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Abstract

In this paper we present a new computationally efficient numerical scheme for the minimizing
flow approach for the computation of the optimal L, mass transport mapping. In contrast to the
integration of a time dependent partial differential equation proposed in [S. Angenent, S. Haker,
and A. Tannenbaum, SIAM J. Math. Anal., 35 (2003), pp. 61-97], we employ in the present work
a direct variational method. The efficacy of the approach is demonstrated on both real and
synthetic data.
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1. Introduction

Optimal mass transport is an important problem with applications in econometrics, fluid
dynamics, automatic control, transportation, statistical physics, shape optimization, expert
systems, and meteorology [30,36]. The problem was first formulated by the civil engineer
Gaspar Monge in 1781, and concerned finding the optimal way, in the sense of minimal
transportation cost, of moving a pile of soil from one site to another. Much later the problem
was extensively analyzed by Kantorovich [23], and so is now known as the Monge—
Kantorovich (MK) problem.

There are several formulations of the problem [1,30,36] of varying degrees of generality.
We recall here the formulation of the Monge—Kantorovich problem for smooth densities and
domains in Euclidean space. For more general measures, see [1]. Let Qg and Q4 be two
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diffeomorphic connected subdomains of RY, and let g, j1; be Borel measures on Qg and Q,

each with a strictly positive density function o(x) > >0 and 1 > p, >0, respectively.
Assume

10(Q0)=p1(21),

J o Ho)dx=[ o mi(x)dx,

so that the same total mass is associated with Qg and Q.

The version of the Monge—Kantorovich problem of interest in this work may be expressed
as follows:

. 1 .
min M(u) := 5 S o Ho)p(u, ) dx, (1.1a)

s.t. c(u)=det(Vu)u; (u(x)) — po(x)=0, (1.1b)

where u is a C1* diffeomorphism from Q — Q and p(u, x) is a distance function between x
and u. Here we treat only the case

plu, x)=u - x|2.

The constraint c(u) = 0 (the Jacobian equation) is often referred to as the mass preserving
(MP) property.

Even with a simple, quadratic distance function, this is a highly nonlinear equality
constrained optimization problem. There is extensive analysis as to the existence,
uniqueness, and properties of the solution (see, for example, [1,11,36] and the references
therein). However, while there is a large body of literature which deals with the analysis of
the problem, there is a surprisingly small number of papers that deal with the solution of the
problem, and even a smaller number of papers that deal with efficient numerical solutions of
the problem [8,4,2,29,10].

Among the papers that deal with the numerical solutions is the paper of Benamou and
Brenier [4]. Their paper reconstructs an optimal path from pg to pq by solving an
optimization problem with a space-time transport partial differential equation (PDE) as a
constraint. Their approach is particularly useful if the transportation path is needed. Its
disadvantage is that it enlarges the dimension of the problem by introducing a space-time
control problem. An interesting geometric method has also been formulated by Cullen and
Purser [9].

A very different approach which is closer to that of the present work has been proposed by

Angenent, Haker, and Tannenbaum (AHT) [2]. This approach reconstructs the
transformation directly. The idea of the AHT method is to obtain an initial MP
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transformation ug(x), and then replace the original problem with the following optimization
problem:

. 1 ~ 2
min M(s)zifQ Ho(®)uo(s™) = x| dx, (1.2a)

s.t. c(s)=det(Vs)uo(s(x)) — pro(x)=0, (1.2b)

where s € #1.% is an MP mapping from pg to itself. It is well-known that the optimization
problems (1.1) and (1.2) are equivalent [25]. The iteration starts with s = Id, and since a
composition of mass preserving maps is also mass preserving, the authors assume that the
MP constraint is valid throughout the optimization process. This allows them to obtain a
time dependent PDE with the MP constraint as its invariant, that converges (in functional
space) to the solution of the problem. In order to implement their method in a discrete
setting, the authors have employed a forward Euler scheme for time stepping and a first
order finite difference discretization of the spatial derivatives.

