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CONVEXITY IN SEMI-ALGEBRAIC GEOMETRY AND

POLYNOMIAL OPTIMIZATION

JEAN B. LASSERRE

Abstract. We review several (and provide new) results on the theory of mo-
ments, sums of squares and basic semi-algebraic sets when convexity is present.

In particular, we show that under convexity, the hierarchy of semidefinite re-
laxations for polynomial optimization simplifies and has finite convergence, a
highly desirable feature as convex problems are in principle easier to solve. In
addition, if a basic semi-algebraic set K is convex but its defining polynomials
are not, we provide two algebraic certificate of convexity which can be checked
numerically. The second is simpler and holds if a sufficient (and almost nec-
essary) condition is satisfied, it also provides a new condition for K to have
semidefinite representation. For this we use (and extend) some of recent re-
sults from the author and Helton and Nie [6]. Finally, we show that when
restricting to a certain class of convex polynomials, the celebrated Jensen’s
inequality in convex analysis can be extended to linear functionals that are
not necessarily probability measures.

1. Introduction

Motivation. This paper is a contribution to the new emerging field of convex
semi-algebraic geometry, and its purpose is threefold: First we show that the mo-
ment approach for global polynomial optimization proposed in [13], and based on
semidefinite programming (SDP), is consistent as it simplifies and/or has better
convergence properties when solving convex problems. In other words, the SDP
moment approach somehow ”recognizes” convexity, a highly desirable feature for a
general purpose method because, in principle, convex problems should be easier to
solve.

We next review some recent results (and provide a new one) on the represen-
tation of convex basic semi-algebraic sets by linear matrix inequalities which show
how convexity permits to derive relatively simple and explicit semidefinite repre-
sentations. In doing so we also provide a certificate of convexity for K when its
defining polynomials are not convex.

Finally, we consider the important Jensen’s inequality in convex analysis. When
restricting its application to a class of convex polynomials, we provide an extension
to a class of linear functionals that are not necessarily probability measures.

To do so, we use (and sometimes extend) some recent results of the author [16, 17]
and Helton and Nie [6]. We hope to convince the reader that convex semi-algebraic
geometry is indeed a very specific subarea of real algebraic geometry which should
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deserve more attention from both the optimization and real algebraic geometry
research communities.

Background. I. Relatively recent results in the theory of moments and its dual
theory of positive polynomials have been proved useful in polynomial optimiza-
tion as they provide the basis of a specific convergent numerical approximation
scheme. Namely, one can define a hierarchy of semidefinite relaxations (in short
SDP-relaxations) of the original optimization problem whose associated monotone
sequence of optimal values converges to the global optimum. For a more detail
account of this approach, the interested reader is referred to e.g. Lasserre [13, 14],
Parrilo [21], Schweighofer [29], and the many references therein.

Remarkably, practice seems to reveal that convergence is often fast and even
finite. However, the size of the SDP-relaxations grows rapidly with the rank in the
hierarchy; typically the r-th SDP-relaxation in the hierarchy has O(n2r) variables
and semidefinite matrices of O(nr) sizes (where n is the number of variables in the
original problem). On the other hand, it is well-known that a large class of convex
optimization problems can be solved efficiently; see e.g. Ben Tal and Nemirovski [1].
Therefore, as the SDP-based moment approach is dedicated to solving difficult non
convex (most of the time NP-hard) problems, it should have the highly desirable
feature to somehow recognize ”easy” problems like convex ones. That is, when
applied to such easy problems it should show some significant improvement or a
particular nice behavior not necessarily valid in the general case. Notice that this
is not the case of the LP-based moment-approach described in [14, 15] for which
only asymptotic (and not finite) convergence occurs in general (and especially for
convex problems), a rather annoying feature. However, for SDP-relaxations, some
results of [17] already show that indeed convexity helps as one provides specialized
representation results for convex polynomials that are nonnegative on a basic semi-
algebraic set.

II. Next, in view of the potential of semidefinite programming techniques, an
important issue is the characterization of convex sets that are semidefinite repre-
sentable (in short called SDr sets). A SDr set K ⊂ R

n is the projection of a set
defined by linear matrix inequalities (LMIs). That is,

K := {x ∈ R
n : ∃ y ∈ R

s s.t. A0 +

n∑

i=1

xiAi +

s∑

j=1

yj Bj � 0}

for some real symmetric matrices (Ai, Bj) (and where A � 0 stands for A is positive
semidefinite). For more details, the interested reader is referred to Ben Tal and
Nemirovski [1], Lewis et al. [19], Parrilo [22], and more recently, Chua and Tuncel
[2], Helton and Nie [6, 7], Henrion [8] and Lasserre [16]. For compact basic semi-
algebraic sets

(1.1) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m },

recent results of Helton and Nie [6, 7] and the author [16] provide sufficient condi-
tions on the defining polynomials (gj) ⊂ R[X ] for the convex hull co (K) (≡ K if K
is convex) to be SDr. Again, an interesting issue is to analyze whether convexity
of K (with or without concavity of the defining polynomials (gj)) provides some
additional insights and/or simplifications. Another interesting issue is how to de-
tect whether a basic semi-algebraic set K is convex, or equivalently, how to obtain
an algebraic certificate of convexity of K from its defining polynomials (gj). By
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certificate we mean a mathematical statement that obviously implies convexity of
K, can be checked numerically and does not require infinitely many tests. So far,
and to the best of our knowledge, such a certificate does not exist.

III. The celebrated Jensen’s inequality is an important result in convex analysis
which states that Eµ(f(x)) ≥ f(Eµ(x)) for a convex function f : Rn → R and a
probability measure µ with Eµ(x) < ∞. A third goal of this paper is to analyze
whether when restricted to a certain class of convex polynomials, Jensen’s inequality
can be extended to a class of linear functionals larger than the class of probability
measures.

Contribution. Concerning issue I: We first recall two previous results proved in
[17]: (a) the cone of convex SOS is dense (for the l1-norm of coefficients) in the cone
of nonnegative convex polynomials, and (b) a convex Positivstellensatz for convex
polynomials nonnegative onK (a specialization of Putinar’s Positivstellensatz). We
then analyze the role of convexity for the polynomial optimization problem

(1.2) P : f∗ = min
x

{ f(x) : x ∈ K }

with K as in (1.1), and show that indeed convexity helps and makes the SDP-
relaxations more efficient. In particular, when K is convex and Slater’s condition1

holds, by using some recent results of Helton and Nie [6], we show that
(i) If the polynomials f, (−gj) are all convex and ∇2f is positive definite (and

so f is strictly convex) on K, then the hierarchy of SDP-relaxations has finite
convergence.

(ii) If f and (−gj) are all SOS-convex (i.e. their Hessian is a SOS matrix poly-
nomial), then P reduces to solving a single SDP whose index in the hierarchy is
readily available.

Concerning II: Under certain sufficient conditions on the (gj) (typically some
second order positive curvature conditions) Helton and Nie [6, 7] have proved that
co (K) (or K if convex) has a semidefinite representation that uses Schmüdgen or
Putinar SOS representation of polynomials positive onK; see [6, 17]. Yet, in general
its dimension depends on an unknown degree parameter in Schmüdgen (or Putinar)
SOS representation. Our contribution is to provide a new sufficient condition for
existence of a SDr when K is compact with nonempty interior and its boundary
satisfies some nondegeneracy assumption. It translates the geometric property of
convexity of K into a SOS Putinar representation of some appropriate polynomial
obtained from each gj . When satisfied, this representation provides an algebraic
certificate of convexity for K and it is almost necessary in the sense that it always
holds true when relaxed by an arbitrary ǫ > 0. It also contains as special cases
Helton and Nie [6] sufficient conditions of SOS-convexity or strict convexity on ∂K
of the −gj’s, and leads to an explicit semidefinite representation of K. We also
provide a more general algebraic certificate based on Stengle’s Positivstellensatz,
but more complex and heavy to implement and so not very practical. In practice
both certificates are obtained by solving a semidefinite program. Therefore, because
of unavoidable numerical inaccuracies, the certificate is valid only up to machine
precision.

