

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 4, pp. 2549–2567

MINIMAL REPETITION DYNAMIC CHECKPOINTING
ALGORITHM FOR UNSTEADY ADJOINT CALCULATION∗

QIQI WANG† , PARVIZ MOIN† , AND GIANLUCA IACCARINO†

Abstract. Adjoint equations of differential equations have seen widespread applications in
optimization, inverse problems, and uncertainty quantification. A major challenge in solving adjoint
equations for time dependent systems has been the need to use the solution of the original system
in the adjoint calculation and the associated memory requirement. In applications where storing the
entire solution history is impractical, checkpointing methods have frequently been used. However,
traditional checkpointing algorithms such as revolve require a priori knowledge of the number of
time steps, making these methods incompatible with adaptive time stepping. We propose a dynamic
checkpointing algorithm applicable when the number of time steps is a priori unknown. Our algorithm
maintains a specified number of checkpoints on the fly as time integration proceeds for an arbitrary
number of time steps. The resulting checkpoints at any snapshot during the time integration have
the optimal repetition number. The efficiency of our algorithm is demonstrated both analytically
and experimentally in solving adjoint equations. This algorithm also has significant advantage in
automatic differentiation when the length of execution is variable.

Key words. adjoint equation, dynamic checkpointing, automatic differentiation, checkpointing
scheme, optimal checkpointing, online checkpointing, revolve

AMS subject classifications. 68W05, 49J20, 65D25

DOI. 10.1137/080727890

1. Introduction. In numerical simulation of dynamical systems, the adjoint
equation is commonly used to obtain the derivative of a predefined objective function
with respect to many independent variables that control the dynamical system. This
approach, known as the adjoint method, has many uses in scientific and engineering
simulations. In control theory-based optimization problems and inverse problems,
the derivative obtained via the adjoint method is used to drive a gradient-based op-
timization iteration procedure [1], [10]. In posterior error estimation and uncertainty
quantification, this derivative is used to analyze the sensitivity of an objective func-
tion to various uncertain parameters and conditions of the system [12], [3], [4]. An
efficient numerical solution of the adjoint equation is essential to these adjoint-based
applications.

The main challenge in solving the adjoint equations for time dependent systems
results from their time-reversal characteristic. Although a forward-time Monte Carlo
algorithm [14] has been proposed for solving the adjoint equations, checkpointing
schemes remain the dominant method to address this challenge. For a general non-
linear dynamical system (referred to here as the original system as opposed to the
adjoint system)

u̇ = G(u, t), u(0) = u0, 0 ≤ t ≤ T,

its adjoint equation is a linear dynamical system with a structure similar to the
original system, except that the adjoint equation is initialized at time T . It then

∗Received by the editors June 19, 2008; accepted for publication (in revised form) February 26,
2009; published electronically June 19, 2009. This work supported by the United States Department
of Energy’s ASC and PSAAP programs at Stanford University.

http://www.siam.org/journals/sisc/31-4/72789.html
†Center for Turbulence Research, Stanford University, Stanford, CA 94305 (qiqi@stanford.edu,

moin@stanford.edu, jops@stanford.edu).

2549

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2550 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

evolves backward in time such that

q̇ = A(u, t)q + b(u, t), q(T) = q0(u(T)), 0 ≤ t ≤ T.

While the specific forms of q0, A, and b depend on the predefined objective function,
the required procedure to solve the adjoint equation is the same: To initialize the
adjoint equation, u(T) must first be obtained; as the time integration proceeds back-
ward in time, the solution of the original system u is needed from t = T backward to
t = 0. At each time step of the adjoint time integration, the solution of the original
system at that time step must be either already stored in memory or recalculated
from the solution at the last stored time step. If we have sufficient memory to store
the original system at all the time steps, the adjoint equation can be solved without
recalculating the original system. High fidelity scientific and engineering simulations,
however, require both many time steps and large memory to store the solution at
each time step, making the storage of the solution at all the time steps impractical.
Checkpointing schemes, in which only a small number of time steps is stored, apply
naturally in this situation. Surprisingly, checkpointing does not necessarily take more
computing time than storing all time steps, since the modified memory hierarchy may
compensate for the required recalculations [11].

Checkpointing schemes can significantly reduce the memory requirement but may
increase the computation time [2], [7]. In the first solution of the original system, the
solutions at a small set of carefully chosen time steps called checkpoints are stored.
During the following adjoint calculation, the discarded intermediate solutions are
then recalculated by solving the original system restarting from the checkpoints. Old
checkpoints are discarded once they are no longer useful, while new checkpoints are
created in the recalculation process and replace the old ones. Griewank [5] proposed a
binomial checkpointing algorithm for certain values of the number of time steps. This
recursive algorithm, known as revolve, has been proven to minimize the number of
recalculations for any given number of allowed checkpoints and all possible number
of time steps [6]. With s number of allowed checkpoints and t recalculations,

(
s+t

t

)
time steps can be integrated. The revolve algorithm achieves logarithmic growth of
spatial and temporal complexity with respect to the number of time steps, acceptable
for the majority of scientific and engineering simulations.

Griewank’s revolve algorithm assumes a priori knowledge of the number of time
steps, which represents an inconvenience, perhaps even a major obstacle in certain ap-
plications. In solving hyperbolic partial differential equations, for example, the size of
each time step Δt can be constrained by the maximum wavespeed in the solution field.
As a result, the number of time steps taken for a specified period of time is not known
until the time integration is completed. A simple but inefficient workaround is to solve
the original system once for the sole purpose of determining the number of time steps,
before applying the revolve algorithm. Two algorithms have been developed to gen-
erate checkpoints with unknown number of time steps a priori. The first is a-revolve

[9]. For a fixed number of allowed checkpoints, the a-revolve algorithm maintains
a cost function that approximates the total computation time of recalculating all
intermediate solutions based on current checkpoint allocation. As time integration
proceeds, the heuristic cost function is minimized by reallocating the checkpoints.
Although a priori knowledge of the number of time steps is not required, the a-

revolve algorithm is shown to be only slightly more costly than Griewank’s revolve

algorithm. However, it is difficult to prove a theoretical bound with this algorithm,
making its superiority to the simple workaround questionable. The other algorithm is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2551

the online checkpointing algorithm [8]. This algorithm theoretically proves to be
optimal; however, it explicitly assumes that the number of time steps is no more than(
s+2

s

)
and produces an error when this assumption is violated. This upper bound in the

number of time steps is extended to
(
s+3

s

)
in a recent work [13]. This limitation makes

their algorithm unsuitable for large number of time steps when the memory is limited.
We propose a dynamic checkpointing algorithm for solving adjoint equations.