What is essentially done via the AHT methodology is to construct the so-called polar
factorization [6,13,14,25] of the initial MP mapping up, thus obtaining u = V¢, where ¢ is
some scalar function. There are two main shortcomings to their numerical approach. First, a
robust method to obtain an initial MP mapping is needed. The authors have used 1D
integration which leads to an MP mapping which is highly irregular. See also [27] for an
approach to constructing the initial MP mapping. Thus, the solution of the optimization
problem may be far from the initial point, and as a result many iterations are needed to
convergence. Second and more important, the AHT method updates the transformation in a
space which is tangential to the linearized MP constraint. While such an update is tangential
to the MP constraint for a small (infinitesimal) correction, it is not tangential to any finite
step used in the discrete setting. Since the MP constraint is never specifically enforced
during the discrete AHT minimization process it “drifts,” that is, the final mapping may not
be mass preserving and therefore the discrete PDE may not converge to a discrete
approximation of the problem.

In this paper we develop a new, straightforward technique that does not suffer from the
aforementioned difficulties. First, we modify the objective function in order to obtain better
attraction to the MP solution. Second, we employ a conservative discretization of the
objective function and the constraint, and finally, we use the state-of-the-art numerical
optimization procedure and linear algebra solvers to obtain the solution. The method is
illustrated via some examples of medical image registration. These examples are included
simply to elucidate the proposed approach on some actual data. It is not our intention to
propose optimal mass transport as a general method to medical image registration. See also
[21,20,39] for a much more extensive discussion of the use of optimal mass transport and
elastic image registration.

The rest of the paper is organized as follows. In section 2 we review the mathematical
derivation of our approach. In section 3, we discuss the discretization scheme. In section 4
we discuss the solution of the discrete problem. In section 5, we perform numerical
experiments in two and three dimensions that demonstrate the effectiveness of our method.
Finally, in section 6 we summarize our work.
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2. Problem reformulation

We give now the key ideas underlying our approach to solving the L2 Monge—Kantorovich
problem. Accordingly, suppose that we have an initial transformation w that is not mass
preserving, and that we would like to obtain a transformation u which is mass preserving
from w. This can be done by projection, that is, by solving the optimization problem

inlfue — wlf
minjju — wiis,, @.1)

s.t. c(u)=0, (2.2)

where Il - Il y is some appropriate norm. It is interesting to note that the MK problem is
nothing but a projection from the identity transformation w(x) = x with respect to the pg-
weighted L, norm Il - Il ;4 (see (1.1a)—(1.1b)).

Thus if we simply project to the MP constraint with the pg norm, we should be able to obtain
a local minimizer for (2.1). However, such a projection may not be the global minimizer.
Nevertheless, while we cannot guarantee global convergence of the projection process, we
can increase the chances that the local minimizer of (2.1) is also a global minimizer of the
MK problem. To do that, we recall that the global minimizer has the property thatu = V¢
[1,36]; therefore, V x u = 0. Thus we propose to perform the projection by solving the
following optimization problem:

1 , ,
1 —wlaBlY 2
PROJ 111u1n2f9(;10(x)|u w| BV X u|”) dx, (2.30)

s.t. c(u)=0, (2.3b)

where B > 0. While the term B|V x u|2 does not change the global minimum, it does give a
bias towards a curl-free solution when solving for the projection, and thus has a better
chance to converge to the global minimum.

One can check that the conditions for a minimum lead to the following nonlinear system of
equations:

11o(u = w)+BV X V X u+p det(Vu) Vuo(u) = V - (det(Vu)(Vu) " p), (2.4a)

det(Vu)uo(u)=0, (2.4b)

where p is the Lagrange multiplier.

The optimization problem PRQOJ is a continuous constrained optimization problem. There
are many techniques to obtain the solution to such problems. In the following, we will
consider a version of sequential quadratic programming (SQP) which is a commonly used
methodology for such constrained optimization problems [28]. The advantage of SQP type
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methods is that they are mesh-independent. That is, the number of iterations to convergence
is independent of the mesh size [37].

