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Abstract. To what extent do the vibrations of a mechanical system reveal its composition?
Despite innumerable applications and mathematical elegance, this question often slips through those
cracks that separate courses in mechanics, differential equations, and linear algebra. We address this
omission by detailing a classical finite dimensional example: the use of frequencies of vibration to
recover positions and masses of beads vibrating on a string. First we derive the equations of motion,
then compare the eigenvalues of the resulting linearized model against vibration data measured from
our laboratory’s monochord. More challenging is the recovery of masses and positions of the beads
from spectral data, a problem for which a variety of elegant algorithms exist. After presenting one
such method based on orthogonal polynomials in a manner suitable for advanced undergraduates,
we confirm its efficacy through physical experiment. We encourage readers to conduct their own
explorations using the numerous data sets we provide.
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1. Introduction. The 18th century witnessed revolutionary progress in the
mathematical description of fundamental problems in mechanics, thanks to the col-
lective efforts of natural philosophers such as Leonhard Euler, the Bernoulli family,
d’Alembert, Lagrange, and others [5, 24]. These old masters developed predictive
models: given the material properties of a system, along with its position and ve-
locity at some initial time, determine the system’s state at all future times. While
such forward models give great insight, modern applications often present the prob-
lem backwards: We can measure how a system responds to some stimulus, and from
such experiments seek to discover the system’s composition. In many instances the
response is an acoustic signature and so one is led to pose the backward, or inverse,
problem in the form of the question, “Can one hear?” For example, Gopinath and
Sondhi [13] ask “Can one hear the shape of your throat?”, Kac [15] asks “Can one hear
the shape of a drum?”, Sekii and Shibahashi [20] ask “Can one hear into the sun?”,
Lin [18] asks “Can one hear a crack in a beam?”, and Gutkin and Smilansky [14]
ask “Can one hear the shape of a graph?” Each of these investigations seeks to echo
the success of Borg [2], Levinson [17], and Gelfand and Levitan [11] in their various
proofs that one can hear a “potential,” and Krein’s demonstration that one can hear
the mass distribution of a nonuniform string [16].

Krein’s argument, as developed by Dym and McKean [9], proceeds from the
beaded string (a massless thread supporting a finite number of point masses) to the
general nonhomogeneous distribution of mass. With Gantmacher [10], Krein returned
to the beaded case, resurrected the lovely work of Stieltjes [21] on continued fractions,
and carefully developed the requisite matrix analysis and complex function theory.
This finite dimensional case has since been systematized, and numerous related algo-
rithms now exist for its resolution [6]. Although these methods supply constructive
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means for determining masses and lengths from spectral data, this theory has, to our
knowledge, remained untested. We here provide experimental confirmation on data
taken from our own laboratory. Our larger aim however is to give an entry to inverse
spectral theory, numerics and experiment that is accessible to students possessing
a solid undergraduate background in linear algebra. Indeed, beaded string experi-
ments form the culminating exercises in an optional one-credit physical laboratory
that accompanies our junior-level Matrix Analysis course at Rice University.

The remainder of our tour is organized as follows. In §2 we derive a system of
differential equations for the displacement of a plucked beaded string and show how
to express the solution in terms of eigenvalues and eigenvectors of underlying mass
and stiffness matrices. In §3 we introduce our experimental setup and explain how we
measure the eigenvalues of a beaded string. In §4 we combine algorithms of de Boor
and Golub [8] and Gladwell [12, §4.4] to determine each bead’s location and mass
from two sets of eigenvalues, and in §5 we confirm, using real data, that one set of
eigenvalues suffices to reveal the location and masses of symmetrically placed beads.

2. The Forward Problem. We thread a massless string through n beads, apply
a known tension τ , and clamp its ends at a known distance, `, apart. With reference
to Figure 2.1 we denote the mass of the jth bead by mj , and let `j denote the length
between mass mj and mj+1 (with `0 and `n denoting the length between the beads
at each end and the clamped support). Following a small vertical pluck we presume
that the jth bead suffers the planar displacement (xj , yj) and that the jth segment
makes the angle φj with the horizontal.

`0 `1 `2 `3

y1

y2

y3

m1

m2

m3

x1 x2 x3
φ0

φ1
φ2

φ3

Fig. 2.1. A string with n = 3 beads at rest (solid black) and in a deformed state (dotted).

In this state the horizontal and vertical components of the string restoring forces at
the jth mass are

τ(cosφj − cosφj−1) and τ(sinφj − sinφj−1)

respectively. The angles φj−1 and φj can be determined from the horizontal and
vertical displacements. As evident from Figure 2.1,

cosφj =
`j + (xj+1 − xj)√

(`j + (xj+1 − xj))2 + (yj+1 − yj)2

sinφj =
yj+1 − yj√

(`j + (xj+1 − xj))2 + (yj+1 − yj)2
,

and similarly for φj−1. If the pluck is small and the string is taut we may make the
(customary) assumptions that |yj+1 − yj | � `j and |xj+1 − xj | � `j (for a careful



ONE CAN HEAR THE COMPOSITION OF A STRING 3

alternative, see [1]), and so arrive at the approximations

cosφj ≈ 1, sinφj ≈
yj+1 − yj

`j
,

cosφj−1 ≈ 1, sinφj−1 ≈
yj − yj−1

`j−1
.

With these approximations the horizontal forces balance, so it remains only to balance
the vertical restoring forces with their associated inertial terms (“ ma = F ”):

mjy
′′
j (t) = τ

(yj+1(t)− yj(t)
`j

− yj(t)− yj−1(t)
`j−1

)
, j = 1, . . . , n.

For this equation to hold at the first and last mass (j = 1 and j = n), we define
y0 = yn+1 = 0, thus describing the fixed ends of the string. As a consequence of
our first-order approximations to the sines and cosines, these n coupled equations are
linear, and can be most conveniently organized into the matrix form

My′′(t) = −Ky(t),(2.1)

with state vector y(t), mass matrix M,

y(t) =


y1(t)
y2(t)

...
yn(t)

 , M =


m1

m2

. . .
mn

 ,

and stiffness matrix

K = τ



`−1
0 + `−1

1 −`−1
1

−`−1
1 `−1

1 + `−1
2

. . .

. . . . . . −`−1
n−1

−`−1
n−1 `−1

n−1 + `−1
n


,(2.2)

with all unspecified entries equal to zero. The mass and stiffness matrices enjoy two
lovely properties: they are symmetric, M = MT and K = KT , and positive definite,
meaning that

yTMy =
n∑
j=1

mjy
2
j and yTKy =

y2
1

`0
+
y2
n

`n
+
n−1∑
j=1

(yj − yj+1)2

`j

are both positive for every nonzero vector y ∈ Rn.∗

∗If the masses and lengths are uniform, say mj = 1/(n + 1) and `j = 1/(n + 1), and τ = 1,
then M = I and K becomes the familiar tridiagonal matrix that arises from the second-order finite
difference discretization of the second spatial derivative; see, e.g., [23]. This reflects one way in which
the wave equation utt = uxx, can be derived as the limit of lumped masses.
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We are interested in the motion induced by an initial pluck of the string, whereby
the masses are vertically displaced by the components of the vector y0, then released.
Thus we presume that

y(0) = y0, y′(0) = 0.

Equation (2.1) is a typical second-order, constant-coefficient homogeneous system of
equations, a problem routinely tackled with the help of some linear algebra.

2.1. Solving the Differential Equation. By analogy with the harmonic mo-
tion experienced by a single tethered mass we put forward the educated guess that
the solution of equation (2.1) takes the form

y(t) = eiωt v,

where the scalar ω is the frequency and the constant vector v somehow accounts for
the interplay between the masses. On substituting our guess into equation (2.1) we
find that ω and v must obey the generalized eigenproblem

Kv = ω2Mv,(2.3)

that is, ω2 is an eigenvalue with associated eigenvector v for the pair (K,M). We now
argue that this pair has n positive distinct eigenvalues and n linearly independent real
eigenvectors.