This algorithm, compared to previous ones, has three main advantages: First, unlike
Griewank’s revolve, it requires no a priori knowledge of the number of time steps and
is applicable to both static and adaptive time stepping. Second, in contrast to Hinze
and Sternberg’s a-revolve, our algorithm is theoretically optimal in that it minimizes
the repetition number t, defined as the maximum number of times a specific time step
is evaluated during the adjoint computation. As a result, the computational cost has
a theoretical upper bound. Third, our algorithm works for an arbitrary number of
time steps, unlike previous online checkpointing algorithms which limit the length of
the time integration. When the number of time steps is less than

(
s+2

s

)
, our algorithm

produces the same set of checkpoints as Heuveline and Walther’s result; as the number
of time steps exceeds this limit, our algorithm continues to update the checkpoints and
ensures their optimality in the repetition number t. We prove that for arbitrarily large
number of time steps, the maximum number of recalculations for a specific time step
in our algorithm is as small as possible. This new checkpointing algorithm combines
the advantages of previous algorithms without having the drawbacks of them.

As with revolve, our dynamic checkpointing algorithm is applicable both in
solving adjoint equations and in reverse mode automatic differentiation (AD). re-

volve and other static checkpointing algorithms can be inefficient in differentiating
certain types of source code whose length of execution is a priori uncertain. Exam-
ples include “while” statements where the number of loops to be executed is only
determined during execution and procedures with large chunks of code in “if” state-
ments. These cases may seriously degrade the performance of static checkpointing
AD schemes. Our dynamic checkpointing algorithm can solve this issue by achieving
close to optimal efficiency regardless of the length of execution. Since most source
codes to which automatic differentiation is applied are complex, our algorithm can
significantly increase the overall performance of AD software.

This paper is organized as follows. In section 2 we first demonstrate our check-
point generation algorithm. We prove the optimality of the algorithm, based on an
assumption about the adjoint calculation procedure. Section 3 proves this assump-
tion by introducing and analyzing our full algorithm for solving adjoint equations,
including checkpoint-generation and checkpoint-based recalculations in backward ad-
joint calculation. The performance of the algorithm is theoretically analyzed and
experimentally demonstrated in section 4. Conclusions are provided in section 5.

2. Dynamic checkpointing algorithm. The key concepts of time step index,
level, and dispensability of a checkpoint must be defined before introducing our algo-
rithm. The time step index is used to label the intermediate solutions of both the
original equation and the adjoint equation at each time step. It is 0 for the initial
condition of the original equation, 1 for the solution after the first time step, and
increments as the original equation proceeds forward. For the adjoint solution, the
time step index decrements and reaches 0 for the last time step of the adjoint time
integration. The checkpoint with time step index i, or equivalently, the checkpoint
at time step i, is defined as the checkpoint that stores the intermediate solution with
time step index i.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2552 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

Algorithm 1 Dynamic allocation of checkpoints.
Require: s > 0 given.

Save time step 0 as a checkpoint of level ∞;
for i = 0, 1, . . . do

if the number of checkpoints <= s then
Save time step i + 1 as a checkpoint of level 0;

else if at least one checkpoint is dispensable then
Remove the dispensable checkpoint with the largest time step index;
Save time step i + 1 as a checkpoint of level 0;

else
l ⇐ the level of checkpoint at time step i;
Remove the checkpoint at time step i;
Save time step i + 1 as a checkpoint of level l + 1;

end if
Calculate time step i + 1 of the original system;

end for.

We define the concept of level and dispensability of checkpoints in our dynamic
checkpointing algorithm. As each checkpoint is created, a fixed level is assigned to it.
We will prove in section 3 that this level indicates how many recalculations are needed
to reconstruct all intermediate solutions between the checkpoint and the previous
checkpoint of the same level or higher. We define a checkpoint as dispensable if its time
step index is smaller than another checkpoint of a higher level. When a checkpoint is
created, it has the highest time step index and is therefore not dispensable. As new
checkpoints are added, existing checkpoints become dispensable if a new checkpoint
has a higher level. Our algorithm allocates and maintains s checkpoints and one
placeholder based on the level of the checkpoints and whether they are dispensable.
During each time step, a new checkpoint is allocated. If the number of checkpoints
exceeds s, an existing dispensable checkpoint is removed to maintain the specified
number of checkpoints.

Two simplifications have been made in Algorithm 1. First, the algorithm main-
tains s + 1 checkpoints, one more than what is specified. This is because the last
checkpoint is always at time step i + 1, where the solution has yet to be calculated.
As a result, the last checkpoint stores no solution and takes little memory space (re-
ferred to here as a placeholder checkpoint), making the number of real checkpoints s.
The other simplification is the absence of the adjoint calculation procedures, which is
addressed in section 3.

In the remainder of this section, we calculate the growth rate of the checkpoint
levels as the time step i increases. This analysis is important because the maximum
checkpoint level determines the maximum number of times of recalculation in the
adjoint calculation t, as proven in section 3. Through this analysis, we show that
our algorithm achieves the same number of time steps as Griewank and Walther’s
revolve for any given s and t. Since revolve is known to maximize the number
of time steps for a fixed number of checkpoints s and times of calculations t, our
algorithm is thus optimal in the same sense.