1Slater’s condition holds for K in (1.1) if for some x0 ∈ K, gj(x0) > 0, j = 1, . . . , m.
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Concerning III, we prove that when restricting its application to the subclass of
SOS-convex polynomials, Jensen’s inequality can be extended to all linear function-
als Ly (with Ly(1) = 1) in the dual cone of SOS polynomials, hence not necessarily
probability measures.

Some of the results already obtained in [6, 16] and in the present paper strongly
suggest that the class of SOS-convex polynomials introduced in Helton and Nie [6]
is particularly nice and should deserve more attention.

2. Notation, definitions and preliminary results

Let R[X ] be the ring of real polynomials in the variables X = (X1, . . . , Xn), and
let Σ2[X ] ⊂ R[X ] be the subset of sums of squares (SOS) polynomials. Denote
R[X ]d ⊂ R[X ] be the set of polynomials of degree at most d, which forms a vector

space of dimension s(d) =
(
n+d
d

)
. If f ∈ R[X ]d, write f(X) =

∑
α∈Nn fαX

α in

the usual canonical basis (Xα), and denote by f = (fα) ∈ R
s(d) its vector of

coefficients. Also write ‖f‖1 (= ‖f‖1 :=
∑

α |fα|) the l1-norm of f . Finally, denote
by Σ2[X ]d ⊂ Σ2[X ] the subset of SOS polynomials of degree at most 2d.

We use the notation X for the variable of a polynomial X 7→ f(X) and x when
x is a point of Rn, as for instance in {x ∈ R

n : f(x) ≥ 0}.

Moment matrix. With y = (yα) being a sequence indexed in the canonical basis
(Xα) of R[X ], let Ly : R[X ] → R be the linear functional

f (=
∑

α

fαX
α) 7→ Ly(f) =

∑

α

fα yα,

and let Md(y) be the symmetric matrix with rows and columns indexed in the
canonical basis (Xα), and defined by:

Md(y)(α, β) := Ly(X
α+β) = yα+β , α, β ∈ N

n
d

with N
n
d := {α ∈ N

n : |α| (=
∑

i αi) ≤ d}.

Localizing matrix. Similarly, with y = (yα) and g ∈ R[X ] written

X 7→ g(X) =
∑

γ∈Nn

gγ X
γ ,

let Md(g y) be the symmetric matrix with rows and columns indexed in the canon-
ical basis (Xα), and defined by:

Md(g y)(α, β) := Ly

(
g(X)Xα+β

)
=

∑

γ

gγ yα+β+γ ,

for every α, β ∈ N
n
d .

Putinar Positivstellensatz. LetQ(g) ⊂ R[X ] be the quadratic module generated
by the polynomials (gj) ⊂ R[X ], that is,

(2.1) Q(g) :=



σ0 +

m∑

j=1

σj gj : (σj) ⊂ Σ2[X ]



 .

Assumption 2.1. K ⊂ R
n is a compact basic semi-algebraic set defined as in (1.1)

and the quadratic polynomial X 7→M − ‖X‖2 belongs to Q(g).
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Assumption 2.1 is not very restrictive. For instance, it holds if every gj is affine
(i.e., K is a convex polytope) or if the level set {x : gj(x) ≥ 0} is compact for some
j ∈ {1, . . . ,m}. In addition, if M − ‖x‖ ≥ 0 for all x ∈ K, then it suffices to add
the redundant quadratic constraintM2−‖x‖2 ≥ 0 to the definition (1.1) of K and
Assumption 2.1 will hold true.

Theorem 2.2 (Putinar’s Positivstellensatz [24]). Let Assumption 2.1 hold. If
f ∈ R[X ] is (strictly) positive on K, then f ∈ Q(g). That is:

(2.2) f = σ0 +

m∑

j=1

σj gj ,

for some SOS polynomials (σj) ⊂ Σ2[X ].

2.1. A hierarchy of semidefinite relaxations (SDP-relaxations). Let P be
the optimization problem (1.2) with K as in (1.1) and let rj = ⌈(deg gj)/2⌉, j =
1, . . . ,m. With f ∈ R[X ] and 2r ≥ max[deg f, maxj 2rj ], consider the hierarchy of
semidefinite relaxations (Qr) defined by:

(2.3) Qr :





inf
y

Ly(f)

s.t. Mr(y) � 0
Mr−rj (gj y) � 0, j = 1, . . . ,m
y0 = 1

,

with optimal value denoted by infQr. One says that Qr is solvable if it has an
optimal solution (in which case one writes infQr = minQr). The dual of Qr reads

(2.4) Q∗
r :





sup λ

s.t. f − λ = σ0 +

m∑

j=1

σj gj

σj ∈ Σ2[X ], j = 0, 1, . . . ,m
deg σ0, deg σj + deg gj ≤ 2r, j = 1, . . . ,m

,

with optimal value denoted by supQ∗
r (or maxQ∗

r if the sup is attained).

By weak duality supQ∗
r ≤ infQr for every r ∈ N and under Assumption 2.1,

infQr ↑ f∗ as r → ∞. For a more detailed account see e.g. [13].

2.2. Convexity and SOS-convexity. We first briefly recall basic facts on a mul-
tivariate convex function. If C ⊆ R

n is a nonempty convex set, a function f : C → R

is convex on C if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1), x, y ∈ C.

Similarly, f is strictly convex on C if and only if the above inequality is strict for
every x, y ∈ C, x 6= y, and all λ ∈ (0, 1).

If C ⊆ R
n is an open convex set and f is twice differentiable on C, then f is

convex on C if and only if its Hessian ∇2f is positive semidefinite on C (denoted
∇2f � 0 on C). Finally, if ∇2f is positive definite on C (denoted ∇2f ≻ 0 on C)
then f is strictly convex on C.
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SOS-convexity. Helton and Nie [6] have introduced the following interesting sub-
class of convex polynomials, called SOS-convex polynomials.

Definition 2.3 (Helton and Nie [6]). A polynomial f ∈ R[X ]2d is said to be SOS-
convex if ∇2f is SOS, that is, ∇2f = LLT for some real matrix polynomial L ∈
R[X ]n×s (for some s ∈ N).

As noted in [6], an important feature of SOS-convexity is that it can be can be
checked numerically by solving a SDP. They have also proved the following impor-
tant property:

Lemma 2.4 (Helton and Nie [6, Lemma 7]). If a symmetric matrix polynomial
P ∈ R[X ]r×r is SOS then for any u ∈ R

n, the double integral

X 7→ F (X,u) :=

∫ 1

0

∫ t

0

P (u+ s(X − u)) ds dt

is also a symmetric SOS matrix polynomial in R[X ]r×r.

And also:

Lemma 2.5 (Helton and Nie [6, Lemma 8]). For a polynomial f ∈ R[X ] and every
x, u ∈ R

n:

f(x) = f(u) +∇f(u)T (x− u)

+ (x− u)T
∫ 1

0

∫ t

0

∇2f(u+ s(x− u))dsdt

︸ ︷︷ ︸
F (x,u)

(x− u).

