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Abstract. This paper deals with efficient numerical representation and manipulation of differential
and integral operators as symbols in phase-space, i.e., functions of space x and frequency
ξ. The symbol smoothness conditions obeyed by many operators in connection to smooth
linear partial differential equations allow fast-converging, nonasymptotic expansions in ad-
equate systems of rational Chebyshev functions or hierarchical splines to be written. The
classical results of closedness of such symbol classes under multiplication, inversion, and
taking the square root translate into practical iterative algorithms for realizing these op-
erations directly in the proposed expansions. Because symbol-based numerical methods
handle operators and not functions, their complexity depends on the desired resolution
N very weakly, typically only through logN factors. We present three applications to
computational problems related to wave propagation: (1) preconditioning the Helmholtz
equation, (2) decomposing wave fields into one-way components, and (3) depth extrapo-
lation in reflection seismology. The software is made available in the software sections of
math.mit.edu/∼laurent and www.math.utexas.edu/users/lexing.
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1. Introduction. There remain many interesting puzzles related to algorithmic
complexity and scalability in relation to partial differential equations (PDEs). Some
of these questions are idealized versions of challenges encountered in industrial ap-
plications. One notable success story where mathematics played a role is the fast
multipole method of Greengard and Rokhlin [23], now an authoritative algorithmic
tool in electrodynamics. There, the problem was to provide an O(N) algorithm for
computing the electrostatic interaction between all pairs among N charged particles.

Of growing interest is the following related question:
If required to solve the same linear problem thousands of times, can an
adequate precomputation lower the overall algorithmic complexity?

For instance, in the scope of the boundary integral formulations of electromag-
netism, addressing this question would mean going beyond fast multipole or other
methods for the integral kernels and instead precomputing the whole linear map that
solves the integral equation (for the source density in terms of the incident fields).
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72 LAURENT DEMANET AND LEXING YING

A satisfactory answer would be a fast applicator for this linear map, with algorith-
mic complexity independent of the frequency of the incoming fields. The authors are
unaware whether any progress has been made on this question yet.

This paper deals with another instance of “computational preparation” for solv-
ing a problem multiple times, this time in the scope of simple linear PDEs in variable,
smooth media. Throughout this paper, we will be interested in the efficient represen-
tation of functions of elliptic operators, such as

A = I − div(α(x)∇),

where α(x) > c > 0 is smooth and, for simplicity, x ∈ [0, 1]d with periodic boundary
conditions. The inverse, the square root, and the exponential of operators akin to
A are operations that all play important roles in the inverse problem of reflection
seismology. There are of course application areas other than elastic wave propagation,
but seismology is a problem of wide interest, where the same equations have to be
solved literally thousands of times and where the physics lies in the spatial variability
of the elastic parameters—not in the boundary conditions.

Most numerical methods for inverting A, say, would manipulate a right-hand
side until convergence and would leverage sparsity of a matrix realization of A in
doing so. Large condition numbers for A may considerably slow down convergence.
Forming A−1 directly would be a way to avoid these iterations, but discretizations of
integral operators rarely give rise to sparse matrices. Instead, we present expansion
schemes and iterative algorithms for manipulating functions of A as “symbols” whose
numerical realizations make little or no reference to the functions of x to which these
operators may later be applied.

The central question is that of choosing a representation that will be computation-
ally advantageous over wide classes of differential and integral operators. If a function
f(x) has N degrees of freedom—if, for instance, it is sampled on N points—then a
direct representation of operators acting on f(x) would in general require N2 degrees
of freedom. There are many known methods for bringing down this count to O(N) or
O(N logN) in specific cases, such as leveraging sparsity, computing convolutions via
the fast Fourier transform (FFT), low-rank approximations, fast summation meth-
ods [23, 25], wavelet or x-let expansions [3], partitioned SVD and H-matrices [8, 24],
semiseparable matrices [13], and butterfly algorithms [39].

The framework presented in this paper is different: the algorithmic complexity
of representing a discrete symbol is at most logarithmic in N , at least for operators
belonging to certain standard classes.

In the spirit of work by Beylkin and Mohlenkamp [4], Hackbusch [24], and others,
symbol representation is then used to perform numerical operator calculus. Composi-
tion of two operators is the main operation that requires a low-level implementation,
remaining aware of how symbols are realized. Once composition is available, it be-
comes the building block for iterations that compute functions of A without ever
forming products Af—hence the name operator calculus. The symbol representation
provides the required degree of compression for performing this calculus efficiently, and
it almost entirely circumvents complexity overheads associated with ill-conditioning.
The complexity for all calculus operations is at most O(log2N), with a constant that
depends logarithmically on the condition number. It is only when applying an oper-
ator to a function that the complexity is superlinear in N , in our case, O(N logN),
independent of the condition number.

A large fraction of the paper is devoted to covering two different symbol expansion
schemes, as well as the numerical realization of the calculus operations. The compu-
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DISCRETE SYMBOL CALCULUS 73

tational experiments involving the inverse validate the potential of discrete symbol
calculus (DSC) over a standard preconditioner for solving a simple test elliptic prob-
lem. Other computational experiments involve the square root: it is shown that this
operation can be done accurately without forming the full matrix.

The main practical limitations of DSC currently are (1) the inability to prop-
erly handle boundary conditions, and (2) the quick deterioration of performance in
nonsmooth media.

1.1. Smooth Symbols. Let A denote a generic differential or singular integral
operator acting on functions of x ∈ R

d, with kernel representation

Af(x) =
∫

k(x, y)f(y) dy, x, y ∈ R
d.

Expanding the distributional kernel k(x, y) in some basis would be cumbersome be-
cause of the presence of a singularity along the diagonal x = y. For this reason we
choose to consider operators as pseudodifferential symbols a(x, ξ) by considering their
action on the Fourier transform1 f̂(ξ) of f(x):

Af(x) =
∫

e2πix·ξa(x, ξ)f̂ (ξ) dξ.

We typically reserve uppercase letters for operators, aside from occasionally using the
attractive notation

A = a(x,D), where D = − i

2π
∇x.

By passing to the ξ variable, the singularity of k(x, y) along x = y is turned into the
oscillating factor e2πix·ξ, regardless of the type of singularity. This factor contains
no information and is naturally discounted by focusing on the nonoscillatory symbol
a(x, ξ).

Symbols a(x, ξ) are not merely C∞ functions of x and ξ, but their smoothness
properties are nevertheless well understood by mathematicians [46]. A symbol defined
on R

d × R
d is said to be pseudodifferential of order m and type (ρ, δ) if it obeys

(1.1) |∂αξ ∂βxa(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|, where 〈ξ〉 ≡ (1 + |ξ|2)1/2,

for all multi-indices α, β. In this paper, we mostly consider the special case of the
type (1, 0),

(1.2) |∂αξ ∂βxa(x, ξ)| ≤ Cαβ〈ξ〉m−|α|,

which is denoted Sm. An operator whose symbol a ∈ Sm belongs by definition to the
class Ψm.

The main feature of symbols in Sm is that the larger |ξ|, the smoother the symbol
in ξ. Indeed, one power of 〈ξ〉 is gained for each differentiation. For instance, the
symbols of differential operators of order m are polynomials in ξ and obey (1.2)

1Our conventions in this paper are

f̂(ξ) =

∫
e−2πix·ξf(x) dx, f(x) =

∫
e2πix·ξ f̂(ξ) dξ.
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74 LAURENT DEMANET AND LEXING YING

when they have C∞ coefficients. Large classes of singular integral operators also have
symbols in the class Sm [46].

The standard treatment of pseudodifferential operators makes the further assump-
tion that some symbols can be represented as polyhomogeneous series such as

(1.3) a(x, ξ) ∼
∑
j≥0

aj (x, arg ξ) |ξ|m−j ,

which defines the “classical” symbol class Sm
cl when the aj are of class C∞. The corre-

sponding operators are said to be in the class Ψm
cl . The series should be understood as

an asymptotic expansion; it converges only when adequate cutoffs smoothly removing
the origin multiply each term.2 Only then does the series not converge to a(x, ξ), but
to an approximation that differs from a by a smoothing remainder r(x, ξ), smoothing
in the sense that |∂αξ ∂βx r(x, ξ)| = O(〈ξ〉−∞). For instance, an operator is typically
transposed, inverted, etc., modulo a smoothing remainder [29].

The subclass (1.3) is central for applications to PDEs—it is the cornerstone of
theories such as geometrical optics—but the presence of remainders is a nonessential
feature that should be avoided in the design of efficient numerical methods. The lack
of convergence in (1.3) may be acceptable in the course of a mathematical argument,
but it takes great additional effort to turn such series into accurate numerical methods;
see [47] for an example. The objective of this paper is to find adequate substitutes
for (1.3) that promote asymptotic series into fast-converging expansions.

It is the behavior of symbols at the origin ξ = 0 that makes Sm and Sm
cl only

adequate for large-|ξ| asymptotic analysis. In practice, exact symbols may have a
singular behavior at ξ = 0. This issue should not be a distraction: the important
feature is that the symbol should be smooth in ξ far away from the origin, and this
is very robust. We will have more to say on the proper numerical treatment of ξ = 0
in what follows.

There are in general no explicit formulas for the symbol of a function of an
operator. Fortunately, some results in the literature guarantee exact closedness of
the symbol classes (1.2) or (1.3) under inversion and taking the square root, without
smoothing remainders. A symbol a ∈ Sm, or an operator a(x,D) ∈ Ψm, is said to be
elliptic when there exists R > 0 such that

|a−1(x, ξ)| ≤ C |ξ|−m when |ξ| ≥ R.

• It is a basic result that if A ∈ Ψm1 , B ∈ Ψm2 , then AB ∈ Ψm1+m2 . See, for
instance, Theorem 18.1.8 in [29, Volume 3].

• It is also a standard fact that if A ∈ Ψm, then its adjoint A∗ ∈ Ψm.
• If A ∈ Ψm and A is elliptic and invertible3 on L2, then A−1 ∈ Ψ−m. This
result was proven by Shubin in 1978 in [44].