We begin by noting that Kv = λMv can be transformed to the standard eigen-
problem, Au = λu, via the substitutions

u = M1/2v and A = M−1/2KM−1/2,

where M1/2 is the element-wise square root of M (since M is a diagonal matrix).
We next note that, like M and K, the matrix A is symmetric and positive definite.
The Spectral Theorem (see, e.g., [19, Ch. 7] or [22, p. 61]) guarantees that A has
n positive real eigenvalues, {λj}nj=1, and an orthonormal base of n real eigenvectors
{uj}nj=1. It follows that {vj ≡M−1/2uj}nj=1 is a basis of eigenvectors of the general-
ized problem (2.3), and we identify the frequencies as ω2

j = λj . The orthogonality of
the eigenvectors {uj} of A ensures the eigenvectors of (K,M) are M-orthogonal :

vTj Mvk = 0 if j 6= k, vTj Mvj 6= 0.(2.4)

It remains to demonstrate that the n eigenvalues are in fact distinct, or, in other
words, that no eigenvalue may be associated with more than one eigendirection. If we
express the jth row of Kv = λMv in components with eigenvector v = [v1, . . . , vn]T ,
we find (

− τ

`j−1

)
vj−1 +

( τ

`j−1
+
τ

`j

)
vj +

(
− τ

`j

)
vj+1 = λmjvj .(2.5)

where, by convention, v0 = vn+1 = 0. Please note that if v1 = 0 then the above implies
that v2 = 0 and so on. Hence, true eigenvectors obey v1 6= 0. Now if w also obeys
Kw = λMw for this same value of λ, then its components also satisfy (2.5), and so any
linear combination of v and w will satisfy this equation. As z ≡ w− (w1/v1)v obeys
z1 = 0, it follows that z = 0 and hence w = (w1/v1)v, i.e., our “new” eigenvector is
simply a multiple of the original.
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Since the eigenvectors {vk} form a basis for n-dimensional space, we can write
the solution to (2.1) as a time-varying linear combination:

y(t) =
n∑
k=1

γk(t)vk.

Substituting this expansion into the differential equation (2.1) gives

n∑
k=1

γ′′k (t)Mvk = −
n∑
k=1

γk(t)Kvk = −
n∑
k=1

ω2
kγk(t)Mvk.

To decompose into n independent equations, we premultiply this last equation by vTj
and appeal to (2.4), giving the familiar scalar equation

γ′′j (t) = −ω2
jγj(t), j = 1, . . . , n

with solution

γj(t) = cj cos(ωjt) + sj sin(ωjt).

These cj and sj coefficients are determined by the pluck: y′(0) = 0 implies each
sj = 0, while y(0) = y0 implies that the cj are the expansion coefficients of y0 in the
eigenvector basis, which can be found by solving the linear system

y0 =
n∑
j=1

cjvj .

3. Experimental Apparatus and Model Verification. How well does the
model (2.1) just derived predict what really happens when a beaded string is plucked?

We investigate this question by conducting experiments on a high-precision mono-
chord constructed by students in our laboratory at Rice University, shown in Fig-
ure 3.1. For the “massless string” we use a length of 0.015 inch diameter nickel-plated
steel musical wire donated by the Mapes Piano Wire Company. Tension is mea-
sured with a force transducer placed at the end of the string. The string then passes
through a collet, which itself is mounted in a collet vise. The string proceeds through
a photodetector that measures the vibrations at one point on the string. Brass beads
are threaded onto the string, which continues through a second collet. (These beads
have been carefully machined so as to snugly fit onto our wire.) Finally, the string is
wound upon a spindle, which applies tension to the string. The experimenter winds
the spindle until the string achieves a desired tension, then tightens the collet vises
to fix the string at both ends (enforcing y0 = yn+1 = 0).

force
transducer

?

collet and vise

?

photodetector

?

collet and vise

A
A
AU

tensioner

?

Fig. 3.1. The monochord loaded with beads.
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A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only describes
the motion of the beads, but the string itself must vibrate in concert: since we assume
the string is perfectly elastic and the detector is placed between the fixed end and
the first bead, these measurements are proportional to the first bead’s displacement.)
Consider a string loaded with five beads, as specified in Figure 3.2. We measure
displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk} shown
on the left of Figure 3.3. (The magnitude of the displacements decay over the course
of this ten second sample, reflecting some mild damping not captured by our simple
physical model.) By analogy with the model (2.1), we expect that

ηk =
n∑
j=1

cj cos(tk
√
λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in §7.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3.2 indeed oscillate at the
frequencies predicted by the analysis in §2. To do so, we compute the discrete Fourier
transform (DFT) of the data. A detailed discussion of the DFT is beyond our scope,
but excellent expositions can be found in [4, 22], and the operation can be implemented
in just a few lines of MATLAB.
freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies
semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs
xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 3.3. A signal behaving like t 7→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By equation (3.1), we expect our signal
to be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√
λj , where λj is an eigenvalue of (K,M). As the beads are not point

masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 3.3 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper derived from the shorter string with the bead diameters removed.

4. Determining Mass and Position from Vibrations. Having seen the pre-
dictive ability of the forward model (2.1), we now address a more interesting—and
challenging—problem: Given knowledge of eigenvalues (e.g., as discerned from the

m1 =

17.804 g
m2 =

30.783 g
m3 =

9.097 g
m4 =

17.804 g
m5 =

30.783 g

`0 =

12.7 cm
`1 =

12.7 cm
`2 =

17.8 cm
`3 =

22.9 cm
`4 =

27.9 cm
`5 =

18.4 cm

� -� -� -� -� -� -

Fig. 3.2. Configuration of the five-bead experiment described in §3. The string has total length
of 112.4 cm and is drawn to a tension of 1.706×107 dyn. The beads have diameter of 5/8 in. (beads 1
and 4), 3/4 in. (beads 2 and 5), and 1/2 in. (bead 3). (Bead widths are exaggerated relative to the
string length in our plots.)
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Fig. 3.3. Displacement of the five-bead string in Figure 3.2 in the time domain (left) and
frequency domain (right). Notice the five prominent peaks on the right, each corresponding to an
eigenvalue of the pair (K,M): The gray shaded regions denote the predicted location of the peaks

from the mathematical model, ωj =
√
λjI, based on a string of full length (left boundaries) and

shortened by the bead diameters (right boundaries).

peaks in Figure 3.3), can we “hear the beads on the string”? Can we determine the
bead positions and masses? Numerous elegant algorithms solve this problem. Here we
present a general approach that first recovers the tridiagonal matrix M−1/2KM−1/2

using an orthogonal polynomial algorithm of de Boor and Golub [8], followed by ex-
traction of bead lengths and masses using a technique of Gladwell [12, §4.4]. Some
students may prefer Krein’s continued fraction approach (see Supplement II of [10]),
which is more elementary but specialized. (We provide a detailed guide to this tech-
nique in Appendix A, which can readily substitute for the remainder of this Section.)

4.1. Orthogonal polynomials with discrete inner products. We begin the
inversion process with an excursion into the beautiful, important subject of orthogo-
nal polynomials. Let Pk denote the set of all polynomials of degree k or less (with real
coefficients). A k-degree polynomial p is monic if its leading coefficient is one, i.e.,
p(z) = zk + r(z) for some r ∈ Pk−1. The set Pn−1 can be viewed as a n dimensional
vector space, and just as we have the dot product on n dimensional Euclidean space,
we can also specify an inner product on Pn. Toward this end, choose real numbers for

nodes: ξ1 < ξ2 < · · · < ξn

and weights: w1, w2, . . . , wn > 0,
and define the inner product of polynomials p and q to be

〈p, q〉 =
n∑
j=1

wjp(ξj)q(ξj).(4.1)

One can readily verify that this function obeys the axioms required for an inner
product on Pn−1; see, e.g., [19, p. 286]. We say p and q are orthogonal when 〈p, q〉 = 0,
and use the inner product to define a norm: ‖p‖2 = 〈p, p〉 ≥ 0.

The inner product is central to our development, which closely follows the impor-
tant early work of de Boor and Golub [8]. The first step involves the construction of
a sequence of monic polynomials of increasing degree that are all orthogonal to one
another. The monic degree-0 polynomial must be

p0(z) = 1.
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To build the monic degree-1 polynomial, multiply p0(z) by z (to get a monic polyno-
mial of degree 1), then subtract out the projection of zp0 onto the span of p0. This
amounts to a single step of the Gram–Schmidt orthogonalization process [19, p. 307]:

p1(z) = zp0(z)− 〈zp0, p0〉
〈p0, p0〉

p0(z) =: zp0(z)− a1p0(z).