And so if f is SOS-convex and f(u) = 0,∇f(u) = 0, then f is a SOS polynomial.

2.3. An extension of Jensen’s inequality. Recall that if µ is a probability
measure on R

n with Eµ(x) < ∞, Jensen’s inequality states that if f ∈ L1(µ) and
f is convex, then

Eµ(f(x)) ≥ f(Eµ(x)),

a very useful property in many applications.
We now provide an extension of Jensen’s inequality when one restricts its ap-

plication to the class of SOS-convex polynomials. Namely, we may consider the
linear functionals Ly : R[X ]2d → R in the dual cone of Σ2[X ]d, that is, vectors
y = (yα) such that Md(y) � 0 and y0 = Ly(1) = 1; hence y is not necessarily the
(truncated) moment sequence of some probability measure µ. Crucial in the proof
is Lemma 2.4 of Helton and Nie.

Theorem 2.6. Let f ∈ R[X ]2d be SOS-convex, and let y = (yα)α∈Nn
2d

satisfy y0 = 1
and Md(y) � 0. Then:

(2.5) Ly(f(X)) ≥ f(Ly(X)),

where Ly(X) = (Ly(X1), . . . , Ly(Xn)).
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Proof. Let z ∈ R
n be fixed, arbitrary, and consider the polynomial X 7→ f(X) −

f(z). Then,

(2.6) f(X)− f(z) = 〈∇f(z), X − z〉+ 〈(X − z), F (X)(X − z)〉,

with F : Rn → R[X ]n×n being the matrix polynomial

X 7→ F (X) :=

∫ 1

0

∫ t

0

∇2f(z + s(X − z)) ds dt.

As f is SOS-convex, by Lemma 2.4, F is a SOS matrix polynomial and so the
polynomial X 7→ ∆(X) := 〈(X − z), F (X)(X − z) is SOS, i.e., ∆ ∈ Σ2[X ]. Then
applying Ly to the polynomial X 7→ f(X)− f(z) and using (2.6) yields (recall that
y0 = 1)

Ly(f(X))− f(z) = 〈∇f(z), Ly(X)− z〉+ Ly(∆(X))

≥ 〈∇f(z), Ly(X)− z〉 [because Ly(∆(X)) ≥ 0].

As z ∈ R
n was arbitrary, taking z := Ly(X) (= (Ly(X1), . . . , Ly(Xn)) yields the

desired result. �

As a consequence we also get:

Corollary 2.7. Let f be a convex univariate polynomial, g ∈ R[X ] (and so f ◦ g ∈
R[X ]). Let d := ⌈(deg f ◦ g)/2⌉, and let y = (yα)α∈Nn

2d
be such that y0 = 1 and

Md(y) � 0. Then:

(2.7) Ly[ f(g(X)) ] ≥ f(Ly[ g(X) ]).

Proof. Again let z ∈ R
n be fixed, arbitrary, and consider the univariate polynomial

Y 7→ f(Y )− f(z) so that (2.6) holds. That is,

f(Y )− f(z) = f ′(z) (Y − z) + F (Y )(Y − z)2,

with F : R → R[Y ] being the univariate polynomial

Y 7→ F (Y ) :=

∫ 1

0

∫ t

0

f”(z + s(Y − z)) ds dt.

As f is convex, f” ≥ 0, and so the univariate polynomial Y 7→ F (Y )(Y − z)2 is
nonnegative, and being univariate, is SOS. Therefore, with Y := g(X),

f(g(X))− f(z) = f ′(z) (g(X)− z) + F (g(X))(g(X)− z)2,

and so

Ly[ f(g(X))]− f(z) = f ′(z) (Ly[ g(X) ]− z) + Ly[F (g(X)) (g(X)− z)2 ]

≥ f ′(z)(Ly[ g(X) ]− z)

and taking z := Ly[g(X)] yields the desired result. �

Hence the class of SOS-convex polynomials has the very interesting property
to extend Jensen’s inequality to some linear functionals that are not necessarily
coming from a probability measure.
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3. Semidefinite relaxations in the convex case

3.1. A convex Positivstellensatz. Let K be as in (1.1) and define Qc(g) ⊂ R[X ]
to be the set:

(3.1) Qc(g) :=



 σ0 +

m∑

j=1

λj gj : λ ∈ R
m
+ ; σ0 ∈ Σ2[X ], σ0 convex



 ⊂ Q(g).

The set Qc(g) is a specialization of Q(g) in (2.1) to the convex case, in that the
weights asociated with the gj ’s are nonnegative scalars, i.e., SOS polynomials of
degree 0, and the SOS polynomial σ0 is convex. In particular, every f ∈ Qc(g)
is nonnegative on K. Let FK ⊂ R[X ] be the convex cone of convex polynomials
nonnegative on K.

Theorem 3.1 (Lasserre [17]). Let K be as in (1.1), Slater’s condition hold and gj
be concave for every j = 1, . . . ,m.

Then with Qc(g) as in (3.1), the set Qc(g)∩FK is dense in FK for the l1-norm
‖ · ‖1. In particular, if K = R

n (so that FRn =: F is now the set of nonnegative
convex polynomials), then Σ2[X ] ∩ F is dense in F .

Theorem 3.1 states that if f is convex and nonnegative on K (including the case
K ≡ R

n) then one may approximate f by a sequence {fǫr} ⊂ Qc(g) ∩ FK with
‖f − fǫr‖1 → 0 as ǫ→ 0 (and r → ∞). For instance, with r0 := ⌊(deg f)/2⌋+ 1,

X 7→ fǫr(X) := f + ǫ(θr0(X) + θr(X)), with

X 7→ θr(X) := 1 +

r∑

k=1

n∑

i=1

X2k
i

k!
r ≥ rǫ,(3.2)

for some rǫ; see Lasserre [17] for details. Observe that Theorem 3.1 provides f with
a certificate of nonnegativity on K. Indeed, let x ∈ K be fixed arbitrary. Then as
fǫr ∈ Qc(g) one has fǫr(x) ≥ 0. Letting ǫ ↓ 0 yields 0 ≤ limǫ→0 fǫr(x) = f(x). And
as x ∈ K was arbitray, f ≥ 0 on K.

Theorem 3.1 is a convex (weak) version of Theorem 2.2 (Putinar’s Positivstellen-
satz) where one replaces the quadratic module Q(g) with its subset Qc(g). We call
it a weak version of Theorem 2.2 because it invokes a density result (i.e. fǫr ∈ Qc(g)
whereas f might not be an element of Qc(g)). Notice that f is allowed to be non-
negative (instead of strictly positive) on K and K need not be compact; recall that
extending Theorem 2.2 to non compact basic semi-algebraic sets K and to polyno-
mials f nonnegative on K is hopeless in general; see Scheiderer [26].

Corollary 3.2. Let K be as in (1.1), f ∈ R[X ] with f∗ := minx{f(x) : x ∈ K}
and let d := max[⌈(deg f)/2⌉,maxj⌈(deg gj)/2⌉ ]. Consider the simplified SDP-
relaxation

(3.3) Q̂ :





inf
y

Ly(f)

s.t. Md(y) � 0
Ly(gj) ≥ 0, j = 1, . . . ,m
y0 = 1
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and its dual

(3.4) Q̂∗ :





sup
γ,σ0,λ

γ

s.t. f − γ = σ0 +

m∑

j=1

λj gj

σ0 ∈ Σ2[X ]d; λj ≥ 0, j = 1, . . . ,m

(a) If f − f∗ ∈ Qc(g) then the SDP-relaxation Q̂ and its dual Q̂∗ are exact.