• For the square root, we also assume ellipticity and invertibility. It is fur-
thermore convenient to consider operators on compact manifolds in a natural
way through Fourier transforms in each coordinate patch, so that they have
discrete spectral expansions. A square root A1/2 of an elliptic operator A
with spectral expansion A =

∑
j λjEj , where Ej are the spectral projectors,

2See [50, pp. 8–9] for a complete discussion of these cutoffs.
3In the sense that A is a bijection from Hm(Rd) to L2(Rd) and hence obeys ‖Af‖L2 ≤ C‖f‖Hm .

Ellipticity, in the sense in which it is defined for symbols, obviously does not imply invertibility.
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is simply

(1.4) A1/2 =
∑
j

λ
1/2
j Ej ,

with, of course, (A1/2)2 = A. In 1967, Seeley [42] studied such expressions
for elliptic A ∈ Ψm

cl in the context of a much more general study of complex
powers of elliptic operators. If, in addition, m is an even integer, and an
adequate choice of branch cut is made in the complex plane, then Seeley
showed that A1/2 ∈ Ψm/2

cl ; see [45] for an accessible proof that involves the
complex contour “Dunford” integral reformulation of (1.4).

We do not know of a corresponding closedness result under taking the square root
for the nonclassical class Ψm. In practice, one is interested in manipulating operators
that come from PDEs on bounded domains with certain boundary conditions; the ex-
tension of the theory of pseudodifferential operators to bounded domains is a difficult
subject that this paper has no ambition to address. Let us also mention in passing
that the exponential of an elliptic, non-self-adjoint pseudodifferential operator is not
in general itself pseudodifferential.

Numerically, it is easy to check that smoothness of symbols is remarkably robust
under inversion and taking the square root of the corresponding operators, as the
following simple one-dimensional example shows.

Let A := 4π2I − div(α(x)∇), where α(x) is a random periodic function over
the periodized segment [0, 1], essentially bandlimited as shown in Figure 1.1(a). The
symbol of this operator is

a(x, ξ) = 4π2(1 + α(x)|ξ|2)− 2πi∇α(x) · ξ,

which is of order 2. In Figure 1.1(b), we plot the values of a(x, ξ)〈ξ〉−2 for x and ξ on
a Cartesian grid.

Since A is elliptic and invertible, its inverse C = A−1 and square root D =
A1/2 are both well defined. Let us use c(x, ξ) and d(x, ξ) to denote their symbols.
From the results mentioned above, we know that the orders of c(x, ξ) and d(x, ξ)
are, respectively, −2 and 1. We do not believe that explicit formulas exist for these
symbols, but the numerical values of c(x, ξ)〈ξ〉2 and d(x, ξ)〈ξ〉−1 are shown in Figure
1.1(c) and 1.1(d), respectively. These plots demonstrate regularity of these symbols
in x and in ξ; observe, in particular, the disproportionate smoothness in ξ for large
|ξ|, as predicted by the class estimate (1.2).

1.2. Symbol Expansions. Figure 1.1 suggests that symbols are not only smooth,
but that they also should be highly separable in x vs. ξ. We therefore use expansions
of the form

(1.5) a(x, ξ) =
∑
λ,µ

aλ,µeλ(x)gµ(ξ)〈ξ〉da ,

where eλ and gµ are to be determined, and 〈ξ〉da ≡ (1+ |ξ|2)da/2 encodes the order da
of a(x, ξ). This choice is in line with recent observations of Beylkin and Mohlenkamp
[5] that functions and kernels in high dimensions should be represented in separated
form. In this paper we have chosen to focus on two-dimensional x, i.e., (x, ξ) ∈ R

4,
which is already considered high-dimensional by numerical analysts. The curse of di-
mensionality would make unpractical any fine Cartesian sampling in four dimensions.
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Fig. 1.1 Smoothness of the symbol in ξ. (a) The coefficient α(x). (b) a(x, ξ)〈ξ〉−2, where a(x, ξ) is
the symbol of A. (c) c(x, ξ)〈ξ〉2, where c(x, ξ) is the symbol of C = A−1. (d) d(x, ξ)〈ξ〉−1,
where d(x, ξ) is the symbol of D = A1/2.

The functions eλ(x) and gµ(ξ) should be chosen such that the interaction matrix
aλ,µ is as small as possible after accurate truncation. Their choice also depends on the
domain over which the operator is considered. In what follows we will assume that
the x-domain is the periodized unit square [0, 1]2 in two dimensions. Accordingly, it
makes sense to take for eλ(x) the complex exponentials e2πix·λ of a Fourier series.
The choice of gµ(ξ) is more delicate, as x and ξ do not play symmetric roles in the
estimate (1.2). In short, we need adequate basis functions for smooth functions on
R

2 that behave like a polynomial of 1/|ξ| as ξ → ∞ and otherwise present smooth
angular variations. We present two solutions:

• A rational Chebyshev interpolant, where gµ(ξ) are complex exponentials in
angle θ = arg ξ, and scaled Chebyshev functions in |ξ|, where the scaling is
an algebraic map s = |ξ|−L

|ξ|+L . More details are given in section 2.1.
• A hierarchical spline interpolant, where gµ(ξ) are spline functions with control
points placed in a multiscale way in the frequency plane in such a way that
they become geometrically scarcer as |ξ| → ∞. More details are given in
section 2.2.
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Since we are considering x in the periodized square [0, 1]2, the Fourier variable ξ
is restricted to having integer values, i.e., ξ ∈ Z

2, and the Fourier transform should
be replaced by a Fourier series. Pseudodifferential operators are then defined through

(1.6) a(x,D)f(x) =
∑
ξ∈Z2

e2πix·ξa(x, ξ)f̂ (ξ),

where f̂(ξ) are the Fourier series coefficients of f . It is not essential that ξ be discrete
in this formula: it is still the smoothness of the underlying functions of ξ ∈ R

2 that
dictates the convergence rate of the proposed expansions.

The following results quantify the performance of the two approximants intro-
duced above. We refer to an approximant ã as being truncated to M terms when all
but at most M elements are set to zero in the interaction matrix aλ,µ in (1.5).

Theorem 1.1 (rational Chebyshev approximants). Assume that a ∈ Sm
cl with

m ∈ Z, that a is properly supported, and furthermore that the aj in (1.3) have tem-
pered growth, in the sense that there exist Q,R > 0 such that

(1.7) |∂αθ ∂βxaj(x, θ)| ≤ Qα,β · Rj .

Denote by ã the rational Chebyshev expansion of a (introduced in section 2.1), properly
truncated to M terms. Call Ã and A the corresponding pseudodifferential operators
on Hm([0, 1]2), defined by (1.6). Then there exists a choice of M obeying the following
two properties: (1) for all n > 0, there exists Cn > 0 such that

M ≤ Cn · ε−1/n,

and (2)

‖Ã−A‖Hm([0,1]2)→L2([0,1]2) ≤ ε.

Theorem 1.2 (hierarchical spline approximants). Assume that a ∈ Sm with
m ∈ Z and that a is properly supported. Denote by ã the expansion of a in hierar-
chical splines for ξ (introduced in section 2.2) and in a Fourier series for x, properly
truncated toM terms. Call Ã and A the corresponding pseudodifferential operators on
Hm([0, 1]2), defined by (1.6). Introduce PN , the orthogonal projector onto frequencies
obeying

max(|ξ1|, |ξ2|) ≤ N.

Then there exists a choice of M obeying

M ≤ C · ε−2/(p+1) · logN,

where p is the order of the spline interpolant and, for some C > 0, such that

‖(Ã−A)PN‖Hm([0,1]2)→L2([0,1]2) ≤ ε.

The important point of these theorems is thatM is either constant inN (Theorem
1.1) or grows like logN (Theorem 1.2), where N is the bandlimit of the functions to
which the operator is applied.
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1.3. Symbol Operations. At the level of kernels, composition of operators is a
simple matrix-matrix multiplication. This property is lost when considering symbols,
but composition remains simple enough that the gains in dealing with small interaction
matrices aλ,µ as in (1.5) are far from being offset.

The twisted product of two symbols a and b is the symbol of their composition.
It is defined as (a / b)(x,D) = a(x,D)b(x,D) and obeys

a / b(x, ξ) =
∫ ∫

e−2πi(x−y)·(ξ−η)a(x, η)b(y, ξ) dydη.

This formula holds for ξ, η ∈ R
d, but in the case when frequency space is discrete, the

integral in η is to be replaced by a sum. In section 3 we explain how to evaluate this
formula efficiently using the symbol expansions discussed earlier.

Textbooks on pseudodifferential calculus describe asymptotic expansions of a / b
where negative powers of |ξ| are matched at infinity [29, 21, 45]. As alluded to
previously, we are not interested in making simplifications of this kind.

Composition can be regarded as a building block for performing many other
operations using iterative methods. Functions of operators can be computed by sub-
stituting the twisted product for the matrix-matrix product in any algorithm that
computes the corresponding function of a matrix. For instance,

• the inverse of a positive-definite operator can be obtained via a Neumann
iteration or via a Schulz iteration;

• there exist many choices of iterations for computing the square root and the
inverse square root of a matrix [28], such as the Schulz–Higham iteration;

• the exponential of a matrix can be obtained by the scaling-and-squaring
method.

These examples are discussed in detail in section 3.
Two other operations that resemble composition from the algorithmic viewpoint

are (1) transposition, and (2) the Moyal transform for passing to the Weyl symbol.
They are also discussed below.

Last, this work would be incomplete without a routine for applying a pseudodiffer-
ential operator to a function, from the knowledge of its symbol. The type of separated
expansion considered in (1.5) suggests a very simple algorithm for this task,4 detailed
in section 3.

1.4. Applications. It is natural to apply DSC to the numerical solutions of linear
PDEs with variable coefficients. We outline several examples in this section, and
report on the numerical results in section 4.

In all of these applications, the solution takes two steps. First, DSC is used to
construct the symbol of the operator that solves the PDE problem. Since “data” like
a right-hand side, initial conditions, or boundary conditions have not been queried
yet, the computational cost of this step is mostly independent of the size of the data.
Once the operator is ready in its symbol form, we apply the operator to the data in
the second step.

The two regimes in which this approach could be preferred is when either (1) the
complexity of the medium (coefficient in the PDE) is low compared to the complexity
of the data, or (2) the PDE needs to be solved so many times that a precomputation
step becomes beneficial.