However, before we consider the explicit solution process, we should first describe two
possible approaches. In the “discretize-then-optimize™ approach, we discretize the projection
(2.3), and then solve a discrete optimization problem. In the “optimizethen-discretize”
approach, we first write the Euler—Lagrange equations (2.4) in a continuous setting, and then
discretize them in order to obtain a system of discrete nonlinear equations. The two
approaches are summarized in [17]. The advantage of the discretize-then-optimize approach
is that common optimization algorithms can be used with little modification. This is
particularly important if we wish to obtain convergence to a minimum from a possibly
distant starting point. Recent work in the field [28,7] suggests several mechanisms to
achieve this goal, which we explore in some detail below. Particular care must be taken so
that the inner products and norms are discretized appropriately [22]. We therefore proceed
with the discretization of the optimization problem.

We should note that although we use the discretize-then-optimize approach, the discrete
nonlinear system and its linearization can be thought of as a discretization of the Euler—
Lagrange equations (2.4). As such we need efficient solvers to systems which involve the
curl operator and the linearization of the constraints.

3. Discretization

In order to discretize the problem, we define the Lagrangian

1 \ 2 2 .
L, )= [ ool = xF+BIV X uf?) dx+(p, c(w)), 61

where p is a Lagrange multiplier.

Certain key applications (for example, in medical image processing) have data which are
discretized on a regular grid. We therefore construct our discretization based on a finite
volume/difference approach. Rather than working with the deformation field u, we work
with the update or displacement v = u — x. This yields numerically smaller perturbations.
Note also that V x u = V x v, and thus the projection (2.3) does not change.

We divide the domain, Q, into ny x -+ x nq cells, each of size hy x --- x hq, where d is the
dimension of the problem. For simplicity we discretize all the components of v at the nodes
of each cell to obtain d grid functions v%, ..., v9. The Lagrange multiplier p is discretized at

the cell centers. In 2D, we denote by 77]k the ith grid function discretized at the (xy);j, (X2)k

node, and by p;, 1 ., 1 the Lagrange multiplier discretized at the cell center. The discretized
quantities are plotted in Figure 1.

We note that a staggered discretization for the displacement can also be used [19]. Similar to
problems that are derived from computational fluid dynamics and electromagnetics, such a
discretization has very nice numerical properties. However, it is less simple to implement
and requires careful treatment of boundary conditions. A discussion about the staggered
versus the unstaggered discretization can be found in [35].

We now consider the different numerical approximations needed in order to obtain a discrete
approximation to the continuous system. A consistent discretization for A, Vx and a
consistent discretization of Vu = | + Vv are needed. There are a number of possible
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discretizations that lead to a well-posed system. Here we derive the explicit discretization in
2D. The extension to 3D is straightforward.

3.1. Discretization of A and Vx

In order to obtain a consistent discretization of the Laplacian, we use a standard
discretization (5 point stencil in 2D and 7 point stencil in 3D) with Dirichlet boundary
conditions.

To compute the discretization of the curl, we use “short differences” in one direction (see
[3, p. 11]) and average them (or the differences) in the other direction. For example, in 2D

we obtain
[ T S TP V) AP VA V- S & - A V-
i,j+1 ij i+l j+1 i+1,j i+1,j ij o Ui+l j+1 i,j+1 2
((’(ij),q_.i._j_{.%: - +ﬁ(h )a
3.Jt3 2h 2h> (3.2)

where we denote by C the curl matrix. It is easy to verify the second order accuracy of this
discretization.

3.2. Discretization of the MP constraint

To discretize the MP constraint we use a finite volume discretization, and so integrating over
a given region Q

[ o cydx= [, det(I+Vuv)uo(x+v) dx,

we see that two approximations are needed. First, we need to approximate det(I+Vv), and
second, we need to approximate pp(x + v). There are a number of options for discretizing the
constraint. In our application, g is typically discretized in cell centers; therefore we choose
the domain Q; as a cell in our discretization.