Algorithm 1 starts by saving time step 0 as a level infinity checkpoint,1 and time
steps 1 through time step s as level 0 checkpoints. When i = s, there are already s+1

1The checkpoint at time step 0 is set to level infinity so that it is always indispensable and
therefore never deleted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2553

Fig. 1. Dynamic allocation of checkpoints for s = 3. The plot shows the checkpoints distribution
during 25 time steps of time integration. Each vertical cross-section on the plot represents a snapshot
of the time integration history, from time step 0 to time step 25, indicated by the vertical axis.
Different symbols represent different levels of checkpoints: Circles are level ∞ checkpoint at time
step 0. Thin dots, “+”, “×”, and star symbols correspond to level 0, 1, 2, and 3 checkpoints,
respectively. The thick dots connected by a line indicate the time step index of the current solution,
which is also the position of the placeholder checkpoint.

checkpoints, none of which are dispensable. The algorithm enters the “else” clause
with l = 0. In this clause, the checkpoint at time step s is removed, and time step s+1
is saved as a level 1 checkpoint, making all checkpoints except for the first and last ones
dispensable. As the time integration continues, these s − 1 dispensable checkpoints
are then recycled, while time steps s + 2 to 2s take their place as level 0 checkpoints.
A third checkpoint of level 1 is created for time step 2s+1, while the remaining s− 2
level 0 checkpoints become dispensable. Each time a level 1 checkpoint is made, one
less level 0 checkpoint is dispensable, resulting in one less space between the current
and the next level 1 checkpoints. The s+1st level 1 checkpoint is created for time step
(s+1)+ s+(s− 1)+ · · ·+2 =

(
s+2
2

)
− 1. At this point, all s+1 checkpoints are level

1, while the space between them is an arithmetic sequence. All checkpoints created
thus far are exactly the same as the online checkpointing algorithm [8], although their
algorithm breaks down and produces an error at the very next time step.

Our algorithm continues by allocating a level 2 checkpoint for time step
(
s+2
2

)
. At

the same time, the level 1 checkpoint at time step
(
s+2
2

)
−1 is deleted, and all other level

1 checkpoints become dispensable. A similar process of creating level 2 checkpoints
ensues. The third level 2 checkpoint is created for time step

(
s+2
2

)
+

(
s+1
2

)
, after the

same evolution described in the previous paragraph with only s− 1 free checkpoints.
The creation of level 2 checkpoints continues until the s + 1st level 2 checkpoint is
created with time step index

(
s+2
2

)
+

(
s+1
2

)
+ · · ·+

(
3
2

)
=

(
s+3
3

)
−1. The creation of the

first level 3 checkpoint follows at time step
(
s+3
3

)
. Figure 1 illustrates an example of

this process where s = 3. Until now, we found that the time steps of the first level 0,
1, 2, and 3 checkpoints are, respectively, 1, s + 1,

(
s+2
2

)
, and

(
s+3
3

)
. This interesting

pattern leads to our first proposition.
Proposition 1. In Algorithm 1, the first checkpoint of level t is always created

for time step
(
s+t

t

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2554 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

To prove this proposition, we note that it is a special case of the following lemma
when i = 0, making it only necessary to prove the lemma.

Lemma 2. In Algorithm 1, let i be the time step of a level t − 1 or higher
checkpoint. The next checkpoint with level t or higher is at time step i +

(
s−ni+t

t

)
and is level t iff ni < s, where ni is the number of indispensable checkpoints allocated
before time step i.

Proof. We use induction here. When t = 0,
(
s−ni+t

t

)
= 1. The next checkpoint

is allocated at time step i + 1, and its level is nonnegative; therefore, it is level 0 or
higher. If there is a dispensable checkpoint at time step i, the new checkpoint is level
0; otherwise, it is level 1.

Assuming that the lemma holds true for any 0 ≤ t < t0, we now prove it for
t = t0. Suppose ni = s. Then, no dispensable checkpoint exists. Therefore, at step
i +

(
s−ni+t

t

)
= i + 1, the (second) “else” clause is executed, creating a higher level

checkpoint at time step i + 1. The lemma holds in this case. Suppose ni < s, we use
the induction hypothesis. The next level t − 1 checkpoint is created at time step

i1 = i +
(

t − ni + t − 1
t − 1

)
,

incrementing the number of indispensable checkpoints

ni1 = ni + 1.

As a result, the following level t − 1 checkpoints are created at time steps

i2 = i1 +
(

s − ni1 + t − 1
t − 1

)
,

i3 = i2 +
(

s − ni2 + t − 1
t − 1

)
,

. . .

ik+1 = ik +
(

s − nik
+ t − 1

t − 1

)
,

. . . .

This creation of level t−1 checkpoints continues until nik
= ni +k = s. At this point,

all existing checkpoints are level t − 1. Consequently, the “else” clause is executed
with l = t − 1 and creates the first level t checkpoint at time step

is−ni+1 = i +
(

s − ni + t − 1
t − 1

)
+

(
s − ni − 1 + t − 1

t − 1

)
+ · · · +

(
t − 1
t − 1

)
.

Using Pascal’s rule

(
m

k

)
=

(
m − 1

k

)
+

(
m − 1
k − 1

)
=

k∑
i=0

(
m − 1 − i

k − i

)

with m = s − ni + t and k = s − ni, this equation simplifies to

is−ni+1 = i +
(

s − ni + t

t

)
,

which completes the induction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2555

From this lemma, we see that the first level t checkpoint is created at time step(
s+t

t

)
, the second level t checkpoint is created at time step

(
s+t

t

)
+

(
s−1+t

t

)
, and

the sth level t checkpoint (a placeholder) is created at time step
∑s−1

i=0

(
s−i+t

t

)
=(

s+t+1
t+1

)
− 1. At time step

(
s+t+1

t+1

)
, this placeholder checkpoint is replaced by a level

t + 1 placeholder, and all other checkpoints remain. This observation leads to the
following corollary, which will be used in section 4 to prove the optimality of our
algorithm in this special case.

Corollary 3. At time step
(
s+t+1

t+1

)
, the distribution of the checkpoints is the

same as the checkpoints generated by revolve, distributed at time steps

k∑
i=0

(
s − i + t

t

)
, k = 0, . . . , s − 1.