4This part is not original; it was considered in previous work by Emmanuel Candès and the
authors in [11], where the more general case of Fourier integral operators was considered. See also
[1].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISCRETE SYMBOL CALCULUS 79

A first, toy application of DSC is to the numerical solution of the simplest elliptic
PDE,

(1.8) Au := (I − div(α(x)∇))u = f,

with α(x) > 0 and periodic boundary conditions on a square. If α(x) is a constant
function, the solution requires only two Fourier transforms, since the operator is
diagonalized by the Fourier basis. For variable α(x), DSC can be seen as a natural
generalization of this fragile Fourier diagonalization property: we construct the symbol
of A−1 directly, and, once the symbol of A−1 is ready, applying it to the function f
requires only a small number of Fourier transforms.

The second application of DSC concerns the Helmholtz equation

(1.9) Lu :=
(
−∆− ω2

c2(x)

)
u = f(x),

where the sound speed c(x) is a smooth function in x, in a periodized square. The
numerical solution of this problem is quite difficult since the operator L is not pos-
itive definite. Efficient techniques such as multigrid cannot be used directly for this
problem; a discussion can be found in [16]. A standard iterative algorithm, such as
MINRES or BIGGSTAB, can easily take tens of thousands of iterations to converge.
One way to obtain faster convergence is to solve a preconditioned system

(1.10) M−1Lu = M−1f

with

M := −∆+
ω2

c2(x)
or M := −∆+ (1 + i)

ω2

c2(x)
.

Now at each iteration of the preconditioned system we need to invert a linear system
for the preconditionerM . Multigrid is typically used for this step [17], but DSC offers
a way to directly precompute the symbol of M−1. Once it is ready, applying M−1 to
a function at each iteration is reduced to a small number of Fourier transforms—three
or four when c(x) is very smooth—which we anticipate to be very competitive versus
a multigrid method.

Another important application of DSC is to polarizing the initial condition of
a linear hyperbolic system. Let us consider the following variable coefficient wave
equation on the periodic domain x ∈ [0, 1]2:

(1.11)


utt − div(α(x)∇u) = 0,
u(0, x) = u0(x),
ut(0, x) = u1(x),

with the extra condition
∫
u1(x)dx = 0. The operator L := −div(α(x)∇) is symmetric

positive definite; let us define P to be its square root L1/2. We can then use P to
factorize the wave equation as

(∂t + iP )(∂t − iP )u = 0.

As a result, the solution u(t, x) can be represented as

u(t, x) = eitPu+(x) + e−itPu−(x),
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where the polarized components u+(x) and u−(x) of the initial condition are given
by

u+ =
u0 + (iP )−1u1

2
and u− =

u0 − (iP )−1u1

2
.

To compute u+ and u−, we first use DSC to construct the symbol of P−1. Once the
symbol of P−1 is ready, the computation of u+ and u− requires applying P−1 only
to the initial condition. Computing eitP is a difficult problem that we do not address
in this paper.

Finally, DSC has a natural application to the problem of depth extrapolation, or
migration, of seismic data. In the Helmholtz equation

∆⊥ +
∂2u

∂z2
+

ω2

c2(x, z)
u = F (x, z, k),

we can separate the Laplacian as ∆ = ∆⊥ + ∂2

∂z2 and factor the equation as

(1.12)
(
∂

∂z
−B(z)

)
v = F (x, z, k)− ∂B

∂z
(z)u,

(
∂

∂z
+B(z)

)
u = v,

where B =
√−∆⊥ − ω2/c2(x, z) is called the one-way wave propagator, or single

square root (SSR) propagator. We may then focus on the equation for v, called the
SSR equation, and solve it for decreasing z from z = 0. The term ∂B

∂z (z)u above is
sometimes neglected, as we do in what follows, on the basis that it introduces no new
singularities.

The symbol of B2 is not elliptic; its zero level set presents a well-known issue with
this type of formulation. In section 4, we introduce an adequate “directional” cutoff
strategy for removing the singularities that would otherwise appear, hence neglecting
turning rays and evanescent waves. DSC is then used to compute a proper operator
square root. We show how to solve the SSR equation approximately using an operator
exponential of B, also realized via DSC. Unlike traditional methods of seismic imaging
(discussed in section 1.6 below), the only simplification we make here is the directional
cutoff just mentioned.

1.5. Harmonic Analysis of Symbols. It is instructive to compare the symbol
expansions of this paper with another type of expansion thought to be efficient for
smooth differential and integral operators, namely, wavelets.

Consider x ∈ [0, 1] for simplicity. The standard matrix of an operator A in
a basis of wavelets ψj,k(x) = 2j/2ψ(2jx − n) of L2([0, 1]) is simply 〈ψj,k, Aψj′,k′〉.
Such wavelet matrices were first considered by Meyer in [38], and later by Beylkin,
Coifman, and Rokhlin in [3], for the purpose of obtaining sparse expansions of singular
integral operators in the Calderón–Zygmund class. Their result is that either O(N)
or O(N logN) elements suffice to represent an N -by-N matrix accurately, in the 82
sense, in a wavelet basis. This result is not necessarily true in other bases such as
Fourier series or local cosines, and it became the starting point of much activity in
some numerical analysis circles in the 1990s.

In contrast, the expansions proposed in this paper assume a class of operators
with symbols in the Sm class defined in (1.2), but achieve accurate compression with
O(1) or O(logN) elements. This stark difference is illustrated in Figure 1.2.

With symbols, tasks such as inversion and computing the square root are realized
in O(log2 N) operations, still very sublinear in N . It is only when the operator needs
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Fig. 1.2 Left: the standard 512-by-512 wavelet matrix of the differential operator considered in Fig-
ure 1.1, truncated to elements greater than 10−5 (white). Right: the 65-by-15 interaction
matrix of DSC, for the same operator and a comparable accuracy, using a hierarchical
spline expansion in ξ. The scale differs for both pictures. (Figure 1.1, top right, is an in-
terpolated version of the picture on the right.) Notice that the DSC matrix can be further
compressed by a singular value decomposition (SVD), and in this example has numerical
rank equal to 3 for a singular value cutoff at 10−5. For values of N greater than 512, the
wavelet matrix would increase in size in a manner directly proportional to N , while the
DSC matrix would grow in size like logN .

to be applied to functions defined on N points, as a “postcomputation,” that the
complexity becomes C · N logN . This constant C is proportional to the numerical
rank of the symbol and reflects the difficulty of storing it accurately, not the difficulty
of computing it. In practice, we have found that typical values of C are still much
smaller than the constants that arise in wavelet analysis, which are often plagued by
the curse of dimensionality [14].

Wavelet matrices can sometimes be reduced in size to a mere O(1) too, with
controlled accuracy. To our knowledge this observation has not been reported in the
literature yet, and it goes to show that some care ought to be exercised before calling a
method “optimal.” The particular smoothness properties of symbols that we leverage
for their expansion are also hidden in the wavelet matrix, as additional smoothness
along the shifted diagonals. The following result is elementary and we give it without
proof.

Theorem 1.3. Let A ∈ Ψ0 as defined by (1.2) for x ∈ R and ξ ∈ R. Let ψj,k

be an orthonormal wavelet basis of L2(R) of class C∞, with an infinite number of
vanishing moments. Then, for each j and each ∆k = k − k′, there exists a function
fj,∆k ∈ C∞(R) with smoothness constants independent of j such that

〈ψj,k, Aψj,k′〉 = fj,∆k(2−jk).

We would like to mention that similar ideas of smoothness along the diagonal
have appeared in the context of seismic imaging, for the diagonal fitting of the so-
called normal operator in a curvelet frame [26, 10]. In addition, the construction of
second-generation bandlets for image processing is based on a similar phenomenon
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of smoothness along edges for the unitary recombination of MRA wavelet coefficients
[37]. We believe that this last “alpertization” step could be of great interest in nu-
merical analysis.

Theorem 1.3 hinges on the assumption of symbols in Sm, which is not met in the
more general context of Calderón–Zygmund operators (CZOs), considered by Meyer,
Beylkin, Coifman, and Rokhlin. The class of CZOs has been likened to a limited-
smoothness equivalent to symbols of type (1, 1) and order 0, i.e., symbols that obey

|∂αξ ∂βxa(x, ξ)| ≤ Cα,β〈ξ〉−|α|+|β|.

Symbols of type (1, 0) and order 0 obeying (1.2) are a special case of this. Wavelet
matrices of operators in the (1, 1) class are almost diagonal,5 but there is no smooth-
ness along the shifted diagonals as in Theorem 1.3. So while the result in [3] is sharp,
namely, not much other than wavelet sparsity can be expected for CZOs, we may
question whether the generality of the CZO class is truly needed for applications to
PDEs. The authors are unaware of a linear PDE setup involving symbols in the (1, 1)
class that would not also belong to the (1, 0) class.

1.6. Related Work. The idea of writing pseudodifferential symbols in sepa-
rated form to formulate various one-way approximations to the variable-coefficient
Helmholtz equation has long been a tradition in seismic imaging. This almost invari-
ably involves a high-frequency approximation of some kind. Some influential work
includes the phase screen method by Fisk and McCartor [20] and the generalized
screen expansion of Le Rousseau and de Hoop [35]. This latter reference discusses
fast application of pseudodifferential operators in separated form using the FFT, and
it is likely not the only reference to make this simple observation. A modern treat-
ment of leading-order pseudodifferential approximations to one-way wave equations
is in [48].

Expansions of principal symbols a0(x, ξ/|ξ|) (homogeneous of degree 0 is ξ) in
spherical harmonics in ξ is a useful tool in the theory of pseudodifferential operators
[49] and has also been used for fast computations by Bao and Symes in [1]. For
computation of pseudodifferential operators, see also the work by Lamoureux and
Margrave [34] and Gibson.

Symbol factorization has also been used to design ILU preconditioners for the
Helmholtz equation in [22] by Gander and Nataf. The notion of symbol is identical
to that of generating function for Toeplitz or quasi-Toeplitz matrices: the algorithmic
implications of approximating generating functions for preconditioning Toeplitz ma-
trices are reported in [43]. An application of generating functions of Toeplitz matrices
to the analysis of multigrid methods is in [31].

