cφγ(x)(Bx) for a fixed x. The next goal is to vary x, preserving its Rayleigh quo-
tient µ(x), and to determine conditions on x leading to the smallest µ(w) in such a
setting. Intuition suggests (and we give the exact formulation and the proof later in
Theorem 2.6) that the poorest convergence of a gradient method corresponds to the
smallest norm of the gradient, so in the next theorem we analyze the behavior of the
gradient ‖∇µ(x)‖ of the Rayleigh quotient and the cone opening angle φγ(x).

Theorem 2.5. Let κ ∈ (µi+1, µi) be fixed and the level set of the Rayleigh quotient
be denoted by L(κ) := {x 6= 0 : µ(x) = κ} . Both ‖∇µ(x)‖‖x‖ and φ1(x)−φγ(x) with
0 < γ < 1 attain their minima on x ∈ L(κ) in span{xi, xi+1}.

Proof. By definition of the gradient, ‖∇µ(x)‖‖x‖ = 2‖Bx−κx‖/‖x‖ for x ∈ L(κ).
The Temple inequality ‖Bx − κx‖2/‖x‖2 ≥ (µi − κ)(κ − µi+1) is equivalent to the
operator inequality (B − µiI)(B − µi+1I) ≥ 0, which evidently holds. The equality
here is attained only for x ∈ span{xi, xi+1}.

Finally, we turn our attention to the angles. For x ∈ L(κ), the Pythagorean
theorem ‖Bx‖2 = ‖κx‖2 + ‖Bx− κx‖2 shows that

a2 :=
‖Bx− κx‖2

‖Bx‖2
=

‖Bx− κx‖2/‖x‖2

κ2 + ‖Bx− κx‖2/‖x‖2
∈ (0, 1)

is minimized together with ‖Bx − κx‖/‖x‖. But for a fixed γ ∈ (0, 1) the function
arcsin(a)− arcsin(γa) is strictly increasing in a ∈ (0, 1) which proves the proposition
for φ1(x)− φγ(x) = arcsin(a)− arcsin(γa).

Now we are ready to show that the same subspace span{xi, xi+1} gives the small-
est change in the Rayleigh quotient µ(w) − κ. The proof is based on analyzing the
negative normalized gradient flow of the Rayleigh quotient.

Theorem 2.6. Under the assumptions of Theorems 2.4 and 2.5 we denote
Iγ(κ) := {w : w ∈ argminµ(Cφγ(x)(Bx)); x ∈ L(κ)}—the set of minimizers of
the Rayleigh quotient. Then argminµ(Iγ(κ)) ∈ span{xi, xi+1}. (See Figure 2.2).

Proof. The initial value problem for a gradient flow of the Rayleigh quotient,

(2.4) y′(t) = −
∇µ(y(t))

‖∇µ(y(t))‖
, t ≥ 0, y(0) = w ∈ Iγ(κ),
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has the vector-valued solution y(t), which preserves the norm of the initial vector w
since d‖y(t)‖2/dt = 2(y(t), y′(t)) = 0 as (y,∇µ(y)) = 0. Without loss of generality we
assume ‖w‖ = 1 = ‖y(t)‖. The Rayleigh quotient function µ(y(t)) is decreasing since

d

dt
µ(y(t)) = (∇µ(y(t)), y′(t)) =

(

∇µ(y(t)),−
∇µ(y(t))

‖∇µ(y(t))‖

)

= −‖∇µ(y(t))‖ ≤ 0.

As µ(y(0)) = µ(w) < µi, the function µ(y(t)) is strictly decreasing at least until it
reaches κ > µi+1 as there are no eigenvalues in the interval [κ, µ(y(0))] ⊂ (µi+1, µi),
but only eigenvectors can be special points of ODE (2.4). The condition µ(y(t̄)) = κ
thus uniquely determines t̄ for a given initial value w. The absolute value of the
decrease of the Rayleigh quotient along the path L := {y(t), 0 ≤ t ≤ t̄} is

µ(w) − κ = µ(y(0))− µ(y(t̄)) =

∫ t̄

0

‖∇µ(y(t))‖dt > 0.