Proposition 1 leads us to the key conclusion of our theoretical analysis.
Corollary 4. For any t > 0 and s > 0, m time steps can be taken in Algorithm

1 without any checkpoint being raised to level t + 1, iff

m ≤
(

s + t + 1
t + 1

)
.

Combined with Theorem 6.1 of [5], Corollary 4 indicates that the checkpoints
produced by Algorithm 1 have the optimal repetition number, determined by

(
s + t

t

)
< m ≤

(
s + t + 1

t + 1

)
.

This conclusion is based on the fact that

(1) maximum checkpoint level ≥ repetition number.

The repetition number here does not count the first time the original system is solved.
This equality will be proved in the next section by analysis of the adjoint calculation
algorithm.

3. Adjoint calculation. In this section, we fully describe our algorithm of solv-
ing adjoint equations using dynamic checkpointing. The algorithm consists of a for-
ward sweep and a backward sweep. The forward sweep solves the original system and
stores intermediate solutions at checkpoints. The adjoint system is then solved in
the backward sweep, using the stored checkpoints to initialize recalculations. Algo-
rithm 2 describes this high level scheme; the details of checkpoint manipulations and
recalculations are given in Algorithms 3 and 4.

The algorithm for advancing the original system is essentially identical to Al-
gorithm 1. In the first forward sweep, checkpoints generated by repeatedly calling
Algorithm 3 satisfy Lemma 2, Theorem 1, and hence Corollary 4. Moreover, a recal-
culation sweep consisting of a series of calls to Algorithm 3 also satisfies Lemma 2. In
each time step, the solution at time step i, instead of time step i + 1, is stored. This
strategy ensures that the last checkpoint at time step i + 1 is always a placeholder
checkpoint. Although our algorithm updates and maintains s + 1 checkpoints, only s
of them store solutions.

Compared to checkpoint allocation, retrograding the adjoint system is relatively
simple. Solving the adjoint solution at time step i requires both the solution to the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2556 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

Algorithm 2 High level scheme to solve the adjoint equation.
Initialize the original system;
i ⇐ 0;
Save time step 0 as a placeholder checkpoint of level ∞;
while the termination criteria of the original system is not met do

Solve the original system from time step i to i + 1 using Algorithm 3;
i ⇐ i + 1;

end while
Initialize the adjoint system;
while i >= 0 do

i ⇐ i − 1;
Solve the adjoint system from time step i + 1 to i using Algorithm 4;

end while.

Algorithm 3 Solving the original system from time step i to i + 1.
Require: s > 0 given; solution at time step i has been calculated.

if the number of checkpoints <= s then
Save time step i + 1 as a checkpoint of level 0;

else if at least one checkpoint is dispensable then
Remove the dispensable checkpoint with the largest time step index;
Save time step i + 1 as a checkpoint of level 0;

else
l ⇐ the level of checkpoint at time step i;
Remove the checkpoint at time step i;
Save time step i + 1 as a checkpoint of level l + 1;

end if
if time step i is in the current set of checkpoints then

Store the solution at time step i to the checkpoint;
end if
Calculate time step i + 1 of the original system.

Algorithm 4 Solving the adjoint system from time step i + 1 to i.
Require: s > 0 given; adjoint solution at time step i + 1 has been calculated.

Remove the placeholder checkpoint at time step i + 1;
if the last checkpoint is at time step i then

Retrieve the solution at time step i, making it a placeholder checkpoint;
else

Retrieve the solution at the last checkpoint, making it a placeholder check-
point;
Initialize the original system with the retrieved solution;
Solve the original system to time step i by calling Algorithm 3;

end if
Calculate time step i of the adjoint system.

adjoint system at time step i+1 and the solution to the original system at time step i.
The latter can be directly retrieved if there is a checkpoint for time step i; otherwise,
it must be recalculated from the last saved checkpoint. Note that this algorithm calls
Algorithm 3 to recalculate the solution of the original system at time step i from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2557

Fig. 2. Distribution of checkpoints during the process of Algorithm 2 for s ≥ 25. Each vertical
cross-section on the plot represents a snapshot of the algorithm execution history, from the beginning
of the forward sweep to the end of the adjoint sweep, indicated by the horizontal axis. Different
symbols represent different levels of checkpoints: Circles are level ∞ checkpoint at time step 0. Thin
dots, “+”, “×”, and star symbols correspond to level 0, 1, 2, and 3 checkpoints, respectively. The
round, thick dots indicate the time step index of the current original solution, which is also the
position of the placeholder checkpoint; the lines connecting these round dots indicate where and
when the original equation is solved. The thick dots with a small vertical bar indicate the time step
index of the current adjoint solution, while the lines connecting them indicate where and when the
adjoint equation is solved.

Fig. 3. Distribution of checkpoints during Algorithm 2 for s = 5. Refer to Figure 2 for
explanation of symbols.

the last saved checkpoint, during which more checkpoints are created between the
last saved checkpoint and time step i. These new checkpoints reduce the number of
recalculations using memory space freed by removing checkpoints after time step i.

Figures 2–5 show examples of the entire process of Algorithm 2 with four different
values of s. As can be seen, the fewer the specified number of checkpoints s, the more
recalculations of the original equation are performed, and the longer it takes to solve
the adjoint equation. When s ≥ 25, there is enough memory to store every time
step, so no recalculation is done. The maximum finite checkpoint level is 0 in this
case. When s = 6, the maximum finite checkpoint level becomes 1, and at most 1
recalculation is done for each time step. When s decreases to 5 and 3, the maximum
finite checkpoint level increases to 2 and 3, respectively, and the maximum number

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2558 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

Fig. 4. Distribution of checkpoints during Algorithm 2 for s = 5. Refer to Figure 2 for
explanation of symbols.

Fig. 5. Distribution of checkpoints during Algorithm 2 for s = 3. Refer to Figure 2 for
explanation of symbols.

of recalculations also increases to 2 and 3, respectively. From these examples, we see
that the number of recalculations at each time step is bounded by the level of the
checkpoints after that time step. In the remaining part of this section, we focus on
proving this fact, starting with Lemma 5.