Step k + 1 follows similarly, via Gram–Schmidt:

pk+1(z) = zpk(z)−
k∑
j=1

〈zpk, pj〉
〈pj , pj〉

pj(z).

Now we make an essential simplifying observation: pk must be orthogonal to any
lower degree polynomial (which must be a linear combination of p0, . . . , pk−1, as these
orthogonal polynomials form a basis for Pk−1). Since zpj ∈ Pj+1, notice that

〈zpk, pj〉 = 〈pk, zpj〉 = 0, j < k − 1.

The formula for pk+1 thus reduces to a three-term recurrence relation:

pk+1(z) = zpk(z)− 〈zpk, pk〉
〈pk, pk〉

pk(z)− 〈zpk, pk−1〉
〈pk−1, pk−1〉

pk−1(z).

The coefficient of pk−1 is always negative: since zpk−1 = pk + r for some r ∈ Pk−1,

〈zpk, pk−1〉
〈pk−1, pk−1〉

=
〈pk, zpk−1〉
〈pk−1, pk−1〉

=
〈pk, pk + r〉
〈pk−1, pk−1〉

=
〈pk, pk〉

〈pk−1, pk−1〉
=
‖pk‖2

‖pk−1‖2
≥ 0.

Thus we write

pk+1(z) = zpk(z)− 〈zpk, pk〉
〈pk, pk〉

pk(z)− ‖pk‖2

‖pk−1‖2
pk−1(z)

=: zpk(z)− ak+1pk(z)− b2k pk−1(z);(4.2)

the label “b2k” emphasizes that the constant b2k := ‖pk‖2/‖pk−1‖2 is positive. We see
that orthogonal polynomials intimately link to the constants a1, . . . , an and b1, . . . , bn−1.
File this fact away for the moment, and return to the matrices at hand.

4.2. Eigenvalues of symmetric tridiagonal matrices. The matrices model-
ing beaded string vibrations can be written in the form

An = M−1/2KM−1/2 =


a1 b1

b1 a2
. . .

. . . . . . bn−1

bn−1 an

 ,
where ak = τ(1/`k−1 + 1/`k)/mk and bk = −τ/(`k

√
mkmk+1) < 0; see eq. (2.5). The

matrix An (more precisely, −An) is an example of a Jacobi matrix, a widely-studied
family having many fascinating properties. To analyze the eigenvalues, consider the
characteristic polynomial qn(z) := det(zI−An). Expand this determinant along the
last row and column of zI−An to arrive at the formula

det(zI−An) = (z − an) det(zI−An−1)− b2n−1 det(zI−An−2).
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In other words,

qn(z) = (z − an)qn−1(z)− b2n−1qn−2(z),(4.3)

which is exactly the recurrence (4.2) for the orthogonal polynomial pn. Jacobi matrices
and orthogonal polynomials thus enjoy a rich intertwined history, with applications
spanning from numerical analysis to mathematical physics.

4.3. Custom-tailoring an inner product. Suppose we know the eigenvalues
of An and its upper-left (n− 1)× (n− 1) block, An−1;

eigenvalues of An: λ1 < λ2 < · · · < λn

eigenvalues of An−1: µ1 < µ2 < · · · < µn−1

but we do not know the entries of An. Is there some way to build the matrix from
these eigenvalues?

First note that the eigenvalues of An and An−1 never coincide, and in fact weave
between each other,

λ1 < µ1 < λ2 < · · · < λn−1 < µn−1 < λn,(4.4)

an instance of Cauchy’s Interlacing Theorem; see, e.g., [19, p. 552].
Given the parallel between the entries in An and the coefficients of the orthogonal

polynomial recurrence relation (4.2), one naturally wonders: Does there exists some
inner product (defined by nodes ξ1 < · · · < ξn and (positive) weights w1, . . . , wn) in
which the characteristic polynomials

qn(z) = det(zI−An) =
n∏
j=1

(z − λj)(4.5)

qn−1(z) = det(zI−An−1) =
n−1∏
j=1

(z − µj)(4.6)

are monic orthogonal polynomials? Given such an inner product, we could identify

an =
〈zqn−1, qn−1〉
〈qn−1, qn−1〉

,

then run recurrence (4.2) backward to compute

b2n−1qn−2(z) = (z − an)qn−1(z)− qn(z).(4.7)

To split b2n−1 from qn−2, use the fact that qn−2 must be monic.
To discover such an inner product (i.e., suitable nodes and weights), we will

explore some properties this inner product would need to obey. For one thing, qn
should be orthogonal to any lower degree polynomial in Pn−1. We can always build a
polynomial r ∈ Pn−1 that interpolates qn(z) at the n nodes z = ξ1, . . . , ξn:

r(ξj) = qn(ξj), j = 1, . . . , n.

(This is an extension of the fact that one can always construct a linear polynomial
through any two points, a quadratic through any three points, etc.) Since r ∈ Pn−1,

0 = 〈qn, r〉 =
n∑
j=1

wjqn(ξj)r(ξj) =
n∑
j=1

wjqn(ξj)2.
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As the weights must be positive, we conclude that

qn(ξj) = 0, j = 1, . . . , n.

That is, the n nodes ξ1, . . . , ξn must coincide with the n roots of qn:

ξj = λj , j = 1, . . . , n.(4.8)

To finish determining the inner product, we must specify the weights w1, . . . , wn.
In this endeavor we are aided by the Lagrange interpolating polynomials, objects
that arise in a basic numerical analysis class. Define δk ∈ Pn−1 by the following n
conditions: δk should pass through zero at the nodes ξj for j 6= k, while taking the
value one at ξk. You can quickly verify that such polynomials have the form

δk(z) =
n∏
j=1
j 6=k

z − ξj
ξk − ξj

∈ Pn−1.(4.9)

Since qn(ξk) = 0 for all k,

q′n(ξk) = lim
z→ξk

qn(z)− qn(ξk)
z − ξk

= lim
z→ξk

(z − ξk)
n∏

j=1;j 6=k

(z − ξj)

z − ξk
=

n∏
j=1
j 6=k

(ξk − ξj),(4.10)

giving the simple expression

δk(z) =
qn−1(z)
q′n(ξk)

+ rk(z)

for some rk ∈ Pn−2, since qn−1 is monic. Take the inner product of the Lagrange
polynomial with qn−1 to find

〈qn−1, δk〉 =
n∑
j=1

wjqn−1(ξj)δk(ξj) = wkqn−1(ξk),

where 〈qn−1, rk〉 = 0 since rk ∈ Pn−2. Now solve for the weights:

wk =
〈qn−1, δk〉
qn−1(ξk)

=
〈qn−1, qn−1〉
q′n(ξk)qn−1(ξk)

=
‖qn−1‖2

q′n(ξk)qn−1(ξk)
, k = 1, . . . , n.

Do you notice a subtle drawback of this formula? The expression for wk involves
‖qn−1‖, which we can only compute once all the weights are known. There is an
easy dodge: the term ‖qn−1‖2 is independent of k, so it affects all the weights the
same way. Orthogonality—the property we care most about—is independent of the
collective scaling of the weights, so we can select any convenient scaling, such as

wk =
1

q′n(ξk)qn−1(ξk)
, k = 1, . . . , n.(4.11)
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There can be no division by zero in this formula, since the nodes ξk = λk never
coincide with the roots µ1, . . . , µn−1 of qn−1 by the interlacing property (4.4); however,
computational subtleties can emerge when computing these weights, as they can vary
substantially in magnitude with the index k, especially when n is large.

4.4. Extraction of eigenvalue data. In our string laboratory we experimen-
tally determine the eigenvalues λ1 < . . . < λn of the matrix An = M−1/2KM−1/2

having the form

τ

`0m1
+

τ

`1m1
− τ

`1
√
m1m2

− τ

`1
√
m1m2

τ

`1m2
+

τ

`2m2

. . .

. . .
. . . − τ

`n−1
√
mnmn−1

− τ

`n−1
√
mnmn−1

τ

`n−1mn
+

τ

`nmn


.