(b) If f,−gj ∈ R[X ] are convex, j = 1, . . . ,m, and if y is an optimal solution of

Q̂ which satisfies

(3.5) rankMd(y) = rankMd−1(y),

then Q̂ is exact and x∗ := (Ly(Xi)) ∈ K is a (global) minimizer of f on K.

Proof. (a) If f −f∗ ∈ Qc(g), i.e., if f −f∗ = σ0+
∑m

j=1 λjgj , with σ0 ∈ Σ2[X ]d and

λ ∈ R
m
+ , the triplet (f∗, σ0, λ) is a feasible solution of Q̂∗ with value f∗. Therefore,

as sup Q̂∗ ≤ inf Q̂ ≤ f∗, the SDP-relaxation Q̂ and its dual Q̂∗ are exact. In fact,

(f∗, σ0, λ) is an optimal solution of Q̂∗.
(b) If y satisfies the rank condition (3.5) then by the flat extension theorem

of Curto and Fialkow [4], y is the (truncated) moment sequence of an atomic
probability measure µ on R

n, say µ =
∑s

k=1 λkδx(k) with s = rankMd(y), 0 <
λk ≤ 1,

∑
k λk = 1, and δx(k) being the Dirac measure at x(k) ∈ R

n, k = 1, . . . , s.
Let x∗ :=

∑
k λkx(k) = (Ly(Xi)) ∈ R

n. Then f∗ ≥ Ly(f) and by convexity of f ,
Ly(f) =

∑
k λkf(x(k)) ≥ f(

∑
k λkx(k)) = f(x∗). Similarly, by convexity of −gj,

0 ≤ Ly(gj) =
∑

k λkgj(x(k)) ≤ gj(
∑

k λkx(k)) = gj(x
∗), j = 1, . . . ,m. Therefore,

x∗ ∈ K and as f(x∗) ≤ f∗, x∗ is a global minimizer of f on K. �

Notice that K in Corollary 3.2 need not be compact. Also, Corollary 3.2(b)
has practical value because in general one does not know whether f − f∗ ∈ Qc(g)
(despite that in the convex case, f − f∗ ∈ FK and Qc(g) ∩ FK is dense in FK).

However, one may still solve Q̂ and check whether the rank condition (3.5) is

satisfied. If in solving Q̂r, the rank condition (3.5) is not satisfied, then other
sufficient conditions can be exploited as we next see.

3.2. The SOS-convex case. Part (a) of the following result is already contained
in Lasserre [17, Cor. 2.5].

Theorem 3.3. Let K be as in (1.1) and Slater’s condition hold. Let f ∈ R[X ] be
such that f∗ := infx{f(x) : x ∈ K} = f(x∗) for some x∗ ∈ K. If f is SOS-convex
and −gj is SOS-convex for every j = 1, . . . ,m, then:

(a) f − f∗ ∈ Qc(g).

(b) The simplified SDP-relaxation Q̂ in (3.3) and its dual (3.4) are exact and

solvable. If y is an optimal solution of Q̂ then x∗ := (Ly(Xi)) ∈ K is a global
minimizer of f on K.

Proof. (a) is proved in [17, Cor. 2.5]. (b) That Q̂ is exact follows from (a) and
Corollary 3.2(a). Hence it is solvable (e.g. take y to be the moment sequence
associated with the Dirac measure at a global minimizer x∗ ∈ K). So let y be an
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optimal solution of Q̂, hence with f∗ = Ly(f). As −gj is SOS-convex for every j,
then by Theorem 2.6, 0 ≤ Ly(gj) ≤ gj(x

∗) with x∗ := (Ly(Xi)) and so x∗ ∈ K.
Similarly, as f is SOS-convex, we also have f∗ = Ly(f) ≥ f(x∗) which proves that
f(x∗) = f∗ and x∗ is a global minimizer of f on K. Finally, as by (a) f−f∗ ∈ Qc(g)

then Q̂∗ is exact and solvable. �

(Again notice that K in Theorem 3.3 need not be compact.) So the class of
SOS-convex polynomials is particularly interesting. Not only Jensen’s inequality
can be extended to some linear functionals that are not coming from a probability
measure, but one may also solve SOS-convex optimization problems P in (1.2)
(i.e. with f and K defined with SOS-convex polynomials) by solving the single
semidefinite program (3.3).

Notice that a self-concordant2 logarithmic barrier function exists for (3.3) whereas
the logarithmic barrier function with barrier parameter µ:

(3.6) x 7→ φµ(x) := µ f(x)−
m∑

j=1

ln (−gj(x)),

associated with P, is not self-concordant in general. Therefore, despite (3.3) in-
volves additional variables (a lifting), solving (3.3) via an interior point method
might be more efficient than solving P by using the logarithmic barrier function
(3.6) with no lifting. In addition, all SOS-convex polynomials nonnegative on K
and which attain their minimum on K, belong to Qc(g), a very specific version of
Putinar Positivstellensatz (as f is only nonnegative and K need not be compact).

3.3. The strictly convex case. If f or some of the −gj’s is not SOS-convex but
∇2f ≻ 0 (so that f is strictly convex) and −gj is convex for every j = 1, . . . ,m,
then inspired by a nice argument from Helton and Nie [6] for existence of a semi-
definite representation of convex sets, one obtains the following result.

Theorem 3.4. Let K be as in (1.1) and let Assumption 2.1 and Slater’s condition
hold. Assume that f,−gj ∈ R[X ] are convex, j = 1, . . . ,m, with ∇2f ≻ 0 on K.

Then the hierarchy of SDP-relaxations defined in (2.3) has finite convergence.
That is, f∗ = supQ∗

r = infQr for some index r. In addition, Qr and Q∗
r are

solvable so that f∗ = maxQ∗ = minQr.

Proof. Let x∗ ∈ K be a global minimizer (i.e. f∗ = f(x∗)). As Slater’s condition
holds, there exists a vector of Karush-Kuhn-Tucker (KKT) multipliers λ ∈ R

m
+ such

that the (convex) Lagrangian Lf ∈ R[X ] defined by

(3.7) X 7→ Lf (X) := f(X)− f∗ −
m∑

j=1

λj gj(X)

has a global minimum at x∗ ∈ K, i.e., ∇Lf (x
∗) = 0. In addition, λjgj(x

∗) = 0 for
every j = 1, . . . ,m and Lf(x

∗) = 0. Then, by Lemma 2.5,

Lf (X) = 〈(X − x∗), F (X, x∗)(X − x∗)〉

2The self-concordance property introduced in [20] is fundamental in the design and efficiency
of interior point methods for convex programming.
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with

F (X, x∗) :=

(∫ 1

0

∫ t

0

∇2Lf(x
∗ + s(X − x∗)) ds dt

)
.

Next, let In be the n × n identity matrix. As ∇2f ≻ 0 on K, continuity of the
(strictly positive) smallest eigenvalue of ∇2f and compactness of K yield that
∇2f � δIn on K, for some δ > 0. Next, as −gj is convex for every j, and in view
of the definition (3.7) of Lf , ∇2Lf � ∇2f � δIn on K. Hence for every ξ ∈ R

n,

ξTF (x, x∗)ξ ≥ δ
∫ 1

0

∫ t

0
ξT ξdsdt = δ

2ξ
T ξ, and so F (x, x∗) � δ

2 In for every x ∈ K.
Therefore, by the matrix polynomial version of Putinar Positivstellensatz,

F (X, x∗) = F0(X) +
m∑

j=1

Fj(X) gj(X),

for some real SOS matrix polynomials X 7→ Fj(X) = Lj(X)Lj(X)T (for some
apppropriate Lj ∈ R[X ]n×pj ), j = 0, . . . ,m. See Helton and Nie [6], Kojima and
Maramatsu [10], Hol and Scherer [11]. But then

X 7→ 〈(X − x∗), Fj(X, x
∗)(X − x∗)〉 = σj(X) ∈ Σ2[X ], j = 0, . . . ,m

and so

f(X)− f∗ = Lf (X) +

m∑

j=1

λjgj(X)

= σ0(X) +

m∑

j=1

(λj + σj(X)) gj(X).