Lemma 5. Denote ti as the highest level of all checkpoints whose time steps are
greater than i. For any i, ti does not increase for each adjoint step. Furthermore, if
i is between the time steps of the last two indispensable checkpoints before an adjoint
step, ti decreases after this adjoint step.

Proof. Fix i, consider an adjoint step from time step j to j−1, where j > i. Note
that before this adjoint step, time step j is a placeholder checkpoint. Denote the level
of this checkpoint as lj . If time step j − 1 is stored in a checkpoint before this adjoint
step, then checkpoint j is removed and all other checkpoints remain, making Lemma
5 trivially true. If time step j − 1 is not stored before this adjoint step, the original
system is recalculated from the last checkpoint to time step j−1. We now prove that
this recalculation sweep does not produce any checkpoints with level higher or equal
to lj . As a result, ti does not increase; furthermore, if no other level ti checkpoint has
a time step greater than i, ti decreases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2559

Denote the time step of the last checkpoint as k and its level as lk. We use capital
letter B to denote the recalculation sweep in the current adjoint step. Note that
sweep B starts from time step k and ends at time step j − 1. On the other hand, the
checkpoint at time step j is created either during the first forward sweep or during
a recalculation sweep in a previous adjoint step. We use capital letter A to denote a
part of this sweep from time step k to when the checkpoint at time step j is created.
To compare the sweeps A and B, note the following two facts: First, the checkpoint
at time step k exists before sweep A. This is because sweep A created the checkpoint
at time step j, making all subsequent recalculations before sweep B start from either
this checkpoint or a checkpoint whose time step is greater than j. Consequently, the
checkpoint at time step k is not created after sweep A; it is created either by sweep A
or exists before sweep A. Secondly, because any sweep between A and B starts at time
step j or greater, it does not create any checkpoint with a time step index smaller
than k. On the other hand, any checkpoint removed during or after sweep A and
before B is always the lowest level at that time, and thus, does not cause the increase
of the number of dispensable checkpoints. As a result, the number of dispensable
checkpoints with time step indices smaller than k is no less at the beginning of sweep
A than at the beginning of sweep B. This is identical to stating

nA
k ≥ nB

k ,

where nk is the number of indispensable checkpoints with time step indices less than
k; the superscript identifies the sweep in which the indispensable checkpoints are
counted.

Now, we complete the proof by comparing sweeps A and B in the following two
cases: If lk < lj, we assert that sweep A does not create any higher level checkpoint
than lk at time steps between k and j. Suppose the contrary is true, that sweep A
has created an at least level lk + 1 checkpoint between the two time steps. Because
no checkpoint is between time steps k and j when sweep B starts, the supposed
checkpoint must have been removed before sweep B happens. But in that case, the
checkpoint at time step k must be also removed because its level is lower. This
cannot happen because sweep B starts at this checkpoint. This contradiction proves
our assertion. Because time step j is the first higher level checkpoint than lk created
by sweep A with larger time step index than k, its time step index, based on Lemma
2, is

j = k +
(

s − nA
k + lk + 1
lk + 1

)
.

Since nA
k ≥ nB

k , we further get

j ≤ k +
(

s − nB
k + lk + 1
lk + 1

)
.

Using Lemma 2 again, we conclude that the first checkpoint with level higher than lk
is at a time step index greater than or equal to j. But time step j − 1 is the last step
of sweep B; therefore, sweep B does not create any checkpoint with a level higher
than lk. Since lk < lj , no level lj or higher checkpoint is created by sweep B. This
completes the proof in the first case.

In the second case, lk ≥ lj, we assert that the checkpoint at time step j is the
first one created by sweep A with level higher or equal to lj . Suppose the contrary is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2560 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

true, that sweep A has created an at least level lj checkpoint between the two time
steps. Because no checkpoint is between time steps k and j when sweep B starts, the
supposed checkpoint must have been removed before sweep B happens. But in that
case, the checkpoint at time step j must be also removed, since it has the same level
and is at a larger time step index. This is contradictory because sweep B starts at
this checkpoint. Therefore, our assertion is true, and from Lemma 2 we get

j ≤ k +
(

s − nA
k + lj
lj

)
.

Since nA
k ≥ nB

k , we further get

j ≤ k +
(

s − nB
k + lj
lj

)
.

Using Lemma 2 again, we conclude that the first checkpoint with level higher or equal
to lj is at a time step index greater than or equal to j. But time step j − 1 is the
last step of sweep B; therefore, sweep B does not create any checkpoint with a level
higher or equal to lj . This completes the proof in the second case.

Lemma 5 indicates that the highest level of all checkpoints whose time step index
is greater than a particular value is monotone decreasing during the adjoint time
integration. Equipped with this result, we prove the main proposition in this section.

Proposition 6. Let i ≥ 0. Time integrating the adjoint system from any time
step i′ > i to time step i requires calling Algorithm 3 at most ti times for advancing
from time step i to time step i + 1, where ti is the highest level of all the checkpoints
with time step indices greater than i before the adjoint time integration.

Proof. To prove this proposition, we use induction again. If ti = 0, then the “else”
clause in Algorithm 3 is never executed after time step i. All checkpoints created after
time step i are neither dispensable nor removed, including the i + 1st time step. No
recalculation from time step i to i + 1 is necessary to obtain the solution at time step
i + 1, in which case the proposition holds.

Assuming that the proposition holds true for all ti ≤ T , we prove it for ti = T +1.
Among all level ti checkpoints with a time step index larger than i, let j be the smallest
time step index of such checkpoints. Because at the beginning of the adjoint time
integration, no checkpoint with a time step index greater than i has a higher level
than ti; by Lemma 5, the entire adjoint time integration from time step i′ to i does not
produce any checkpoint with a higher level than ti and time step index greater than i.
As a result, the level ti checkpoint at time step j is not removed by any recalculation
sweep until the adjoint time integration reaches time step j. Any recalculation sweep
before the adjoint time integration reaches time step j starts either at time step j or
from a checkpoint with greater time step than j. Therefore, recalculation at time step
i is only possible after the adjoint time integration reaches time step j. We focus on
this part of the adjoint calculation during the rest of the proof.