We can measure the total length of the string, ` =
∑n
k=0 `k and the tension, τ . How

can we experimentally obtain µ1 < · · · < µn−1, the second set of eigenvalues coming
from An−1? This would amount to fixing the nth mass, thus making the string one
bead shorter. One could imagine building an apparatus to implement this condition,
but it would require knowledge of the internal composition of the string: namely, the
location of the nth mass, hence the quantity `n. We prefer a different strategy that
will avoid such an intrusion into the interior of the string. We have laboratory data for
the string fixed at both ends (the “fixed–fixed” string), giving measured eigenvalues
λ1 < · · · < λn. Now suppose we leave the string configuration the same, except now
the right end is attached by a ring to a frictionless vertical pole, so that end remains
level with nth bead (the “fixed–flat” string): measure the eigenvalues λ̂1 < · · · < λ̂n
of this modified string. (We will later find a more palatable route to this data using
only our regular fixed–fixed experiment.)

The beads of the fixed–flat string obey the same equations of motion (2.1) derived
for the fixed–fixed string save for the last bead, which is governed by

mny
′′
n(t) = −τ

(yn(t)− yn−1(t)
`j−1

)
;

that is, yn+1 = yn replaces the fixed condition yn+1 = 0. This change in the equation
for the nth bead gives a fixed–flat matrix Ân that differs from the fixed–fixed matrix
only in the last entry:

Ân = An −
τ

`nmn
eneT

n .(4.12)

Here ek denotes the kth column of the identity matrix, whose dimension is clear from
the context. Label the (n, n) entry of Ân as ân (to distinguish it from the (n, n) entry
an of An), Now partition the two Jacobi matrices as

An =

[
An−1 bn−1en−1

bn−1eT
n−1 an

]
=


An−2 bn−2en−2 0

bn−2eT
n−2 an−1 bn−1

0 bn−1 an
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and

Ân =

[
An−1 bn−1en−1

bn−1eT
n−1 ân

]
=


An−2 bn−2en−2 0

bn−2eT
n−2 an−1 bn−1

0 bn−1 ân

 .
With these forms, the characteristic polynomials for An and Ân are

qn(z) = det(zI−An) = (z − an) det(zI−An−1) + bn−1 det
([

zI−An−2 0
−bn−2eT

n−2 −bn−1

])

q̂n(z) = det(zI− Ân) = (z − ân) det(zI−An−1) + bn−1 det
([

zI−An−2 0
−bn−2eT

n−2 −bn−1

])
,

whose difference is

q̂n(z)− qn(z) = (an − ân) det(zI−An−1)

= (an − ân)qn−1(z).(4.13)

Hence the eigenvalues µ1 < · · · < µn−1 of the matrix An−1, which helped determine
the inner product, must match the roots of q̂n − qn. As de Boor and Golub [8]
observe, we can obtain a formula for the weights without explicitly computing the
eigenvalues of An−1 (which would require that we find the roots of a polynomial
q̂n − qn whose coefficients are subject to errors, a numerically unappealing prospect).
In particular, the formula (4.11) for the weights of the inner product only requires
the values qn−1(λk). We can access these quantities by recalling that the eigenvalues
λ1, . . . , λn are the roots of qn, hence from (4.13),

q̂n(λk) = (an − ân)qn−1(λk), k = 1, . . . , n.(4.14)

This equation specifies qn−1(λk) = qn−1(ξk) up to the constant ân−an, which can be
omitted from the weights (like ‖qn−1‖2 earlier), as we are unconcerned about scalings
of the inner product. Thus use the scaled weights

wk =
1

q′n(ξk)q̂n(ξk)
, k = 1, . . . , n.(4.15)

To obtain qn−1, use (4.13) along with the fact that qn−1 must be monic, i.e., an − ân
is the leading coefficient of the degree n− 1 polynomial q̂n − qn. Since

qn(z) =
n∏
j=1

(z − λj) = zn −
( n∑
j=1

λj

)
zn−1 + · · ·

q̂n(z) =
n∏
j=1

(z − λ̂j) = zn −
( n∑
j=1

λ̂j

)
zn−1 + · · · ,

we can compute

an − ân =
n∑
j=1

(λj − λ̂j).
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and thus

qn−1(z) =
q̂n(z)− qn(z)∑n
j=1(λj − λ̂j)

.(4.16)

4.5. An algorithm for recovering the Jacobi matrix. We are now equipped
to build An from the measured eigenvalues λ1 < · · · < λn and λ̂1 < · · · < λ̂n from
the fixed–fixed and fixed–flat string. We will represent the orthogonal polynomials
qk by their values at the nodes ξ1, . . . , ξn, rather than by their coefficients. As such,
equation (4.7) will not suffice to reveal b2k. Instead, take the inner product of (4.7)
(with k replacing n− 1) with zqk(z) to obtain

b2k =
〈zqk, zqk〉 − ak+1〈qk, zqk〉 − 〈qk+1, zqk〉

〈qk−1, zqk〉
.(4.17)

The numerator appears troubling, as qk−1 will not have been determined at this stage.
There is a slick work-around:

〈qk−1, zqk〉 = 〈zqk−1, qk〉 = 〈qk + r, qk〉 = 〈qk, qk〉

for some r ∈ Pk−1. Hence we can use the formula for b2k given in step 5(a) in Figure 4.1.
Since bk = −τ/(`k

√
mkmk+1) < 0, we define bk := −

√
b2k.

4.6. Relating the Jacobi matrix approach to beaded strings. We can use
the procedure detailed in Figure 4.1 to recover the entries of An, but how then do we
access the masses and lengths from which these entries derive? Gladwell describes a
procedure for mass–spring networks that we can adapt for our setting [12, p. 77ff].

Let e denote the vector with one in each entry, e = [1, 1, . . . , 1]T, while e1 and en
denote the first and last columns of the identity matrix. Observe from (2.2) that

Ke =
τ

`0
e1 +

τ

`n
en,(4.18)

so knowledge of K would reveal `0 and `n via (4.18), from which we could determine
the other lengths. However at this stage we only know An, not K. Using K =
M1/2AnM1/2, write

M1/2AnM1/2e =
τ

`0
e1 +

τ

`n
en.

Premultiplying by M−1/2 and labeling d := M1/2e = [
√
m1, . . . ,

√
mn]T gives

And =
τ

`0
√
m1

e1 +
τ

`n
√
mn

en.(4.19)

The vector d that solves this linear system will thus reveal the bead masses. We could
solve the system (4.19) for d using Gaussian elimination, except we lack a formula for
the right hand side. We can obtain the right hand side up to a scaling factor through
the following strategy. Solve the two linear systems

Anx = e1, Any = en

for the vectors x and y.† Now

An

( τ

`0
√
m1

x +
τ

`n
√
mn

y
)

=
τ

`0
√
m1

e1 +
τ

`n
√
mn

en = And.

†Alternatively, the entries in x and y can be obtained using explicit formulas involving minors
of An; see eq. (4.4.12) in Gladwell [12].
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1. Use (4.8) to determine the nodes of the inner product:
ξk := λk.

2. Use (4.15) to construct the weights, with q′n(ξk) given by (4.10):

wk :=
1

q′n(ξk)q̂n(ξk)
=

1(∏n
j=1
j 6=k

(ξk − ξj)
)(∏n

j=1(ξk − λ̂j)
) .

3. Determine the values of qn and qn−1 at the nodes; see (4.16):
qn(ξk) := 0

qn−1(ξk) :=
q̂n(ξk)− qn(ξk)∑n

j=1(λj − λ̂j)
=

∏n
j=1(ξk − λ̂j)∑n
j=1(λj − λ̂j)

.

4. Compute, via the inner product (4.1)

an :=
〈zqn−1, qn−1〉
〈qn−1, qn−1〉

=

∑n
j=1 wjξjqn−1(ξj)2∑n
j=1 wjqn−1(ξj)2

.

5. For k = n− 1, n− 2, . . . , 1

(a) Compute bk = −
√
b2k via the approach described after (4.17):

b2k :=
〈zqk, zqk〉 − ak+1〈qk, zqk〉 − 〈qk+1, zqk〉

〈qk, qk〉
.

(b) Compute qk−1 at the nodes:

qk−1(ξj) :=
(ξj − ak+1)qk(ξj)− qk+1(ξj)

b2k
.

(c) Define

ak :=
〈zqk−1, qk−1〉
〈qk−1, qk−1〉

.

Fig. 4.1. Algorithm for recovering the main diagonal (a1, . . . , an) and off-diagonal
(b1, . . . , bn−1) of the Jacobi matrix An from the fixed–fixed and fixed–flat eigenvalues λ1 < · · · < λn

and λ̂1 < · · · < λ̂n. Adapted from de Boor and Golub [8].