Let 2s be the maximum degree of the SOS polynomials (σj). Then (f∗, {σj + λj})
is a feasible solution of the SDP-relaxation Q∗

r in (2.4) with r := s + maxj rj .
Therefore, as supQ∗

r ≤ infQr ≤ f∗, the SDP-relaxations Qr and Q∗
r are exact,

finite convergence occurs and Q∗
r is solvable. But this also implies that Qr is

solvable (take y to be the moment sequence of the Dirac measure δx∗ at any global
minimizer x∗ ∈ K). �

When compared to Theorem 3.3 for the SOS-convex case, in the strictly con-

vex case the simplified SDP-relaxation Q̂ in (3.3) is not guaranteed to be exact.
However, finite convergence still occurs for the SDP-relaxations (Qr) in (2.3).

Remark 3.5. It is worth emphasizing that in general, the hierarchy of LP-relaxations
(as opposed to SDP-relaxations) defined in [15] and based on Krivine’s represen-
tation [12, 30] for polynomials positive on K, cannot have finite convergence, es-
pecially in the convex case! For more details, the interested reader is referred to
[14, 15]. Therefore, and despite LP software packages can solve LP problems of
very large size, using LP-relaxations does not seem a good idea even for solving a
convex polynomial optimization problem.

4. Convexity and semidefinite representation of convex sets

We now consider the semidefinite representation of convex sets. First recall the
following result.
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Theorem 4.1 (Lasserre [16]). Let K in (1.1) be compact with gj concave, j =
1, . . . ,m, and assume that Slater’s condition holds. If the Lagrangian polynomial
Lf in (3.7) associated with every linear polynomial f ∈ R[X ] is SOS, then with
d := maxj⌈(deg gj)/2⌉, the set

(4.1) Ω :=




(x,y) ∈ R

n × R
s(2d) :





Md(y) � 0
Ly(gj) ≥ 0, j = 1, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1

is a semidefinite representation of K.

Next, Helton and Nie [6, 7] have provided several interesting second-order pos-
itive curvature (sufficient and necessary) conditions on the defining polynomials
(gj) for K (or its convex hull co (K)) to have a SDr. In particular (recall that
rj = ⌈(deg gj)/2⌉ for every j = 1, . . . ,m):

Theorem 4.2 (Helton and Nie [6]). Let K in (1.1) be convex, Asssumption 2.1
hold, and assume that Slater’s condition holds and gj is concave on K, j = 1, . . . ,m.

(a) If −gj is SOS-convex for every j = 1, . . . ,m, then for every linear f ∈ R[X ],
the associated Lagrangian Lf (3.7) is SOS and the set Ω in (4.1) is a semidefinite
representation of K.

(b) If every −gj is either SOS-convex or satisfies −∇2gi ≻ 0 on K∩{x : gj(x) =
0}, then there exists r ∈ N such that the set

(4.2) Ω :=




(x,y) ∈ R

n × R
s(2r) :





Mr(y) � 0
Mr−rj(gj y) � 0, j = 1, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1





is a semidefinite representation of K.

See [6, Theor. 6, and 9]. This follows from the fact that the Hessian ∇2Lf

associated with a linear f ∈ R[X ] has a Putinar representation in terms of SOS
matrix polynomials, and with degree of the weights bounded uniformly in f . In
principle, the degree parameter d in Theorem 4.2(b) may be computed by solving
a hierarchy of semidefinite programs. Some other (more technical) weaker second-
order positive curvature sufficient conditions (merely for existence of a SDr) are also
provided in [6, 7] but the semidefinite representation is not explicit any more in
terms of the defining polynomials (gj). Notice that if K is compact but Assumption
2.1 does not hold, then one still obtains a semidefinite representation for K but
more complicated as it is now based on Schmüdgen’s representation [27] instead of
Putinar’s representation; see [6, Theor. 5].

We next provide a sufficient condition in the case where K is convex but its
defining polynomials (−gj) are not necessarily convex. Among its distinguishing
features, it is checkable numerically, contains Theorem 4.2 as a special case and
leads to the explicit semidefinite representation (4.2) of K.

4.1. Algebraic certificate of convexity. We first present the following charac-
terization of convexity when K is closed, satisfies a nondegeneracy assumption on
its boundary, and Slater’s condition holds.
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Lemma 4.3. Let K be as in (1.1) (hence closed), Slater’s condition hold and
assume that for every j = 1, . . . ,m, ∇gj(y) 6= 0 if y ∈ K and gj(y) = 0. Then K
is convex if and only if for every j = 1, . . . ,m,

(4.3) 〈∇gj(y), x− y〉 ≥ 0, ∀x ∈ K and ∀ y ∈ K with gj(y) = 0.

Proof. The only if part is obvious. Indeed if 〈∇gj(y), x − y〉 < 0 for some x ∈ K
and y ∈ K with gj(y) = 0, then there is some t > 0 such that gj(y + t(x− y)) < 0
for all t ∈ (0, t) and so the point x′ := tx+ (1− t)y does not belong to K, which in
turn implies that K is not convex.

For the if part, (4.3) implies that at every point of the boundary, there exists
a supporting hyperplane for K. As K is closed with nonempty interior, the result
follows from [28, Theor. 1.3.3]3. �

The nondegeneracy assumption is crucial as demonstrated in the following simple
example kindly provided by an anonymous referee:

Example 1. Consider the non convex set K ⊂ R
2 defined by:

K := {x ∈ R
2 : (1− x2

1 + x2
2)

3 ≥ 0, 10− x2
1 − x2

2 ≥ 0 }

Then it is straightforward to see that (4.3) is satisfied. This is because ∇g1 vanishes on

the piece of boundary determined by g1(x) = 0.

Next, using the above characterization (4.3), we provide an algebraic certificate
of convexity.

Corollary 4.4 (Algebraic certificate of convexity). Let K be as in (1.1), Slater’s
condition hold and assume that for every j = 1, . . . ,m, ∇gj(y) 6= 0 if y ∈ K and
gj(y) = 0. Then K is convex if and only if for every j = 1, . . . ,m,

(4.4) hj(X,Y )〈∇gj(Y ), X−Y 〉 = 〈∇gj(Y ), X−Y 〉2l+θj(X,Y )+ϕj(X,Y )gj(Y ),

for some integer l ∈ N, some polynomial ϕj ∈ R[X,Y ] and some polynomials hj , θj
in the preordering4 of R[X,Y ] generated by the family of polynomials (gk(X), gp(Y )),
k, p ∈ {1, . . . ,m}, p 6= j.

Proof. By Lemma 4.3, K is convex if and only if for every j = 1, . . . ,m, the
polynomial (X,Y ) 7→ 〈∇gj(Y ), X − Y 〉 is nonnegative on the set Ωj defined by:

(4.5) Ωj := {(x, y) ∈ K×K : gj(y) = 0 }.