In order to approximate pg(x + v) in cell centers, we use linear interpolation; see [26] for
details. We denote this approximation by pg(xp + v), where x, is the discretization of x = [xq,

11
Xo] on the cell centers, (i+ RABY

In order to approximate det(l + Vv) at the cell centers, we first compute all the derivatives in
cell centers as follows:

—% ~k =k —k
) Vi1 ~ Vit ~ Vi N
W) 1 1= +O0(h?),
R TV A ) 2h (3.3a)
—k —~k K —k
v, —vtuvs, ., U
a ij+1 i i+1j+1 i+1
W)L 1= Lyon), k=1,2.
X2 I+f~./+f 2h (33b)

We also denote the block diagonal matrix

SIAM J Sci Comput. Author manuscript; available in PMC 2011 January 27.
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GRADv-=blkdiag (UEJ)H‘:H: (Ui‘l)n%.ﬂ; ’
(U;l Ll (U§;)i+1 il
i=1,...,m =1, j=1,...,m—1.

This matrix is the discrete analog to the matrix Vv at each cell center. For the MK problem
to be well defined, the matrix | + Vv must be SPD everywhere.

Let Dj be the discretization of the jth derivative. The discrete MP constraint for v then reads

(1+Dv1+D22+H(D1v1) © (D2v2) — (D2v1) © (D2v1)) © po(xp+0)=pt1(x7,), (3.4)

where © is the Hadamard product. It is important to further study this discretization and its
properties. Typically to study any discretization we study the consistency and the stability of
our discretization.

3.2.1. Consistency of the discretization—To study the consistency of the
discretization, we employ the following lemma.

LEMMA 1. Letv = (v}, ... , v9) be grid functions of a sufficiently smooth field v, and let
GRADV be approximated for the matrix Vv. Then, if | + Vv has positive real eigenvalues
with Re(Amin) = p > 0, the matrix GRADv also has positive real eigenvalues for a
sufficiently small h.

Proof. To prove the lemma, we note that the matrix is a block 2 x 2 matrix. This implies that
the eigenvalues of the matrix | + GRADv can be computed blockwise, where each of the
blocks corresponds to a different cell in the discrete grid. Since the approximation of the
derivatives is #h?), the eigenvalues of the matrix | + GRADvV converge to the eigenvalues of
| + Vo.

It is important to note that the above lemma does not predict the order of convergence.
Unfortunately, very small perturbations in the discrete grid function v can lead to large
perturbations in the eigenvalues of GRADv. Consider, for example, the case in which the
approximation to GRADv at some cell is

1 a
A—I+GRADV—( 0 1 ),

and that we have a numerical error of the form <E where
00
E( 0 ) .
Then, it is easy to verify that

AA+eE)=1 = ea.

SIAM J Sci Comput. Author manuscript; available in PMC 2011 January 27.
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Thus, for large enough a the eigenvalues of the perturbed system can be very different from
the eigenvalues of the continuous one.

Nevertheless, the above lemma is important because it implies that the overall (discrete)
problem is consistent for sufficiently small h. It is also important because it gives certain
hints about possible difficulties with the numerical solution. It is well known that the
continuous problem can be ill-posed if the real parts of the eigenvalues of Vu are not
positive, that is, Re(Vu) > 0 (see [11]). Lemma 1 requires h to be sufficiently small in order
to obtain this behavior. If the displacement field is not sufficiently smooth or h is not
sufficiently small, then we may encounter negative eigenvalues in the discrete
approximation of u. In this case the iteration can stall or even diverge. We therefore propose
to check the eigenvalues of | + GRADvV throughout the iteration. This can be done in #n)
work due to the block structure of the system.

There are a number of ways to correct for negative eigenvalues. Denote the Schur
11
decomposition of the gradient matrix at the I+§,J+§ cell by

(I+GRADV),, 1 1=V, 1

where all the matrices are 2 x 2 (in 2D). For the sake of concreteness, assume that the first

eigenvalue A Lt <0, A simple modification of our method is simply to inflate A,J in such
a manner that it is sllghtly larger than 0, for example, to h. We have taken precisely this
approach to avoid vanishing or negative eigenvalues that may lead to divergence of the
method.