In the numerical analysis community, separation of operator kernels and other
high-dimensional functions is becoming an important topic. Beylkin and Mohlenkamp
proposed an alternated least-squares algorithm for computing separated expansions
of tensors in [4, 5], then proposed to compute functions of operators in this represen-

5Their standard wavelet matrix has at most O(j) large elements per row and column at scale j—
or frequency O(2j)—after which the matrix elements decay sufficiently fast below a preset threshold.
L2 boundedness would follow if there were O(1) large elements per row and column, but O(j) does
not suffice for that, which testifies to the fact that operators of type (1, 1) are not in general L2

bounded. The reason for this O(j) number is that an operator with a (1, 1) symbol does not preserve
vanishing moments of a wavelet—not even approximately. Such operators may turn an oscillatory
wavelet at any scale j into a nonoscillating bump, which then requires wavelets at all the coarser
scales for its expansion.
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tation, and then applied these ideas to solving the multiparticle Schrödinger equation
in [6], with Perez.

A different, competing approach to compressing operators is the “partitioned
separated” method that consists in isolating off-diagonal squares of the kernel K(x, y)
and approximating each of them by a low-rank matrix. This also calls for an adapted
notion of calculus, e.g., for composing and inverting operators. The first reference
to this algorithmic framework was probably the partitioned SVD method described
in [32]. More recently, these ideas have been extensively developed under the name
H-matrices, for hierarchical matrices; see [8, 24] and http://www.hlib.org.

Separation ideas, with an adapted notion of operator calculus, have also been
suggested for solving the wave equation; two examples are [7] and [15].

Exact operator square roots—up to numerical errors—have in some contexts al-
ready been considered in the literature. See [19] for an example of the Helmholtz
operator with a quadratic profile and [36] for a spectral approach that leverages spar-
sity, also for the Helmholtz operator.

2. DSC: Representations. The two central questions of DSC are as follows:
• Given an operator A, how do we represent its symbol a(x, ξ) efficiently?
• How do we perform the basic operations of the pseudodifferential symbol
calculus based on this representation? These operations include sum, product,
adjoint, inversion, square root, inverse square root, and, in some cases, the
exponential.

These two questions are mostly disjoint; we answer the first question in this
section and the second question in section 3.

Let us write expansions of the form (1.5). Since eλ(x) = e2πix·λ with x ∈ [0, 1]2,
we define the ξ-normalized x-Fourier coefficients of a(x, ξ) as

(2.1) aλ(ξ) := 〈ξ〉−da

∫
[0,1]2

e−2πix·λa(x, ξ) dx, λ ∈ Z
2.

Note that the factor 〈ξ〉−da removes the growth or decay for large |ξ|. Clearly,

(2.2) a(x, ξ) =
∑
λ

eλ(x)aλ(ξ)〈ξ〉da .

In the case when a(·, ξ) is essentially bandlimited with band Bx, i.e., aλ(ξ) is
supported inside the square (−Bx, Bx)2 in the λ-frequency domain, then the integral
in (2.1) can be approximated accurately by a uniform quadrature on the points xp =
p/(2Bx), with 0 ≤ p1, p2 < 2Bx. This grid is called X in what follows.

The problem is now reduced to finding an adequate approximation ãλ(ξ) for aλ(ξ),
valid either in the whole plane ξ ∈ R

2 or in a large square ξ ∈ [−N,N ]2. Once this is
done, then

ã(x, ξ) :=
∑

λ∈(−Bx,Bx)2

eλ(x)ãλ(ξ)〈ξ〉da

is the desired approximation.

2.1. Rational Chebyshev Interpolant. For symbols in the class (1.3), the func-
tion aλ(ξ) for each λ is smooth in angle arg ξ and polyhomogeneous in radius |ξ|. This
means that aλ(ξ) is for |ξ| large a polynomial of 1/|ξ| along each radial line through
the origin, and is otherwise smooth (except possibly near the origin).
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One idea for efficiently expanding such functions is to map the half line |ξ| ∈ [0,∞)
to the interval [−1, 1] by a rational function and expand the result in Chebyshev
polynomials. Put ξ = (θ, r) and µ = (m,n). Let

gµ(ξ) = eimθTLn(r),

where TLn are the rational Chebyshev functions [9], defined from the Chebyshev
polynomials of the first kind Tn as

TLn(r) = Tn(A−1
L (r))

by means of the algebraic map

s �→ r = AL(s) = L
1 + s

1− s
, r �→ s = A−1

L (r) =
r − L

r + L
.

The parameter L is typically on the order of 1. The proposed expansion then takes
the form

aλ(ξ) =
∑
µ

aλ,µgµ(ξ),

where

aλ,µ =
1
2π

∫ 1

−1

∫ 2π

0

aλ((θ,AL(s)))e−imθTn(s)
dθds√
1− s2

.

For properly bandlimited functions, such integrals can be evaluated exactly using
the right quadrature points: uniform in θ ∈ [0, 2π], and Chebyshev points in s. The
corresponding points in r are the image of the Chebyshev points under the algebraic
map. The resulting grid in the ξ plane can be described as follows. Let q = (qθ, qr)
be a couple of integers such that 0 ≤ qθ < Nθ and 0 ≤ qr < Nr; we have in polar
coordinates

ξq =
(
2π

qθ
Nθ

,− cos
(
2(AL(qr)− 1)

2Nr

))
.

We call this grid {ξq} = Ω. Passing from the values aλ(ξq) to aλ,µ and vice versa can
be done using the FFT. Of course, ãλ(ξ) is nothing but an interpolant of aλ(ξ) at the
points ξq.

In the remainder of this section we present the proof of Theorem 1.1, which
contains the convergence rates of the truncated sums over λ and µ. The argument
hinges on the following L2 boundedness result, which is a simple modification of
standard results in R

d; see [46]. It is not necessary to restrict d = 2 for this lemma.
Lemma 2.1. Let a(x, ξ) ∈ Cd′

([0, 1]d, 8∞(Zd)), where d′ = d + 1 if d is odd, or
d+2 if d is even. Then the operator A defined by (1.6) extends to a bounded operator
on L2([0, 1]d), with

‖A‖L2 ≤ C · ‖(1 + (−∆x)d
′/2)a(x, ξ)‖L∞([0,1]d,!∞(Zd)).

The proof of this lemma is in the appendix.
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Proof of Theorem 1.1. In the case m �= 0, the Chebyshev approximation method
considers the symbol b(x, ξ) = a(x, ξ)〈ξ〉−m of order zero. The corresponding operator
is B = b(x,D) = A(I + ∆)−m/2, and by construction its approximant obeys B̃ =
Ã(I +∆)−m/2 as well. If it can be proven that

‖B − B̃‖L2→L2 ≤ ε,

then consequently

‖A− Ã‖Hm→L2 ≤ ε.

So without loss of generality we put m = 0.
Consider the algebraic map s = A−1

L (r) ∈ [−1, 1), where AL and its inverse
were defined earlier. Expanding a(x, (θ, r)) in rational Chebyshev functions TLn(r)
is equivalent to expanding f(s) ≡ a(x, (θ,AL(s))) in Chebyshev polynomials Tn(s).
Obviously,

f ◦A−1
L ∈ C∞([0,∞)) ⇔ f ∈ C∞([−1, 1)).

It is furthermore assumed that a(x, ξ) is in the classical class with tempered
growth of the polyhomogeneous components; this condition implies that the smooth-
ness constants of f(s) = a(x, (θ,AL(s))) are uniform as s → 1, i.e., for all n ≥ 0,

∃ Cn : |f (n)(s)| ≤ Cn, s ∈ [−1, 1],

or, simply, f ∈ C∞([−1, 1]). In order to see why that is the case, consider a cutoff
function χ(r) equal to 1 for r ≥ 2, zero for 0 ≤ r ≤ 1, and C∞ increasing in between.
Traditionally, the meaning of (1.3) is that there exists a sequence εj > 0 defining
cutoffs χ(rεj) such that

a(x, (r, θ)) −
∑
j≥0

aj(x, θ)r−jχ(rεj) ∈ S−k
cl ∀k > 0.

A remainder in S−∞
cl ≡ ⋃k≥0 S

−k
cl is called smoothing. As long as the choice of cutoffs

ensures convergence, the determination of a(x, ξ) modulo S−∞ does not depend on
this choice. (Indeed, if there existed an order −k discrepancy between the sums
with χ(rεj) and χ(rδj), with k finite, it would need to come from some of the terms
ajr

−j(χ(rεj) − χ(rδj)) for j ≤ k. There are at most k + 1 such terms, and each of
them is of order −∞.)

Because of condition (1.7), it is easy to check that the particular choice εj =
1/(2R) suffices for convergence of the sum over j to a symbol in S0. As mentioned
above, changing the εj affects only the smoothing remainder, so we may focus on
εj = 1/(2R).

After changing variables, we get

f(s) = a(x, (θ,AL(s))) =
∑
j≥0

aj(x, θ)L−j

(
1− s

1 + s

)j

χ

(
AL(s)
2R

)
+ r(s),

where the smoothing remainder r(s) obeys

|r(n)(s)| ≤ Cn,M (1 − s)M ∀M ≥ 0;
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hence, in particular, when M = 0 it has uniform smoothness constants as s → 1.
It suffices, therefore, to show that the sum over j ≥ 0 can be rewritten as a Taylor
expansion for f(s)− r(s), convergent in some neighborhood of s = 1.

Let z = 1−s. Without loss of generality, assume that R ≥ 2L; otherwise increase
R to 2L. The cutoff factor χ

(AL(1−z)
2R

)
equals 1 as long as 0 ≤ z ≤ L

4R . In that range,

f(1− z)− r(1 − z) =
∑
j≥0

aj(x, θ)L−j zj

(2− z)j
.

By making use of the binomial expansion

zj

(2− z)j
=
∑
m≥0

(z
2

)j+m
(
j +m− 1
j − 1

)
if j ≥ 1,

and the new index k = j +m, we obtain the Taylor expansion about z = 0:

f(1− z)− r(1 − z) = a0(x, θ) +
∑
k≥0

(z
2

)k ∑
1≤j≤k

aj(x, θ)
Lj

(
k − 1
j − 1

)
.