Since An is nonsingular (it is positive definite, as described in §2), we can access d as

d =
τ

`0
√
m1

x +
τ

`n
√
mn

y.(4.20)

One obstacle remains: What are the coefficients τ/(`0
√
m1) and τ/(`n

√
mn)? We can

resolve this issue using our experimental data. Since the trace of a matrix (sum of
the diagonal elements) is the sum of the eigenvalues [19, p. 494], the experimentally-
measured eigenvalues reveal, by way of (4.12),

τ

`nmn
= tr(An)− tr(Ân) =

n∑
k=1

(λk − λ̂k).(4.21)
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Thus the second coefficient in (4.20) is thus given by

τ

`n
√
mn

=
τ
√
mn

`nmn
=
√
mn

n∑
k=1

(λk − λ̂k).(4.22)

To obtain the first coefficient in (4.20), note that the nth row of (4.20) gives

√
mn =

τ

`0
√
m1

xn +
τ

`n
√
mn

yn,

which can be rearranged as

τ

`0
√
m1

=
1
xn

(√
mn −

τ

`n
√
mn

yn

)
=
√
mn

xn

(
1− yn

n∑
k=1

(λk − λ̂k)
)
.(4.23)

Given coefficients (4.22) and (4.23), equation (4.20) gives d up to a factor of
√
mn:

d̃ :=
d
√
mn

=
1
xn

(
1− yn

n∑
k=1

(λk − λ̂k)
)
x +

( n∑
k=1

(λk − λ̂k)
)
y,(4.24)

and so

K/mn = (M1/2AnM1/2)/mn = diag(d̃)Andiag(d̃).(4.25)

Recalling (2.2), the (j, j + 1) entries of (4.25) give −τ/(`jmn) = bj d̃j d̃j+1, i.e.,

`jmn = − τ

bj d̃j d̃j+1

, j = 1, . . . , n− 1.(4.26)

We can then find the end lengths from the (1, 1) and (n, n) entries of (4.25):

`0mn =
τ

a1d̃2
1 + τ/(`1mn)

, `nmn =
τ

and̃2
n + τ/(`n−1mn)

.(4.27)

1. Solve Anx = e1 and Any = en for x and y.

2. γ2 :=
∑n
j=1(λj − λ̂j) and γ1 := (1− ynγ2)/xn.

3. d̃ := d/
√
mn = γ1x + γ2y.

4. `jmn := −τ/(bj d̃j d̃j+1) for j = 1, . . . , n− 1.

`0mn := τ/(a1d̃
2
1 − τ/(`1mn)).

`nmn := τ/(and̃2
n − τ/(`n−1mn)).

5. mn :=
(∑n

j=0 `jmn

)
/`.

Fig. 4.2. Algorithm for extracting bead masses and locations from a Jacobi matrix An (main
diagonal entries a1, . . . , an and off-diagonal entries b1, . . . , bn−1), given knowledge of the tension
τ , total length of the string, `, and the fixed–fixed and fixed–flat eigenvalues. (For the symmetric
strings in §5, be sure to use ` = L/2.)
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We now have expressions for all the masses via (4.24) and lengths via (4.26)–(4.27),
up to the scaling factor mn. We do not know mn (as it is an interior property of
the string), but we do know the total string length, `, and from this we can compute
mn =

(∑n
j=0 `jmn

)
/`. This overall recovery process is summarized in Figure 4.2.

4.7. The special case of n = 1 bead. The case of n = 1 bead, in which case
An = a1 is a 1 × 1 matrix, requires special attention. Recovery of An from λ1 and
λ̂1 becomes trivial: An = λ1. The reader can then verify, starting from (4.21), that

`0m1 =
τ

λ̂1

, `1m1 =
τ

λ1 − λ̂1

, m1 =
τλ1

`λ̂1(λ1 − λ̂1)
.

5. Symmetrically Loaded Strings. Having seen how to determine the bead
locations and masses from two sets of eigenvalues, we must now address the practical
issue of experimentally measuring this data. When the string is fixed at both ends,
we can approximate the eigenvalues using the reliable experiments performed in §3.
The fixed–flat string poses a greater challenge. Fortunately, in one interesting special
case we can determine these eigenvalues without any modification to the experimental
apparatus. (Boyko and Pivovarchik recently proposed an alternative: clamping the
string at an interior point and measuring the spectra on each sub-string [3].)

Suppose that the number of beads, N , is even, and the masses of the beads and
lengths between them are symmetric about the midpoint of the string. To distinguish
this case from the general scenario considered earlier, we shall denote these masses
by M1, . . . ,MN , and the lengths by L0, . . . , LN , with the total length L =

∑N
j=0 Lj .

Thus, the symmetric arrangement requires that

M1 = MN

M2 = MN−1

...
MN/2 = MN/2+1,

L0 = LN

L1 = LN−1

...
LN/2−1 = LN/2+1

as illustrated for N = 6 in Figure 5.1. We can install such a symmetric arrangement on
our laboratory’s monochord (as pictured in Figure 3.1), then experimentally measure
the eigenvalues when both ends of the string are fixed; let us label these eigenvalues
Λ1 < Λ2 < · · · < ΛN . In Figure 5.2 we show the eigenvectors for the configuration
shown in Figure 5.1. This illustration reveals a remarkable property: eigenvectors
corresponding to the odd eigenvalues Λ1, Λ3, and Λ5 are all symmetric about the
middle of the string: If we cut the string in half, these eigenvectors would be fixed on
the left end and be flat at the right. On the other hand, eigenvectors corresponding
to the even eigenvalues Λ2, Λ4, and Λ6 are all antisymmetric about the midpoint: If
we cut the string in half, these eigenvectors would be fixed at zero at both ends. These

L0

�-
L1

� -
L2

� -
L3

� -
L4

� -
L5

� -
L6

�-

M1 M2 M3 M4 M5 M6

Fig. 5.1. A string with six beads with lengths and masses arranged symmetrically about the
middle of the string, denoted by the vertical gray line.
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Λ1 = 0.17863 . . . Λ2 = 0.55759 . . .

Λ3 = 1.77777 . . . Λ4 = 2.15076 . . .

Λ5 = 2.48803 . . . Λ6 = 3.51386 . . .

Fig. 5.2. Eigenvectors for the string shown in Figure 5.1. In each plot, the vertical displacement
of the kth mass indicates the kth entry of the corresponding eigenvector vj of M−1K.

observations hold for all symmetric string configurations, and they hint at a key fact:

The N eigenvalues of a symmetric beaded string fixed at both ends
exactly match the N/2 fixed–fixed and N/2 fixed–flat eigenvalues as-
sociated with half of the string.

λ̂1 = 0.17863 . . . λ1 = 0.55759 . . .

λ̂2 = 1.77777 . . . λ2 = 2.15076 . . .

λ̂3 = 2.48803 . . . λ3 = 3.51386 . . .

Fig. 5.3. Eigenvectors for the half-string corresponding to the symmetric configuration in
Figure 5.1. The eigenvectors on the left satisfy the fixed–flat conditions; those on the right satisfy
fixed–fixed conditions. Compare to the eigenvectors for the symmetric string in Figure 5.2.
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More precisely, consider a length ` = L/2 string having n = N/2 beads with masses

mj = Mj , j = 1, . . . , n

separated by lengths

`j = Lj , j = 0, . . . , n− 1
`n = Ln/2.

The odd eigenvalues for the symmetric string match the eigenvalues for the fixed–flat
half-string,

λ̂j = Λ2j−1, j = 1, . . . , n

while the even eigenvalues for the symmetric string match the eigenvalues for the
fixed–fixed half string,

λj = Λ2j , j = 1, . . . , n.

Figure 5.3 shows eigenvectors for the half-string corresponding to the symmetric string
in Figure 5.1. The fixed–flat eigenvectors, shown in the left column, correspond to
the left halves of the eigenvectors shown on the left of Figure 5.2, and the eigenvalues
match Λ1, Λ3, and Λ5 exactly. Similarly, the fixed–fixed eigenvectors on the half-
string, shown on the right of Figure 5.3, equal the left halves of the eigenvectors on
the right of Figure 5.2, and the eigenvalues perfectly match Λ2, Λ4, and Λ6.