If i = j−1, because the solution at i+1 = j is no longer needed, no recalculation
from i to i + 1 is done. Otherwise, j − 1 is not a checkpoint, and a recalculation
sweep is performed from the last checkpoint to time step j − 1. This sweep includes
zero or one recalculation from time step i to time step i + 1, depending on where it is
initialized. Because j is the smallest time step index of level ti checkpoints with time
step greater than i, time step i is between the last two indispensable checkpoints before
the adjoint step from time step j to j − 1. This enables us to use the “furthermore”
part of Lemma 5 and conclude that ti decreases to T or lower after this adjoint step.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2561

Therefore, from our induction hypothesis, the number of recalculations at time step
i after this adjoint step is at most ti − 1. Combining this number with the possible
one recalculation during the adjoint step from j to j−1, the total recalculations from
time step i to time step i + 1 during all the adjoint steps from time step i′ to i is at
most ti, completing our induction.

As a special case of the proposition, consider time step i′ to be the last time step
in solving the original system, and i = 0. Let t = t0 be the highest finite level of all
checkpoints when the first forward sweep is completed. According to the proposition,
ti ≤ t for all i, resulting in the following corollary.

Corollary 7. In Algorithm 3, let t be the maximum finite checkpoint level after
the original system is solved for the first time. Algorithm 4 is called at most t times
for each time step during the backward sweep in solving the adjoint equation.

Corollary 7 effectively states (1). Combined with Corollary 4, it proves that our
dynamic checkpointing algorithm achieves a repetition number of t for

(
s+t

t

)
time

steps. This, as proven by [5], is the optimal repetition number for any checkpointing
algorithm.

4. Algorithm efficiency. The previous two sections presented our dynamic
checkpointing algorithm and its optimality in the repetition number. Here, we discuss
the implication of this optimality on the performance of this algorithm, and demon-
strate its efficiency using numerical experiments. We begin by providing a theoretical
upper bound on the total number of time step recalculations in our adjoint.

Proposition 8. The overall number of forward time step recalculations in the
adjoint calculation nr is bounded by

(2) nr < t m −
(

s + t

t − 1

)
,

where m is the number of time steps, t is the repetition number determined by
(

s + t

t

)
< m ≤

(
s + t + 1

t + 1

)
,

and s is the number of allowed checkpoints.
Proof. Since the repetition number is t, there is at least one checkpoint of level

t and no checkpoint of a higher level (Corollary 4). The first level t checkpoint is
created at time step index

(
s+t

t

)
, according to Proposition 1. Since no checkpoint of

a higher level is created, this first level t checkpoint cannot removed by Algorithm
1. We split the adjoint calculation at the first level t checkpoint at time step index(
s+t

t

)
. First, in calculating the adjoint steps of index from m to

(
s+t

t

)
, every forward

step is recalculated at most t times by definition of the repetition number t. The total
number of forward time step recalculations in this part is less than or equal to

t

(
m −

(
s + t

t

))
.

In fact it is always less than, since the very last time step is never recalculated. Second,
in calculating the adjoint steps of index from

(
s+t

t

)
− 1 to 0, if no checkpoint exists in

this part, the total number of forward time step recalculations is

t

(
s + t

t

)
−

(
s + t

t − 1

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2562 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

(equation (3) in [6]). The total number of recalculations in this part is less than this
number if there is one or more checkpoints between time step 0 and

(
s+t

t

)
. Therefore,

the total number of forward time step recalculations in the entire adjoint calculation,
which is the sum of the number of recalculations in the two parts, is less than

t m −
(

s + t

t − 1

)
.

Having this upper bound, we compare the total number of recalculations of our
algorithm with the optimal static checkpointing scheme. The minimum number of
total forward time step calculations for an adjoint calculation of length m is

(t + 1)m −
(

s + t + 1
t

)

(equation (3) in [6]), including the m − 1 forward time step calculations before the
adjoint calculation begins. Therefore, the minimum number of total recalculations is

(3) nr ≥ nr opt = t m −
(

s + t + 1
t

)
+ 1.

Equations (2) and (3) bound the total number of forward time step recalculations of
our dynamic checkpointing scheme. They also bound the deviation from optimality
in terms of total recalculations:

nr − nr opt <

(
s + t + 1

t

)
−

(
s + t

t − 1

)
− 1 =

(
s + t

t

)
− 1.

This bound naturally leads to the following corollary.
Corollary 9. Using our dynamic checkpointing scheme takes less total recalcu-

lations than running the simulation forward, determining the number of time steps,
and then (knowing the time step count) using the proven optimal revolve algorithm.

Proof. Running the simulation forward to determine the number of time steps,
then using revolve takes a total number of n′

r = m + nr opt recalculations. Since
m >

(
s+t

t

)
, we have n′

r > nr opt +
(
s+t

t

)
> nr.

In addition to this theoretical upper bound, the following proposition proves that
our scheme achieves an optimal number of recalculations in certain special cases.

Proposition 10. The total number of recalculations is optimal as in (3) when

m ≤
(

s + 2
2

)
or m =

(
s + t

t

)
for any t ≥ 2,

where m is the number of time steps.
Proof. When m ≤ s, no recalculation is necessary, thus the result is trivially

true. When s < m ≤
(
s+2
2

)
, the repetition number t = 1. Therefore, each time step

is recalculated at most once. Furthermore, the s time steps stored as checkpoints
are not recalculated, and the last time step is not recalculated. Therefore, the total
number of recalculations is no more than m − s − 1, which is the minimum number
of total recalculations when t = 1, according to (3). This proves the proposition for
m ≤

(
s+2
2

)
.