To check convergence, notice that
(
k−1
j−1

) ≤ ∑k−1
n=0

(
k−1
n

)
= 2k−1, combine this with

(1.7), and obtain

2−k
∑

1≤j≤k

aj(x, θ)
Lj

(
k − 1
j − 1

)
≤ Q00

2

∑
1≤j≤k

(
R

L

)j

≤ Q00

2
1

1− L/R

(
R

L

)k

.

We assumed earlier that z ∈ [0, L/(4R)]; this condition manifestly suffices for conver-
gence of the sum over k. This shows that f ∈ C∞([−1, 1]); the very same reasoning
with Qαβ in place of Q00 also shows that any derivative ∂αx ∂

β
θ f(s) ∈ C∞([−1, 1]).

The Chebyshev expansion of f(s) is the Fourier-cosine series of f(cosφ), with
φ ∈ [0, π]; the previous reasoning shows that f(cosφ) ∈ C∞([0,∞]). The same is true
for any (x, θ) derivatives of f(cosφ). Hence, a(x, (AL(cosφ), θ)) is a C∞ function,
periodic in all its variables. The proposed expansion scheme is simply as follows:

• A Fourier series in x ∈ [0, 1]2.
• A Fourier series in θ ∈ [0, 2π].
• A Fourier-cosine series in φ ∈ [0, π].

An approximant with at mostM terms can then be defined by keeping �M1/4� Fourier
coefficients per direction. It is well known that Fourier and Fourier-cosine series of a
C∞ periodic function converge superalgebraically in the L∞ norm and that the same
is true for any derivative of the function as well. Therefore, if aM is this M -term
approximant, we have

sup
x,θ,φ

|∂βx (a− ã)(x, (AL(cosφ), θ))| ≤ Cβ,M ·M−∞ ∀ multi-index β.

We now invoke Lemma 2.1 with a−aM in place of a, chooseM = O(ε−1/∞) with
the right constants, and conclude.
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Fig. 2.1 Hierarchical spline construction. Here Bξ = 6, L = 4, and N = 486. The grid G�,i is of
size 4 × 4. The grid points are shown with “+” sign. (a) The whole grid. (b) The center
of the grid.

It is interesting to observe what goes wrong when condition (1.7) is not satisfied.
For instance, if the growth of the aj is fast enough in (1.3), then it may be possible
to choose the cutoffs χ(εj |ξ|) such that the sum over j replicates a fractional negative
power of |ξ|, like |ξ|−1/2, and in such a way that the resulting symbol is still in the class
defined by (1.2). A symbol with this kind of decay at infinity would not be mapped
onto a C∞ function of s inside [−1, 1] by the algebraic change of variables AL, and
the Chebyshev expansion in s would not converge spectrally. This kind of pathology
is generally avoided in the literature on pseudodifferential operators by assuming that
the order of the compound symbol a(x, ξ) is the same as that of the principal symbol,
i.e., the leading-order contribution a0(x, arg ξ).

Finally, note that the obvious generalization of the complex exponentials in arg
ξ to higher-dimensional settings would be spherical harmonics, as advocated in [1].
The radial expansion scheme would remain unchanged.

2.2. Hierarchical Spline Interpolant. An alternative representation is to use a
hierarchical spline construction in the ξ plane, as illustrated in Figure 2.1. We define
ãλ(ξ) to be an interpolant of the ξ-normalized x-Fourier coefficients aλ(ξ) as follows.
The interpolant is defined in the square ξ ∈ [−N,N ]2 for some largeN . Pick a number
Bξ, independent of N , that plays the role of coarse-scale bandwidth. In practice, it
is taken comparable to Bx.

• Define D0 = (−Bξ, Bξ)2. For each ξ ∈ D0, ãλ(ξ) := aλ(ξ).
• For each 8 = 1, 2, . . . , L = log3(N/Bξ), define D! = (−3!Bξ, 3!Bξ)2\D!−1.
D! is further partitioned into eight blocks,

D! =
8⋃

i=1

D!,i,

where each block D!,i is of size 2 · 3!−1Bξ × 2 · 3!−1Bξ. Within each block
D!,i, sample aλ(ξ) with a Cartesian grid G!,i of a fixed size. The restriction of
ãλ(ξ) in D!,i is defined to be the spline interpolant of aλ(ξ) on the grid G!,i.
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We emphasize that the number of samples used in each grid G!,i is fixed inde-
pendent of the level 8. The reason for this choice is that the function aλ(ξ) gains
smoothness as ξ grows to infinity. In practice, we set G!,i to be a 4 × 4 or 5 × 5
Cartesian grid and use cubic spline interpolation.

Let us summarize the construction of ã(x, ξ) =
∑

λ eλ(x)ãλ(ξ)〈ξ〉da . As before,
fix a parameter Bx that governs the bandwidth in x and define

X =
{(

p1

2Bx
,
p2

2Bx

)
, 0 ≤ p1, p2 < 2Bx

}
and Ω = D0

⋃⋃
!,i

G!,i

 .

The construction of the expansion of a(x, ξ) takes the following steps:
• Sample a(x, ξ) for all pairs of (x, ξ) with x ∈ X and ξ ∈ Ω.
• For a fixed ξ ∈ Ω, use the FFT to compute aλ(ξ) for all λ ∈ (−Bx, Bx)2.
• For each λ, construct the interpolant ãλ(ξ) from the values of aλ(ξ).

Let us study the complexity of this construction procedure. The number of sam-
ples in X is bounded by 4B2

x, considered a constant with respect to N . As we use a
constant number of samples for each level j = 1, 2, . . . , L = log3(N/Bξ), the number
of samples in Ω is of order O(logN). Therefore, the total number of samples is still
of order O(logN). Similarly, since the construction of a fixed size spline interpolant
requires only a fixed number of steps, the construction of the interpolants {ãλ(ξ)}
takes only O(logN) steps as well. Finally, we would like to remark that, due to the
locality of the spline, the evaluation of ãλ(ξ) for any fixed λ and ξ requires only a
constant number of steps.

We now expand on the convergence properties of the spline interpolant.
Proof of Theorem 1.2. If the number of control points per square Dj,i is K2

instead of 16 or 25 as we advocated above, the spline interpolant becomes arbitrarily
accurate. The spacing between two control points at level j is O(3j/K). With p
the order of the spline scheme—we took p = 3 earlier—it is standard polynomial
interpolation theory that

sup
ξ∈Dj,i

|ãλ(ξ)− aλ(ξ)| ≤ Ca,λ,p ·
(
3j

K

)p+1

· sup
|α|=p+1

‖∂αξ aλ‖L∞(Dj,i).

The symbol estimate (1.2) guarantees that C ·supξ∈Dj,i
〈ξ〉−p−1 bounds the last factor.

Each square Dj,i, for fixed j, is at a distance O(3j) from the origin; hence we have
that supξ∈Dj,i

〈ξ〉−p−1 = O(3−j(p+1)). This results in

sup
ξ∈Dj,i

|ãλ(ξ)− aλ(ξ)| ≤ Ca,λ,p ·K−p−1.

This estimate is uniform over Dj,i and hence also over ξ ∈ [−N,N ]2. As argued
earlier, it is achieved by using O(K2 logN) spline control points. If we factor in the
error of expanding the symbol in the x variable using 4B2 spatial points, for a total
of M = O(B2K2 logN) points, we have the compound estimate

sup
x∈[0,1]2

sup
ξ∈[−N,N ]2

|a(x, ξ)− ã(x, ξ)| ≤ C · (B−∞ +K−p−1).

The same estimate holds for the partial derivatives of a− ã in x.
Functions to which the operator defined by ã(x, ξ) is applied need to be bandlim-

ited to [−N,N ]2, i.e., f̂(ξ) = 0 for ξ /∈ [−N,N ]2 or, better yet, f = PNf . For those
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functions, the symbol ã can be extended by a outside of [−N,N ]2, Lemma 2.1 can be
applied to the difference A− Ã, and we obtain

‖(A− Ã)f‖L2 ≤ C · (B−∞ +K−p−1) · ‖f‖L2.

The leading factors of ‖f‖L2 in the right-hand side can be made less than ε if we choose
B = O(ε−1/∞) and K = O(ε−1/(p+1)), with adequate constants. The corresponding
number of points in x and ξ is therefore M = O(ε−2/(p+1) · logN).

3. DSC: Operations. Let A and B be two operators with symbols a(x, ξ) and
b(x, ξ). Suppose that we have already generated their expansions

a(x, ξ) ≈ ã(x, ξ) =
∑
λ

eλ(x)ãλ(ξ)〈ξ〉da and b(x, ξ) ≈ b̃(x, ξ) =
∑
λ

eλ(x)b̃λ(ξ)〈ξ〉db .

Here, da and db are the orders of a(x, ξ) and b(x, ξ), respectively. It is understood
that the sum over λ is restricted to (−Bx, Bx)2, that aλ(ξ) are approximated with
ãλ(ξ) by either method described earlier, and that we will not keep track of which
particular method is used in the notation. Let us now consider the basic operations
of the calculus of discrete symbols.

Scaling. C = αA. For the symbols, we have c(x, ξ) = αa(x, ξ). In terms of the
Fourier coefficients,

cλ(ξ)〈ξ〉da = αaλ(ξ)〈ξ〉da .

Therefore, we set dc = da and take the approximant c̃λ(ξ) to be

c̃λ(ξ) := α · ãλ(ξ).
Sum. C = A+B. For the symbols, we have c(x, ξ) = a(x, ξ) + b(x, ξ). In terms of

the Fourier coefficients,

cλ(ξ)〈ξ〉dc = aλ(ξ)〈ξ〉da + bλ(ξ)〈ξ〉db .

Therefore, it is natural to set dc = max(da, db) and c̃λ(ξ) to be the interpolant with
values (

ãλ(ξ)〈ξ〉da + b̃λ(ξ)〈ξ〉db

)
〈ξ〉−dc

for ξ ∈ Ω. Here, Ω is either the Chebyshev points grid or the hierarchical spline grid
defined earlier.