We thus have a method for obtaining the data required for the inversion procedure
described in the last section, provided our string has symmetrically arranged beads.

1. Pluck the symmetric string and record the N = 2n eigenvalues Λ1, . . . ,Λ2n.
2. Relabel these eigenvalues for the corresponding half-string: λj = Λ2j and
λ̂j = Λ2j−1 for j = 1, . . . , n.

3. Apply the inversion algorithms (Figures 4.1 and 4.2) to the half-string eigen-
values to obtain `0, . . . , `n and m1, . . . ,mn.

4. Recover the parameters for the original symmetric string:

L0 = LN = `0, . . . , Ln−1 = Ln+1 = `n−1, Ln = 2`n;

M1 = MN = m1, . . . , Mn = Mn+1 = mn.

6. Experimental Results for the Inverse Problem. How well does this al-
gorithm perform when applied to real data collected from a string with symmetrically
configured beads? Figures 6.1 and 6.2 provide data for strings with four and six beads.
For each string we collect displacement data for ten seconds at 50000 samples per sec-
ond. As described in §3, the discrete Fourier transform (DFT) of this data reveals
peaks that should correspond to

√
Λj for j = 1, . . . , N . Deriving from these peaks

estimates of the eigenvalues Λj , we sort the eigenvalues into fixed–flat and fixed–fixed
eigenvalues as described in the last section, then feed them to the inversion algorithms
in Figure 4.1 and 4.2. The results are illustrated in Figures 6.1 and 6.2. We see quite
satisfactory agreement for the four bead case, with all quantities recovered to a rela-
tive error less than 3.5%. Some challenges begin to emerge with six beads. For one,
the frequency plot in Figure 6.2 reveals a number of secondary peaks. Moreover, the
forward experiment illustrated in Figure 3.3 hints that the finite width of the beads
may introduce some uncertainty. For this data, the recovered length L0 suffers from
an 18% relative error; the other lengths and masses are a bit more accurate.
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L = 112.4 cm

τ = 1.542× 107 dyn

experimental eigenvalues:

Λ1 = 2.03× 104 sec−2

Λ2 = 5.97× 104 sec−2

Λ3 = 1.46× 105 sec−2

Λ4 = 2.86× 105 sec−2

recovered

measured

M1 (g) M2 (g) L0 (cm) L1 (cm) L2 (cm)
recovered 17.2 8.8 26.5 19.9 19.6
measured 17.8 9.1 25.7 20.3 20.3

Fig. 6.1. Experimental results illustrating the recovery of positions and masses for a string
with four symmetrically-placed beads. The top plot shows the DFT of the displacement data; the
four peaks give values for

√
ΛjI, shown as gray vertical lines. The middle illustrations compare

the positions and masses recovered from these experimental eigenvalues to the “true” positions and
masses measured directly, with the corresponding data presented in the table.

7. Further explorations. We encourage readers to conduct explorations of
both the forward and inverse problem using data sets we provide on the website

http://www.caam.rice.edu/~beads

which includes time series data and peak locations for numerous two, four, and six
beads systems.

As you will observe in your own experiments, the inverse procedure we describe is
subjected to a variety of errors. To begin with, our measurements introduce impreci-
sion: we measure lengths accurate to ±2 mm, tension to ±104 dyn, masses to ±0.01 g,
and frequencies to ±.7 sec−1. Our mathematical model is only an approximation of
the true system; we account for neither nonlinear effects, nor the damping that causes
our string to eventually stop vibrating. The string itself is neither perfectly flexible
nor massless, as the model assumes, nor are the beads point-masses. (Figure 3.3 hints
at one possible effect of the bead widths on the eigenvalues.) The model describes
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L = 112.4 cm

τ = 1.660× 107 dyn

experimental eigenvalues:

Λ1 = 9.61× 103 sec−2

Λ2 = 3.10× 104 sec−2

Λ3 = 9.32× 104 sec−2

Λ4 = 1.40× 105 sec−2

Λ5 = 1.59× 105 sec−2

Λ6 = 1.92× 105 sec−2

recovered

measured

M1 (g) M2 (g) M3 (g) L0 (cm) L1 (cm) L2 (cm) L3 (cm)
recovered 16.6 30.4 17.1 15.3 16.3 14.9 19.3
measured 17.8 30.8 17.8 13.0 17.8 15.2 20.3

Fig. 6.2. Repetition of Figure 6.1, but now for a string with six beads.

asymptotically small vibrations, but the amplitude of our vibrations must be large
enough to be measured by the photodetector. Given this litany of errors, you might
be surprised at the accuracy achieved in the experiments described in §4!

There is one further source of error that merits consideration, particularly when
we consider applying this experiment to a string with many beads. The numerical
algorithm detailed in §4 will incur rounding errors when implemented in floating point
computer arithmetic. Roughly speaking, the algorithm in 4.1 can exhibit significant
errors when n > 50, in MATLAB’s default double-precision arithmetic. (One should
also scale the units appropriately, as physical values such as τ = 107 dyn can lead
to overflow as n get large). Readers can explore this instability by computing eigen-
values for hypothetical symmetric strings using the K and M matrices from §2 (use
eig(K,M) in MATLAB), then feeding this “exact” data to the inversion algorithm.
How accurately do you recover the lengths and masses that you started with? How
does this accuracy depend on the number of beads, as n gets very large? Interested
readers can study alternative algorithms such as the continued fractions approach
(see [7]) and the Lanczos method (see [6, §4.2]).
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Appendix A. Determining Mass and Position from Vibrations using
Continued Fractions. As an alternative to the orthogonal polynomial method
described in Section 4, we here derive the lengths and masses of a beaded string using
Krein’s continued fractions approach. This algorithm is a bit more direct than the
orthogonal polynomial method presented earlier; for example, we do not explicitly
reconstruct the entries of the matrix An, but rather go straight for the lengths and
masses of interest. Our presentation explicates the method described in Supplement II
of the recently revised English edition of Gantmacher and Krein’s classic text on
Oscillation Matrices [10].

A.1. Shooting functions. In §2 we saw that bead vibrations were governed by
the eigenvalues and eigenvectors of the pair (K,M). Here we begin by first building
two important sets of polynomials that will reveal how the eigenvalues relate to the
bead masses and locations. Now notice that we can rearrange equation (2.5) into the
form

vj+1 =
(
− `j
`j−1

)
vj−1 +

(
1 +

`j
`j−1

− λ`jmj

τ

)
vj .(A.1)

We can use this equation (with j = 1 and v0 = 0) to produce a formula for v2 in
terms of v1, then v3 in terms of v1, and so on. As any desired nonzero value for v1
merely scales the entire eigenvector, we will set v1 = 1. Notice that we have created
a mechanism to construct eigenvectors one entry at a time, provided the value of λ
used in (A.1) is an eigenvalue.

What goes wrong if λ is not an eigenvalue, but we still use the recurrence (A.1)
to generate an “eigenvector”? The process proceeds uneventfully until we compute
vn+1. The fact that our string is fixed at the right end requires that vn+1 = 0,
but for arbitrary values of λ, (A.1) will generally produce a nonzero value for vn+1,
indicating that λ is not a true eigenvalue and v = [v1, . . . , vn]T is not a true eigenvector
of (K,M). If we compute vn+1 = 0 from (A.1), then the value of λ we used must be
an eigenvalue.