We use induction to prove the proposition when m =
(
s+t+1

t+1

)
for some t ≥ 1. We

have already proved the result when t = 1. Now assume that the proposition holds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2563

Fig. 6. The horizontal axis is the number of time steps, and the vertical axis is the average
number of recalculations for each time step, defined as the total number of recalculations divided by
the number of time steps. Plus signs are the actual average number of recalculations of the dynamic
checkpointing scheme; the solid line and the dotted line are the lower and upper bound defined by
(2) and (3). The upper left, upper right, lower left, and lower right plots correspond to 10, 25, 50,
and 100 allowed checkpoints, respectively.

for t, i.e., the total number of recalculations is (t − 1)m −
(

s+t
t−1

)
+ 1 when m =

(
s+t

t

)
for any s. Now when m =

(
s+t+1

t+1

)
, Corollary 3 shows the checkpoints are distributed

at time step m0 = 0 and time steps mk =
∑k−1

i=0

(
s−i+t

t

)
, k = 1, . . . , s − 1. Marching

backwards from time step mk+1 to time step mk is the equivalent of marching
(
s−k+t

t

)
time steps using s− k checkpoints, which takes

(
s−k+t

t

)
− 1 recalculations in the first

forward sweep, plus (t − 1)
(
s−k+t

t

)
−

(
s−k+t

t−1

)
+ 1 recalculations (by the induction

hypothesis). Therefore, the total number of recalculations is

s−1∑
k=0

t

(
s − k + t

t

)
−

(
s − k + t

t − 1

)
= t

(
s + t + 1

t + 1

)
−

(
s + t + 1

t

)
+ 1

by applying Pascal’s rule. Therefore, the total number of recalculations is optimal for
t + 1, completing the induction.

With these theoretical results, we next study experimentally the actual number
of recalculations of our dynamic checkpointing algorithm. Figure 6 plots the actual
number of forward time step recalculations, together with the upper and lower bound
defined by (2) and (3). The total number of recalculations is divided by the number
of time steps, and the resulting average number of recalculations for each time step is
plotted. As can be seen, the actual number lies between the lower and upper bound,
as predicted by the theory. Also, more points tend to be closer to the lower bound
than to the upper bound, and some points lie exactly on the lower bound. This means
that our algorithm in most cases outperforms what Corollary 9 guarantees.

While the total number of recalculations of our dynamic checkpointing algorithm
is not necessarily as small as static checkpointing schemes, the repetition number
is provably optimal in any situation. Table 1 shows the maximum number of time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2564 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

Table 1

Maximum number of time steps for a fixed number of checkpoints and repetition number t.

t = 1 t = 2 t = 3 t = 4 t = 10

10 checkpoints 66 286 1001 3003 1.85 × 105

25 checkpoints 351 3276 23751 1.43 × 105 1.84 × 108

50 checkpoints 1326 23426 3.16 × 105 3.48 × 106 7.54 × 1010

100 checkpoints 5151 1.77 × 105 4.60 × 106 9.66 × 107 4.69 × 1013

steps our algorithm can proceed for a given number of checkpoints and number of
recalculations (repetition number). The range of checkpoints are typical for most of
today’s unsteady simulations in fluid mechanics, which range from 10 checkpoints
in high fidelity multiphysics simulations where limited memory is a serious issue, to
100 checkpoints in calculations where memory requirements are less stringent. The
maximum number of time steps is calculated by the formula

(
s+t+1

t+1

)
, where s is

the number of checkpoints and t is the number of recalculations. As can be seen, the
number of time steps grows very rapidly as either the checkpoints or the recalculations
increase. With only 10 checkpoints, 5 to 7 recalculations should be sufficient for the
majority of today’s unsteady flow simulations. With 100 checkpoints, only one or two
recalculations are needed to achieve the same number of time steps. With this many
checkpoints, our algorithm requires only three recalculations for 4.6× 106 time steps,
much more than current calculations use.

To end this section, we use a numerical experiment to demonstrate that our
algorithm is not only theoretically advantageous, but also highly efficient in practice.
In this experiment, the original system is the inviscid Burgers’ equation

ut +
1
2

(
u2

)
x

= 0, x ∈ [0, 1], t ∈ [0, 1];

u|t=0 = sin 2πx, u|x=0,1 = 0.

We discretize this partial differential equation with a first-order up-winding finite-
volume scheme with 250 mesh volumes and use forward Euler time integration with a
fixed CFL number |umax|Δt

Δx . As the time integration proceeds, a shock wave forms at
x = 0.5. The shock wave dissipates the solution, decreases the maximum wavespeed
|u|max, and increases the size of each time step due to the fixed CFL number. As a
result, the number of time steps needed to proceed to t = 1 is not known a priori. To
vary the number of time steps, we chose five different CFL numbers ranging from 1.0
to 0.002. The discrete adjoint equation of the original system is solved with initial
and boundary conditions,

φ|t=1 = sin 2πx, φ|x=0,1 = 0.

Four different numbers of checkpoints, s = 10, 25, 50, and 100, were specified. For
each s, we ran five calculations with different CFL numbers. We recorded the ratio
of computation time between the backward sweep of solving adjoint system and the
forward sweep of solving the original system. Because the computation time of the
forward sweep is the cost of solving the original system alone, this ratio reflects the
additional cost of solving the adjoint equation. We compare the ratio with a theoreti-
cal bound derived by assuming that solving an adjoint step requires the same amount
of computation time as a forward step.2 Under this assumption, the computation

2This is not a valid assumption in general; therefore, the theoretical bounds are not true bounds.
In our numerical experiment, an adjoint step sometimes can be cheaper than each forward step. As
a result, the computing time ratios may be out of the theoretical bounds, as can be seen in Figure 7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2565

Fig. 7. Comparison of theoretical bounds (dotted and solid lines) and experimental performance
(plus markers) of our dynamic checkpointing adjoint solver. The top left, top right, bottom left, and
bottom right plots correspond to s = 10, 25, 50, and 100, respectively.

time ratio of the backward sweep to the forward sweep is equal to the average number
of recalculations for each time step plus 1. Therefore, upper and lower bounds of this
ratio can be calculated by (3) and (2).

Figure 7 plots this experimental time ratio with the theoretical bounds. The four
subplots correspond to the different number of checkpoints used. Each subplot shows
the resulting number of time steps and ratio of computation time for five different CFL
numbers. As can be seen, most of the experimental time ratios are within or close to
the theoretical bounds, indicating that our algorithm works in practice as efficiently
as theoretically proven. In this experiment, the computational cost of calculating a
linear adjoint step may be smaller than solving a nonlinear Burgers’ step, which can
explain why some points lie below the theoretical lower bound.