Product. C = AB. For the symbols, we have

c(x, ξ) = a(x, ξ) / b(x, ξ) =
∑
η

∫
e−2πi(x−y)(ξ−η)a(x, η)b(y, ξ)dy.

In terms of the Fourier coefficients,

cλ(ξ)〈ξ〉dc =
∑

k+l=λ

ak(ξ + l)〈ξ + l〉dabl(ξ)〈ξ〉db .

Therefore, dc = da + db and c̃λ(ξ) is taken to be the interpolant with values( ∑
k+l=λ

ãk(ξ + l)〈ξ + l〉da b̃l(ξ)〈ξ〉db

)
〈ξ〉−dc

at ξ ∈ Ω.
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Transpose. C = A∗. It is straightforward to derive the formula of its symbol:

c(x, ξ) =
∑
η

∫
e−2πi(x−y)(ξ−η)a(y, η)dy.

In terms of the Fourier coefficients,

cλ(ξ)〈ξ〉dc = a−λ(ξ + λ)〈ξ + λ〉da .

Therefore, dc = da and c̃λ(ξ) is the interpolant that takes the values(
ã−λ(ξ + λ)〈ξ + λ〉da

)
〈ξ〉−dc

at ξ ∈ Ω.
Inverse. C = A−1, where A is symmetric positive definite. We first pick a constant

α such that α|a(x, ξ)| � 1 for ξ ∈ (−N,N)2. Since the order of a(x, ξ) is da, α ≈
O(1/Nda). In the following iteration, we first invert αA and then scale the result by
α to get C:

• X0 = I.
• For k = 0, 1, 2, . . . , repeat Xk+1 = 2Xk −Xk(αA)Xk until convergence.
• Set C = αXk.

This iteration is called the Schulz iteration6 and is quoted in [4]. It can be seen
as a modified Newton iteration for finding the nontrivial zero of f(X) = XAX −X ,
where the gradient of f is approximated by the identity.

As this algorithm utilizes only the addition and the product of the operators, the
whole computation can be carried out via DSC. Since α ≈ O(1/Nda), the smallest
eigenvalue of αA can be as small as O(1/Nda), where the constant depends on the
smallest eigenvalue of A. For a given accuracy ε, it is not difficult to show heuristically
that this algorithm converges after O(logN + log(1/ε)) iterations. The constant in
this estimate is proportional to da, i.e., proportional to the logarithm of the condition
number of A.

Square root and inverse square root. Put C = A1/2 and D = A−1/2, where A is
symmetric positive definite. Here, we again choose a constant α such that α|a(x, ξ)| �
1 for ξ ∈ (−N,N)2. This also implies that α ≈ O(1/Nda). In the following iteration,
the Schulz–Higham iteration [27, 28, 30, 41] is used to compute the square root and
the inverse square root of αA and these operators are scaled appropriately:

• Y0 = αA and Z0 = I.
• For k = 0, 1, 2, . . . , repeat Yk+1 = 1

2Yk(3I−ZkYk) and Zk+1 = 1
2 (3I−ZkYk)Zk

until convergence.
• Set C = α−1/2Yk and D = α1/2Zk.

In a way similar to the iteration used for computing the inverse, the Schulz–
Higham iteration is similar to the iteration for computing the inverse in that it uses
only additions and products. Therefore, all of the computation can be performed via
DSC. A similar analysis shows that, for any fixed accuracy ε, the number of iterations
required by the Schulz–Higham iteration is of order O(logN + log(1/ε)), as for the
inverse.

6We thank a referee for the original reference [41] to Schulz and for pointing out that it is also
sometimes called the Hotelling–Bodewig iteration.
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Exponential. C = eαA. In general, the exponential of an elliptic pseudodifferential
operator itself is not necessarily a pseudodifferential operator. However, if the data
is restricted to ξ ∈ (−N,N)2 and α = O(1/Nda), the exponential operator behaves
almost like a pseudodifferential operator in this range of frequencies.7 In section 4.4,
we will give an example where such an exponential operator plays an important role.

We construct C using the following scaling-and-squaring steps [40]:
• Pick δ sufficient small so that α/δ = 2K for an integer K.
• Construct an approximation Y0 for eδA. One possible choice is the 4th-order
Taylor expansion, Y0 = I + δA+ (δA)2

2! + (δA)3

3! + (δA)4

4! . Since δ is sufficiently
small, Y0 is quite accurate.

• For k = 0, 1, 2, . . . ,K − 1, repeat Yk+1 = YkYk.
• Set C = YK .

This iteration for computing the exponential again uses only the addition and
product operations and, therefore, all the steps can be carried out at the symbol level
using DSC. The number of steps K is usually quite small, as the constant α itself is
of order O(1/Nda).

Moyal transform. Pseudodifferential operators are sometimes defined by means of
their Weyl symbol aW as

Af(x) =
∑
ξ∈Zd

∫
[0,1]d]

aW

(
1
2
(x+ y), ξ

)
e2πi(x−y)ξf(y) dy

when ξ ∈ Z
d; otherwise, if ξ ∈ R

d, replace the sum over ξ by an integral. It is
a more symmetric formulation that may be preferred in some contexts. The other,
usual formulation we have used throughout this paper is called the Kohn–Nirenberg
correspondence. The relationship between the two methods of “quantization,” i.e.,
passing from a symbol to an operator, is the so-called Moyal transform. The book
[21] gives the recipe

aW (x, ξ) = (Ma)(x, ξ) = 2n
∑
η∈Zd

∫
e4πi(x−y)·(ξ−η)a(y, η) dy

and, conversely,

a(x, ξ) = (M−1aW )(x, ξ) = 2n
∑
η∈Zd

∫
e−4πi(x−y)·(ξ−η)aW (y, η) dy.

These operations are algorithmically very similar to transposition. It is inter-
esting to notice that transposition is a mere conjugation in the Weyl domain: a∗ =
M−1(Ma). We also have the curious property that

M̂a(p, q) = e−πipqâ(p, q),

where the hat denotes the Fourier transform in both variables.
Applying the operator. The last operation that we discuss is how to apply the oper-

ator to a given input function. Suppose u(x) is sampled on a grid x = (p1/P, p2/P )
with 0 ≤ p1, p2 < P and P/2 < N . Our goal is to compute (Au)(x) on the same grid.

7Note that another case in which the exponential remains pseudodifferential is when the spectrum
of A is real and negative, regardless of the size of α.
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Using the definition of the pseudodifferential symbol and the expansion of a(x, ξ), we
have

(Au)(x) =
∑
ξ

e2πixξa(x, ξ)û(ξ)

≈
∑
ξ

e2πixξ
∑
λ

eλ(x)ãλ(ξ)〈ξ〉da û(ξ)

=
∑
λ

eλ(x)

∑
ξ

e2πixξ
(
ãλ(ξ)〈ξ〉da û(ξ)

) .

Therefore, a straightforward way to compute Au is as follows:
• For each λ ∈ (−Bx, Bx)2, sample ãλ(ξ) for ξ ∈ [−P/2, P/2)2.
• For each λ ∈ (−Bx, Bx)2, form product ãλ(ξ)〈ξ〉da û(ξ) for ξ ∈ [−P/2, P/2)2.
• For each λ ∈ (−Bx, Bx)2, apply the FFT to the result of the previous step.
• For each λ ∈ (−Bx, Bx)2, multiply the result of the previous step with eλ(x).
Finally, their sum gives (Au)(x).

Let us estimate the complexity of this procedure. For each fixed λ, the number of
operations is dominated by the complexity of the FFT, which is O(P 2 logP ). Since
there is only a constant number of values for λ ∈ (−Bx, Bx)2, the overall complexity
is also O(P 2 logP ).

In many cases, we need to calculate (Au)(x) for many different functions u(x).
Though the above procedure is quite efficient, we can further reduce the number of
Fourier transforms required. The idea is to exploit the possible redundancy between
the functions ãλ(ξ) for different λ. We first use a rank-reduction procedure, such as
QR factorization or SVD, to obtain a low-rank approximation

(3.1) ãλ(ξ) ≈
T∑
t=1

uλtvt(ξ),

where the number of terms T is often much smaller than the number of possible values
of λ. We can then write

(Au)(x) ≈
∑
λ

eλ(x)
∑
ξ

e2πixξ
T∑

t=1

uλtvt(ξ)〈ξ〉da û(ξ)

=
T∑
t=1

(∑
λ

eλ(x)uλt

)∑
ξ

e2πixξvt(ξ)〈ξ〉da û(ξ)

 .

The improved version of applying (Au)(x) then takes two steps. In the preprocessing
step, we compute the following:

• For each λ ∈ (−Bx, Bx)2, sample ãλ(ξ) for ξ ∈ [−P/2, P/2)2.
• Construct the factorization ãλ(ξ) ≈

∑T
t=1 uλtvt(ξ).

• For each t, compute the function
∑

λ eλ(x)uλt.
In the evaluation step, the following steps are carried out for an input function u(x):

• For each t, compute vt(ξ)〈ξ〉da û(ξ).
• For each t, apply the FFT to the result of the previous step.
• For each t, multiply the result with

∑
λ eλ(x)uλt. Their sum gives (Au)(x).
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Fig. 4.1 Coefficient α(x) of Example 1.

Table 4.1 Results of Example 1. The number of iterations, running time, and error of computing
C = AA, C = A−1, and C = A1/2 with DSC.

Iter Time(s) Error
C = AA - 3.66e+00 1.92e-05
C = A−1 17 1.13e+02 2.34e-04

C = A1/2 27 4.96e+02 4.01e-05

4. Applications and Numerical Results. In this section, we provide several nu-
merical examples to demonstrate the effectiveness of DSC. In these numerical exper-
iments, we use the hierarchical spline version of DSC. Our implementation is written
in MATLAB and all the computational results were obtained on a desktop computer
with a 2.8GHz CPU.

4.1. Basic Operations. We first study the performance of the basic operations
described in section 3. In the following tests, we set Bξ = 6, L = 6, and N =
Bξ×3L = 4374. The number of samples in Ω is equal to 677. We consider the elliptic
operator

Au := (I − div(α(x)∇))u.