3.2.2. Stability of the discretization—Although the discretization of the MP constraint
is consistent and second order accurate, it is not a stable discretization. It is easy to verify
that the derivatives have a nontrivial null-space known as a checkerboard null-space. This is
not very surprising. Indeed, consider the simple case of a uniform mass in which one
linearizes the perturbation around it. The Taylor expansion yields

det(I+Vév) ~ 14V - bv.

Thus, for the starting point u = x and v = 0 the first iterate gives a system similar to the
Stokes system. It is well known that nonstaggered discretizations of the Stokes equation are
not stable [35]. Nevertheless, simple stabilization techniques can be used to obtain a well-
posed discrete system. The most common approach is a penalty method [35], where an
artificial viscosity is added to the Lagrange multiplier. This additional term stabilizes the
system without affecting the overall accuracy of the problem. We return to this issue in the
next section.

3.3. Discretization of the objective function

In order to discretize the objective function on a regular grid, two quantities are necessary.
First, we need to approximate Jug[v|? dx on Qj, and second, the approximation of JIV x vf?
dx is required.

Assuming pg is given in cell centers, we obtain

SIAM J Sci Comput. Author manuscript; available in PMC 2011 January 27.
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51
fQ polv*dx=h? ZHoG+ b+ b E UU'!-UH“+UU+1+UH1J+1) +O(h?).
(3.9)

Summing over the cells, we obtain a second order accurate discretization that can be written
in matrix form as

fQ,uo\l/|2(lr=7rM#,)U+ﬁ(h2), (3.6)

where M, is a pp weighted mass matrix.

Since the discretization of the curl is centered at the cell centers, it is straight-forward to use
the curl matrix C to obtain

[V x vPdx=n"v"CTCo+O (). 37)

4. Computation of a step

Given the properties of our discretization we now discuss the modification of the Lagrangian
and the computation of a step.

In order to overcome the problem of stability in the discrete constraint, we use a well-known
strategy utilized in computational fluid dynamics [35] and add a small penalty term to the
discrete Lagrangian, defined as

f——"TM U+BATCTC"+p c(v) - —IIV/@I'

) (4.1)

where y is an £h?) parameter. The latter term is added to the problem to overcome the
stability problem. For a simple constraint c(v) = V - v, it is possible to obtain an analytic
expression for the optimal vy (see, for example, [35]). However, when the constraint depends
on v, such an optimal expression is not attainable. We therefore set y = h1h,, which now
yields a consistent and stable approximation to the Lagrangian.

To solve the problem, we use a version of inexact SQP [7]. The bottleneck in this
methodology is the solution of the so-called Karush—-Kuhn-Tucker (KKT) system

H ¢§ ov
u =RHS,
( cu =S )( 55) (4.2)

where H is an approximation to the second derivatives of the Lagrangian and c,, is the
Jacobian of the constraint. Here we used H = M, + BCTC. This approximation to the
Hessian yields a semipositive definite (SPD) approximation to the (1,1) block and therefore
guarantees a descent direction. We have modified standard SQP algorithms and introduced
the regularization matrix S = h1h,Ap > 0 in our numerical procedure.

To solve the KKT system, we have taken a number of steps. First, we have used an
augmented Lagrangian approach [15] and generated the modified system

SIAM J Sci Comput. Author manuscript; available in PMC 2011 January 27.
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(= 5)
A (4.3)

where H,,=H+c, c,. The augmentation helps to deal with the null-space of the curl operator
and is commonly used in computational electromagnetics [18,16].

Next we use a block preconditioner similar to the one discussed in [33]. It is well known that
an optimal preconditioner for the KKT system is [5]

1 5)
0 S/’ (4.4)

where S is the Schur complement

Se=cuHggc, +S.

The matrix Hag is derived from an elliptic operator; therefore it is possible to approximate
its inverse using standard multigrid methods. To approximate the Schur complement matrix
we drop the matrix S, which is #h?), and use the pseudoinverse of ¢, to obtain

-1 %
S¢ = c,Hugcy,.