Our continuation method (2.4) using the normalized gradient flow is nonstandard,
but its advantage is that it gives the following simple expression for the length of L,

Length(L) =
∫ t̄

0 ‖y
′(t)‖dt =

∫ t̄

0 1dt = t̄.
Since the initial value w is determined by x, we compare a generic x with the

special choice x = x∗ ∈ span{xi, xi+1}, using the superscript ∗ to denote all quantities
corresponding to the choice x = x∗. By Theorem 2.4 x∗ ∈ span{xi, xi+1} implies
w∗ ∈ span{xi, xi+1}, so we have y∗(t) ∈ span{xi, xi+1}, 0 ≤ t ≤ t̄∗ as span{xi, xi+1}
is an invariant subspace for the gradient of the Rayleigh quotient. At the end points,
µ(y(t̄)) = κ = µ(x) = µ(y∗(t̄∗)), by their definition. Our goal is to bound the
initial value µ(w∗) = µ(y∗(0)) by µ(w) = µ(y(0)), so we compare the lengths of the
corresponding paths L∗ and L and the norms of the gradients along these paths.

We start with the lengths. We obtain φ1(x
∗) − φγ(x

∗) ≤ φ1(x) − φγ(x) by
Theorem 2.5. Here the angle φ1(x) − φγ(x) is the smallest angle between any two
vectors on the cones boundaries ∂Cφγ(x)(Bx) and ∂Cφ1(x)(Bx). Thus, φ1(x)−φγ(x) ≤
∠{y(0), y(t̄)} as our one vector y(0) = w ∈ ∂Cφγ(x)(Bx) by Theorem 2.4, while the
other vector y(t̄) cannot be inside the cone Cφγ(x)(Bx) since µ(w) > κ = µ(y(t̄)) by
Theorem 2.2. As y(t) is a unit vector, ∠{y(0), y(t̄)} ≤ Length(L) = t̄ as the angle is
the length of the arc—the shortest curve from y(0) to y(t̄) on the unit ball.

For our special ∗-choice, inequalities from the previous paragraph turn into equal-
ities, as y∗(t) is in the intersection of the unit ball and the subspace span{xi, xi+1}, so
the path L∗ is the arc between y∗(0) to y∗(t̄∗) itself. Combining everything together,

t̄∗ = Length(L∗) = ∠{y∗(0), y∗(t̄∗)} = ∠{w∗, x∗} = ϕ1(x
∗)− ϕγ(x

∗)

≤ ϕ1(x)− ϕγ(x) ≤ ∠{y(0), y(t̄)} ≤ Length(L) = t̄.

By Theorem 2.5 on the norms of the gradient, −‖∇µ(y∗(t∗))‖ ≥ −‖∇µ(y(t))‖
for each pair of independent variables t∗ and t such that µ(y∗(t∗)) = µ(y(t)). Using
Theorem 3.1, we conclude that µ(w∗) = µ(y∗(0)) ≤ µ(y(t̄− t̄∗)) ≤ µ(y(0)) = µ(w) as
t̄− t̄∗ ≥ 0, i.e., the subspace span{xi, xi+1} gives the smallest value µ(w).

By Theorem 2.6 the poorest convergence is attained with x ∈ span{xi, xi+1} and
with the corresponding minimizer w ∈ span{xi, xi+1} described in Theorem 2.4, so
finally our analysis is now reduced to the two-dimensional space span{xi, xi+1}.

Theorem 2.7. Bound (2.3) holds and is sharp for x ∈ span{xi, xi+1}.
Proof. Assuming ‖x‖ = 1 and ‖xi‖ = ‖xi+1‖ = 1, we derive

(2.5) |(x, xi)|
2 =

µ(x) − µi+1

µi − µi+1
> 0 and |(x, xi+1)|

2 =
µi − µ(x)

µi − µi+1
,
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and similarly for w ∈ span{xi, xi+1} where (B + αI)w = Bx.

Since B > 0, we have x = (I + αB−1)w. Assuming α = −µi+1, this identity
implies x = xi, which contradicts our assumption that x is not an eigenvector. For
α 6= −µi+1 and α > −µi by Theorem 2.4, the inverse (B + αI)−1 exists.