The presence of the identity is unessential: it only makes inversion meaningful. For
periodic boundary conditions, div(α(x)∇) has a nonzero nullspace. It would be a very
similar numerical task to remove this nullspace by instead prescribing the value of the
symbol of A−1 to be zero at the origin in ξ. Even though the symbol of A−1 has a
singularity at ξ = 0 for the continuous problem, the problem disappears when ξ ∈ Z

d

away from the origin. As explained earlier, the complexity of DSC is only very mildly
affected by the conditioning of A.

Example 1. The coefficient α(x) of this example is a simple sinusoid function
given in Figure 4.1. We apply DSC to the computation of the operators C = AA,
C = A−1, and C = A1/2. The error is estimated by applying these operators to
random noise test functions. For a given test function f , the errors are computed
using

• ‖Cf−A(Af)‖
‖A(Af)‖ for C = AA,

• ‖A(Cf)−f‖
‖f‖ for C = A−1,

• ‖C(Cf)−Af‖
‖Af‖ for C = A1/2.

We summarize in Table 4.1 the running time, the number of iterations, and the
accuracy of these operations. Our algorithms produce good accuracy with a small
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Table 4.2 Results of Example 1. The running times of computing A−1f using the DSC approach
and the PCG algorithm for different problem sizes.

P DSC time(s) PCG time(s)
128 5.00e-02 1.00e-01
256 1.90e-01 4.40e-01
512 9.50e-01 2.05e+00
1024 5.06e+00 1.46e+01
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Fig. 4.2 Coefficient α(x) of Example 2.

number of sampling points in both x and ξ. The computation of the symbols of the
inverse and the square root takes only a couple of minutes on a desktop computer,
even for a large frequency domain (−N,N)2 with N = 4374. Moreover, one can easily
triple the value ofN by adding one extra level in the hierarchical spline construction or
by adding a few more radial quadrature points in the rational Chebyshev polynomial
construction. In both cases, the running time and iteration count depend on N in
a logarithmic way. This is in direct contrast to all other algorithms for constructing
inverses and square roots of elliptic operators, where the complexity grows at least
linearly with N , even with tools such as wavelets, hierarchical matrices, etc.

As we mentioned earlier, once A−1 is computed the computation of A−1f requires
only a small number of Fourier transforms. Here, we compare our approach with the
preconditioned conjugate gradient (PCG) algorithm, which is arguably one of the
most efficient algorithms for the problem under consideration. The preconditioner we
use is M = I − ᾱ∆ with ᾱ taken to be the mean of α. In Table 4.2, we compare the
running times of these two approaches. The function f(x) is taken to be a random
noise discretized on a uniform grid of size P × P . In both approaches, the relative
error is set at the order of 1e-04. Table 4.2 shows that the two algorithms scale in the
same way and that the DSC approach is slightly faster.

Example 2. In this example, we set α(x) to be a random bandlimited function
(see Figure 4.2). The running time, the number of iterations, and the error for each
operation are reported in Table 4.3. A similar comparison with the PCG algorithm
is given in Table 4.4.

From Tables 4.1 and 4.3, we observe that the number of iterations for the inverse
and the square root operators remains rather independent of the function a(x, ξ).

4.2. Preconditioner. As we mentioned in the introduction, an important appli-
cation of DSC is to precondition the inhomogeneous Helmholtz equation,

Lu :=
(
−∆− ω2

c2(x)

)
u = f,
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Table 4.3 Results of Example 2. The number of iterations, running time, and error of computing
C = AA, C = A−1, and C = A1/2 with DSC.

Iter Time(s) Error
C = AA - 3.66e+00 1.73e-05
C = A−1 16 1.05e+02 6.54e-04

C = A1/2 27 4.96e+02 8.26e-05

Table 4.4 Results of Example 2. The running times of computing A−1f using the DSC approach
and the PCG algorithm for different problem sizes.

P DSC time(s) PCG time(s)
128 6.00e-02 1.00e-01
256 4.10e-01 4.40e-01
512 2.01e+00 2.05e+00
1024 9.59e+00 1.44e+01
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Fig. 4.3 Sound speed c(x) of Example 3.

where the sound speed c(x) is smooth and periodic in x. We consider the solution of
the preconditioned system

M−1Lu = M−1f

with the so-called complex-shifted Laplace preconditioner [17], of which we consider
two variants,

M1 := −∆+
ω2

c2(x)
and M2 := −∆+ (1 + i) · ω2

c2(x)
.

For each preconditioner Mj with j = 1, 2, we use DSC to compute the symbol of
M−1

j . As we mentioned earlier, applying M−1
j requires only a small number of FFTs.

Furthermore, since M−1
j serves only as a preconditioner, we do not need to be very

accurate when applying M−1
j . This allows us to further reduce the number of terms

in the expansion of the symbol of M−1
j .

Example 3. The sound speed c(x) of this example is given in Figure 4.3. We
perform the test on different combinations of ω and N with ω/N fixed at about 16
points per wavelength. We compute the solutions using the BICGSTAB algorithm
with relative error equal to 10−3. The numerical results are summarized in Table 4.5.
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Table 4.5 Results of Example 3. For each test, we report the number of iterations and the running
time in seconds.

Uncond. M1 M2

(w/2π, N) Iter Time(s) Iter Time(s) Iter Time(s)
(4,64) 2243 8.40e+00 85 6.40e-01 57 5.10e-01
(8,128) 5182 6.79e+01 150 4.16e+00 88 2.46e+00
(16,256) 10412 6.50e+02 498 6.79e+01 354 4.82e+01
(32,512) 900 6.41e+02 306 2.20e+02
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Fig. 4.4 Sound speed c(x) of Example 4.

Table 4.6 Results of Example 4. For each test, we report the number of iterations and the running
time in seconds.

Uncond. M1 M2

(w/2π, N) Iter Time(s) Iter Time(s) Iter Time(s)
(4,64) 3460 1.30e+01 67 5.00e-01 42 3.20e-01
(8,128) 10609 1.39e+02 210 5.80e+00 116 3.19e+00
(16,256) 35114 1.93e+03 1560 2.16e+02 681 9.56e+01
(32,512) 1550 1.12e+03 646 4.63e+02

For each test, we report the number of iterations and the running time, for both the
unconditioned system and the preconditioned system with M1 and M2.

Example 4. In this example, the sound speed c(x) (shown in Figure 4.4) is a
Gaussian bump. We perform similar tests and the numerical results are summarized
in Table 4.6.

In these two examples, we were able to use only 2 to 3 terms in the symbol
expansion (3.1) of M−1

1 and M−1
2 . The results show that the preconditioners M1 and

M2 reduce the number of iterations by a factor of 20 to 50 and the running time by
a factor of 10 to 25. We also notice that the complex preconditioner M2 outperforms
M1 by a factor of 2. This is in line with observations made in [17], where the complex
constant appearing in front of the ω2/c2(x) term in M1 and M2 was optimized.

In these examples, we have not made the effort to optimize the coefficients in
the preconditioners M1 and M2 and the BICGSTAB algorithm might not be the best
iterative solver for this type of the problem. Here, our goal is to demonstrate that the
DSC approach can offer an alternative to the multigrid method for the shifted Laplace
preconditioner. Let us also note that we consider only the complex-shifted Laplace
preconditioner in isolation, without implementing any additional deflation technique.
Those techniques seem to be very important in practice [18].
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4.3. Polarization of Wave Operator. Another application of DSC is to “polar-
ize” the initial condition of linear hyperbolic systems. We consider the second-order
wave equation with variable coefficients,

utt − div(α(x)∇u) = 0,
u(0, x) = u0(x),
ut(0, x) = u1(x),

with the extra condition
∫
u1(x)dx = 0. Since the operator L := −div(α(x)∇) is

symmetric positive definite, its square root P := L1/2 is well defined. We can use P
to factorize the equation into

(∂t + iP )(∂t − iP )u = 0.

The solution u(t, x) can be represented as

u(t, x) = eitPu+(x) + e−itPu−(x),

where the polarized components u+(x) and u−(x) of the initial condition are given
by

u+ =
u0 + (iP )−1u1

2
and u− =

u0 − (iP )−1u1

2
.

We first use DSC to compute the operator P−1. Once P−1 is available, the compu-
tation of u+ and u− is straightforward.

Example 5. The coefficient α(x) in this example is shown in Figure 4.5(a). The
initial condition is set to be a plane wave solution of unit sound speed,

u0(x) = e2πikx and u1(x) = −2πi|k|e2πikx,

where k is a fixed wave number. If α(x) were equal to 1 everywhere, this initial
condition itself would be polarized and the component u+(x) would be zero. However,
due to the inhomogeneity in α(x), we expect both u+ and u− to be nontrivial after the
polarization. The real part of u+(x) is plotted in Figure 4.5(b). We notice that the
amplitude u+(x) scales with the difference between the coefficient α(x) and 1. This
is compatible with the asymptotic analysis of the operator P for large wave number.
The figure of u−(x) is omitted as visually it is close to u0(x).

Example 6. The coefficient α(x) here is a random bandlimited function shown in
Figure 4.6(a). The initial conditions are the same as those used in Example 5. The
real part of the polarized component u+(x) is shown in Figure 4.6(b). Again, we see
the dependence of the amplitude of u+(x) on the difference between α(x) and 1.

4.4. Seismic Depth Migration. The setup is the same as in the introduction:
consider the Helmholtz equation

(4.1) uzz +∆⊥ +
ω2

c2(x)
u = 0

for z ≥ 0. The transverse variables are either x ∈ [0, 1] in the one-dimensional
case or x ∈ [0, 1]2 in the two-dimensional case. (Our notations support both cases.)
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Fig. 4.5 Example 5. Left: medium α(x). Right: the real part of the polarized component u+ =
(u0 + (iP )−1u1)/2. Notice that the amplitude of u+(x) scales with the quantity α(x) − 1.
u− = (u0 − (iP )−1u1)/2 is omitted since visually it is close to u0.
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Fig. 4.6 Example 6. Left: medium α(x). Right: the real part of the polarized component u+ =
(u0 + (iP )−1u1)/2. Notice that the amplitude of u+(x) scales with the quantity α(x) − 1.
u− = (u0 − (iP )−1u1)/2 is omitted since visually it is close to u0.