Equivalently, K is convex if and only if for every j = 1, . . . ,m:

∅ = {(x, y) ∈ R
n : (x, y) ∈ K×K ; gj(y) = 0 ;

〈∇gj(y), x− y〉 ≤ 0 ; 〈∇gj(y), x− y〉 6= 0} .

Then (4.4) follows from Stengle’s Positivstellensatz [25, Theor. 4.4.2, p. 92]. �

3The author is grateful to L. Tuncel for providing us with the reference [28].
4 The preordering of R[X] generated by a family (g1, . . . , gm) ⊂ R[X] is the set of polynomials

{p : p =
P

J⊆{1,...,m} σJ (
Q

j∈J gj), with σJ ∈ Σ2[X]}.
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Observe that Corollary 4.4 provides an algebraic certificate of convexity when
K is closed with nonempty interior and a nondegeneracy assumption holds on its
boundary. If one fixes an a priory bound s on l ∈ N and on the degree of hj , θj and
ϕj , then checking whether (4.4) holds reduces to solving a semidefinite program. If
K is convex, by increasing s, eventually one would obtain such a certificate if one
could solve semidefinite programs exactly. In practice, and because of unavoidable
numerical inaccuracies, one only obtains a numerical approximation of the optimal
value and so, a certificate valid up to machine precision only.

However, implementing such a procedure is extremely costly because one has
potentially 2×2m unknown SOS polynomials to define hj and θj in (4.4)! Therefore,
it is highly desirable to provide a less costly certificate but with no guarantee to
hold for every K as in Corollary 4.4.

In particular one only considers compact sets K. Indeed, if K is compact, one
has the following result (recall that g0 ≡ 1).

Lemma 4.5. Let K be convex, Assumption 2.1 and Slater’s condition hold. Assume
that for every j = 1, . . . ,m, ∇gj(y) 6= 0 if y ∈ K and gj(y) = 0. Then for every
ǫ > 0 and every j = 1, . . . ,m:

〈∇gj(Y ), X − Y 〉+ ǫ =

m∑

k=0

σjk(X,Y ) gk(X) +

m∑

k=0,k 6=j

ψjk(X,Y ) gk(Y )

+ψj(X,Y ) gj(Y ),(4.6)

for some SOS polynomials (σjk) and (ψjk)k 6=j ⊂ Σ2[X,Y ], and some polynomial
ψj ∈ R[X,Y ].

Proof. By Lemma 4.3, for every j = 1, . . . ,m, and every x, y ∈ K such that gj(y) =
0, (4.3) holds and therefore, for every j = 1, . . . ,m,

(4.7) 〈∇gj(y), x− y〉 + ǫ > 0 ∀(x, y) ∈ Ωj,

where Ωj has been defined in (4.5). As K satisfies Assumption 2.1 then so does Ωj

for every j = 1, . . . ,m. Hence (4.6) follows from (4.7) and Theorem 2.2. �

Therefore, inspired by Lemma 4.5, introduce the following condition:

Assumption 4.6 (Certificate of convexity). For every j = 1, . . . ,m, (4.6) holds
with ǫ = 0. Then let dj ∈ N be such that 2dj is larger than the maximum degree of
the polynomials σjkgk, ψjkgk, ψjgj ∈ R[X,Y ] in (4.6), j = 1, . . . ,m.

When K is closed (and not necessarily compact), Slater’s condition holds and
the nondegeneracy assumption on the boundary holds (i.e., ∇gj(y) 6= 0 if y ∈
K and gj(y) = 0) Assumption 4.6 is indeed a certificate of convexity because
then (4.3) holds for every x, y ∈ K with gj(y) = 0, and by Lemma 4.3, K is
convex. It translates the geometric property of convexity ofK into an algebraic SOS
Putinar representation of the polynomial (X,Y ) 7→ 〈∇gj(Y ), X − Y 〉 nonnegative
on Ωj , j = 1, . . . ,m. On the other hand, if K is convex and Assumption 2.1,
Slater’s condition and the nondegeneracy assumption all hold, then Assumption
4.6 is almost necessary as, by Lemma 4.5, (4.6) holds with ǫ > 0 arbitrary.
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With dj fixed a priori, checking whether (4.6) hold with ǫ = 0 can be done
numerically. (However, again it provides a certificate of convexity valid up to ma-
chine precision only.) For instance, for every j = 1, . . . ,m, it suffices to solve the
semidefinite program (recall that rk = ⌈(deg gk)/2⌉, k = 1 . . . ,m)

(4.8)





ρj := min
z

Lz(〈∇gj(Y ), X − Y 〉)

s.t. Mdj
(z) � 0

Mdj−rk(gk(X) z) � 0, k = 1, . . . ,m
Mdj−rk(gk(Y ) z) � 0, k = 1, . . . ,m; k 6= j
Mdj−rj(gj(Y ) z) = 0
y0 = 1

.

If ρj = 0 for every j = 1, . . . ,m, then Assumption 4.6 holds. This is in contrast
to the PP-BDR property in [17] that cannot be checked numerically as it involves
infinitely many linear polynomials f .

Remark 4.7. Observe that the usual rank condition (3.5) used as a stopping
criterion to detect whether (4.8) is exact (i.e. ρ1 = 0), cannot be satisfied in
solving (4.8) with primal dual interior point methods (as in the SDP-solvers used by
GloptiPoly) because one tries to find an optimal solution z∗ in the relative interior
of the feasible set of (4.8) and this gives maximum rank to the moment matrix
Mdj

(z∗). Therefore, in the context of (4.8), if indeed ρj = 0 then z∗ corresponds
to the moment vector of some probability measure µ supported on the set of points
(x, x) ∈ K×K that satisfy gj(x) = 0 (as indeed Lz∗(〈∇gj(Y ), X − Y )〉) = 0 = ρj).
Therefore ρj = 0 as dj increases but the rank of Mdj

(z∗) does not stabilize because
µ is not finitely supported. In particular, a good candidate z∗ for optimal solution
is the moment vector of the probability measure uniformly distributed on the set
{(x, x) ∈ K×K : gj(x) = 0}.

Alternatively, if ρj ≈ 0 and the dual of (4.8) has an optimal solution (σjk, ψjk, ψj),
then in some cases one may check if (4.6) holds exactly after appropriate rounding
of coefficients of the solution. But in general, obtaining an exact certificate (i.e.,
ρj = 0 in the primal or (4.6) with ǫ = 0 in the dual) numerically is hopeless.

Example 2. Consider the following simple illustrative example in R
2:

(4.9) K := {x ∈ R
2 : x1x2 − 1/4 ≥ 0; 0.5− (x1 − 0.5)2 − (x2 − 0.5)2 ≥ 0 }

Obviously K is convex but its defining polynomial x 7→ g1(x) := x1x2−1/4 is not concave
whereas x 7→ g2(x) := 0.5− (x1 − 0.5)2 − (x2 − 0.5)2 is.

With d1 = 3, solving (4.8) using GloptiPoly 35 yields the optimal value ρ1 ≈ −4.58.10−11

which, in view of the machine precision for the SDP solvers used in GloptiPoly, could be
considered to be zero, but of course with no guarantee. However, and according to Remark
4.7, we could check that (again up to machine precision) for every α ∈ N

n with |α| ≤ 2dj ,
z∗α,α = z∗2α,0 and z∗α,0 = z∗0,α. In addition, because of symmetry, zα,β = zα′,β′ whenever
α′
1 = α2 and α′

2 = α1 (and similarly for β and β′). Indeed for moments of order 1 we have
z∗α,β = (0.5707, 0.5707, 0.5707, 0.5707) and for moments of order 2,

z∗α,β = (0.4090, 0.25, 0.4090, 0.25, 0.4090, 0.25, 0.4090, 0.4090, 0.25, 0.4090).