The computation of ¢’ times a vector z requires the solution of a system of the form

T, -
CuCy 4=2.

Since ¢,c, is a discretization of an elliptic operator, this can be done using a standard
multigrid technique. The numerical properties and performance of this approximation will
be studied elsewhere. In our numerical experiments we have noticed that the number of
iterations of the generalized minimal residual method (GMRES) [32] that was needed to
solve the KKT system was almost mesh independent.

5. Numerical experiments

To test the performance of our method we considered three illustrative examples. First, we
used a known deformation field to deform a synthetic image, and we verified that our
algorithm could recover the deformation field accurately. We will present results both for
2D and 3D cases. We also tested the algorithm for the registration of 3D brain magnetic
resonance image (MRI) datasets as an example application in medical imaging. Regarding
this latter application, we certainly do not propose optimal mass transport as a general
approach to image registration. Optimal mass transport may be regarded as an intensity-
based approach to elastic registration, and as such is closely related to certain optical flow
based methods [34,38]. It makes sense for there to be imagery in which the intensity can be
related somehow to some density, which is the case for MRI data. Here the intensity is
proportional to the proton density (basically water content) of the given tissue.

SIAM J Sci Comput. Author manuscript; available in PMC 2011 January 27.
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5.1. Synthetic examples

Since the solution of the problem is also the solution of the Monge—Ampére equation [11], it
is easy to construct an analytic example. In order to do this, we consider the following
function:

1 L1702 Loy g2
P(x1, x)=3 (ke T TN € [0, 177,

where ¢, o1, and o, are parameters chosen to create a unique deformation field.
Differentiating ¢ with respect to x = (X1, X2), we obtain u = (uy, Uy),

1, 1 2 2 Lo 1 2 2
uy=x1 —c-((x; — O.5)/0’%) cem 1m0 gty oy

Lo 132, 2 1 1.2, 2
r=x2+¢ - (x2 — 0.5)/02) - e" 2172 107 . gm3(2=3) /o |

We employed a standard 2D phantom image from MATLAB to serve as p(X1, X2), and
define pg(xq, X2) by

o = det(Vuyu (). (5.1)

We computed pg(Xq, X2) via linear interpolation. The deformed grid, deformation vector
field, pg, and p4 thus obtained are shown in Figure 2.

We next inputed the p4 and pg obtained in this manner into our solver to find the
transformation u using our algorithm.

We also performed the same experiment for a 3D brain MRI dataset. The deformation field
from the 2D example was symmetrically extended in the third dimension and the deformed
image was computed in the same way. For both experiments we use p = 102. We terminated
our algorithm after 100 iterations or when the curl of the solution was 4 orders of
magnitudes smaller than its initial size (in the infinity norm).

Table 1 shows the co-norm of the error between the known and compute deformation fields
at different grid sizes. The tables clearly demonstrate quadratic convergence of our method
to the true solution, which is expected from the discretization error used in our numerical
approximations.

To demonstrate the efficiency of our algorithm, we present in Table 2 the number of
projection steps used for each of the examples on each level. Note that we have not used a
multilevel procedure that could speed up calculations. This was done in order to demonstrate
mesh independence of the method. The incorporation of a multilevel method is beyond the
scope of the present paper and will be done in future work.

Table 2 clearly demonstrates the mesh-independence property of the modified SQP
algorithm.

5.2. A 3D brain example

We also tested our approach for multimodal registration of a 3D brain atlas to an MRI. Our
goal is the identification of cortical structures by mapping a publicly available atlas [24] to
the scan of a patient. The MRI of the atlas is a spoiled gradient recalled image acquired on a
1.5-Tesla General Electric Signa System (GE Medical Systems, Milwaukee) with 256 x 256
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x 124 voxels and voxel dimension of 0.92 x 0.92 x 1.5 mm. The patient scan is an
MPRAGE acquired on a Siemens 3T long bore machine using an 8 channel head coil. The
resolution of the scan is 256 x 256 x 144 with voxel dimension 0.54 x 0.54 x 1.0 mm (see
Figure 3(b)).