Given the wave field u(x, 0) at z = 0, we want to compute the wave field for z > 0. For
simplicity, we consider periodic boundary conditions in x or (x, y) and no right-hand
side in (4.1).

As mentioned earlier, we wish to solve the corresponding SSR equation

(4.2)
(
∂

∂z
−B(z)

)
u = 0,
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where B(z) is a regularized square root of −∆⊥ − ω2/c2(x, z). Call ξ the variable(s)
dual to x. The locus where the symbol 4π2|ξ|2 − ω2/c2(x, z) is zero is called the
characteristic set of that symbol; it poses well-known difficulties for taking the square
root. To make the symbol elliptic (here, negative) we simply introduce

a(z;x, ξ) = g

(
4π2|ξ|2, 1

2
ω2

c2(x, z)

)
− ω2

c2(x, z)
,

where g(x,M) is a smooth version of the function min(x,M). Call b(z;x, ξ) the sym-
bol square root of a(z;x, ξ), and B̃(z) = b(z;x, i∇x) the resulting operator. A large-
frequency cutoff now needs to be taken to correct for the errors introduced in modify-
ing the symbol as above. Consider a function χ(x) equal to 1 in (−∞,−2] that tapers
off in a C∞ fashion to zero inside [−1,∞). We can now consider χ(b(z;x, ξ)) as the
symbol of a smooth “directional” cutoff, defining an operator X = χ(b(z; , x,−i∇x))
in the standard manner. The operator B̃(z) should then be modified as

XB̃(z)X.

At the level of symbols, this is, of course, (χ(b)) / b / (χ(b)) and should be realized
using the composition routine of DSC.

Once this modified square root has been obtained, it can be used to solve the SSR
equation. Formally, the operator mapping u(x, 0) to u(x, z) can be written as

E(z) =
(
exp

∫ z

0

B(s) ds
)

+

,

where (exp ·)+ denotes the ordered exponential. If B(s) were to make sense, this
formula would be exact. Instead, we substitute XB̃(s)X for B(s), use the usual
operator exponential as a simplification, and compute E(z) using DSC. We intend
for z to be small, i.e., comparable to the wavelength of the field u(x, 0), in order to
satisfy a CFL-type condition. With this type of restriction on z, the symbol of E(z)
remains sufficiently smooth for the DSC algorithm to be efficient:8 the integral over
s can be discretized by a quadrature over a few points, and the operator exponential
is a good approximation to the ordered exponential that can be realized by scaling
and squaring.

The effect of the cutoffs X is to smoothly remove (1) turning rays, i.e, waves that
would tend to travel in the horizontal direction or even overturn, and (2) evanescent
waves, i.e., waves that decay exponentially in z away from z = 0. This is why X is
called a directional cutoff. It is important to surround B̃ with two cutoffs to prevent
the operator exponential from introducing energy near the characteristic set of the
generating symbol 4π2|ξ|2 − ω2/c2(x, z). This precaution would be hard to realize
without an accurate way of computing compositions (twisted product). Note that the
problem of controlling the frequency leaking while taking an operator exponential was
addressed by Stolk in [48], and that our approach provides another, clean solution.

We obtain the following numerical examples.

8For larger z, E(z) would be a Fourier integral operator, and a phase would be needed in addition
to a symbol. We leave this to a future project.
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Fig. 4.7 Example 7. (a) Sound speed c(x). (b) The solution when the boundary condition u(x, 0) is
a constant. (c) The solution when the boundary condition u(x, 0) is a wave packet.

Example 7. Let us start by considering the one-dimensional case. The sound
speed c(x) in this example is a Gaussian wave guide (see Figure 4.7(a)). We set ω to
be 100 · 2π in this case.

We perform two tests in this example. In the first test, we select the boundary
condition u(x, 0) to be equal to 1. This corresponds to the case of a plane wave
entering the wave guide. The solution of (4.2) is shown in Figure 4.7(b). As z grows,
the wave front starts to deform and the caustic appears at x = 1/2 when the sound
speed c(x) is minimum.

In the second test of this example, we choose the boundary condition u(x, 0) to be
a Gaussian wave packet localized at x = 1/2. The wave packet enters the wave guide
with an incident angle of about 45 degrees. The solution is shown in Figure 4.7(c).
Even though the wave packet deforms its shape as it travels down the wave guide,
it remains localized. Notice that the packet bounces back and forth at the regions
with large sound speed c(x), which is the result predicted by geometric optics in the
high-frequency regime.

Example 8. Let us now consider the two-dimensional case. The sound speed used
here is a two-dimensional Gaussian wave guide (see Figure 4.8(a)). We again perform
two different tests. In the first test, the boundary condition u(x, y, 0) is equal to a
constant. The solution at the cross-section y = 1/2 is shown in Figure 4.8(b). In the
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Fig. 4.8 Example 8. (a) Sound speed c(x). (b) The solution at the cross-section y = 1/2 when the
boundary condition u(x, y, 0) is a constant. (c) The solution at the cross-section y = 1/2
when the boundary condition u(x, y, 0) is a wave packet.

second test, we choose the boundary condition to be a Gaussian wave packet with
oscillation in the x direction. The packet enters the wave guide with an incident angle
of 45 degrees. The solution at the cross-section y = 1/2 is shown in Figure 4.8(c).
Both of these results are similar to those of the one-dimensional case.

5. Discussion.

5.1. Other Domains and Boundary Conditions. An interesting question is what
form DSC should take when boundary conditions other than periodic are considered,
or when on more general domains than a square.

One can speculate that the discrete sine transform (DST) should be used as eλ
for Dirichlet boundary conditions on a rectangle, or the discrete cosine transform
(DCT) for Neumann on a rectangle. Whatever choice is made for eλ should dictate
the definition of the corresponding frequency variable ξ. A more robust approach
could be to use spectral elements for more complicated domains, where the spectral
domain would be defined by Chebyshev expansions. One may also imagine expansions
in prolate spheroidal wavefunctions. Regardless of the type of expansions chosen, the
theory of pseudodifferential operators on bounded domains is a difficult topic that
will need to be understood.
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For applications to wave propagation, it will be important to generate symbols
that handle nonreflecting boundary conditions, perhaps implemented as a PML [2, 33].
Such boundary conditions make the spectrum complex and hence would substantially
complicate the square root operation. In fact, we hope that ideas of symbol calculus
will themselves provide new insights into solving the problem of accurate nonreflecting
boundary conditions in variable media.

5.2. Other Equations. Symbol-based methods may help solve equations other
than elliptic PDEs. The heat equation in variable media is one of them: its funda-
mental solution has a nice pseudodifferential smoothing form that can be computed
via scaling and squaring.

A more challenging example is that of hyperbolic systems in variable, smooth me-
dia. The time-dependent Green’s function of such systems is not a pseudodifferential
operator, but rather a Fourier integral operator (FIO), where e2πix·ξa(x, ξ) needs to
be replaced by eΦ(x,ξ)a(x, ξ). We regard the extension of DSC to handle such phases
a very interesting problem; see [11, 12] for preliminary results on fast application of
FIO.

Appendix. Proof of Lemma 2.1. Set

âλ(ξ) =
∫

e−2πix·λa(x, ξ) dx

for the Fourier series coefficients of a(x, ξ) in x. Then we can express (1.6) as

(Af)(x) =
∑
ξ∈Zd

e2πix·ξ
∑
λ∈Zd

e2πix·λâλ(ξ)f̂(ξ).

We seek to interchange the two sums. Since a(x, ξ) is differentiable d′ times, we have

(1 + |2πλ|d′
) âλ(ξ) =

∫
[0,1]d

e−2πix·λ(1 + (−∆x)d
′/2)a(x, ξ) dx;

hence |âλ(ξ)| ≤ (1+ |2πλ|d′
)−1‖(1+(−∆x)d

′/2)a(x, ξ)‖L∞
x
. The exponent d′ is chosen

so that âλ(ξ) is absolutely summable in λ ∈ Z
d. If in addition we assume f̂ ∈ 81(Zd),

then we can apply Fubini’s theorem and write

(Af)(x) =
∑
λ∈Zd

Aλf(x),

where Aλf(x) = e2πix·λ(Mâλ(ξ)f)(x) and Mg is the operator of multiplication by g
on the ξ side. By Plancherel, we have

‖Aλf‖L2 = ‖Mâλ(ξ)f‖L2 ≤ sup
ξ

|âλ(ξ)| · ‖f‖L2.

Therefore, by the triangle inequality,

‖Af‖L2 ≤
∑
λ∈Zd

‖Aλf‖L2

≤
∑
λ∈Zd

(1 + |2πλ|d′
)−1 · sup

x,ξ
|(1 + (−∆x)d

′/2)a(x, ξ)| · ‖f‖L2.

As we have seen, the sum over λ converges. This proves the theorem when f is
sufficiently smooth; a classical density argument shows that the same conclusion holds
for all f ∈ L2([0, 1]d).
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[29] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. I–IV, Springer,
Berlin, 1985.

[30] A. S. Householder, The Theory of Matrices in Numerical Analysis, Dover, New York, 2006.
[31] T. K. Huckle, Compact Fourier analysis for designing multigrid methods, SIAM J. Sci. Com-

put., 31 (2008), pp. 644–666.
[32] P. Jones, J. Ma, and V. Rokhlin, A fast direct algorithm for the solution of the Laplace

equation on regions with fractal boundaries, J. Comput. Phys., 113 (1994), pp. 35–51.
[33] D. Komatitsch and J. Tromp, A perfectly matched layer absorbing boundary condition for

the second-order seismic wave equation, Geophys. J. Int., 154 (2003), pp. 146–153.
[34] M. P. Lamoureux and G. F. Margrave, An introduction to numerical methods of pseu-

dodifferential operators, in Pseudo-differential Operators, Lecture Notes in Math. 1949,
Springer, Berlin, 2008, pp. 79–133.

[35] J. H. Le Rousseau and M. V. de Hoop, Generalized-screen approximation and algorithm for
the scattering of elastic waves, Quart. J. Mech. Appl. Math., 56 (2003), pp. 1–33.

[36] T. Lin and F. Herrmann, Compressed wavefield extrapolation, Geophys., 72 (2007), pp. 77–93.
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