5GloptiPoly 3 (a Matlab based public software) is an extension of GloptiPoly [9]
to solve the generalized problem of moments described in [18]. For more details see
www.laas.fr/∼henrion/software/.
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For j = 2 there is no test to perform because −g2 being quadratic and convex yields

(4.10) 〈∇g2(Y ), X − Y 〉 = g2(X)− g2(Y ) + (X − Y )T (−∇2g2(Y ))(X − Y )
| {z }

SOS

which is in the form (4.6) with d2 = 1.

We next show the role of Assumption 4.6 in obtaining a semidefinite represen-
tation of K.

Theorem 4.8. Let Assumption 2.1 and Slater’s condition hold. Moreover, assume
that for every j = 1, . . . ,m, ∇gj(y) 6= 0 whenever y ∈ K and gj(y) = 0. If
Assumption 4.6 holds then K is convex and Ω in (4.2) with d := maxj dj, is a
semidefinite representation of K.

Proof. That K is convex follows from Lemma 4.3. We next prove that the PP-
BDR property defined in Lasserre [16] holds for K. Let f ∈ R[X ] be a linear
polynomial with coefficient vector f ∈ R

n (i.e., X 7→ f(X) = fTX) and consider
the optimization problem P : min {fTx : x ∈ K}. As K is compact, let x∗ ∈ K
be a global minimizer of f . The Fritz-John optimality conditions state that there
exists 0 6= λ ∈ R

m+1
+ such that

(4.11) λ0 f =

m∑

j=1

λj ∇gj(x
∗); λj gj(x

∗) = 0 ∀j = 1, . . . ,m.

(See e.g. [3].) We first prove by contradiction that if Slater’s condition and the
nondegeneracy assumption hold then λ0 > 0. Suppose that λ0 = 0 and let J :=
{j ∈ {1, . . . ,m} : λj > 0}; hence J is nonempty as λ 6= 0. With x0 ∈ K such
that gj(x0) > 0 (as Slater’s condition holds, one such x0 exists), let B(x0, ρ) :=
{z : ‖z − x0‖ ≤ ρ}. For ρ sufficiently small, B(x0, ρ) ⊂ K and gj(z) > 0 for all
z ∈ B(x0, ρ) and every j = 1, . . . ,m. Then by (4.11) and λ0 = 0,

0 =

m∑

j=1

λj 〈∇gj(x
∗), z − x∗〉, ∀z ∈ B(x0, ρ),

which in turn implies (by nonnegativity of each term in the above sum)

〈∇gj(x
∗), z − x∗〉 = 0, ∀z ∈ B(x0, ρ), j ∈ J.

But this clearly implies ∇gj(x∗) = 0 for every j ∈ J , in contradiction with the
nondegeneracy assumption. Hence λ0 > 0 and by homogeneity, we may and will
take λ0 = 1.

Therefore, letting Y := x∗ in (4.6), the polynomial X 7→ f(X) − f∗ can be
written

fTX − f∗ =
m∑

j=1

λj [ 〈∇gj(x
∗), X − x∗〉 ]

=
m∑

j=1

λj




m∑

k=0

σjk(X, x
∗) gk(X) +

m∑

k=0,k 6=j

ψjk(X, x
∗) gk(x

∗)

+ψj(X, x
∗) gj(x

∗)]
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where we have used (4.6) with Y = x∗ and ǫ = 0. Next, observe that :

X 7→ σjk(X, x
∗) ∈ Σ2[X ] [as σjk ∈ Σ2[X,Y ]]

X 7→ ψjk(X, x
∗) gk(x

∗) ∈ Σ2[X ] [as ψjk ∈ Σ2[X,Y ] and gj(x
∗) ≥ 0]

λjgj(x
∗) = 0 j = 1, . . . ,m.

And so, as λ ∈ R
m
+ ,

(4.12) X 7→ fTX − f∗ = ∆0(X) +
m∑

j=1

∆j(X) gj(X),

for SOS polynomials (∆j)
m
j=0 ⊂ Σ2[X ] defined by

X 7→ ∆0(X) =
m∑

j=1

λj




m∑

k=0,k 6=j

ψjk(X, x
∗) gk(x

∗)




X 7→ ∆j(X) =
m∑

l=1

λl σlj(X, x
∗), j = 1, . . . ,m.

Write every affine polynomial f ∈ R[X ] as fTX + f0 for some f ∈ R
n and

f0 = f(0). If f is nonnegative on K then from (4.12),

f(X) = fTX − f∗ + f∗ + f0 = f∗ + f0 +∆0(X) +

m∑

j=1

∆j(X) gj(X)

= ∆̂0(X) +

m∑

j=1

∆j(X) gj(X) ∀X,

with ∆̂0 ∈ Σ2[X ] (because f∗ + f0 ≥ 0) and so, the PP-BDR property holds for
K with order d. By [16, Theor. 2], K is SDr with the semidefinite representation
(4.2). �

We next show that the two sufficient conditions of strict convexity and SOS-
convexity of Helton and Nie [6] in Theorem 4.2 both imply that Assumption 4.6
holds and so Theorem 4.8 contains Theorem 4.2 as a special case.

Corollary 4.9. Let K in (1.1) be convex and both Assumption 2.1 and Slater’s
condition hold. Assume that either −gj is SOS-convex or −gj is convex on K and
−∇2gj ≻ 0 on K ∩ {x : gj(x) = 0}, for every j = 1, . . . ,m. Then Assumption 4.6
holds and so Theorem 4.8 applies.

Proof. By Lemma 2.5, for every j = 1, . . . ,m, write

(X,Y ) 7→ gj(X)− g(Y )− 〈∇gj(Y ), X − Y 〉 =
〈
(X − Y ),

(∫ 1

0

∫ t

0

∇2gj(Y + s(X − Y )) dsdt

)

︸ ︷︷ ︸
Fj(X,Y )

(X − Y )

〉
.

If −∇2gj ≻ 0 on y ∈ K with gj(y) = 0, then from the proof of [6, Lemma 19],
−Fj(x, y) ≻ 0 for all x, y ∈ K with gj(y) = 0. In other words, −Fj(x, y) � δIn on



18 LASSERRE

Ωj (defined in (4.5)) for some δ > 0. Therefore, by the matrix polynomial version
of Putinar Positivstellensatz in [6, Theor. 29],
(4.13)

− Fj(X,Y ) =

m∑

k=0

σ̂jk(X,Y )gk(X) +

m∑

k=0,k 6=j

ψ̂jk(X,Y )gk(Y ) + ψ̂j(X,Y )gj(Y )

for some SOS matrix polynomials (σ̂jk(X,Y )), (ψ̂jk(X,Y )) and some matrix poly-

nomial ψ̂j(X,Y ).
On the other hand, if −gj is SOS-convex then by Lemma 2.4, −Fj(X,Y ) is SOS

and therefore (4.13) also holds (take σ̂jk ≡ 0 for all k 6= 0, ψ̂jk ≡ 0 for all k and

ψ̂j ≡ 0). But then

gj(X)− g(Y )− 〈∇gj(Y ), X − Y 〉 = 〈(X − Y ), Fj(X,Y )(X − Y )〉

= −
m∑

k=0

〈(X − Y ), σ̂jk(X,Y )(X − Y )〉 gk(X)

−
m∑

k=0,k 6=j

〈
(X − Y ), ψ̂jk(X,Y )(X − Y )