5. Conclusion and discussion. We propose a checkpointing adjoint solver, in-
cluding an algorithm for dynamically allocating checkpoints during the initial calcula-
tion of the original system and subsequent recalculations. Its three main advantages
over previous algorithms are as follows: the number of time steps does not need to be
known beforehand; the number of recalculations is minimized; an arbitrary number
of time steps can be integrated. For an original system with no more than

(
s+t

t

)
time steps, each time step is calculated at most t times, as has been proven optimal
in the previous literature on checkpointing schemes [5]. Despite the lengthy proof
of this optimality, the algorithm itself is conceptually simple to implement and has
widespread applications in scientific and engineering simulations of complex systems,
where adaptive time stepping is often desirable, if not necessary.

Although this paper is biased towards solving adjoint equations of time dependent
differential equations, a more compelling application of our algorithm is in reverse
mode AD. Most scientific computation code contains “if” and “while” statements,
making their length of execution uncertain a priori. Therefore, our dynamic check-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2566 QIQI WANG, PARVIZ MOIN, AND GIANLUCA IACCARINO

pointing algorithm can be more suitable than static optimal checkpointing algorithms
in these cases.

Although we proved that our dynamic checkpointing algorithm has the optimal
repetition number, it is not always optimal in terms of the total number of time
step recalculations. When the number of time steps is between

(
s+2
2

)
and

(
s+3
3

)
, the

improved online checkpointing scheme [13] may outperform our algorithm. Therefore,
our dynamic checkpointing algorithm can still be improved in terms of the total
number of recalculations by placing and replacing low level checkpoints in a more
planned manner. Future research should be done in combining our algorithm with
the improved online checkpointing scheme. We think it is possible to use online

checkpointing until the number of time steps reaches
(
s+3
3

)
, then switch to our

algorithm to proceed.
Our dynamic checkpointing algorithm aims only to optimize the repetition num-

ber and reduce the number of time step calculations, ignoring the computational cost
of writing and reading checkpoints. In many applications, such as solving incom-
pressible Navier–Stokes equations where each time step involves solving a full Poisson
equation, the cost of reading and writing checkpoints is negligible because calculating
each time step takes much more computation time. In other cases, especially when
the checkpoints are written in and read from a hard disk instead of being kept in
RAM, the input/output time associated with checkpoint writing and reading cannot
be ignored. In such cases, our dynamic checkpointing algorithm may not be the best
choice, since it requires significantly more checkpoint writing than revolve does.

An implicit assumption of our algorithm is the uniform cost of calculating each
time step of the original system. Although this is true for the majority of simple partial
differential equations, it is not true for some multiphysics simulations. Moreover,
this assumption is false in some AD applications. While extension of this algorithm
to account for the nonuniform cost of each time step should not be very difficult,
maintaining a provable performance bound in the extension is subject to further
investigation.

Another assumption on which we base our algorithm is that calculating the adjoint
solution at time step i from time step i + 1 requires only the solution to the original
system at time step i. In practice, especially if advanced time integration methods
are used in solving the original equation, solving the discrete adjoint equation at time
step i may require more than one time step of the original system. Future research
plans includes investigating ways to adjust our algorithm for this case.

REFERENCES

[1] T. Bewley, P. Moin, and R. Temam, DNS-based predictive control of turbulence: An optimal
target for feedback algorithms, J. Fluid Mech., 447 (2001), pp. 179–225.

[2] I. Charpentier, Checkpointing schemes for adjoint codes: Application to the meteorological
model Meso-NH, SIAM J. Sci. Comput., 22 (2001), pp. 2135–2151.

[3] M. B. Giles and N. A. Pierce, Adjoint Error Correction for Integral Outputs, in Error
Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, T. J.
Barth and H. Deconinck, eds., Springer-Verlag, Heidelberg, 2002, pp. 47–96.

[4] M. B. Giles and E. Suli, Adjoint methods for PDEs: A posteriori error analysis and post-
processing by duality, Acta Numer., 11 (2002), pp. 145–236.

[5] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation, Optim. Methods Softw., 1 (1992), pp. 35–54.

[6] A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math.
Software, 26 (2000), pp. 19–45.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC CHECKPOINTING FOR UNSTEADY ADJOINT 2567

[7] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, 2nd ed., SIAM, Philadelphia, PA, 2008.

[8] V. Heuveline and A. Walther, Online checkpointing for parallel adjoint computation in
PDEs: Application to goal oriented adaptivity and flow control, in Proceedings of Euro-
Par 2006 Parallel Processing, W. Nagel et al., ed., 2006, pp. 689–699.

[9] M. Hinze and J. Sternberg, A-Revolve: An adaptive memory- and run-time-reduced proce-
dure for calculating adjoints; with an application to the instationary Navier-Stokes system,
Optim. Methods Softw., 20 (2005), pp. 645–663.

[10] A. Jameson, Aerodynamic design via control theory, J. Sci. Comput., 3 (1988), pp. 233–260.
[11] A. Kowarz and A. Walther, Optimal checkpointing for time-stepping procedures, in Pro-

ceedings of ICCS 2006, Lecture Notes in Comput. Sci. 3994, V. Alexandrov et al., ed.,
Springer-Verlag, Berlin, 2006, pp. 541–549.

[12] N. Pierce and M. Giles, Adjoint recovery of superconvergent functionals from PDE approxi-
mations, SIAM Rev., 42 (2000), pp. 247–264.

[13] P. Stumm and A. Walther, Towards the Economical Computation of Adjoints in PDEs
using Optimal Online Checkpointing, Technical report DFG-SPP 1253-15-04, Deutsche
Forschungsgemeinschaft Schwerpunktprogramm 1253, Bonn, Germany, 2008.

[14] Q. Wang, D. Gleich, A. Saberi, N. Etemadi, and P. Moin, A Monte Carlo method for
solving unsteady adjoint equations, J. Comp. Phys., 227 (2008), pp. 6184–6205.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