This suggests a procedure for computing eigenvalues known as the shooting method :
assume initial values v0 = 0 and v1 = 1, and adjust λ until (A.1) produces vn+1 = 0.
(The name is inspired by the act of progressively adjusting the angle of a gun barrel
to zero a projectile in on a target.) It would be tedious to hunt for eigenvalues by
guessing values of λ; a more systematic procedure follows from writing the eigenvector
entries in terms of polynomials. When j = 1, the formula (A.1) implies

v2 =
(
− `1
`0

)
v0 +

(
1 +

`1
`0
− λ`1m1

τ

)
v1

=
(

1 +
`1
`0
− λ`1m1

τ

)
v1

= p1(λ),

where

p1(λ) :=
(

1 +
`1
`0

)
− λ
(`1m1

τ

)
is a linear polynomial in λ. Similarly, we have

v3 =
(
− `2
`1

)
v1 +

(
1 +

`2
`1
− λ`2m2

τ

)
v2
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=
(
− `2
`1

)
v1 +

(
1 +

`2
`1
− λ`2m2

τ

)
p1(λ)v1

= p2(λ),

where

p2(λ) :=
(
− `2
`1

)
+
[(

1 +
`2
`1

)
− λ
(`2m2

τ

)]
p1(λ),

which is a quadratic polynomial.
We can continue this process for the subsequent entries in the eigenvector:

vj+1 =
(
− `j
`j−1

)
vj−1 +

(
1 +

`j
`j−1

− λ`jmj

τ

)
vj

=
(
− `j
`j−1

)
pj−2(λ)v1 +

(
1 +

`j
`j−1

− λ`jmj

τ

)
pj−1(λ)v1

= pj(λ),

where

pj(λ) :=
(
− `j
`j−1

)
pj−2(λ) +

[(
1 +

`j
`j−1

)
− λ

(`jmj

τ

)]
pj−1(λ).(A.2)

(Note that pj is a degree-j polynomial, and that this recurrence works also for j = 2
if we define p0(λ) = 1 for all λ.) Continuing this process, we eventually arrive at

vn+1 = pn(λ),

where pn is a polynomial of degree n called the shooting function. We see that

vn+1 = 0 if and only if pn(λ) = 0.

In other words

λ is an eigenvalue of (K,M) if and only if pn(λ) = 0.

Since pn is a polynomial of degree n, it has precisely n roots: up to a scaling, pn is the
characteristic polynomial det(K−λM). However, if we want to build pn using (A.2),
we must know the lengths {`j}nj=0 and masses {mj}nj=1.

By contrast, the inverse problem presents us with known (experimentally mea-
sured) eigenvalues; we need another way to build pn without a priori knowledge of
lengths and masses. Here is the key: If we know eigenvalues λ1, . . . , λn, we can build
pn from its roots, up to some constant factor, σ:

pn(λ) = σ

n∏
j=1

(λ− λj).

We can see from (A.2) that the coefficients of pn must be rich in information
about the lengths and masses. Can we use these coefficients, which we build from our
measured eigenvalues, to obtain formulas for those embedded lengths and masses?

In general, the answer is no—which should not be surprising after a moment’s
reflection: we are trying to extract 2n+1 independent pieces of information (n masses
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and n + 1 lengths) from n + 1 pieces of data (n eigenvalues and the total length, `).
To make the problem well determined, we need n more pieces of data.

What extra data might we practically obtain? It shall ultimately prove most
convenient for us to use another set of eigenvalues from a closely related problem:
keep the masses and lengths the same and the left end fixed, but now allow the right
end to move in such a way that the string has zero slope there, i.e., vn+1 = vn. You
might naturally wonder how a condition could be reliably implemented in the lab
(e.g., by attaching the right end of the string to a ring mounted, with no friction,
to a vertical pole. . . ), but suspend disbelief for the moment. (We will eventually
find a clever way to get this data, at least for one class of bead configurations.) To
differentiate this new scheme, we call it the fixed–flat string, to contrast with the
usual fixed–fixed string.

From the “zero slope” condition on the last segment of the string, we will derive
a polynomial recurrence akin to (A.1) for the slopes of the string between successive
beads, and the roots of the ultimate polynomial will correspond to those values of λ
for which the eigenvector v satisfies the zero slope condition on the right end.

To start, rearrange (A.1) to obtain a relation between consecutive slopes:

vj+1 − vj
`j

=
vj − vj−1

`j−1
−
(λmj

τ

)
vj .(A.3)

We can use the polynomials {pj} to write the left hand side of (A.3) as

vj+1 − vj
`j

=
pj(λ)− pj−1(λ)

`j
.

The polynomial on the right must be of degree at most j, since both pj and pj−1 are
both of degree-j or less. Define this polynomial to be

qj(λ) :=
1
`j

(
pj(λ)− pj−1(λ)

)
,(A.4)

for j = 1, . . . , n, so that qj(λ) denotes the slope of the segment of string between
beads j and j + 1. The right hand side of (A.3) can then be written as

vj − vj−1

`j−1
−
(λmj

τ

)
vj = qj−1(λ)−

(λmj

τ

)
pj−1(λ).

Equating our expressions from the left and right sides of (A.3), we obtain

qj(λ) = qj−1(λ)−
(λmj

τ

)
pj−1(λ).(A.5)

A similar relation follows from rearranging the definition of the slope polynomi-
als, (A.4):

pj(λ) = `jqj(λ) + pj−1(λ).(A.6)

These two equations, (A.5) and (A.6), form the fundamental tools we use to solve the
inverse problem. For the fixed–flat string, we must have

qn(λ) = 0,

and hence λ must be a root of the polynomial qn. Thus, measurements of the n
eigenvalues of the fixed–flat string allow us to construct qn up to a scaling factor.
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A.2. Continued Fractions. We are now prepared to determine the material
properties of the beaded string from the polynomials pn and qn. Using the recurrences
for the displacement and slope polynomials, we have

pn(λ)
qn(λ)

=
`nqn(λ) + pn−1(λ)

qn(λ)
[by (A.6)]

= `n +
pn−1(λ)
qn(λ)

= `n +
1

qn(λ)
pn−1(λ)

= `n +
1

−(mn/τ)λpn−1(λ) + qn−1(λ)
pn−1(λ)

[by (A.5)]

= `n +
1

−(mn/τ)λ+
1

pn−1(λ)
qn−1(λ)

(A.7)

= `n +
1

−(mn/τ)λ+
1

`n−1qn−1(λ) + pn−2(λ)
qn−1(λ)

[by (A.6)]

...

= `n +
1

−(mn/τ)λ+
1

`n−1 +
1

−(mn−1/τ)λ+ · · ·+ 1

`1 +
1

−(m1/τ)λ+
1
`0

,(A.8)

a continued fraction for the rational function pn/qn. From this beautiful decomposi-
tion we can simply read off the masses and string lengths.

To summarize: the eigenvalues of the original (fixed–fixed) system give us the
polynomial pn up to a scaling factor; the eigenvalues of fixed–flat system provide qn
up to a scaling factor. To construct the continued fraction decomposition (A.8), we
used knowledge of the subordinate polynomials pn−1, qn−1, . . . : unfortunately, as
these polynomials were built from knowledge of the masses and lengths, we cannot
immediately produce them directly from the two sets of eigenvalues. Hence we seek
some method for computing the continued fraction decomposition (A.8) that does
not require knowledge of pn−1, qn−1, etc. If we had some other way to construct this
decomposition, we could simply read off the values of `j and mj/τ . These would be
systematically incorrect by a scaling factor inherited from pn and qn, but that can
be resolved from our knowledge of the total length `: we must have

∑n
j=0 `j = `.

Our next goal is to determine an algorithm that will deliver the continued fraction
decomposition.
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A.3. A Recipe for Recovering Material Parameters from Polynomials.
Suppose that we have measured the eigenvalues of the string with both ends fixed,

λ1 < λ2 < · · · < λn, fixed–fixed

and the eigenvalues of the string with fixed left end and a zero-slope on the right,

λ̂1 < λ̂2 < · · · < λ̂n, fixed–flat.

With these eigenvalues, we can construct a pair of degree-n polynomials,

an(λ) =
n∏
j=1

(λ− λj) = λn + α1λ
n−1 + α2λ

n−2 + · · ·+ αn−1λ+ αn(A.9)

bn(λ) =
n∏
j=1

(λ− λ̂j) = λn + β1λ
n−1 + β2λ

n−2 + · · ·+ βn−1λ+ βn.(A.10)

Because an and bn have a coefficient of one multiplying the leading term λn, they are
called monic polynomials. These polynomials equal pn and qn up to constants, and
so the ratio an/bn differs from pn/qn only by a constant, which we shall call σn:

σn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

.

Our goal is to determine a continued fraction decomposition of an/bn that will expose
the material properties of the beaded string. In particular, we seek to write the ratio
of the degree-n monic polynomials an and bn as continued fractions involving degree
n− 1 monic polynomials an−1 and bn−1. To do so, we seek ξn and σn−1 such that

σn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

σ−1
n−1

an−1(λ)
bn−1(λ)

.