Next we prove that α > 0 and that it is a strictly decreasing function of κ :=
µ(x) ∈ (µi+1, µi). Indeed, using Bx = (B + αI)w and our cosine-based definition of
the angles, we have 0 < (w, (B + αI)w)2 = (w,Bx)2 = ‖w‖2‖Bx‖2 cos2 φγ(x), where
‖Bx‖2 cos2 φγ(x) = ‖Bx‖2−γ2‖Bx−κx‖2. We substitute w = (B+αI)−1Bx, which
gives ((B + αI)−1Bx,Bx)2 = ‖(B + αI)−1Bx‖2

(

‖Bx‖2 − γ2‖Bx− κx‖2
)

. Using
(2.5), multiplication by (µi + α)2(µi+1 + α)2 leads to a simple quadratic equation,
aα2+bα+c = 0, a = γ2(κ(µi+µi+1)−µiµi+1), b = 2γ2κµiµi+1, c = −(1−γ2)µ2

iµ
2
i+1

for α. As a > 0, b > 0, and c < 0, the discriminant is positive and the two solutions
for α, corresponding to the minimum and maximum of the Rayleigh quotient on
Cφγ(x)(Bx), have different signs. The proof of Theorem 2.4 analyzes the direction
of the gradient of the Rayleigh quotient to conclude that β > 0 and α > −µ(w)
correspond to the minimum. Repeating the same arguments with β < 0 shows that
α < −µ(w) corresponds to the maximum. But µ(w) > 0 since B > 0, hence the
negative α corresponds to the maximum and thus the positive α corresponds to the
minimum. We observe that the coefficients a > 0 and b > 0 are evidently increasing
functions of κ ∈ (µi+1, µi), while c < 0 does not depend on κ. Thus α > 0 is strictly
decreasing in κ, and taking κ → µi gives the smallest α = µi+1(1 − γ)/γ > 0.

Since (B+αI)w = Bx where now α > 0, condition (x, xi) 6= 0 implies (w, xi) 6= 0
and (x, xi+1) = 0 implies (w, xi+1) = 0, so we introduce the convergence factor as

σ2(α) :=
µi − µ(w)

µ(w) − µi+1

µ(x)− µi+1

µi − µ(x)
=

∣

∣

∣

∣

(w, xi+1)

(w, xi)

∣

∣

∣

∣

2 ∣
∣

∣

∣

(x, xi)

(x, xi+1)

∣

∣

∣

∣

2

=

(

µi+1

µi

µi + α

µi+1 + α

)2

,

where we use (2.5) and again (B + αI)w = Bx. We notice that σ(α) is a strictly
decreasing function of α > 0 and thus takes its largest value for α = µi+1(1 − γ)/γ
giving σ = γ + (1− γ)µi+1/µi, i.e., bound (2.3) that we are seeking.

The convergence factor σ2(α) cannot be improved without introducing extra
terms or assumptions. But σ2(α) deals with w ∈ Cφγ(x)(Bx), not with the actual iter-
ate x′. We now show that for κ ∈ (µi+1, µi) there exist a vector x ∈ span{xi, xi+1} and
a preconditioner T satisfying (2.2) such that κ = µ(x) and x′ ∈ span{w} in both real
and complex cases. In the complex case, let us choose x such that µ(x) = κ and x = |x|
according to (2.5), then the real vector w = |w| ∈ Cφγ(x)(Bx) is a minimizer of the
Rayleigh quotient on Cφγ(x)(Bx), since µ(w) = µ(|w|) and |(w,B|x|)| ≤ (|w|, B|x|).