The parcellation of the cortex can be encoded by partitioning the boundary between cortex
and white matter into anatomical regions [12]. The label map of cortical structures can then
be inferred from this partition by propagating the labeling along the boundary to the entire
cortex. The pipeline described below will apply this concept for the parcellation of the
cortex to the high resolution scan.

The input of the pipeline consists of the atlas, the high resolution scan, as well as a
segmentation of the scan into the major tissue classes. In the first step, we coarsely align the
atlas to the image data using the B-spline implementation by Rohlfinger [31] with a final
spacing of the grid nodes of 2.5 mm. This results in a coarse alignment of the scans. The
algorithm has difficulties in mapping the folds of the white matter due to the inherent
constraints of the B-spline representation. We then reduce the atlas to the white matter
including the parcellation of the cortex along the boundary between gray and white matter
(see Figure 2(a)). Afterwards, we refine the alignment of this new atlas to the white matter
of the high resolution scan using our optimal mass transport registration approach.

Registration using optimal mass transport is a highly flexible approach that is, unlike B-
splines, not constrained to a set of control points. The intensities in the two input datasets are
first normalized and rescaled to make sure that both have the same total mass. The white
matter registration with the proposed algorithm took just 12 iterations to converge with 2
iterations of the projection to constraint per iteration. The V x u (convergence metric) was
reduced to an order of 1072 indicating an optimal map. Figure 2(c) shows the resampled
images with 3D views of the corresponding deformation grid in Figure 4. The difference
(see Figure 2(d)) between the target indicated in Figure 2(b) and the resampled image shows
that our approach accurately aligned the folds.

After this local alignment, the folds of the atlas should perfectly align with those of the high
resolution scan. The parcellation of the folds of the atlas, therefore, also encodes the
parcellation of the same region in the high resolution scan. We then complete the cortex
parcellation of the high resolution scan by confining the VVoronoi diagram of the aligned
atlas to the gray matter mask of the high resolution scan. The results in Figure 5 show the
corresponding segmentation when applying the deformation map of the B-spline registration
and our approach to the label map of [24], and propagating the labels to the cortex via the
Voronoi diagram.

6. Summary

In this paper, we have investigated a new method for the computation of the optimal L, mass
preserving mapping, and derived a novel numerical framework for its efficient computation.
We proposed a direct variation approach, and showed how one may obtain a descent
direction. A second order accurate discretization to the problem was presented. Further, we
presented several illustrative numerical experiments in both two and three dimensions which
indicated the effectiveness of our method. There are a number of key directions for future
research. In particular, we plan to improve our preconditioners to the KKT system, which is
the bottleneck of the computation, as well as use adaptive multilevel mesh refinement.
Finally, there are several possible applications of our optimal mass transport technique
which we intend to explore. These include texture mappings in computer graphics, and
visual tracking in controlled active vision.
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FIG. 1.

Discretization of the displacement and Lagrange multipliers.
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FIG. 2.

2D Synthetic Example. Two image pairs (a) and (b) with a known deformation, mapping
one to the other. (c) shows the deformed grid, and (d) shows the deformation vector field
with superimposed gradient contours of the determinant of the Jacobian.
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Registration results.

FIG. 3.
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FIG. 4.
Parecellation results.
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FIG. 5.
Deformed grid on white matter slices (left) and 3D volume (right).
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TABLE 1

Convergence for the 2D and 3D experiments.

Grid size

Error (infinity norm) in 2D Error (infinity norm) in 3D

23
24
275
2-6
27
28

1.1x107 1.2x1072
25x%x107° 38x1078
6.0x 1076 9.0x 1074
24x1077 22x1075
59x1078 51x107®
1.2x10°8
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TABLE 2

Number of projection iterations for the 2D and 3D experiments.

Grid size | # proj iter (2D) | # proj iter (3D)
273 56 67
274 32 46
275 28 34
276 27 35
27 28 36
278 26 35
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