Once we know how to compute this decomposition, we can apply the same ideas to
the ratio an−1/bn−1, and so on, until we arrive at degree-0 monic polynomials a0

and b0, which means that a0(λ) = 1 and b0(λ) = 1. At this stage, we will have a
decomposition that matches (A.8) up to a constant. An algorithm for computing this
factorization is given in Figure A.1.

A.4. Derivation of the Continued Fraction Decomposition of an/bn. We
shall now explain the origins of the algorithm in Figure A.1, following [10]. Inspired
by the formula (A.7), we would like to write

an(λ)
bn(λ)

= νn +
1

−ξnλ+
1

ân−1(λ)

b̂n−1(λ)

for some scalars ξn and νn, and polynomials ân−1 and b̂n−1, each of degree n − 1.
Toward this end, algebraically manipulate the right hand side to obtain the equivalent
expression

an(λ)
bn(λ)

= νn +
ân−1(λ)

b̂n−1(λ)− ξnλân−1(λ)
.(A.11)
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A note about notation: a1 refers to the first element of the
vector a, a2:k refers to vector consisting of the second through
kth elements of a, and similarly for b1 and b2:k.

Construct vectors a := [α1, α2, . . . , αn] and b := [β1, β2, . . . , βn]
from eigenvalue data via equations (A.9) and (A.10).

for k := n, n− 1, . . . , 1
ξk := 1/(b1 − a1)
a := a− b
b := b + ξk[a2:k 0]
σk−1 := b1/a1

a := a2:k/a1

b := b2:k/b1

end

σn :=
1
`

(
1 +

1
σn−1

+
1

σn−2σn−1
+ · · ·+ 1

σ0σ1 · · ·σn−1

)
`n := 1/σn
for k := n, n− 1, . . . , 1

`k−1 := `k/σk−1

mk := τξk/`k
end

Fig. A.1. Algorithm for the recovery of the masses and locations of n beads from fixed–fixed
and fixed–flat eigenvalues.

Our first goal is to determine νn. Since an and bn are both monic, degree-n polynomi-
als, they each behave like λn when |λ| is very large. Thus the left hand side of (A.11)
must tend to 1 as λ → ∞, so the same must be true of the right hand side. Given
that ân−1 and b̂n−1 are of degree n − 1, the second term on the right of (A.11) goes
to zero as λ→∞. We thus conclude

νn = 1.

With νn = 1, we can manipulate (A.11) into the form

an(λ)− bn(λ)
bn(λ)

=
ân−1(λ)

b̂n−1(λ)− ξnλân−1(λ)
.

Equating the numerators and denominators, this formula suggests that we define

ân−1(λ) := an(λ)− bn(λ)

b̂n−1(λ) := bn(λ) + ξnλân−1(λ).

Do these definitions satisfy our demand that both ân−1 and b̂n−1 be degree n − 1
polynomials? Since an and bn have λn as a common leading term, the definition of
ân−1 ensures that its λn coefficient is zero, and hence ân−1 has degree n− 1. Now we
check b̂n−1:

b̂n−1(λ) = bn(λ) + ξnλ
(
an(λ)− bn(λ)

)
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=
(
λn + β1λ

n−1 + · · ·+ βn
)

+ ξnλ
(

(α1 − β1)λn−1 + (α2 − β2)λn−2 + · · ·+ (αn − βn)
)

=
(

1 + ξn(α1 − β1)
)
λn +

(
β1 + ξn(α2 − β2)

)
λn−1

+ · · ·+
(
βn−1 + ξn(αn − βn)

)
λ+ βn.

This polynomial will have degree n − 1 provided the coefficient of λn is zero, which
we can ensure by assigning the only remaining free parameter to be

ξn :=
1

β1 − α1
.

Hence we have a recipe for finding scalar ξn and degree n− 1 polynomials ân−1 and
b̂n−1 so that

σn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

ân−1(λ)

b̂n−1(λ)

.

To get the full continued fraction that reveals all the lengths and masses as in (A.8), we
would like to apply this procedure recursively to ân−1/b̂n−1, but one small adjustment
is needed. Recall that we started with polynomials an and bn that had leading term
λn; in general, ân−1 and b̂n−1 will have nontrivial coefficients multiplying λn−1:

ân−1(λ) =
(
α1 − β1

)
λn−1 + · · ·+

(
αn−1 − βn−1

)
λ+

(
αn − βn

)
b̂n−1(λ) =

(
β1 + ξn(α2 − β2)

)
λn−1 + · · ·+

(
βn−1 + ξn(αn − βn)

)
λ+ βn,

and these leading coefficients must be scaled out. Define a constant to capture the
ratio of these coefficients,

σn−1 :=
β1 + ξn(α2 − β2)

α1 − β1
,

so that if we define

an−1(λ) :=
ân−1(λ)
α1 − β1

= λn−1 +
α2 − β2

α1 − β1
λn−2 + · · ·+ αn − βn

α1 − β1
(A.12)

bn−1(λ) :=
b̂n−1(λ)

β1 + ξn(α2 − β2)

= λn−1 +
β2 + ξn(α3 − β3)
β1 + ξn(α2 − β2)

λn−2 + · · ·(A.13)

· · ·+ βn−1 + ξn(αn − βn)
β1 + ξn(α2 − β2)

λ+
βn

β1 + ξn(α2 − β2)
,
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then

σn−1
ân−1(λ)

b̂n−1

=
an−1(λ)
bn−1(λ)

.

Using this expression, our evolving continued fraction takes the form

σn
pn(λ)
qn(λ)

=
an(λ)
bn(λ)

= 1 +
1

−ξnλ+
1

σ−1
n−1

an−1(λ)
bn−1(λ)

.

Note that the coefficients of an−1 and bn−1 can be extracted directly from those of
an and bn by way of (A.12) and (A.13).

Now apply the procedure we have just described to an−1/bn−1 to obtain the
decomposition

an−1(λ)
bn−1(λ)

= 1 +
1

−ξn−1λ+
1

σ−1
n−2

an−2(λ)
bn−2(λ)

,

and continue this process until one finally arrives at a0(λ)/b0(λ): this term must be
trivial, since a0 and b0 are both monic and constant, i.e., a0(λ) = 1 and b0(λ) = 1 for
all λ.

Before we proceed to a concrete example, we should address several fine points
that might have crossed your mind. (1) Can we be certain that this procedure does
not break down? That is, can we be sure that we never encounter σj = 0, which would
cause division by zero? (2) Are the choices for ξj and σj unique, or are there other
equivalent continued fraction decompositions of pn/qn with different constants? For
our beaded strings, these issues will never arise: the procedure never breaks down, and
the decomposition is unique. The details are beyond our scope here, but interested
readers can pursue the issue in the book of Gantmacher and Krein [10] (Supplement II,
especially the lemma on page 284). You might also wonder how stable this procedure
in the presence of errors; we address this important point in §7.

A.5. Special case: n = 2. In the case of a string with two beads, we twice
apply the procedure outlined above to obtain

σ2
p2(λ)
q2(λ)

=
a2(λ)
b2(λ)

= 1 +
1

−ξ2λ+
1

σ−1
1 +

1

−ξ1σ1λ+
1

σ−1
0 σ−1

1

.

Dividing through by the as yet unknown constant σ2, we obtain

p2(λ)
q2(λ)

= σ−1
2 +

1

−ξ2σ2λ+
1

σ−1
1 σ−1

2 +
1

−ξ1σ1σ2λ+
1

σ−1
0 σ−1

1 σ−1
2

.(A.14)
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Comparing this term-by-term with the formula (A.8), we identify

`2 =
1
σ2
, `1 =

1
σ1σ2

, `0 =
1

σ0σ1σ2
,

m2 = τ ξ2σ2, m1 = τ ξ1σ1σ2.

Even this simple case provides enough clues for you to guess general formulas for
n > 2.

Given the eigenvalues λ1, λ2, λ̂1, and λ̂2, we can determine the constants ξ2, σ1,
ξ1, and σ0 through the procedure outlined above. Furthermore, we presume that we
can measure the tension τ in the laboratory, and that we also know the total length
of the string, ` = `0 + `1 + `2. This last expression finally gives a formula for the last
remaining unknown, σ2: since

` =
1
σ2

+
1

σ1σ2
+

1
σ0σ1σ2

,

we conclude that

σ2 =
1
`

(
1 +

1
σ1

+
1

σ0σ1

)
.

With σ2 in hand, we can compute all the lengths and masses.