〉
gk(Y )

−
〈
(X − Y ), ψ̂j(X,Y )(X − Y )

〉
gj(Y )

= −
m∑

k=0

σjk(X,Y ) gk(X)−

m∑

k=0,k 6=j

ψjk(X,Y ) gk(Y )− ψj(X,Y ) gj(Y )

for all X,Y and for some SOS polynomials σjk, ψjk ∈ R[X,Y ] and some polynomial
ψj ∈ R[X,Y ]. Equivalently,

〈∇gj(Y ), X − Y ) = gj(X)− gj(Y ) +
m∑

k=0

σjk(X,Y ) gk(X)

+

m∑

k=0,k 6=j

ψjk(X,Y ) gk(Y ) + ψj(X,Y ) gj(Y )

=

m∑

k=0

σ′
jk(X,Y ) gk(X) +

m∑

k=0,k 6=j

ψjk(X,Y ) gk(Y )

+ψ′
j(X,Y ) gj(Y )

for some SOS polynomials σ′
jk, ψjk ∈ Σ2[X,Y ] and some polynomial ψ′

j ∈ R[X,Y ].
In other words, Assumption 4.6 holds, which concludes the proof. �

Hence if each −gj is SOS-convex or convex on K with −∇2gj ≻ 0 on K ∩ {x :
gj(x) = 0}, one obtains a numerical scheme to obtain the parameter d in Theo-
rem 4.8 as well as the semidefinite representation (4.2) of K. Solve the semidefinite
programs (4.8) with degree parameter dj . Eventually, ρj = 0 for every j = 1, . . . ,m.
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Example 3. Consider the convex set K in (4.9) of Example 2 for which the defining
polynomial g1 of K is not concave. We have seen that Assumption 4.6 holds (up to
ρ1 ≈ 10−11, close to machine precision) and max[d1, d2] = 3. By Theorem 4.8, if ρ1 would
be exactly 0, the set

(4.14) Ω :=

8

>

>

<

>

>

:

(x,y) ∈ R
n × R

s(6) :

8

>

>

<

>

>

:

M3(y) � 0
M2(gj y) ≥ 0, j = 1, 2
Ly(Xi) = xi, i = 1, 2
y0 = 1

.

would be a semidefinite representation of K.
At least in practice, for every linear polynomial f ∈ R[X], minimizing Ly(f) over Ω

yields the desired optimal value f∗ := minx∈K f(x), up to ρ1 ≈ −10−11.
Indeed, let f ∈ R[X] be fTX for some vector f ∈ R

n. In minimizing f over K, one has
f = λ1∇g1(x

∗)+λ2∇g2(x
∗) for some λ ∈ R

2
+, some x∗ ∈ K with λigi(x

∗) = 0, i = 1, 2, and

f∗ = λ1〈∇g1(x
∗), x∗〉 + λ2〈∇g2(x

∗), x∗〉 = minx∈K fTx. Let x be as in (4.14), arbitrary.
Then

f
Tx− f∗ = Ly(f(X) − f∗) =

2
X

i=1

λiLy(〈∇gi(x
∗), X − x∗〉).

If λ1 > 0 so that g1(x
∗) = 0, use (4.12) to obtain

Ly(〈∇g1(x
∗), X − x∗〉) = Ly(ρ1 +∆0(X) +

2
X

j=1

∆j(X)gj(X)) ≥ ρ1,

because Ly(∆0) ≥ 0 follows from M3(y) � 0, and Ly(∆jgj) ≥ 0, j = 1, 2, follows from
M2(g1y),M2(g2y) � 0. If λ2 > 0 so that g2(x

∗) = 0, then from (4.10)

Ly(〈∇g2(x
∗), X − x∗〉) = Ly(g2(X)− 〈(X − x∗),∇2g2(x

∗)(X − x∗)〉) ≥ 0,

because Ly(g2) ≥ 0 follows from M2(g2 y) � 0 whereas the second term is nonnegative as
〈(X − x∗),−∇2g2(x

∗)(X − x∗)〉 is SOS and M3(y) � 0. Hence fTx − f∗ ≥ ρ1. On the
other hand, from K ⊆ {x : (x, y) ∈ Ω}, one finally obtains the desired result

f∗ + ρ1 ≤ min {fTx : (x, y) ∈ Ω} ≤ f∗.

5. Conclusion

As well-known, convexity is a highly desirable property in optimization. We have
shown that it also has important specific consequences in polynomial optimization.
For instance, for polynomial optimization problems with SOS-convex or strictly
convex polynomial data, the basic SDP-relaxations of the moment approach [13]
recognizes convexity and finite convergence occurs. Similarly, the set K has a
semidefinite representation, explicit in terms of the defining polynomials (gj).

The class of SOS-convex polynomials introduced in Helton and Nie [6] is partic-
ularly interesting because the semidefinite constraint to handle in the semidefinite
relaxation only involves the Hankel-like moment matrix which does not depend on
the problem data! Hence one might envision a dedicated SDP solver that would
take into account this peculiarity as Hankel-like or Toeplitz-like matrices enjoy very
specific properties. Moreover, if restricted to this class of polynomials, Jensen’s in-
equality can be extended to linear functionals in the dual cone of SOS polynomials
(hence not necessarily probability measures).

Therefore, a topic of further research is to evaluate how large is the subclass of
SOS-convex polynomials in the class of convex polynomials, and if possible, to also
provide simple sufficient conditions for SOS-convexity.



20 LASSERRE

Acknowledgements

The author wishes to thank L. Tuncel and Y. Nesterov for helpful discussions
on various characterizations of convex sets, and also two anonymous referees for
several corrections as well as suggestions and remarks to improve a first version of
this paper.

References

[1] A. Ben Tal and A. Nemirovski, Lectures on Modern Convex Optimization, SIAM, Philadel-
phia, 2001.

[2] C. Beng Chua and L. Tuncel, Invariance and efficiency of convex representations, Math.
Prog., 111 (2008), pp. 113–140.

[3] S.I. Birbil, J. B. G. Frenk, and G. J. Still, An elementary proof of the Fritz-John and

Karush-Kuhn-Tucker conditions in nonlinear programming, Eur. J. Oper. Res., 180 (2007),
pp. 479–484.

[4] R. E. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems,
Houston J. Math., 17 (1991), pp. 603–635.

[5] D. Handelman, Representing polynomials by positive linear functions on compact convex

polyhedra, Pac. J. Math., 132 (1988), pp. 35–62.
[6] J. W. Helton and J. Nie, Semidefinite representation of convex sets, Math. Program., to

appear.
arXiv:0705.4068v5

[7] J. W. Helton and J. Nie, Sufficient and necessary condition for semidefinite representation

of sets, SIAM J. Optim., to appear.
[8] D. Henrion, On semidefinite representations of plane quartics, Research Report # 08444,

LAAS-CNRS, Toulouse, France, 2008. Submitted.
[9] D. Henrion and J.B. Lasserre, GloptiPoly : Global Optimization over Polynomials with

Matlab and SeDuMi, ACM Trans. Math. Soft., 29 (2003), pp. 165–194.
[10] M. Kojima and M. Maramatsu, An extension of sums of squares relaxations to polynomial

optimization problems over symmetric cones, Math. Program., 110 (2007), pp. 315–336.
[11] C. W. J. Hol and C. W. Scherer, A sum-of-squares approach to fixed order H∞-synthesis,

in Positive Polynomials in Control, Garulli and Henrion (Eds.), Springer-Verlag, Berlin, 2005.
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