Finally, for a real x with µ(x) = κ and a real properly scaled y ∈ Cφγ(x)(Bx)
there is a real matrix T satisfying (2.2) such that y = Bx− (I − T )(Bx− κx), which
leads to (2.1) with µ(x)x′ = y. Indeed, for the chosen x we scale y ∈ Cφγ(x)(Bx) such
that (y,Bx− y) = 0 so ‖Bx− y‖ = sinφγ(x)‖Bx‖ = γ‖Bx− κx‖. As vectors Bx− y
and γ(Bx − κx) are real and have the same length there exists a real Householder
reflection H such that Bx − y = Hγ(Bx − κx). Setting T = I − γH we obtain the
required identity. Any Householder reflection is symmetric and has only two distinct
eigenvalues ±1, so we conclude that T is real symmetric (and thus Hermitian in the
complex case) and satisfies (2.2).

3. Appendix. The integration of inverse functions theorem follows.
Theorem 3.1. Let f, g : [0, b] → R for b > 0 be strictly monotone increasing

smooth functions and suppose that for a ∈ [0, b] we have f(a) = g(b). If for all
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α, β ∈ [0, b] with f(α) = g(β) the derivatives satisfy f ′(α) ≤ g′(β), then for any
ξ ∈ [0, a] we have f(a− ξ) ≥ g(b− ξ).

Proof. For any ξ ∈ [0, a] we have (using f(a) = g(b))

ξ =

∫ g(b)

g(b−ξ)

(

g−1
)′
(y) dy =

∫ g(b)

f(a−ξ)

(

f−1
)′
(y) dy.

If y = f(α) = g(β), then for the derivatives of the inverse functions it holds that
(

g−1
)′
(y) ≤

(

f−1
)′
(y). Since f and g are strictly monotone increasing functions the

integrands are positive functions and g(b−ξ) < g(b) as well as f(a−ξ) < f(a) = g(b).
Comparing the lower limits of the integrals gives the statement of the theorem.

Conclusions. We present a new geometric approach to the convergence analysis
of a preconditioned fixed-step gradient eigensolver which reduces the derivation of
the convergence rate bound to a two-dimensional case. The main novelty is in the
use of a continuation method for the gradient flow of the Rayleigh quotient to locate
the two-dimensional subspace corresponding to the smallest change in the Rayleigh
quotient and thus to the slowest convergence of the gradient eigensolver.

An elegant and important result such as Theorem 1.1 should ideally have a
textbook-level proof. We have been trying, unsuccessfully, to find such a proof for
several years, so its existence remains an open problem.

Acknowledgments. We thank M. Zhou of University of Rostock, Germany for
proofreading. M. Argentati of University of Colorado Denver, E. Ovtchinnikov of
University of Westminster, and anonymous referees have made numerous great sug-
gestions to improve the paper and for future work.

REFERENCES

[1] J. H. Bramble, J. E. Pasciak, and A. V. Knyazev, A subspace preconditioning algorithm
for eigenvector/eigenvalue computation, Adv. Comput. Math., 6 (1996), pp. 159–189.

[2] E. G. D’yakonov, Optimization in solving elliptic problems, CRC Press, 1996.
[3] A. V. Knyazev, Computation of eigenvalues and eigenvectors for mesh problems: algorithms

and error estimates, (In Russian), Dept. Num. Math., USSR Ac. Sci., Moscow, 1986.
[4] A. V. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric eigen-

value problem, Russian J. Numer. Anal. Math. Modelling, 2 (1987), pp. 371–396.
[5] A. V. Knyazev, Preconditioned eigensolvers—an oxymoron?, Electron. Trans. Numer. Anal.,

7 (1998), pp. 104–123.
[6] A. V. Knyazev, Preconditioned eigensolvers: practical algorithms, In Z. Bai, J. Demmel,

J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide, pp. 352–368. SIAM, Philadelphia, 2000.

[7] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[8] A. V. Knyazev and K. Neymeyr, A geometric theory for preconditioned inverse iteration.
III: A short and sharp convergence estimate for generalized eigenvalue problems, Linear
Algebra Appl., 358 (2003), pp. 95–114.

[9] K. Neymeyr, A geometric theory for preconditioned inverse iteration. I: Extrema of the
Rayleigh quotient, Linear Algebra Appl., 322 (2001), pp. 61–85.

[10] K. Neymeyr, A geometric theory for preconditioned inverse iteration. II: Convergence esti-
mates, Linear Algebra Appl., 322 (2001), pp. 87–104.


